High Speed Decoding of Serial Concatenated Codes

Globecom 2006 CTH02-1

<u>Doré Jean-Baptiste</u>, Hamon Marie-Hélène and Pénard Pierre {jeanbaptiste.dore;mhelene.hamon;pierre.penard}@orange-ftgroup.com

Outline

Introduction

S-SCP codes

- Introduction
- Decoding Strategy

Joint strategy for decoding and code design

- Memory contention
- Towards a pipeline decoding

Conclusion

Introduction

Natural approach to design advanced coding schemes:

- First design a code (LDPC codes, Turbo and Turbo like codes..):
 - For required system performance: threshold, minimal distance...
- Find an efficient hardware architecture for such a code
 - In many case, such a constructed code has very little chance to be suited for hardware implementation...
- "Architecture driven" approach
 - For advanced coding scheme: First introduced for Turbo-Codes Interleaver design
 - Avoid memory contention when decoders are parallelized
 - Methodology extended for Turbo-like and LDPC codes
 - Increase throughput...
 - Joint code design and encoder/decoder architecture

Outline

Introduction

S-SCP codes

- Introduction
- Decoding Strategy

Joint decoding strategy and code design

- Memory contention
- Towards a pipeline decoding

Conclusion

S-SCP codes : Systematic with Serially Concatenated Parity

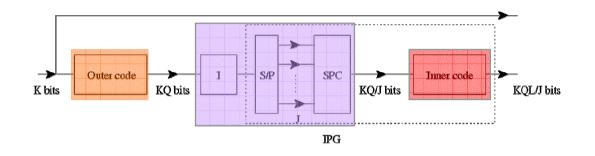
S-SCP codes description [1] :

- The structure can be viewed either as:
 - Serial concatenation of three codes (ARA like codes)
 - Punctured irregular LDPC codes



- We consider a particular class of S-SCP codes
 - <u>Outer code</u> is a circular convolutional code: <u>1+D</u>
 - Inner code is an accumulator code: 1/1+D

[1] K.M Chugg et al. "A new class of turbo-like codes with universally good performance and high speed decoding ", IEEE Milcom 2005



Parity check matrix is derived from encoding equations:

$$\mathbf{H}\underline{x}^{T} = \begin{bmatrix} \mathbf{G_{1}} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{V} & \mathbf{G_{2}} \end{bmatrix} \begin{bmatrix} \underline{c}^{T} \\ \underline{h}^{T} \\ \underline{p}^{T} \end{bmatrix} = \underline{\mathbf{0}}^{T}$$

- G₁: dual-diagonal KxK matrix when outer code is 1+D
- G₂: dual-diagonal MxM matrix when inner code is 1/1+D
- V : MxK matrix: Interleaver + SPC
 - $-\mathbf{J}$ ones per row
 - **Q** ones per column

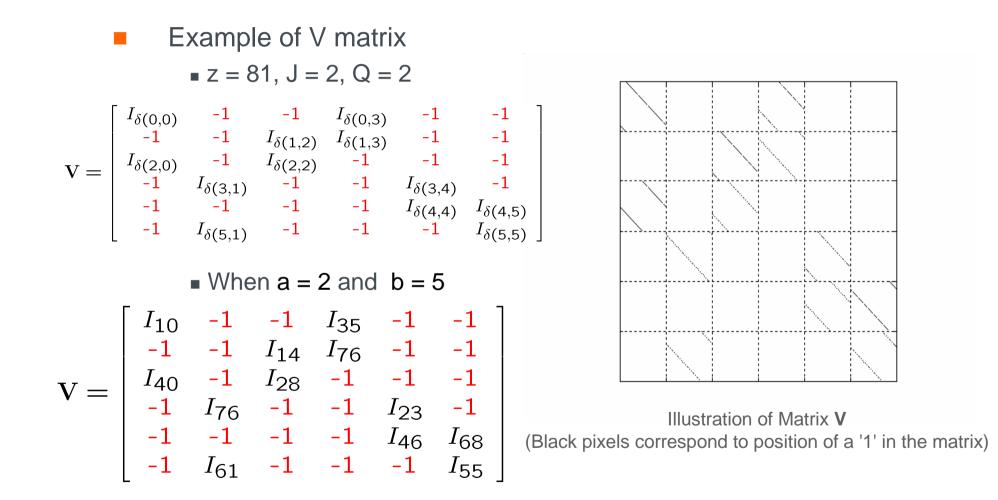
- Design of Quasi-Cyclic (QC) S-SCP codes [2]:
 - New definition of the parity check matrix H
 - Construction based on shifted permutation matrices I_x
 - I_x is a ($z \times z$) circularly right shifted identity matrix by ($x \mod z$) positions, if x is positive
 - if x is negative, I_x is defined to be a (z x z) zero matrix
 - Interleaver and SPC functions are jointly characterized by matrix V of size (mz x nz)

$$\mathbf{V} = \begin{bmatrix} \mathbf{I}_{\delta(0,0)} & \mathbf{I}_{\delta(0,1)} & & \mathbf{I}_{\delta(0,n-1)} \\ \mathbf{I}_{\delta(1,0)} & \mathbf{I}_{\delta(1,1)} & & \mathbf{I}_{\delta(1,n-1)} \\ & & \mathbf{I}_{\delta(i,j)} \\ \mathbf{I}_{\delta(m-1,0)} & \mathbf{I}_{\delta(m-1,1)} & & \mathbf{I}_{\delta(m-1,n-1)} \end{bmatrix}$$

• We also define all **positive** coefficients through 3 integers:

$$\delta(i,j) = \left(a^{(i+1)}b^{(j+1)}\right) \mod \hat{z}$$

[2] Dore et al. "Design and decoding of a serial concatenated code structure based on quasi-cyclic ldpc codes," 4th International Symposium on Turbo-Codes and Related Topics, April 2006.



- New definition of inner and outer code
 - Outer code definition from circularly shifted identity matrices
 - Circular 1+D convolutional code

$$\mathbf{G_1} = \begin{bmatrix} \mathbf{I} & & \mathbf{I_1} \\ \mathbf{I} & \mathbf{I} & & \\ & \mathbf{I} & & \\ \mathbf{0} & & \mathbf{I} & \mathbf{I} \\ \end{bmatrix}$$

- Inner code definition
 - Accumulator code (1/1+D)

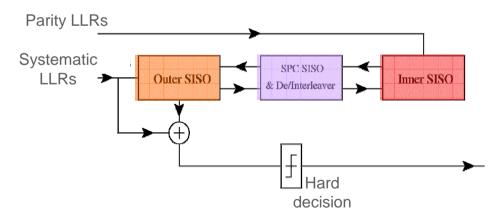
$$\mathbf{G_2} = \begin{bmatrix} \mathbf{I} & & \mathbf{I'_1} \\ \mathbf{I} & \mathbf{I} & & \\ & \mathbf{I} & & \\ & & \mathbf{I} & \\ \mathbf{0} & & \mathbf{I} & \mathbf{I} \end{bmatrix}$$

• I'_x is a non circulary shifted identity matrix by x positions

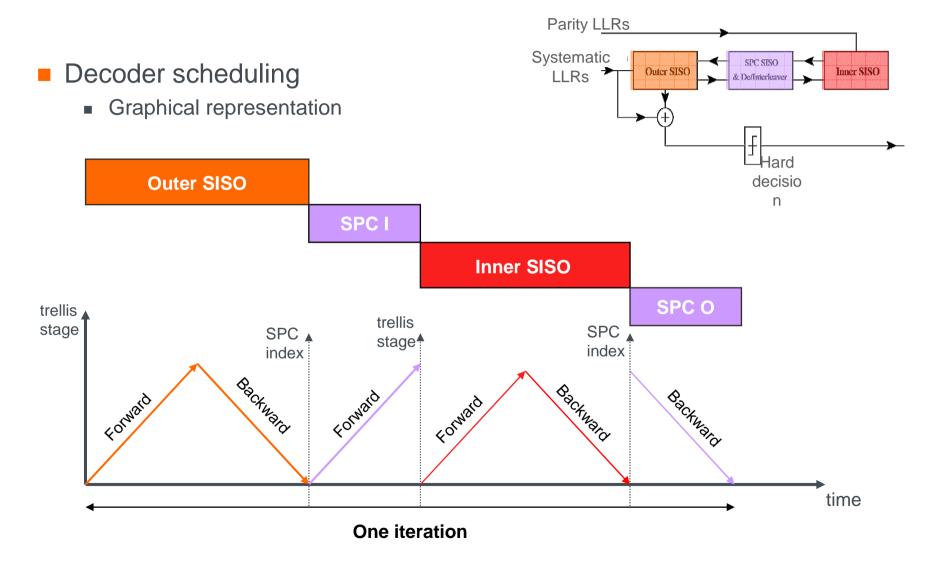
[2] Dore et al. "Design and decoding of a serial concatenated code structure based on quasi-cyclic ldpc codes," 4th International Symposium on Turbo-Codes and Related Topics, April 2006.

Decoding strategy

- Various decoding algorithms [2]:
 - BP familiy algorithms
- Turbo like decoding algorithm:
 - Outer and Inner SISO decoder: Forward Backward Algorithm (FBA)
 - SPC decoder: can be viewed as a LDPC decoder
 - 2 steps, Inward and Outward



[2] Dore et al. "Design and decoding of a serial concatenated code structure based on quasi-cyclic ldpc codes," 4th International Symposium on Turbo-Codes and Related Topics, April 2006.



Outline

Introduction

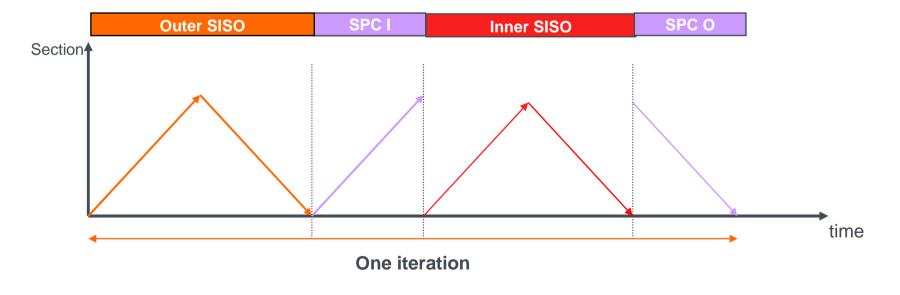
- S-SCP codes
 - Introduction
 - Decoding Strategy

Joint decoding strategy and code design

- Memory contention
- Towards a pipeline decoding

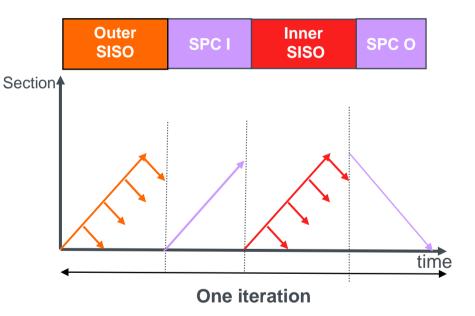
Conclusion

- Brute force" architecture
 - Serial Scheduling
 - Low data rate
 - High memory requirements
 - All forward and backward metrics must be stored...
 - No particular design rules on the code



Brute force" architecture with sliding windows decoding

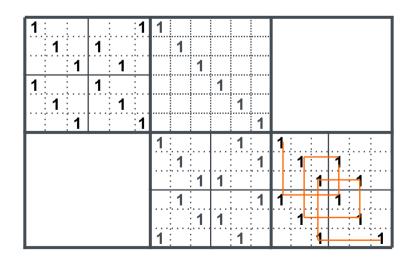
- Serial Scheduling
 - Low data rate
- Outer and Inner SISO SW decoding
 - Pipeline decoding
 - Latency is **reduced**
 - Memory requirements are reduced
- No particular design rules

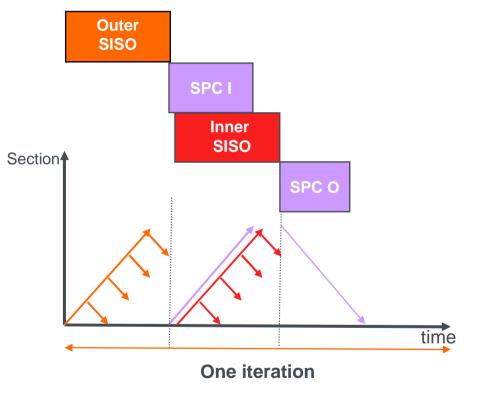


Pipeline architecture (I)

- Serial scheduling
 - Pipeline between SPC Inward and Inner SISO
- No particular design rules
 - Scheduling of parity equations to check

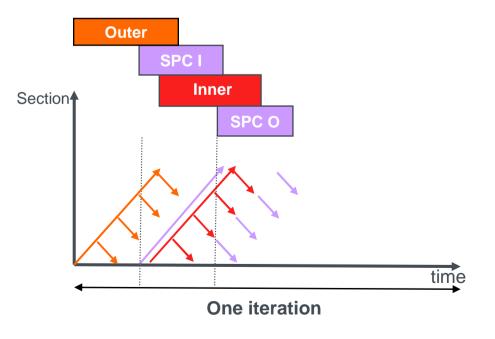
$$\mathbf{H} = \left[\begin{array}{ccc} \mathbf{G_1} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{V} & \mathbf{G_2} \end{array} \right]$$

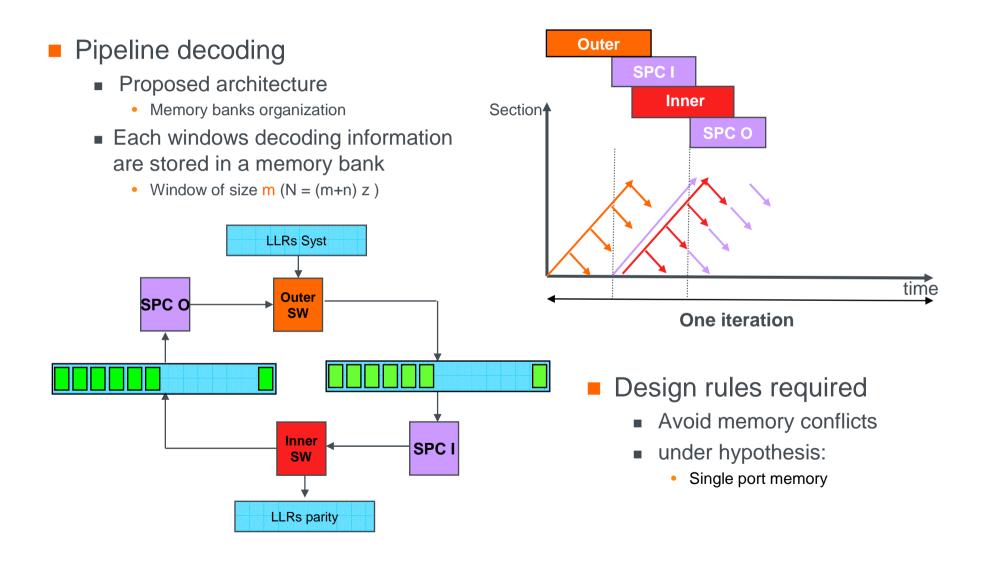


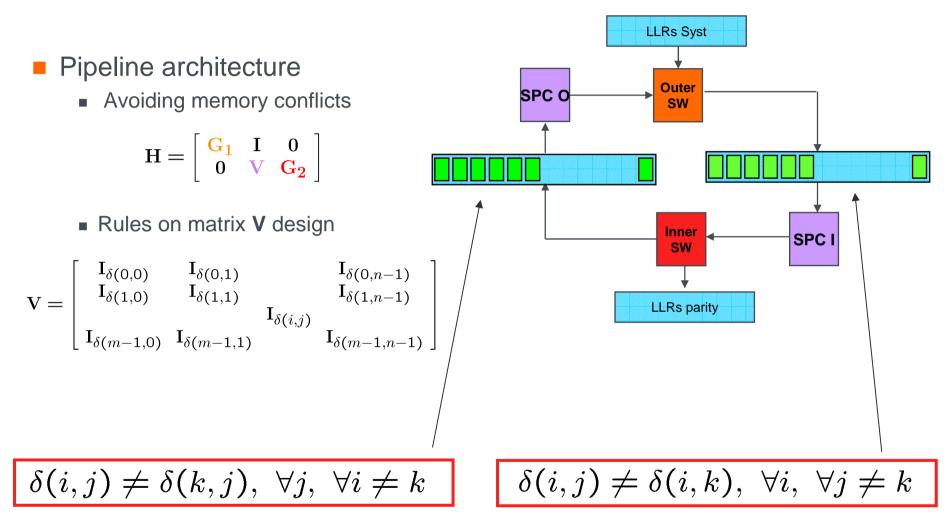


Pipeline architecture (II)

- Serial scheduling
 - Pipeline between Outer SISO ,SPC Inward, Inner SISO and SPC Outward
- Throughput is increased
 - Without hardware duplication
 - Without additional border effects due to parallelization
- Design rules required for efficient pipeline decoding

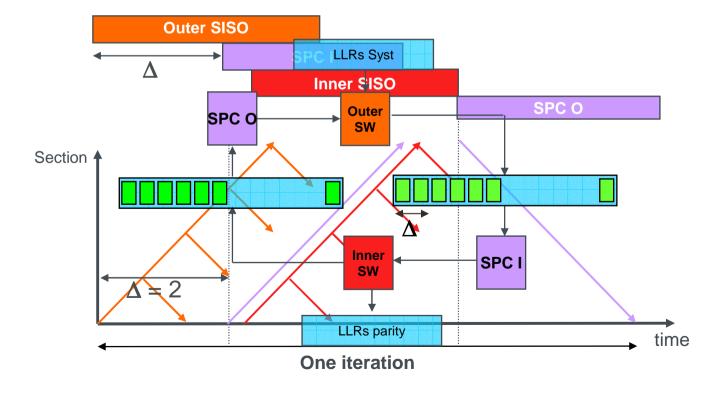




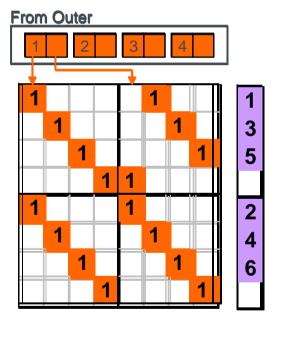


Pipeline decoding

- Idea: Find design rules on matrix V to characterize pipeline decoding
- Introduction of the overlapping parameter Δ
 - A SPC Inward window starts when Δ Outer SISO windows have been decoded



- Rules on matrix V to characterize pipeline decoding
 - First Hypothesis:
 - Outer code is not a circular code



$$\mathbf{H} = \begin{bmatrix} \mathbf{G_1} & \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{V} & \mathbf{G_2} \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} \mathbf{0} & \mathbf{1} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

Outer SISO	0	1	2	3							
SPC I			0	1	2	3					
Inner SISO				0	1	2	3				
SPE 0								0	1	2	3

Relation between V coefficients and A

$$\Delta = 1 + \max(\delta(i, j)), \ \forall \delta(i, j) \geq 0$$

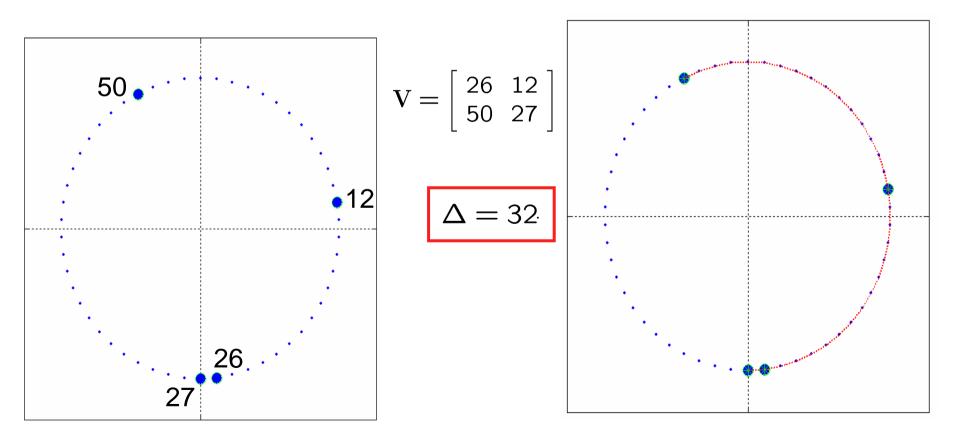
• Remark:

$$\Delta \le 1 + \hat{z}$$

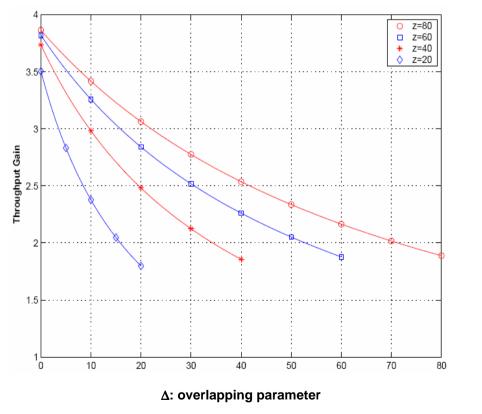
$$\delta(i,j) = \left(a^{(i+1)}b^{(j+1)}\right) \mod \hat{z}$$

- Rules on matrix V to characterize pipeline decoding
- Hypothesis: **Outer SISO** Outer code is not a circular code SPC I Δ Graphical representation **Inner SISO** SPC O • z = 54 $\mathbf{V} = \begin{bmatrix} 26 & 12\\ 50 & 27 \end{bmatrix}$ 50 12 $\Delta = 51$ 26. 27

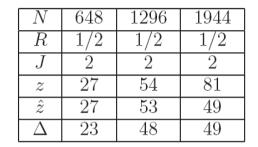
- Rules on matrix V to characterize pipeline decoding
 - Hypothesis:
 - Outer code is a circular code
 - Graphical representation
 - z = 54

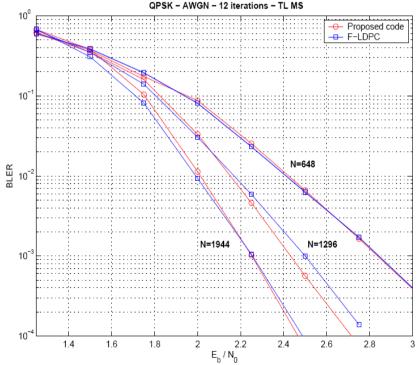


- Pipeline decoding
 - Throughput analysis
 - 12 iterations
 - J = 2, n = 12



Design example





Conclusion

Architecture driven" approach

- Parity check matrix of the code is based on shifted identity matrices
- Simple constraints on code design (law on coefficients choice)
 - Avoid memory conflicts
 - Overlapping decoding for a particular architecture
- Throughput analysis :
 - Improve throughput by two without hardware duplication in the example considered

Methodology and design rules can be extended

- For an architecture with <u>only</u> one memory bank
- To enable decoder <u>parallelization</u>
 - Avoid memory conflicts
- To guarantee a good <u>convergence</u> of the decoding algorithm
 - Rules on shift coefficients are derived for layered decoding

Iterative decoding of QC S-SCP

Outer and inner SISO decoders

Forward Backward Algorithm on the graph

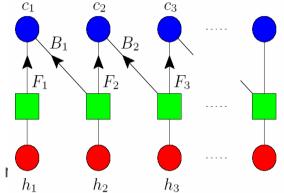
Simply described using parity check function q(...)•

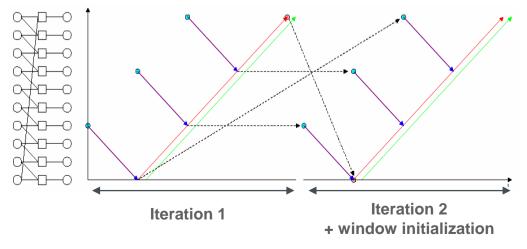
$$F_{i} = g(c_{i-1} + F_{i-1}, h_{i})$$

$$B_{i} = g(c_{i+1} + B_{i+1}, h_{i+1})$$

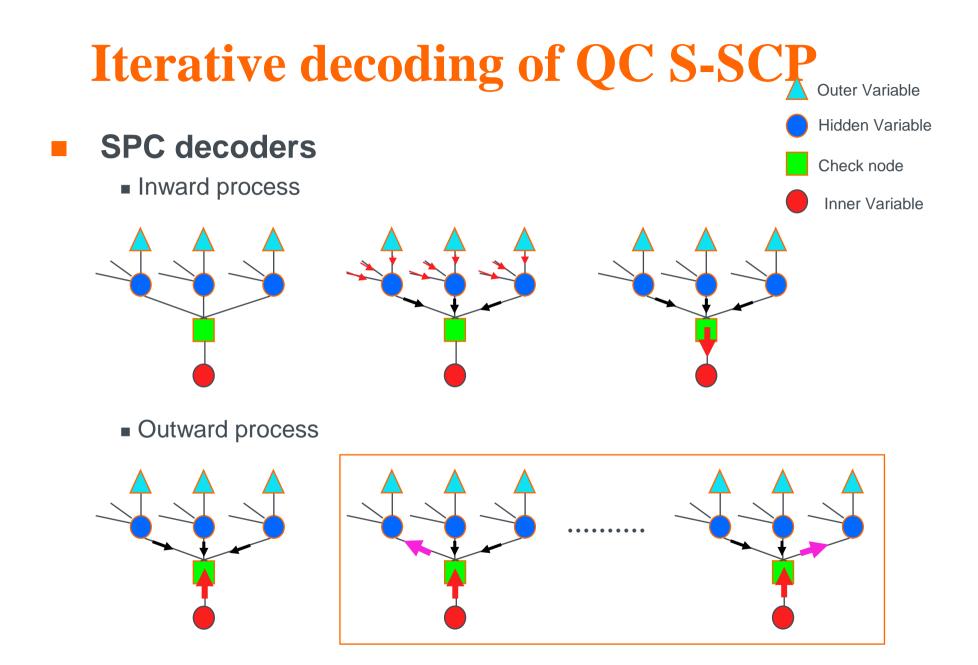
$$E_{c_i} = B_i + B_i$$

 $\begin{array}{rcl} B_i &=& g\left(c_{i+1}+B_{i+1},h_{i+1}\right)\\ E_{c_i} &=& B_i+F_i\\ \bullet \ \mathrm{Memor}E_{h_i} &=& g\left(c_{i-1}+F_{i-1},c_i+B_i\right) \text{liding windows r} \end{array}$





research & development



Hardware plateform

