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Abstract. Multinomial response data obtained from nominally and dichotomously
scored test items in knowledge space theory are explained by knowledge structures.
A central problem is the derivation of a ”realistic” explanation, i.e., knowledge
structure, representing the organization of ”knowledge” in a domain and popula-
tion of reference. In this regard, often, one is left with the problem of selecting
among candidate competing explanations for the data. In this paper, we propose
a measure for the selection among competing knowledge structures. The approach
is illustrated with simulated data.
Keywords: Discrete multivariate response data, Qualitative test data analysis,
Knowledge space theory, Selection measure, Simulation.

1 Knowledge space theory (KST)

This section reviews basic deterministic and probabilistic concepts of KST.
For details, refer to [Doignon and Falmagne, 1999].

Definition 1 A knowledge structure is a pair (Q,K), with Q a non-empty,
finite set, and K a family of subsets of Q containing at least the empty set
∅ and Q. The set Q is called the domain of the knowledge structure. The
elements q ∈ Q and K ∈ K are referred to as (test) items and (knowledge)
states, respectively. We also say that K is a knowledge structure on Q.

The general definition of a knowledge structure allows for infinite item
sets as well. However, throughout this work, we assume that Q is finite.

The set Q is supposed to be a set of dichotomous items. In this paper,
we interpret Q as a set of dichotomous questions/problems that can either
be solved (coded as 1) or not solved (coded as 0). Here, ”solved” and ”not
solved” stand for the observed responses of a subject (manifest level). This
has to be distinguished from a subject’s true, unobservable knowledge of the
solution to an item (latent level). In the latter case, we say that the subject
is capable of mastering (coded as 1) or not capable of mastering (coded as 0)
the item. For a set X , let 2X denote its power-set, i.e., the set of all subsets
of X . Let |X | stand for the cardinality (size) of X . The observed responses
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of a subject to the items in Q are represented by the subset R ⊂ Q containing
exactly the items that are solved by the subject. This subset R is called the
response pattern of the subject. Similarly, the true latent state of knowledge
of a subject with respect to the items in Q is represented by the subset K ⊂ Q
containing exactly the items the subject is capable of mastering. This subset
K is called the knowledge state of the subject. Given a knowledge structure
K, we assume that the only states of knowledge possible are the ones in K.
In this sense, K captures the organization of knowledge in the domain and
population of reference. Idealized, if no response errors, i.e., careless errors
and lucky guesses, would be committed, the only response patterns possible
would be the knowledge states in K.

Let N stand for the set of natural numbers (without 0). We fix a popu-
lation of reference, and examinees are drawn from this population randomly.
Let the sample size be N ∈ N. The data is constituted by the observed
absolute counts N(R) ∈ N0 := N ∪ {0} of response patterns R ∈ 2Q. The
data, x = (N(R))R∈2Q , are assumed to the realization of a random vector
X = (XR)R∈2Q , which is distributed multinomially over 2Q. That is,

P(X = x) := P(X∅ = N(∅), . . . , XQ = N(Q))

=
N !∏

R∈2Q N(R)!

∏

R∈2Q

ρ(R)N(R).

Here, ρ(R) ∈ [0, 1] for any R ∈ 2Q,
∑

R∈2Q ρ(R) = 1, and N(R) ∈ N0 with
0 ≤ N(R) ≤ N for any R ∈ 2Q,

∑
R∈2Q N(R) = N .

Let the maximum probability of occurence be denoted by ρ(Rm), i.e.,

ρ(Rm) = max
R∈2Q

ρ(R),

for some appropriate response pattern Rm ∈ 2Q.
Maximum likelihood estimates (briefly, MLEs) for the population prob-

abilities ρ(R) (R ∈ 2Q) are ρ̂(R) = N(R)/N . The MLE for ρ(Rm) is

ρ̂(Rm) = N(R′
m)/N , where N(R′

m) denotes the maximum absolute count
N(R′

m) = maxR∈2Q N(R), for some appropriate response pattern R′
m ∈ 2Q.

We will simulate multinomial response data in accordance with a basic
local independence model.

Definition 2 A quadruple (Q,K, p, r) is called a basic local independence
model (BLIM) iff

1 (Q,K) is a knowledge structure;

2 p is a probability distribution on K, i.e., p : K → [0, 1], K 7→ p(K), with
p(K) ≥ 0 for any K ∈ K, and

∑
K∈K p(K) = 1;

3 r is a response function for (Q,K, p), i.e., r is a function r : 2Q × K →
[0, 1], (R, K) 7→ r(R, K), with r(R, K) ≥ 0 for any R ∈ 2Q and K ∈ K,
and

∑
R∈2Q r(R, K) = 1 for any K ∈ K;
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4 r satisfies local independence, i.e.,

r(R, K) =









∏

q∈K\R

βq



 ·




∏

q∈K∩R

(1 − βq)





·




∏

q∈R\K

ηq



 ·




∏

q∈Q\(R∪K)

(1 − ηq)








 ,

with two constants βq, ηq ∈ [0, 1[ for each q ∈ Q, respectively called care-
less error probability and lucky guess probability at q.

A probability distribution p on K (point 2) is interpreted as follows. To
each knowledge state K ∈ K is attached a probability p(K) ∈ [0, 1] measuring
the likelihood that a randomly sampled subject is in state K. Further, any
randomly sampled subject is necessarily in exactly one of the states of K.
A response function r (point 3) is interpreted as follows. For R ∈ 2Q and
K ∈ K, r(R, K) ∈ [0, 1] specifies the conditional probability of response
pattern R for an examinee in state K. Given the probability distributions p
on K and r( . , K) on 2Q (K ∈ K), a BLIM takes into account the two ways in
which probabilities must supplement deterministic knowledge structures. For
one, knowledge states will occur with different proportions in the population
of reference. For another, response errors (careless errors and lucky guesses)
will render impossible the a-priori specification of the observable responses of
a subject, given her/his knowledge state. The condition of local independence
(point 4) states that the item responses of an examinee are assumed to be
independent, given the knowledge state of the examinee, and the response
error probabilities βq, ηq ∈ [0, 1[ (q ∈ Q) are attached to the items and do
not vary with the knowledge states.

The BLIM is a multinomial probability model.

Corollary 1 Given a BLIM, the occurence probabilities of response patterns
are parameterized as

ρ(R) =
∑

K∈K









∏

q∈K\R

βq



 ·




∏

q∈K∩R

(1 − βq)





·




∏

q∈R\K

ηq



 ·




∏

q∈Q\(R∪K)

(1 − ηq)








 p(K).

ut

2 Measure κ

In this section, we propose a measure, κ, for the selection among competing
explanations, i.e., knowledge structures, for the multinomial response data.
For details, refer to [Ünlü, 2004].
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2.1 Prediction paradigm

The derivation of κ heavily rests on the following prediction paradigm.
The prediction problem considered is this. An individual is chosen ran-

domly from the population of reference, and we are asked to guess his/her
response pattern, given, either

(no info). no further information (than the multinomial distribution), or

(info). the knowledge structure K assumed to underlie the responses of the
individual.

The prediction strategies in both cases are as follows. In the ”no info” case,
we optimally guess some response pattern Rm ∈ 2Q, which has the largest
probability of occurence ρ(Rm) = maxR∈2Q ρ(R). In the ”info” case, we pro-
portionally guess the knowledge states with their probabilities of occurence.
That is, if K =

{
K1, K2, . . . , K|K|

}
, we guess K1 with probability ρ(K1), K2

with probability ρ(K2), . . ., K|K| with probability ρ(K|K|). Since these prob-
abilities may not add up to one, in general, there is a non-vanishing residual
probability

{
1 −

∑
K∈K ρ(K)

}
> 0. Thus, in order to complete the predic-

tion strategy, we abstain from any guessing with probability 1−
∑

K∈K ρ(K),
and, in the sequel, view this as a prediction error.

The probabilities of a prediction error in both cases are as follows. In
the ”no info” case, the probability is 1 − ρ(Rm), and, in the ”info” case, it
is 1 −

∑
K∈K ρ(K)2. Of course, the probabilities of a prediction success are

ρ(Rm) and
∑

K∈K ρ(K)2, respectively.

2.2 First constituent of κ: measure of fit

The measure κ consists of two constituents. The first constituent of κ cap-
tures the (descriptive) fit of a knowledge structure K to the response data.
This constituent is derived based on the method of proportional reduction in
predictive error (PRPE)—the method of PRPE was introduced originally by
[Guttman, 1941], and it was applied systematically in the series of papers by
[Goodman and Kruskal, 1954, 1959, 1963, 1972]. The general probability
formula of the method of PRPE quantifies the predictive utility, PU(info), of
given information. Informally,

PU(info) :=
Prob. of error (no info) − Prob. of error (info)

Prob. of error (no info)
.

Inserting the previous prediction error probabilities into the PRPE for-
mula, we obtain the population analogue of the first constituent, m1, of κ.

Definition 3 Let ρ(Rm) 6= 1. The measure m1 is defined as

m1 :=

(
1 − ρ(Rm)

)
−

(
1 −

∑
K∈K ρ(K)2

)

1 − ρ(Rm)

=

∑
K∈K ρ(K)2 − ρ(Rm)

1 − ρ(Rm)
.
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In the sequel, we assume that ρ(Rm) 6= 1 ! Inserting MLEs, we obtain
the MLE, m̂1, for m1 (We assume that 1 − N(R′

m)/N 6= 0 !):

m̂1 =

∑
K∈K N(K)2 − N · N(R′

m)

N2 − N · N(R′
m)

.

2.3 Second constituent of κ: measure of size

The second constituent of κ captures the size of a knowledge structure K.
For the definition of it, we need the concept of a truncation of K.

Definition 4 Let M ∈ N be a truncation constant. An M -truncation of K
is any subset, KM-trunc, of K which is derived in the following way.

1 Order the knowledge states K ∈ K according to their probabilities of
occurence ρ(K), say, from left to right, ascending with smaller ρ values
to larger ones. Knowledge states with equal probabilities of occurence are
ordered arbitrarily.

2 Starting with the foremost right knowledge state, i.e., a knowledge state
with largest probability of occurence, take the first min(|K|, M) knowledge
states, descending from right to left. The set of these knowledge states is
KM-trunc.

The definition of the second constituent, m2, of κ is this.

Definition 5 Let
∑

K∈K ρ(K) 6= 0. Let M ∈ N be a truncation constant,
and let KM-trunc denote an M -truncation. The measure m2 is defined as1

m2 :=

∑
K∈K ρ(K)2∑

K∈KM-trunc
ρ(K)2

.

In the sequel, we assume that
∑

K∈K ρ(K) 6= 0 for any knowledge struc-
ture K. Inserting MLEs, we obtain the MLE, m̂2, for m2 (We assume that∑

K∈K N(K) 6= 0 !):

m̂2 =

∑
K∈K N(K)2∑

K∈ ̂KM-trunc
N(K)2

,

where ̂KM-trunc is defined analogously as in Definition 4, where we have to
replace ρ(K) with its MLE N(K)/N for any K ∈ K.

1
m2 is invariant with respect to the choice of a particular M -truncation.
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2.4 κ: size trading-off fit measure

The measure κ is (more or less) the product of m1 and m2.

Definition 6 Let M ∈ N be a truncation constant, and let C ∈ [0, 0.01] be a
small, fixed non-negative correction constant.2 The measure κ is defined as

κ := m2 · (m1 − C).

The MLE for κ is κ̂ := m̂2 · (m̂1 − C).
The measure κ may be interpreted as a performance measure for the

evaluation of knowledge structures. The two (performance) criteria being
merged and traded-off are ”(descriptive) fit” and ”(structure) size”, respec-
tively measured by its constituents m1 and m2. The decision rule important
for applications of κ is this. The greater the value of κ is, the ”better” a
knowledge structure ”performs” with respect to a trade-off of the criteria.
The (unknown) ordering of the population κ values is ”estimated” by the
ordering of the corresponding MLEs.

2.5 Model selection and truncation constant

Finally, we describe a special choice for the truncation constant in the context
of model selection among competing knowledge structures K1,K2, . . . ,Kn

(n ∈ N, n ≥ 2) on (same) domain Q.

Definition 7 Let vi := |{K ∈ Ki : ρ(K) 6= 0}| be the match of candidate
model Ki (1 ≤ i ≤ n). Let v := (v1, v2, . . . , vn)T ∈ Nn be the match vector.
The (empirical) median of the matches vi ∈ N (1 ≤ i ≤ n) is denoted by
median(v) and called the median match of the competing models. Formally,

median(v) :=

{
v( n+1

2
) : odd n

v( n
2
) : even n,

where v(1), v(2), . . . , v(n) with v(1) ≤ v(2) ≤ · · · ≤ v(n) is the ordered list of
matches vi (1 ≤ i ≤ n).

The special truncation constant, Ms, is this.

Definition 8 The special truncation constant Ms is defined as3

Ms := min

(
[2|Q|/2],median(v)

)
.

2
C is introduced to compensate for a zero value of m1.

3 The meaning of term 2|Q|/2 is clarified in the context of knowledge assessment
procedures (for details, see [Ünlü, 2004]). For any real x ≥ 0, [x] denotes the
entier of x, i.e., the integer I ∈ N ∪ {0} with I ≤ x < I + 1.
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3 Simulation example

In this section, we apply κ to data simulated in accordance with a specific
BLIM. For details (including software), refer to [Ünlü, 2004].

We consider the knowledge structure

H :=
{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, Q

}

on domain Q := {a, b, c, d, e}. We suppose that the knowledge states of H
occur in a population of reference with the probabilities

p(∅) := 0.04,

p({a}) := 0.10,

p({b}) := 0.06,

p({a, b}) := 0.12,

p({a, b, c}) := 0.11,

p({a, b, d}) := 0.07,

p({a, b, c, d}) := 0.13,

p({a, b, c, e}) := 0.18,

p(Q) := 0.19.

Let the careless error and lucky guess probabilities βq and ηq at items q ∈ Q,
respectively, be specified as

βa := 0.16, ηa := 0.04,

βb := 0.18, ηb := 0.10,

βc := 0.20, ηc := 0.01,

βd := 0.14, ηd := 0.02,

βe := 0.24, ηe := 0.05.

Based on this BLIM, we simulated a binary (of type 0/1) 1 200 × 5 data
matrix representing the response patterns for 1 200 fictitious subjects. The
collection of competing models (knowledge structures) for model selection
was obtained from the multinomial response data data-analytically, based
on a modified version of the Item Tree Analysis (ITA; see [Leeuwe, 1974])
described in [Ünlü, 2004]. A modified ITA of the BLIM data resulted in a
collection of fifteen knowledge structures, which contained the true knowledge
structure H underlying the data.

From this collection, we selected an optimal model based on maximum
κ. Table 1 lists the values of κ (for M := Ms, and C := 0.01) for the fifteen
competing knowledge structures. In Table 1, models are labeled by their
respective tolerance levels 0 ≤ L ≤ 1200 of the modified ITA, and Lκ denotes
the optimal (maximum κ) solution. The true model is labeled by ”(true)”.
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L κ

0–58 −0.098487
59–62 −0.098591
63–71 −0.098672
72–77 −0.098807
78–88 −0.098880
89–95 −0.098931
96–100 −0.099029
101–150 (true) −0.099040
151–191 −0.098871

Lκ = 192–213 −0.097610

214–236 −0.098913
237–239 −0.102439
240–285 −0.108678
286–394 −0.118036
395–1 200 −0.133919

Table 1. κ (for M := Ms, and C := 0.01)

Measure κ assumed its maximum value at tolerance range Lκ = 192–213,
i.e., for the candidate knowledge structure K192–213,

K192–213 :=

{
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, c, e}, Q

}
.

Compared to the true model K101–150 = H, this ”best” solution was
quite acceptable. In H, the subsets {b} and {a, b, d} were knowledge states,
whereas, in K192–213, they were not. In all other respects, both the models
were identical. We had |H| = 9 versus |K192–213| = 7 (K192–213 ⊂ H).
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