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Abstract. In AIDS control, physicians have a growing need to use pragmatically
useful and interpretable tools in their daily medical taking care of patients. In
that sense, semi-Markov process seems to be well adapted to model the evolution
of HIV-1 infected patients. In this study, we introduce and define a Non Homo-
geneous semi-Markov Model (NHSMM) in continuous time. Then the problem of
finding the equations that describe the biological evolution of patient is studied
and the interval transition probabilities are computed. A parametric approach is
used and the maximum likelihood estimators of the process are given. As results,
follow-up time has an impact on the evolution of patients and interval transition
probabilities are computed.
Keywords: Semi-Markov process, Non homogeneity, Maximum likelihood estima-
tion, Right censored data, interval transition probabilities.

1 Introduction

The CD4 count and the VL measurement are both fundamental markers of
the state of an HIV-1 infected patient. The potential of these immunological
and virological reservoirs determines the way the patients are handled. In
the context of HIV, it seems reasonable to think that the probability of a
patient’s transition from one state to another depends on how long he has
spent in this state. Therefore the semi-Markov Models (SMM) seem to be
appropriated [Janssen and Limnios, 1999].

The SMM have been considered in the HIV modelling [Wilson and
Solomon, 1994], [Satten and Sternberg, 1999], [Joly and Commenges, 1999].
These models were time Homogeneous semi-Markov Models (HSMM) and
unidirectional. Nowadays it seems to be appropriated to take into account
the impact of the follow-up time on the patients’ evolution. The goal of this
paper is to formulate a Non Homogeneous semi-Markov Model (NHSMM) of
the HIV biological process and to compute its interval transition probabili-
ties. The NHSMM have found many applications, in breast cancer [Davidov,
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1999], [Davidov and Zelen, 2000] in manpower system [Papadopoulou and
Vassiliou, 1999],

[Vassiliou and Papadopoulou, 1992],[Papadopoulou, 1998], [McClean et

al., 1998] and [Janssen and Manca, 2001].
This paper is organized as follows. In the next section, the model and

associated notation are introduced. Section 3 defines the semi-Markovian
interval transition probabilities and solves integral equations. In section 4, the
emi-Markov process is parametrically modelled and the likelihood function is
built. Section 5 illustrates an application to HIV control. Finally, section 6
is a summary and discussion.

2 Model description and Notation

The natural history of HIV infection can be considered as a series of stages
through which a patient progresses. Based both on currently information and
physicians’ opinion, we have taken four immunological and virological states:
state 1 (V L ≤ 400 and CD4 ≤ 200), state 2 (V L ≤ 400 and CD4 > 200),
state 3 (V L > 400 and CD4 > 200), state 4 (V L > 400 and CD4 ≤ 200).
Patients move thought these four states according ten transitions given in
figure 1.

STATE 1
CV ≤ 400 cp/ml
CD4 ≤ 200/ml

STATE 2
CV ≤ 400 cp/ml
CD4 > 200/ml

STATE 4
CV > 400 cp/ml
CD4 ≤ 200/ml

STATE 3
CV > 400 cp/ml
CD4 > 200/ml

Fig. 1. An HIV Multi-state model, with 4 immunological and virological states and
10 transitions.

More formally, let E = {1, 2, 3, 4} be the state space and (Ω, z, P ) be
a probability space. We define the following random variables [Janssen and
Manca, 2001]:

Jn : Ω → E, Sn : Ω → [0, +∞),

where Jn represents the state at the n-th transition and Sn represents the
chronological time of the n-th transition. Let N (t) be the counting process
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(N (t) , t ≥ 0) associated to the point process (Sn)n∈ N defined for any time
t ≥ 0 by :

N(t) = sup {n : Sn ≤ t} .

The random variable N (t) represents the number of transitions occured in
the interval of time [0, t] . Let us define the (Xn)n∈ N ‘duration process ’ by :

X0 = 0,

Xn+1 = Sn+1 − Sn, n ∈ N∗

where Xn+1 represents the duration time spent in state Jn.

The (Jn, Sn)n∈ N process is called ‘non-homogeneous Markov renewal pro-

cess ’ if :

P (Jn+1 = j, Sn+1 ≤ t| Jn = i, Sn = s, Jn−1, Sn−1, ..., J0, S0) = P (Jn+1 = j, Sn+1 ≤ t|Jn = i, Sn = s),

and for j 6= i

Qij(s, t) = P (JN(s)+1 = j, SN(s)+1 ≤ t|JN(s) = i, SN(s) = s),

is the associated non-homogeneous semi-Markov kernel Q. The semi-
Markov kernel is written again :

Qij(s, x) = P (JN(s)+1 = j, XN(s)+1 ≤ x|JN(s) = i, SN(s) = s).

The second composant of Q, namely x, represents a duration time whereas
s represents a chronological time.

As is well known [Wadjda, 1992],

pij(s) = lim
x→∞

Qij(s, x), i, j ∈ E, j 6= i

= P (JN(s)+1 = j|JN(s) = i, SN(s) = s),

represents the probability of a patient making its next transition to state
j, given that he entered state i at time s and P(s) = [pij(s)]i,j is the (4 ×

4) transition probability matrix of the embedded non-homogeneous Markov

chain (Jn)n∈ N .

However, before the entrance into j, the patients ’holds’ for a time x in
state i. The conditional cumulative distribution function of the waiting time
in each state, given the state subsequently occupied, is defined by :

Fij(s, x) = P (XN(s)+1 ≤ x|JN(s)+1 = j, JN(s) = i, SN(s) = s).

This probability function is obtained by :

Fij(s, x) =

{

Qij(s,x)
pij(s)

if pij(s) 6= 0

1 if pij(s) = 0
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and for more feasability, it is supposed free of the chronological time
s, namely Fij(x). Without loss of generality, the waiting time also has a
probability density function, namely fij(x) and D(x) = [fij(x)]

i,j
represents

the (4 × 4) duration matrix.
Let introduce the probability that the process stays in state i for at least

a duration time x, given state i is entered at chronological time s :

Hi(s, x) = P (XN(s)+1 ≤ x|JN(s) = i, SN(s) = s).

Of course,

Hi(s, x) =

4
∑

j 6=i

Qij(s, x) =

4
∑

j 6=i

pij(s)Fij(x).

Therefore, the marginal cumulative distribution functions of the waiting
time in each state depend on both time. Let us define Si (s, x) = 1−Hi(s, x).

Now it is possible to define the continuous time non homogeneous semi

Markov process Z(t), which represents, for each time t, the state occupied by
the process [Cox and Isham, 1980], [Janssen, 1986], as :

Z(t) = JN(t), t ∈ R+.

with :
P [Z(t) = j] = P [SN(t) ≤ t < SN(t)+1, JN(t) = j].

This SM process is both characterized by a set of Markov transition ma-
trices {P(t)}t≥0, and a set of duration matrices {D(x)}x≥0 . Note that two
time scales arise, the chronological time and the internal time scales. The
chronological time, namely t, is relative to an arbitrary origin. In our case,
t = 0 represents the first immunological and virological measurement experi-
mented by the patient in hospital. The internal time, namely x, is relative to
the duration time in each state [Davidov and Zelen, 2000]. Our model is quite
simple and completely defined by both the jump and duration processes. The
advantage of semi-Markov model is their mathematical tractability and sim-
ple interpretation. The SMM presented in this section is non homogeneous
with time since the jump process (pij(t))i,j,t≥0 depends on the chronological
time.

3 Interval transition probabilities

In the perspective of a more and more effective taking care of patients,
physicians need tools of prediction and reference points. Let us define,
∀i, j = 1, ..., 4, φij(t, x) as the following probability [Papadopoulou and Vas-
siliou, 1999] :

φij(t, x) = P [a patient is in state j at time t + x | he entered state i at time t] .
= P

[

Z(t + x) = j | JN(t) = i ; SN(t) = t
]
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These probabilities are real quantities of interest in the medical practice.
Let us precise that φij(t, x) 6= φij(t + h, x + h), ∀h > 0. We now turn on
the question of developing a functional relationship between the probabilities
φij(t, x), which from now on we call the interval transition probabilities of
the SM process, and the probabilities pij(t) and dij(x).This could be done by
taking all the possible mutually exclusive ways in which it is possible for the
event of interest to take place. With careful reasoning we could prove that
∀t, x ≥ 0:

φij(t, x) = δij × Si.(t, x) +

4
∑

l=1
l 6=i

x
∫

0

pil(t)dil(u)φlj(t + u, x − u)du.

This equation represents the evolution equation of a continuous NHSMM.
Let cil(t, x) be the product pil(t)dil(x). Then the previous equation is written:

φij(t, x) = δij × Si.(t, x) +

4
∑

l=1
l 6=i

x
∫

0

cil(t, u)φlj(t + u, x − u)du. (1)

Obviously φij(t, 0)=0 for j 6= i, 1 otherwise. Using probabilistic argu-
ments, we could find probabilities φij(t, x) in closed analytic form. Let k be
the index of the number of transitions in the interval of time ]t, t+x[, and let
t + x1, t + x1 + x2, ...., t+ x1 + x2 + ... + xk be the chronological times where
they successively occur. Then the equation (1) is written as follows

φij(t, x) = δij × Si.(t, x)
+

∫ x

0 cij(t, x1)Sj.(t + x1, x − x1)dx1

+
∑4

l=1
l 6=i,l 6=j

∫ x

0

∫ x−x1

0
cil(t, x1)clj(t + x1, x2)Sj.(t + x1 + x2, x − x1 − x2)dx2dx1

+
∑∞

k=3

∑4
l=1
l 6=i

∑4
m=1
m 6=l

...
∑4

w=1
w 6=v

∫ x

0

∫ x−x1

0 ...
∫ x−x1−x2−...−xk−1

0

cil(t, x1)clm(t + x1, x2)...cwj(t + x1 + x2 + ... + xk−1, xk)
×Sj.(t + x1 + x2 + ... + xk−1 + xk, x − x1 − x2 − ... − xk−1 − xk)dxk...dx2dx1.

(2)
This previous expression formalizes the fact that the event of interest {a

patient of the NHSMM is in in state j at time t + x, given he entered state
i at time t} may be derived from no transition (k = 0) or from exactly one
transition (k = 1) or from exactly two transitions (k = 2) or more (k ≥ 3).
Let us define φk

ij(t, x) by the following probability:

φk
ij(t, x) = P [patient in state j at t + x; k transitions during ]t, t + x[

| he entered state i at time t ] .

Finally the equation (2) can be written ∀i, j ∈ {1, 2, 3, 4}

φij(t, x) =

∞
∑

k=0

φk
ij(t, x) (3)
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and in matrix form, with Φ(t, x) = (φij(t, x))
i,j

and Φ
k(t, x) =

(

φk
ij(t, x)

)

i,j

Φ(t, x) =
∞
∑

k=0

Φ
k(t, x). (4)

4 The likelihood function

Over a period of time, M patients are observed (p = 1, ..., M). Each patient
begins his immunological and virological trajectory in any state, which is re-
vealed by the first measurement at time s = 0. Let us assume that the pth sub-
ject changes state (np−1) times in the instants sp,1 < sp,2 < ... < sp,np−1 and
successively occupies states Jp,1, Jp,2,...,Jp,np−1 with Jp,n 6= Jp,n+1, ∀n ≥ 1.

At the last observed time of the follow-up, namely sp,np
, the patient either

may enter a new state Jp,np
or stay in the state Jp,np−1. In the last case,

the last duration time in state Jp,np−1 is right censored. More generally,
the contribution for an observed transition i → j, after a duration time x

spent in state i, equals pij(t)fij(x), namely the probability P [duration time
= x; next = j| state i is entered at time t]. If the transition from state i is
right censored, after a staying time x, then the contribution is the function
Si(t, x). The likelihood function for all times and transition times observed,
is written as follows

L =

M
∏

p=1

np
∏

n=1

[pJp,n−1,Jp,n
(sp,n−1)fJp,n−1,Jp,n

(sp,n−sp,n−1)]
ξp,n [SJp,n−1

(sp,n−1, sp,n−sp,n−1)]
1−ξp,n

where ξp,n = 1, if the nth transition is observed for the individual p, and
ξp,n = 0 if censored. Our parametric approach for both jump and duration
processes consists respectively in a linear and a Weibull modelings

pij(t|θij) = aijt + bij ∀j 6= i (5)

pii(t) = 0 ∀i = 1, ..., 4

fij(x|γij) = νijσ
νij

ij xνij−1Exp[−(σijx)νij ] ∀j 6= i (6)

5 Application to HIV control

In this section, we apply the previous parametric NHSMM to an HIV-1 in-
fected patients database. The database NADIS is made of patients followed
in the Nice Hospital, France. The study sample is made of 1313 patients and
17888 virologic and immunologic measurements. The chronological time is
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measured from the first biological measurement. From the modelings (5) and
(6), we test several restrictions in order to select the parametric model which
offers the best adequacy (Likelihood Ratio Test). The selected parametric
NHSMM is based on both exponential and Weibull duration times, but also
on time linear and constant probabilities.The estimations of the NHSMM
parameters are given in Table 1.

Transition
i → j

Estimators of the duration process
dij(x)

Estimators of the jump process
pij(t)

1 → 2 Weibull (1.1069 , 1.6795) (0.0450 × t)+ 0.4748
1 → 3 Weibull (1.4460 , 1.8283) 0.1111
1 → 4 Weibull (1.0971, 1.7254) (−0.0450 × t) − 0.4141
2 → 1 Weibull (0.5878 , 0.0940) (−0.0213 × t)+ 0.3148
2 → 3 Weibull (1.0500, 0.8844) (0.0213 × t) + 0.6852
3 → 2 Expo (1.0841 ) 0.8496
3 → 4 Weibull (0.7842, 0.7597 ) 0.1504
4 → 1 Weibull (0.9095, 1.0556) (−0.0276 × t)+ 0.4779
4 → 2 Weibull (1.1866, 1.5765) 0.1605
4 → 3 Expo (1.8410) (0.0276 × t)+ 0.3616

Table 1. Estimations of parameters in the NHSMM defined by the linear jump
process {pij(t)}i,j and the duration process {dij(x)}

i,j

Mathematical computing was preformed on R software version 1.9.1. The
standard error deviations are not presented for more lisibility. The real quan-
tities of interest are the semi-Markovian interval transition probabilities de-
fined in Section 3. Indeed in medical practice, physicians are often interested
in predictions. In this view, the 4× 4 matrix of the interval transition prob-
abilities for fixed chronological time t and duration time x,given by equation
(4) in section 3, are useful. For exemple, the estimations of Φ(0, 1) are given
in Table 2.

state j
state i

1 2 3 4

1 0.2059 0.3212 0.2182 0.1935
2 0.0336 0.6530 0.2623 0.0210
3 0.0219 0.4311 0.4673 0.0094
4 0.1464 0.2557 0.2266 0.2649

Table 2. The 4 × 4 interval transition matrix (φij(0, 1))i,j

Given a patient enters state 2 at t = 0, he has a 0.652 probability to be
1-year later in state 2; Given a patient enters state 3 at t = 0, there is a quasi
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equiprobability to be 1-year later in state 2 or 3. Lastly, given a patient
enters state 4 at t = 0, there is a quasi equiprobability to be 1-year later in
state 2, 3 or 4.

6 Discussion

The HIV model considered in this study clearly relates to a ’macroscopic’
view of the disease process and it is based both on the CD4 count and VL
measurement. This multi-state model is made of 4 immunological and viro-
logical states and 10 transitions. The non homogeneous semi-Markov model
captures the main features of the disease process and therefore provides a
reasonable approximation of a very complicated process. The homogeneity
hypothesis reveals to be too restrictive in the HIV context which nowadays
becomes a chronic disease. The follow-up time has a significant impact on the
disease process. We use a parametric approach and compute the maximum
likelihood estimators of the NHSMM. The integral evolution equations of the
continuous NHSMM are solved and the interval transition probabilities are
computed. Therefore physicians have interesting reference points and some
predictions can be made as regards the biological evolution of patients. Here
are the three characteristics of a good model which should be mathematically
tractable, pragmatically useful and interpretable.
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