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Abstract. We propose a new method of discriminant analysis, called High Di-
mensional Discriminant Analysis (HHDA). Our approach is based on the assump-
tion that high dimensional data live in different subspaces with low dimensionality.
Thus, HDDA reduces the dimension for each class independently and regularizes
class conditional covariance matrices in order to adapt the Gaussian framework to
high dimensional data. This regularization is achieved by assuming that classes are
spherical in their eigenspace. HDDA is applied to recognize object in real images
and its performances are compared to classical classification methods.
Keywords: Discriminant analysis, Dimension reduction, Regularization.

1 Introduction

In this paper, we introduce a new method of discriminant analysis, called
High Dimensional Discriminant analysis (HDDA) to classify high dimensional
data, as occur for example in visual object recognition. We assume that high
dimensional data live in different subspaces with low dimensionality. Thus,
HDDA reduces the dimension for each class independently and regularizes
class conditional covariance matrices in order to adapt the Gaussian frame-
work to high dimensional data. This regularization is based on the assump-
tion that classes are spherical in their eigenspace. It is also possible to make
additional assumptions to reduce the number of parameters to estimate. This
paper is organized as follows. We first remind in section 2 the discrimination
problem and classical discriminant analysis methods. Section 3 presents the
theoretical framework of HDDA. Section 4 is devoted to the inference aspects.
Our method is then compared to reference methods on a real images dataset
in section 5.

2 Discriminant analysis framework

In this section, we remind the general framework of the discrimination prob-
lem and present the main methods of discriminant analysis.

2.1 Discrimination problem

The goal of discriminant analysis is to assign an observation x ∈ R
p with un-

known class membership to one of k classes C1, ..., Ck known a priori. To this
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end, we have a learning dataset A = {(x1, c1), ..., (xn, cn)/xj ∈ R
p and cj ∈

{1, ..., k}}, where the vector xj contains p explanatory variables and cj in-
dicates the index of the class of xi. It is a statistical decision problem and
the learning dataset allows to construct a decision rule which associates a
new vector x ∈ R

p to one of the k classes. The optimal decision rule, called
Bayes decision rule, affects the observation x to the class Ci∗ which has the
maximum a posteriori probability which is equivalent, in view of the Bayes
formula, to minimize a cost function Ki(x) i.e. i∗ = argmini=1,...,k Ki(x),
with

Ki(x) = −2 log(πi fi(x)),

where πi is the a priori probability of class Ci and fi(x) denotes the class
conditional density of x, ∀i = 1, ..., k.

2.2 Classical discriminant analysis methods

Some classical discriminant analysis methods can be obtained by combining
additional assumptions with the Bayes decision rule. We refer to [Celeux,
2003] and [Saporta, 1990, chap. 18] for further informations on this topic. For
instance, Quadratic discriminant analysis (QDA) assumes that, ∀i = 1, ..., k,
the class conditional density fi for the class Ci is Gaussian N (µi, Σi) which
leads to the cost function

Ki(x) = (x − µi)
tΣ−1

i (x − µi) + log(det Σi) − 2 log(πi).

This decision rule makes quadratic separations between the classes. In prac-
tice, this method is penalized in high-dimensional spaces since it requires the
estimation of many parameters. For this reason, particular rules of QDA
exist in order to regularize the estimation of Σi. As an example, it can be
assumed that covariance matrices are proportional to the identity matrix, i.e.
Σi = σ2

i Id. In this case, classes are spherical and this method is referred to as
QDAs. One can also assume that covariance matrices are equal, i.e. Σi = Σ,
which yields the framework of the linear discriminant analysis (LDA). This
method makes linear separations between the classes. If, in addition, covari-
ance matrices are assumed equal and proportional to the identity matrix, we
obtain the so-called LDAs method.

2.3 Dimension reduction and regularization

Classical discriminant analysis methods have disappointing behavior when
the size n of the training dataset is small compared to the number p of
variables. In such cases, a dimension reduction step and/or a regularization
of the discriminant analysis are introduced.
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Fisher discriminant analysis (FDA) This approach combines a dimension re-
duction step and a discriminant analysis procedure and is in general efficient
on high dimensional data. FDA provides the (k− 1) discriminant axes maxi-
mizing the ratio between the inter class variance and the intra class variance.
It is then possible to perform one of the previous methods on the projected
data (usually LDA).

Regularized discriminant analysis (RDA) In [Friedman, 1989] a regulariza-
tion technique of discriminant analysis is proposed. RDA uses two regulariza-
tion parameters to design an intermediate classifier between LDA and QDA.
The estimation of the covariance matrices depends on a complexity param-
eter and on a shrinkage parameter. The complexity parameter controls the
ratio between Σi and the common covariance matrix Σ. The other param-
eter controls shrinkage of the class conditional covariance matrix toward a
specified multiple of the identity matrix.

Eigenvalue decomposition discriminant analysis (EDDA) This other regular-
ization method [Bensmail and Celeux, 1996] is based on the re-parametri-
zation of the covariance matrices: Σi = λiDiAiD

t
i , where Di is the matrix

of eigenvectors of Σi, Ai is a diagonal matrix containing standardized and
ordered eigenvalues of Σi and λi = |Σi|1/p. Parameters λi, Di and Ai re-
spectively control the volume, the orientation and the shape of the density
contours of class Ci. By allowing some but not all of these quantities to
vary, the authors obtain geometrical interpreted discriminant models includ-
ing QDA, QDAs, LDA and LDAs.

3 High Dimensional Discriminant Analysis

The empty space phenomena [Scott and Thompson, 1983] enables us to as-
sume that high-dimensional data live in subspaces with dimensionality lower
than p. In order to adapt discriminant analysis to high dimensional data and
to limit the number of parameters to estimate, we propose to work in class
subspaces with lower dimensionality. In addition, we assume that classes
are spherical in these subspaces, in other words class conditional covariance
matrices have only two different eigenvalues.

3.1 Definitions and assumptions

Similarly to classical discriminant analysis, we assume that class conditional
densities are Gaussian N (µi, Σi) ∀i = 1, ..., k. Let Qi be the orthogonal
matrix of eigenvectors of the covariance matrix Σi and Bi be the eigenspace of
Σi, i.e. the basis made of eigenvectors of Σi. The class conditional covariance
matrix ∆i is defined in the basis Bi by ∆i = Qt

i Σi Qi. Thus, ∆i is diagonal
and made of eigenvalues of Σi. We assume in addition that ∆i has only
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two different eigenvalues ai > bi. Let Ei be the affine space generated by
the eigenvectors associated to the eigenvalue ai with µi ∈ Ei, and let E

⊥
i be

Ei ⊕ E
⊥
i = R

p with µi ∈ E
⊥
i . Thus, the class Ci is both spherical in Ei and

in E
⊥
i . Let Pi(x) = Q̃iQ̃i

t
(x − µi) + µi be the projection of x on Ei, where

Q̃i is made of the di first raws of Qi and supplemented by zeros. Similarly,
let P⊥

i (x) = (Qi − Q̃i)(Qi − Q̃i)
t(x − µi) + µi be the projection of x on E

⊥
i .

3.2 Decision rule

The preceding assumptions lead to the cost function:

Ki(x) =
‖µi − Pi(x)‖2

ai
+
‖x − Pi(x)‖2

bi
+di log(ai)+(p−di) log(bi)−2 log(πi),

(cf. [Bouveyron et al., 2005] for the proof). In order to interpret the decision

rule the following notations are needed: ∀i = 1, ..., k, ai =
σ2

i

αi
and bi =

σ2

i

(1−αi)

with αi ∈]0, 1[ and σi > 0. The cost function can be rewritten:

Ki(x) =
1

σ2
i

(

αi‖µi − Pi(x)‖2 + (1 − αi)‖x − Pi(x)‖2
)

+ 2p log(σi) + di log

(

1 − αi

αi

)

− p log(1 − αi) − 2 log(πi).

The Bayes formula allows to compute the classification error risk based on
the a posteriori probability

p(Ci|x) = exp

(

−
1

2
Ki(x)

)

/

k
∑

j=1

exp

(

−
1

2
Kj(x)

)

.

Note that some particular cases of HDDA reduce to classical discriminant
analysis. If ∀i = 1, ..., k, αi = 1/2: HDDA reduces to QDAs. If moreover
∀i = 1, ..., k, σi = σ: HDDA reduces to LDAs.

3.3 Particular rules

By allowing some but not all of HDDA parameters to vary between classes,
we obtain 24 particular models which some ones have easily geometrically
interpretable rules and correspond to different types of regularization (see
[Bouveyron et al., 2005]). Due to space restrictions, we present only two
methods: HDDAi and HDDAh.

Isometric decision rule (HDDAi) The following additional assumptions are
made: ∀i = 1, ..., k, αi = α, σi = σ, di = d and πi = π∗, leading to the cost
function

Ki(x) = α‖µi − Pi(x)‖2 + (1 − α)‖x − Pi(x)‖2.
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Case α = 0: HDDAi affects x to the class Ci∗ if ∀i = 1, ..., k, d(x, Ei∗ ) <
d(x, Ei). From a geometrical point of view, the decision rule affects x to the
class associated to the closest subspace Ei.
Case α = 1: HDDAi affects x to the class Ci∗ if ∀i = 1, ..., k, d(µi∗ , Pi∗(x)) <
d(µi, Pi(x)). It means that the decision rule affects x to the class for which
the mean is closest to the projection of x on the subspace.
Case 0 < α < 1: the decision rule affects x to the class realizing a compromise
between the two previous cases. The estimation of α is discussed in the
following section.

Homothetic decision rule (HDDAh) This method differs from the previous
one by removing the constraint σi = σ. The corresponding cost function is:

Ki(x) =
1

σ2
i

(α‖µi − Pi(x)‖2 + (1 − α)‖x − Pi(x)‖2) + 2p log(σi).

It favours classes with large variance. Indeed, if the point x is equidistant to
two classes, it is natural to affect x to the class with the larger variance.

Removing constraints on di and πi The two previous methods assume that
di and πi are fixed. However, these assumptions can be too restrictive. If
these constraints are removed, it is necessary to add the corresponding terms
in Ki(x): if di are free, then add di log(1−α

α ) and if πi are free, then add
−2 log(πi).

4 Estimators

The methods HDDA, HDDAi and HDDAh require the estimation of some
parameters. These estimators are computed through maximum likelihood
(ML) estimation based on the learning dataset A. In the following, the
a priori probability πi of the class Ci is estimated by π̂i = ni/n, where
ni = card(Ci) and the class covariance matrix Σi is estimated by Σ̂i =
1
ni

∑

xj∈Ci
(xj − µ̂i)

t(xj − µ̂i) where µ̂i = 1
ni

∑

xj∈Ci
xj .

4.1 HDDA estimators

Starting from the log-likelihood expression found in [Flury, 1984, eq. (2.5)],
and assuming for the moment that the di are known, we obtain the following
ML estimates:

âi =
1

di

di
∑

j=1

λij and b̂i =
1

(p − di)

p
∑

j=di+1

λij ,

where λi1 ≥ · · · ≥ λip are the eigenvalues of Σ̂i. Moreover, the jth column

of Qi is estimated by the unit eigenvector of Σ̂i associated to the eigenvalue
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λij . Note that parameters ai and bi are estimated by the empirical variances

of Ci respectively in Êi and in Ê⊥
i . The previous result allows to deduce the

maximum likelihood estimators of αi and σ2
i :

α̂i = b̂i/(âi + b̂i) and σ̂2
i = âib̂i/(âi + b̂i).

4.2 Estimation of the intrinsic dimension

Estimation of the dataset intrinsic dimension is a difficult problem which we
can find for example in the choice of the factor number in PCA. Our approach
is based on the eigenvalues of the class conditional covariance matrix Σi. The
jth eigenvalue of Σi corresponds to the fraction of the full variance carried by
the jth eigenvector of Σi. Consequently, we propose to estimate dimensions
di, i = 1, ..., k, by the empirical method of the scree-test of Cattell [Cattell,
1966] which analyses the differences between eigenvalues in order to find a
break in the scree. The selected dimension is the dimension for which the
following differences are very small compared to the maximum of differences.

4.3 Particular model estimators

Among the 24 particular models, 9 benefit from explicit ML estimators (see
[Bouveyron et al., 2005]). The computation of the ML estimates associated
to the 15 other particular rules requires iterative algorithms. We do not
reproduce them here by lack of space.

5 Application to object recognition

Object recognition is one of the most challenging problems in computer vi-
sion. In the last few years, many successful object recognition approaches
use local images descriptors. However, local descriptors are high-dimensional
and this penalizes classification methods and consequently recognition. For
this reason, HDDA seems well adapted to this application. In the following,
we show that HDDA outperform existing techniques in this context.

5.1 Framework of the object recognition

In our framework, small scale-invariant regions are detected on a learning
image set and they are then characterized by the local descriptor Sift [Lowe,
2004]. The object is recognized in a test image if a sufficient number of
matches with the learning set is found. The recognition step is done using
supervised classification methods. Frequently used methods are LDA and,
more recently, kernel methods (SVM) [Hastie et al., 2001, chap. 12]. In
our approach, the object is represented as a set of object parts. For the
motorbike, we consider three parts: wheels, seat and handlebars.
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Fig. 1. Comparison of classification results between HDDA method and reference
methods.

5.2 Data and protocol

Sift descriptors are computed on 200 motorbike images and 1000 descriptors
of motorbike features and of the background were preserved. Consequently,
the dataset is made of descriptors in 128 dimensions divided into 4 classes:
wheels, seat, handlebars and background. The learning and test dataset
are respectively made of 500 and 500 descriptors. Class proportions are
respectively: ∀i = 1, ..., 3, πi = 1/6 and π4 = 1/2.

5.3 Results

Figure 1 presents classification results obtained on test data. In order to
synthesize the results, only two classes were considered to plot recall-precision
curve: motorbike (positive) and background (negative). We remind that the
precision is the ratio between the number of true positives and the number
of detected positives, and the recall is the number of detected positives. The
different values for each method corresponds to different classifiers. For SVM,
the parameter γ is fixed to the best value (0.6) while the parameter C varies.
For the other methods, the decision rule varies according to the a posteriori
probability. In addition, for LDA, we reduced the dimension of data to 45
using PCA in order to obtain the best results for this method. It appears
that HDDA outperforms the other methods. In addition, HDDA method
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Fig. 2. Recognition of the class “motorbike” using HDDA (top) and SVM (bottom)
classifiers. Only descriptors classified as motorbike are displayed. The colors blue,
red and green are respectively associated to handlebars, wheels and seat.

is as fast as classical discriminant analysis (computation time ' 1 sec. for
1000 descriptors) and much faster than SVM (' 7 sec.). Figure 2 presents
recognition results obtained on 5 motorbike images. These results show that
HDDA gives better recognition results than SVM. Indeed, the classification
errors are significantly lower for HDDA compared to SVM. For example, on
the 3th image, HDDA recognizes the motorbike parts without error whereas
SVM makes five errors.

6 Conclusion and further work

We presented in this paper a new generative model to classify high-
dimensional data in the Gaussian framework. This new model estimates
the intrinsic dimension of each class and uses this information to reduce the
number of parameters to estimate. In addition, classes are assumed spherical
in both subspaces in order to reduce again the number of parameters to esti-
mate and to obtain easily geometrically interpretable rules. In the supervised
framework, this model gives very good results without dimension reduction
of the data and with a small learning set. Another advantage of this gen-
erative model is that it can be used either in supervised or in unsupervised
classification. In unsupervised classification, the model presented here arises
to a new clustering method based on the EM algorithm. In addition, it is
possible to combine unsupervised and supervised classification to recognize
an object in a natural image without human interaction. Indeed, the cluster-
ing method associated to our model can be used to learn automatically the
discriminant part of the object, and then HDDA can be used to recognize the
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object on a new natural image. First results obtained using this approach
are very promising.
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