# Traitements non paramétriques des signaux par analyse en ondelettes : Cas du débruitage de signaux sonar

### Abdourrahmane M. ATTO, Dominique PASTOR, Gregoire MERCIER

ENST Bretagne Département SC







### Plan

### Modèle et Méthode

Présentation et choix des Outils de travail

Tests Expérimentaux







Plan

Modèle et Méthode

Présentation et choix des Outils de travail

Tests Expérimentaux







### Plan

Modèle et Méthode

Présentation et choix des Outils de travail

Tests Expérimentaux







### Plan

Modèle et Méthode

Présentation et choix des Outils de travail

Tests Expérimentaux





### Modèle et Méthode

Modèle de base : Observation d'un signal bruité,

$$y[n] = f[n] + e[n]$$
  $n = 1, 2, \cdots, N.$  (1)

### Description de la Méthode :

• On dispose d'un opérateur linéaire  $\mathcal{T}$  possédant la propriété de pouvoir discriminer le signal utile du bruit :

$$\mathcal{T}y = \mathcal{T}f + \mathcal{T}e. \tag{2}$$

 On effectue la discrimination du signal et du bruit grâce à une fonction de seuillage δ<sub>λ</sub> qui dépend d'un seuil λ :

$$\widehat{\mathcal{T}f} = \delta_{\lambda}(\mathcal{T}y). \tag{3}$$

• Le résultat de l'estimation est alors :

$$\hat{f} = \mathcal{T}^{-1}(\widehat{\mathcal{T}f}) = \mathcal{T}^{-1}(\delta_{\lambda}(\mathcal{T}y)).$$
(4)





### Présentation des Outils de travail

**Opérateurs** :

 $\mathcal{T} = \left\{ \begin{array}{l} \text{Transformations en Ondelettes Discretes (TOD),} \\ \text{Transformations en Paquets d'Ondelettes Discretes (TPOD),} \\ \text{Frames d'Ondelettes et de Paquets d'Ondelettes Discretes.} \end{array} \right.$ 

Fonctions de seuillage :

$$\delta = \begin{cases} \text{Hard Thresholding ou Seuillage dur,} \\ \text{Soft Thresholding ou Seuillage doux,} \\ \text{Non-Negative Garrote Thresholding.} \end{cases}$$

Seuils numériques :

 $\lambda = \begin{cases} \text{Seuils Universels,} \\ \text{Seuils Minimax,} \\ \text{Seuils de Détection.} \end{cases}$ 







### Choix de l'opérateur T

Choix de la fonction de seuillage  $\delta_{\lambda}$ 

Choix des seuils  $\lambda$ 





get



Choix de l'opérateur T

Choix de la fonction de seuillage  $\delta_{\lambda}$ 

Choix des seuils  $\lambda$ 







Choix de l'opérateur T

Choix de la fonction de seuillage  $\delta_{\lambda}$ 

Choix des seuils  $\lambda$ 





Choix de l'opérateur  $\implies$  Frame d'ondelettes :

- Une frame d'un sous espace Hilbertien de L<sup>2</sup>(ℝ) est un système générateur de cet espace de Hilbert.
- Une frame définit une représentation stable, tout comme une base, mais la représentation par frames est redondante.
- Cette redondance a pour effet de réduire notablement les composantes du bruit par projection. D'où l'intérêt des frames dans le débruitage.
- Une frame d'ondelettes est une frame générée à partir d'une seule fonction qui est une fonction d'ondelette.

La frame retenue pour les tests expérimentaux est obtenue à partir d'une Stationary Wavelet Transform basée sur l'ondelette biorthogonale 9/7 (ondelette de 4 moments nuls, encore appélée *bior4.4*).





6/16

Choix de l'opérateur  $\implies$  Frame d'ondelettes :

- Une frame d'un sous espace Hilbertien de  $L^2(\mathbb{R})$  est un système générateur de cet espace de Hilbert.
- Une frame définit une représentation stable, tout comme une base, mais la représentation par frames est redondante.
- Cette redondance a pour effet de réduire notablement les composantes du bruit par projection. D'où l'intérêt des frames dans le débruitage.
- Une frame d'ondelettes est une frame générée à partir d'une seule fonction qui est une fonction d'ondelette.

La frame retenue pour les tests expérimentaux est obtenue à partir d'une Stationary Wavelet Transform basée sur l'ondelette biorthogonale 9/7 (ondelette de 4 moments nuls, encore appélée *bior4.4*).





6/16



Choix des Outils

Choix de la fonction de seuillage  $\implies$  Non-Negative Garrote Thresholding Graphes  $y = \delta_{\lambda}(x)$  pour les fonctions hard, soft et non-negative garrote thresholding :



- Hard thresholding : Discontinuité de la fonction en  $\lambda$ .
- Soft thresholding : Atténuation importante des coefficients de grandes amplitudes.
- Non-negative garrote : Compromis entre le hard et le soft thresholding.





Choix des seuils  $\implies$  Seuil de détection :

Si les  $(\mathcal{T}e_i)_{i=1}^N$  sont independants, identiquement distribués et tels que  $\mathcal{T}e_i \sim \mathcal{N}(0, \sigma^2)$ , alors

$$\lambda_d(A) = \frac{A}{2} + \frac{\sigma^2 \log_e \left(1 + \sqrt{1 - \exp - \frac{A^2}{\sigma^2}}\right)}{A},$$
(5)

où A désigne l'amplitude minimale à partir de laquelle, on décide qu'un coefficient donné contient du signal utile.

- Le seuil  $\lambda_d$  donne une erreur quadratique d'estimation plus petite que celle obtenue avec les seuils minimax et universels pour une grande classe de signaux lorsque la fonction de seuillage utilisée est la fonction soft ou la fonction non-negative garrote.
- Cette classe de signaux concerne la plupart des signaux rencontrés en pratique et correspond aux cas où le signal utile n'est pas completement noyé dans la bruit.

Question : Nature de Te?





8/16

Choix des seuils  $\implies$  Seuil de détection :

Si les  $(\mathcal{T}e_i)_{i=1}^N$  sont independants, identiquement distribués et tels que  $\mathcal{T}e_i \sim \mathcal{N}(0, \sigma^2)$ , alors

$$\lambda_d(A) = \frac{A}{2} + \frac{\sigma^2 \log_e \left(1 + \sqrt{1 - \exp - \frac{A^2}{\sigma^2}}\right)}{A},$$
(5)

où A désigne l'amplitude minimale à partir de laquelle, on décide qu'un coefficient donné contient du signal utile.

- Le seuil  $\lambda_d$  donne une erreur quadratique d'estimation plus petite que celle obtenue avec les seuils minimax et universels pour une grande classe de signaux lorsque la fonction de seuillage utilisée est la fonction soft ou la fonction non-negative garrote.
- Cette classe de signaux concerne la plupart des signaux rencontrés en pratique et correspond aux cas où le signal utile n'est pas completement noyé dans la bruit.

Question : Nature de Te?





8/16

# Propriétés de décorrélation des coefficients de la TOD et de la TPOD :

- Supposons que e est un processus du 2<sup>nd</sup> ordre, stationnaire au sens large et à densité spectrale de support contenu dans [-π, π].
- Soit  $\mathcal{T}_j^r e$ , la sequence de coefficients de la TOD ou de la TPOD de e, au niveau de résolution j, et en utilisant des filtres miroirs en quadratures d'ordre r.

Le processus  $\mathcal{T}_j^r e$  est un processus du 2 $^{
m nd}$  ordre et stationnaire au sens large.

# Si ${\mathcal T}$ est la TOD :

Le processus  $T_j'e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela indépendamment de r.

# Si $\mathcal{T}$ est la TPOD :

Le processus  $T_j'e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela, pourvu que r soit suffisamment grand (à j fixé).





# Propriétés de décorrélation des coefficients de la TOD et de la TPOD :

- Supposons que e est un processus du 2<sup>nd</sup> ordre, stationnaire au sens large et à densité spectrale de support contenu dans [-π, π].
- Soit  $\mathcal{T}_j^r e$ , la sequence de coefficients de la TOD ou de la TPOD de *e*, au niveau de résolution *j*, et en utilisant des filtres miroirs en quadratures d'ordre *r*.

Le processus  $\mathcal{T}_j^r e$  est un processus du 2 $^{
m nd}$  ordre et stationnaire au sens large.

# Si T est la TOD :

Le processus  $\mathcal{T}_j^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela indépendamment de r.

# Si $\mathcal{T}$ est la TPOD :

Le processus  $T'_{f}$  e devient quasi-décorrélé lorsque j est suffisamment grand, et cela, pourvu que r soit suffisamment grand (à j fixé).





Propriétés de décorrélation des coefficients de la TOD et de la TPOD :

- Supposons que e est un processus du 2<sup>nd</sup> ordre, stationnaire au sens large et à densité spectrale de support contenu dans [-π, π].
- Soit  $\mathcal{T}_j^r e$ , la sequence de coefficients de la TOD ou de la TPOD de e, au niveau de résolution j, et en utilisant des filtres miroirs en quadratures d'ordre r.

Le processus  $\mathcal{T}_j^r e$  est un processus du 2<sup>nd</sup> ordre et stationnaire au sens large.

# Si $\mathcal{T}$ est la TOD :

Le processus  $\mathcal{T}_j^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela indépendamment de r.

# Si $\mathcal{T}$ est la TPOD :

Le processus  $T_j^r$ e devient quasi-décorrélé lorsque j est suffisamment grand, et cela, pourvu que r soit suffisamment grand (à j fixé).





Propriétés de décorrélation des coefficients de la TOD et de la TPOD :

- Supposons que e est un processus du 2<sup>nd</sup> ordre, stationnaire au sens large et à densité spectrale de support contenu dans [-π, π].
- Soit  $\mathcal{T}_j^r e$ , la sequence de coefficients de la TOD ou de la TPOD de e, au niveau de résolution j, et en utilisant des filtres miroirs en quadratures d'ordre r.

Le processus  $\mathcal{I}_j^r e$  est un processus du 2<sup>nd</sup> ordre et stationnaire au sens large.

Si T est la TOD : Le processus  $T_j^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela indépendamment de r.

# Si $\mathcal{T}$ est la TPOD :

Le processus  $T_j^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela, pourvu que r soit suffisamment grand (à j fixé).

Nature gaussienne des  $T_i^r e$ ? A voir!





Propriétés de décorrélation des coefficients de la TOD et de la TPOD :

- Supposons que e est un processus du 2<sup>nd</sup> ordre, stationnaire au sens large et à densité spectrale de support contenu dans [-π, π].
- Soit  $\mathcal{T}_j^r e$ , la sequence de coefficients de la TOD ou de la TPOD de e, au niveau de résolution j, et en utilisant des filtres miroirs en quadratures d'ordre r.

Le processus  $\mathcal{I}_j^r e$  est un processus du 2<sup>nd</sup> ordre et stationnaire au sens large.

# Si ${\mathcal T}$ est la TOD :

Le processus  $\mathcal{T}_j^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela indépendamment de r.

# Si $\mathcal{T}$ est la TPOD :

Le processus  $T_j^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela, pourvu que r soit suffisamment grand (à j fixé).





# Nature de $\mathcal{T}e$

Propriétés de décorrélation des coefficients de la TOD et de la TPOD :

- Supposons que e est un processus du 2<sup>nd</sup> ordre, stationnaire au sens large et à densité spectrale de support contenu dans  $[-\pi, \pi]$ .
- Soit  $\mathcal{T}_i^r e$ , la sequence de coefficients de la TOD ou de la TPOD de e, au niveau de résolution i, et en utilisant des filtres miroirs en quadratures d'ordre r.

Le processus  $\mathcal{T}_i^r e$  est un processus du 2<sup>nd</sup> ordre et stationnaire au sens large.

# Si $\mathcal{T}$ est la TOD :

Le processus  $\mathcal{T}_{i}^{r}e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela indépendamment de r.

# Si $\mathcal{T}$ est la TPOD :

Le processus  $\mathcal{T}_i^r e$  devient quasi-décorrélé lorsque j est suffisamment grand, et cela, pourvu que r soit suffisamment grand (à j fixé).

Nature gaussienne des  $T_i^r e$ ? A voir!





### Tests Expérimentaux

### Image originale

### Image débruitée : Seuil Universel









### Tests Expérimentaux

#### Image débruitée : Seuil Minimax

### Image débruitée : 1/2 Seuil Universel









### Tests Expérimentaux

#### Image débruitée : Seuil de détection

#### 

### Image débruitée : Seuils de détection







### Tests Expérimentaux

### Image originale

### Image débruitée : Seuil Universel







### Tests Expérimentaux

### Image débruitée : Seuil Minimax

### Image débruitée : 1/2 Seuil Universel









### Tests Expérimentaux

#### Image débruitée : Seuil de détection



### Image débruitée : Seuils de détection





# Conclusion

### Image bruitée



### Image débruitée





