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R. Manca, University La Sapiensa, Roma, Italy
M. Mesbah, Université Paris VI, France
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Laboratoire de Mathématiques de Brest, UMR 6205
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Preface

asmda meetings are devoted to serve as the interface between Stochastic
Modelling and Data Analysis and their applications particularly in Economy,
Business, Finance and Insurance, Management, Production and Telecommu-
nications, Biology, . . . To be successful, it is quite necessary that the sci-
entific community approving our objective has regular meetings to measure
the involved methods and techniques and also the results in solving real life
problems.

This XIth International Symposium on Applied Stochastic Models and
Data Analysis (Brest, France, May 17–20), also called now asmda 2005, con-
tinues our cycle of meetings beginning in 1981 and unfortunately interrupted
for 4 years:

Belgium (Brussels) 1981, 1983, 1985.
France (Nancy) 1988.
Spain (Grenada) 1991.
Greece (Chania, Creta) 1993.
Ireland (Dublin) 1995.
Italy (Anacapri, Napoli) 1997.
Portugal (Lisbon) 1999.
France (Compiègne) 2001.

This asmda 2005 meeting is also the first meeting chaired by N. Limnios
and G. Saporta as new co-chairmen of asmda, and this time with J-P.
Barthélemy as local chairman.

As usual, the papers presented in this Symposium cover a large variety of
fields both theoretical and applied. These asmda 2005 proceedings include
three kinds of papers or abstracts: Keynote speaker papers, Invited session
papers and Contributed papers. In these proceedings, the papers are sorted
by topic disscussed.

Let us also mention that all the papers submitted were reviewed and we
can say that the presented papers are of quality.

We thank all the authors of the papers for their collaboration and also all
the members –and non members!– of the Scientific Committee who reviewed
all the submitted papers.

We also thank warmly the members of the local Organisation Committee
taking in charge all the practical organisation of the asmda 2005 meeting.

Lastly, we also thank the different sponsors for making this Symposium
in good conditions for the participants.

Brest, May 2005.

Jacques Janssen,
Philippe Lenca,

Chairmen of the asmda 2005 Scientific Committee.
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Jérôme David, Fabrice Guillet, Vincent Philippé, Régis Gras
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Stéphane Lallich, Benôıt Vaillant, Philippe Lenca

Visualisation and exploration of high-dimensional data. . . . . . . 230
Sylvain Lespinats, Alain Giron, Bernard Fertil

About the locality of kernels in high-dimensional spaces . . . . . . 238
Damien Francois, Vincent Wertz, Michel Verleysen

Quality measure based on Kohonen maps for supervised learn-
ing of large high dimensional data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Elie Prudhomme, Stéphane Lallich
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Gaëlle Loosli, Stéphane Canu, S.V.N. Vishwanathan, Alex J.
Smola

Learning numbers from Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 552
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Coalescent analysis of genetic instability . . . . . . . . . . . . . . . . . . . . . .1031
Mathieu Emily, Olivier François

Play-the-winner rule in clinical trials: models for adaptative
designs and Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1039

Bruno Lecoutre, Khadija Elqasyr

Part XI. Markov Processes

Time-Average Optimality for Semi-Markov Control Processes1051
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Weighted Cramér-von Mises-type Statistics
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Abstract. We consider quadratic functionals of the multivariate uniform empirical
process. Making use of Karhunen-Loève expansions of the corresponding limiting
Gaussian processes, we obtain the asymptotic distributions of these statistics under
the assumption of independent marginals. Our results have direct applications
to tests of goodness of fit and tests of independence by Cramér-von Mises-type
statistics.
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Keywords: Cramér-von Mises tests, tests of goodness of fit, tests of indepen-
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1 Introduction and Premiminaries.

1.1 Introduction.

In this paper, we survey some recent results ([14, 15, 13]) related to quadratic
functionals of the form

∫ 1

0

. . .

∫ 1

0

t2β1

1 . . . t2βd

d α2
n,0(t1, . . . , td)dt1 . . . dtd, (1)

where αn,0 is an appropriate version of the uniform empirical process on [0, 1]d

(see (36) in the sequel for explicit definitions). We first establish conditions
on the β1, . . . , βd, under which the statistic in (1) converges to a quadratic
functional of a Gaussian process, of the form

∫ 1

0

. . .

∫ 1

0

t2β1

1 . . . t2βd

d B2
0(t1, . . . , td)dt1 . . . dtd, (2)

with B0 denoting a tied-down Brownian bridge. Second, we will characterize
the distribution of the random variable in (2), through a Karhunen-Loève
expansion of the corresponding weighted Gaussian process.

This problem has been initiated by Cramér [10] (see, e.g., Nikitin [26], Scott
[32] and the references therein). In higher dimensions, we refer to Blum,
Kiefer and Rosenblatt [6], Cotterill and Csörgő [8, 9], Deheuvels [13], Dugué
[17, 18, 19], Hoeffding [20], Kiefer [24], Martynov [27], and Smirnov [33, 35,
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34]. Quadratic functionals of Gaussian processes have been studied by Biane
and Yor [5], Donati-Martin and Yor [16], Pitman and Yor [28, 29, 30, 31],
and Yor [37, 38]. The results of Deheuvels and Martynov [14], and Deheuvels,
Peccati and Yor [15], Deheuvels [13], give the core of the present survey paper.
The theory of Bessel functions plays here an essential role and we refer to
Bowman [7] and Watson [36] for details.

In §1.2 and 1.3, we give some preliminaries. We describe the univariate case
in §2.1 and the multivariate case, with d ≥ 2, in §2.2.

1.2 Some Preliminaries on Gaussian Processes.

Let {X(t) : t ∈ [0, 1]d} denote a centered Gaussian process, with d ≥ 1. We
set s = (s1, . . . , sd) ∈ Rd and t = (t1, . . . , td) ∈ Rd, and set

R(s, t) = E
(
X(s)X(t)

)
for s, t ∈ [0, 1]d. (3)

We will are concerned with the quadratic functional

∫

[0,1]d
X2(t)dt, (4)

where dt is the Lebesgue measure. We will work under the assumption that

0 < E
(∫

[0,1]d
X2(t)dt

)
=

∫

[0,1]d
R(t, t)dt <∞. (5)

The condition (5) entails that, almost surely, X(·) ∈ L2
(
[0, 1]

)
belongs to

the class of Hilbert space valued centered Gaussian processes (see, e.g., §10 in
Lifshits [25]). By the Cauchy-Schwarz inequality, for each s, t ∈ [0, 1]d,

R(s, t)2 = E
(
X(s)X(t)

)2 ≤ E
(
X(s)2

)
E
(
X(t)2

)
= R(s, s)R(t, t).

When combining this last inequality with (5), we obtain that

‖R‖2L2 :=

∫

[0,1]d

∫

[0,1]d
R(s, t)2dsdt ≤

{∫

[0,1]d
R(t, t)dt

}2

<∞, (6)

so that R ∈ L2
(
[0, 1]d × [0, 1]d

)
. Under (6), the Fredholm transformation

y(·) ∈ L2
(
[0, 1]d

)
→ ỹ(·), defined by

ỹ(t) =

∫

[0,1]d
R(s, t)y(s)ds for t ∈ [0, 1]d, (7)

is a continuous linear mapping of L2
(
[0, 1]d

)
onto itself. The condition (6)

also implies the existence of a convergent orthonormal sequence [c.o.n.s.],
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{λk, ek(·) : 1 ≤ k < K} with the following properties. {λk : 1 ≤ k < K} are
positive constants and K ∈ {2, . . . ,∞} a possibly infinite index, with

λ1 ≥ . . . ≥ λk ≥ . . . > 0. (8)

The {ek(·) : 1 ≤ k < K} are orthonormal in L2
(
[0, 1]

)
, and fulfill

∫

[0,1]d
ek(t)e`(t)dt =

{
1 if k = `,

0 if k 6= `.

The function R may be decomposed into the series

R(s, t) =
∑

1≤k<K
λkek(s)ek(t), (9)

convergent in L2
(
[0, 1]d

)
. This entails that

‖R‖L2 =

∫

[0,1]d

∫

[0,1]d
R(s, t)2dsdt =

∑

1≤k<K
λ2
k <∞. (10)

The λk (resp. ek(·)) are the eigenvalues (resp. eigenfunctions) of the Fred-
holm operator (7), and fulfill the relations, for each 1 ≤ k < K,

ẽk(t) =

∫

[0,1]d
R(s, t)ek(s)ds = λkek(t). (11)

The Karhunen-Loève [KL] decomposition of X(·), (see, e.g., Kac and Siegert
[23, 22], Kac [21], Ash and Gardner [4], and Adler [2]) decomposes X(·) into

X(t) =
∑

1≤k<K
Yk
√
λk ek(t), (12)

where {Yk : 1 ≤ k < K} are independent and identically distributed [i.i.d.]
normal N(0, 1) random variables. Under (5), the series in (12) is convergent
in mean square, since this condition is equivalent to

0 < E
( ∫

[0,1]d
X2(t)dt

)
=

∑

1≤k<K
λk <∞. (13)

This, in turn, readily implies that, as k ↑ K with k < K,

E
( ∫

[0,1]d

{
X(t)−

k∑

m=1

Ym
√
λm em(t)

}2

dt
)

=
∑

m>k

λk → 0.

The condition (5)–(13) is strictly stronger than (10). It implies that the
quadratic functional (4) can be decomposed into the sum of the series

∫

[0,1]d
X2(t)dt =

∑

1≤k<K
λkY

2
k . (14)

The latter is almost surely convergent if and only if (5) holds. Therefore, we
will assume, from now on, that this condition is satisfied.
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1.3 A General Convergence Theorem.

With R(·, ·) as in (3), we consider independent replicæ ξ1(·), ξ(2), . . . of a
general stochastic process ξ(·), fulfilling (H.1–2–3) below.

(H.1) ξ(·) ∈ L2
(
[0, 1]d

)
;

(H.2) E
(
ξ(t)

)
= 0 for all t ∈ [0, 1]d;

(H.3) E
(
ξ(s)ξ(t)

)
= R(s, t) for all s, t ∈ [0, 1]d.

Under (H.1–2–3) (see, e.g., Ex. 14, p. 205 in Araujo and Giné [3]), as n→∞,
the convergence in distribution

ζn(·) := n−1/2
n∑

i=1

ξi(·) d→ X(·), (15)

holds if and only if (5)–(13)) is satisfied, namely, when
∫

[0,1]d
E
(
ξ2(t)

)
dt =

∫

[0,1]d
R(t, t)dt <∞.

We have therefore the following theorem.

Theorem 1 Under (5) and (H.1–2–3), we have, as n→∞, the convergence
in distribution ∫

[0,1]d
ζ2
n(t)dt

d→
∑

1≤k<K
λkY

2
k . (16)

Proof. Under (5) (or equivalently (13)), it follows from (15) that
∫

[0,1]d
ζ2
n(t)dt

d→
∫

[0,1]d
X2(t)dt,

which, in turn, reduces (16) to a direct consequence of (15).2

Below, we provide some useful statistical applications of Theorem 1.

2 Weighted Empirical Processes.

2.1 The Univariate Case (d = 1).

Let U1, U2, . . . be i.i.d. uniform [0, 1] random variables. For n ≥ 1, set

Fn(t) =
1

n

n∑

i=1

1I{Un≤t}, (17)

for the empirical distribution function [df] based upon U1, . . . , Un, and let

αn(t) = n1/2
{
Fn(t)− t

}
for t ∈ [0, 1], (18)
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denote the uniform empirical process. Fix β ∈ R, and set, for n ≥ 1,

ξn(t) = tβ
{
1I{Un≤t} − t

}
for t ∈ [0, 1]. (19)

We let t0 = 1 for all t ∈ R, when β = 0. In agreement with (15), (18), (19),
and the notation of §1.3, we may write

ζn(t) = n−1/2
n∑

i=1

ξi(t) = tβαn(t) for t ∈ [0, 1]. (20)

The assumptions (H.1–2–3) in §1.3 are fulfilled with R defined by

R(s, t) = sβtβ
{
s ∧ t− st

}
for s, t ∈ [0, 1]. (21)

For this choice of R, (5)–(13) hold if and only if

∫ 1

0

t2β
{
t(1− t)

}
dt <∞, (22)

which is equivalent to β > −1. Now, since s∧t−st is the covariance function
of a standard Brownian bridge {B(t) : t ∈ [0, 1]}, the kernel R in (21) is
nothing else but the covariance function of the weighted Brownian bridge

X(t) = tβB(t) for t ∈ (0, 1]. (23)

Deheuvels and Martynov [14] have given the KL decomposition of X(·) in
(23) when β 6= −1 ⇔ ν = 1/(2(1 + β)) > 0. For ν ∈ R, we the first Bessel
function (see, e.g.,§9.1.69 in Abaramowitz and Stegun [1]) is

Jν(x) = (1
2x)

ν
∞∑

k=0

(− 1
4x

2)k

Γ (ν + k + 1)Γ (k + 1)
. (24)

Whenever ν > −1, the positive zeros of Jν are isolated and form an infinite
increasing sequence {zν,k : k ≥ 1}, such that (see, e.g., Watson [36])

0 < zν,1 < zν,2 < . . . , (25)

and, as k →∞,

zν,k =
{
k + 1

2 (ν − 1
2 )
}

+ o(1). (26)

Given this notation, Theorem 1.4 in [14] asserts that, whnever β > −1, the
KL representation of X(t) = tβB(t) is given by

X(t) = tβB(t) =

∞∑

k=1

Yk
√
λk ek(t), (27)
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where {Yk : k ≥ 1} are i.i.d. normal N(0, 1) random variables,

λk =
{ 2ν

zν,k

}2

, k = 1, 2, . . . , (28)

and

ek(t) = t
1
2ν − 1

2

{ Jν(zν,kt
1
2ν )√

ν Jν−1(zν,k)

}
for 0 < t ≤ 1. (29)

Refer to Deheuvels and Martynov [14] for details. We get the theorem:

Theorem 2 For any β > −1, setting ν = 1/(2(1+β)), we have, as n→∞,
the convergence in distribution

∫ 1

0

t2βα2
n(t)dt

d→
∫ 1

0

t2βB2(t)dt =

∞∑

k=1

{ 2ν

zν,k

}2

Y 2
k , (30)

where {Yk : k ≥ 1} is an i.i.d. sequence of normal N(0, 1) random variables.

Proof. In view of (28)–(29), it is a direct consequence of Theorem 1.2

2.2 The Multivariate Case (d ≥ 2).

We now let d ≥ 2. When s = (s1, . . . , sd) ∈ Rd and t = (t1, . . . , td) ∈ Rd, we
denote by s ≤ t the fact that sj ≤ tj for j = 1, . . . , k, and set, accordingly,

s ∧ t =
(
s1 ∧ t1, . . . , sd ∧ td

)
.

Letting U = (U(1), . . . , U(d)) ∈ [0, 1]d be uniformly distributed on [0, 1]d, we
let Un = (Un(1), . . . , Un(d)) ∈ [0, 1]d, n = 1, 2, . . . be i.i.d. replicæ of U. For
each n ≥ 1, the empirical df based upon U1, . . . ,Un is denoted by

Fn(t) =
1

n

n∑

i=1

1I{Ui≤t}, (31)

We denote by

F (t) = P
(
U ≤ t

)
=

d∏

j=1

tj , (32)

the (exact) distribution function of U, and set

αn(t) = n1/2
(
Fn(t)− F (t)

)
for t ∈ [0, 1]d, (33)

for the corresponding uniform empirical process. Making use of §1.3, we
obtain that the following convergence in distribution holds. As n→∞,

αn(·) d→ B(·), (34)
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where {B(t) : t ∈ [0, 1]d} is a standard multivariate Brownian bridge. Namely,
B(·) is a centered Gaussian process, with covariance function

E
(
B(s)B(t)

)
= E

(
αn(s)αn(t)

)

=

d∏

j=1

{
sj ∧ tj

}
−

d∏

j=1

{
sjtj

}
. (35)

The KL decomposition of B(·), with covariance function as in (35), is not
known explicitly for d ≥ 2. A more tractable tied-down empirical process
αn,0(·) is as follows. Set

αn,0(t) = αn(t)−
∑

1≤j≤d
tj αn(t1, . . . , tj−1, 1, tj+1, . . . , td)

+
d∑

1≤j<`≤d
tjt` αn(t1, . . . , tj−1, 1, tj+1, . . . , t`−1, 1, t`+1, . . . , td)

+ . . .+ (1)dt1 . . . td αn(1, . . . , 1). (36)

In (36), αn(1, . . . , 1) = 0, but this term is stated for convenience. In view of
§1.3, we obtain the following convergence in distribution. As n→∞,

αn,0(·) d→ B0(·), (37)

where {B0(t) : t ∈ [0, 1]d} is a tied-down multivariate Brownian bridge.
Namely, B0(·) is a centered Gaussian process, with covariance function

E
(
B0(s)B0(t)

)
=

d∏

j=1

{
sj ∧ tj − sjtj

}
. (38)

We have the following easy consequence of the results of Deheuvels and Mar-
tynov [14] (see also Deheuvels, Peccati and Yor [15]).

Theorem 3 Let β1, . . . , βd be constants such that βj > −1 for j = 1, . . . , d.
Set νj = 1/(2(1 + βj)) > 0 for j = 1, . . . , d. Then, the Karhunen-Loève
decomposition of the centered Gaussian process

X(t) = tβ1

1 . . . tβd

d B0(t) for t ∈ (0, 1]d, (39)

is given by

X(t) =
∞∑

k1=1

. . .
∞∑

kd=1

√
λk1,...,kd

Yk1,...,kd
ek1,...,kd

(t), (40)
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where

λk1,...,kd
=

d∏

j=1

{ 2νj
zνj ,kj

}2

=:

d∏

j=1

L(νj , kj), (41)

and

ek1,...,kd
(t) =

d∏

j=1

[
t

1
2νj

− 1
2

j

{
Jνj (zνj ,k t

1
2νj

j )
√
νj Jνj−1(zνj ,k)

}]

=:

d∏

j=1

E(νj , tj). (42)

Proof. By (38) the covariance function of X(t) in (39) is given by

R(s, t) =

d∏

j=1

s
βj

j t
βj

j

{
sj ∧ tj − sjtj

}
=:

d∏

j=1

R(sj , tj). (43)

Therefore, via (28)–(29), λk1,...,kd
is an eigenvalue of the Fredholm operator

(7) pertaining to ek1,...,kd
(·). To conclude, we show that all eigenvalues are

so obtained. For this, we combine (10) with (43), to write that

∫

[0,1]d

∫

[0,1]d
R(s, t)2dsdt =

∞∏

j1=1

. . .

∞∏

jd=1

∫ 1

0

∫ 1

0

R(sj , tj)
2dsjdtj

=

∞∏

j1=1

. . .

∞∏

jd=1

{ ∞∑

kj=1

L(νj , kj)
2
}

=

∞∑

k1=1

. . .

∞∑

kd=1

λ2
k1,...,kd

.

This shows that there is no other remaining eigenvalue of (7).2

The next theorem is an easy consequence of the preceding results.

Theorem 4 Let β1, . . . , βd be constants such that βj > −1 for j = 1, . . . , d.
Set νj = 1/(2(1 + βj)) > 0 for j = 1, . . . , d. Then, we have, as n→∞,

∫

[0,1]d
t2β1

1 . . . t2βd

d α2
n,0(t)dt

d→
∫

[0,1]d
t2β1

1 . . . t2βd

d B2
0(t)dt

=

∞∑

k1=1

. . .

∞∑

kd=1

{ d∏

j=1

{ 2νj
zνj,kj

}2}
Y 2
k1,...,kd

, (44)

where {Yk1,...,kd
: k1 ≥ 1, . . . , kd ≥ 1} is an i.i.d. array of normal N(0, 1)

random variables.

The limiting distribution in Theorem 4 coincides with that of the Blum-
Kiefer-Rosenblatt statistic (see, e.g., [6]), when d = 2 and β1 = . . . = βd = 0.
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Conclusion. For d ≥ 2, the eigenvalues λk1,...,kd
in the KL decomposition

(41)–(42) are multiple. This renders the numerical computation of the limit
distribution of the test statistic in (44) more delicate than in the univariate
case. This problem will be investigated elsewhere.
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9.Cotterill, D. S. and Csörgő, M. (1985). On the limiting distribution and criti-
cal values for the Hoeffding, Blum, Kiefer, Rosenblatt independence criterion.
Statist. Decisions. 3 1-48.
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Abstract. In this paper we argue that the choice of the SVM cost parameter can be
critical. We then derive an algorithm that can fit the entire path of SVM solutions
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as fitting one SVM model.
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1 Introduction

We have a set of n training pairs xi, yi, where xi ∈ Rp is a p-vector of real
valued predictors (attributes) for the ith observation, yi ∈ {−1,+1} codes its
binary response. The standard criterion for fitting the linear SVM )[Boser et
al., 1992, Cortes and Vapnik, 1995, Schölkopf and Smola, 2001] is

min
β0,β

1

2
||β||2 + C

n∑

i=1

ξi, (1)

subject to, for each i: yi(β0 + xTi β) ≥ 1− ξi.

Here the ξi are non-negative slack variables that allow points to be on the
wrong side of their “soft margin” (f(x) = ±1), as well as the decision bound-
ary, and C is a cost parameter that controls the amount of overlap. If the data
are separable, then for sufficiently large C the solution achieves the maximal
margin separator; if not, the solution achieves the minimum overlap solution
with largest margin.
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Alternatively, we can formulate the problem using a (hinge) Loss +
Penalty criterion [Wahba et al., 2000, Hastie et al., 2001]:

min
β0,β

n∑

i=1

[1− yi(β0 + βTxi)]+ +
λ

2
||β||2. (2)

The regularization parameter λ in (2) corresponds to 1/C, with C in (1).
This latter formulation emphasizes the role of regularization. In many

situations we have sufficient variables (e.g. gene expression arrays) to guar-
antee separation. We may nevertheless avoid the maximum margin separator
(λ ↓ 0), which is governed by observations on the boundary, in favor of a more
regularized solution involving more observations.

The nonlinear kernel SVMs can be represented in this form as well. With
kernel K and f(x) = β0 +

∑n
i=1 θiK(x, xi), we solve [Hastie et al., 2001]

min
β0,θ

n∑

i=1

[1− yi(β0 +

n∑

j=1

θiK(xi, xj))] +
λ

2

n∑

j=1

n∑

j′=1

θjθj′K(xj , x
′
j). (3)

Often the regularization parameter C (or λ) is regarded as a genuine “nui-
sance”. Software packages, such as the widely used SVMlight [Joachims, 1999],
provide default settings for C.

To illustrate the effect of regularization, we generated data from a pair
of mixture densities, described in detail in [Hastie et al., 2001]. We used an
SVM with a radial kernel K(x, x′) = exp(−γ||x− x′||2). Figure 1 shows the
test error as a function of C for these data, using four different values for
γ. Here we see a dramatic range in the correct choice for C (or λ = 1/C).
When γ = 5, the most regularized model is called for; when γ = 0.1, the
least regularized.
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Fig. 1. Test error curves for the mixture example, using four different values for
the radial kernel parameter γ.

One of the reasons that investigators avoid extensive exploration of C
is the computational cost involved. In this paper we develop an algorithm
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which fits the entire path of SVM solutions [β0(C), β(C)], for all possible
values of C, with essentially the computational cost of fitting a single model
for a particular value of C. Our algorithm exploits the fact that the Lagrange
multipliers implicit in (1) are piecewise-linear in C. This also means that the

coefficients β̂(C) are also piecewise-linear in C. This is true for all SVM
models, both linear and nonlinear kernel-based SVMs.

2 Problem Setup

We use a criterion equivalent to (1), implementing the formulation in (2):

min
β,β0

n∑

i=1

ξi+
λ

2
βTβ subject to 1−yif(xi) ≤ ξi; ξi ≥ 0; f(x) = β0+βTx. (4)

Initially we consider only linear SVMs to get the intuitive flavor of our pro-
cedure; we then generalize to kernel SVMs.

We construct the Lagrange primal function

LP :
n∑

i=1

ξi +
λ

2
βTβ +

n∑

i=1

αi(1− yif(xi)− ξi)−
n∑

i=1

γiξi (5)

and set the derivatives to zero. This gives

∂

∂β
: β =

1

λ

n∑

i=1

αiyixi (6)

∂

∂β0
:

n∑

i=1

yiαi = 0, (7)

along with the KKT conditions

αi(1− yif(xi)− ξi) = 0 (8)

γiξi = 0 (9)

1− αi − γi = 0 (10)

We see that 0 ≤ αi ≤ 1, with αi = 1 when ξi > 0 (which is when yif(xi) < 1).
Also when yif(xi) > 1, ξi = 0 since no cost is incurred, and αi = 0. When
yif(xi) = 1, αi can lie between 0 and 1.

The usual Lagrange multipliers associated with the solution to (1) are
α′
i = αi/λ = Cαi. We prefer our formulation here since our αi ∈ [0, 1], and

this simplifies the definition of the paths we define.
We wish to find the entire solution path for all values of λ ≥ 0. Our

basic idea is as follows. We start with λ large and decrease it toward zero,
keeping track of all the events that occur along the way. As λ decreases,
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||β|| increases, and hence the width of the margin decreases. As this width
decreases, points move from being inside to outside their margins. Their
corresponding αi change from αi = 1 when they are inside their margin
(yif(xi) < 1) to αi = 0 when they are outside their margin (yif(xi) > 1).
By continuity, points must linger on the margin (yif(xi) = 1) while their αi
decrease from 1 to 0. We will see that the αi(λ) trajectories are piecewise-
linear in λ, which affords a great computational savings: as long as we can
establish the break points, all values in between can be found by simple linear
interpolation. Note that points can return to the margin, after having passed
through it.

It is easy to show that if the αi(λ) are piecewise linear in λ, then both
α′
i(C) = Cαi(C) and β(C) are piecewise linear in C. It turns out that β0(C)

is also piecewise linear in C.

Our algorithm keeps track of the following sets:

• M = {i : yif(xi) = 1, 0 ≤ αi ≤ 1},M for Margin

• I = {i : yif(xi) < 1, αi = 1}, I for Inside the margin

• O = {i : yif(xi) > 1, αi = 0}, O for Outside the margin

3 The Algorithm

Due to space restrictions, we show some details here; the rest can be found
in [Hastie et al., 2004].

Initialization

The initial conditions depend on whether the classes are balanced or not
(n+ = n−). The balanced case is easier. For very large λ, ||β|| is small, and
the the margin is very wide, all points are in O, and hence αi = 1∀i. From
(6) this means the orientation of β is fixed until the αi change. The margin
narrows as λ decreases, but the orientation remains fixed. Because of (7),
the narrowing margin must connect with an outermost member of each class
simultaneously. These points are easily identified, and this establishes the
first event, the first tenants ofM, and β0.

When n− 6= n+, the setup is more complex. In order to satisfy the
constraint (7), a quadratic programming algorithm is needed to obtain the
initial configuration. See [Hastie et al., 2004] for details.

Kernels

The development so far has been in the original feature space. It is easy to
see that the entire development carries through with “kernels” as well. In
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this case f(x) = β0 + g(x), and the only change that occurs is that (6) is
changed to

g(xi) =
1

λ

n∑

j=1

αjyjK(xi, xj), i = 1, . . . , n, (11)

or θj(λ) = αjyj/λ using the notation in (3). Hereafter we will develop our
algorithm for this more general kernel case.

The Path

The algorithm hinges on the set of points M sitting on the margin. We
considerM at the point that an event has occurred:

1. The initial event, which means 2 or more points start in M, with their
initial values of α ∈ [0, 1].

2. A point from I has just entered M, with its value of αi initially 1.
3. A point from O has reenteredM, with its value of αi initially 0.
4. One or more points in M has left the set, to join either O or I.

Whichever the case, for continuity reasons this set will stay stable until
the next event occurs, since to pass through M, a point’s αi must change
from 0 to 1 or vice versa. Since all points in M have yif(xi) = 1, we can
establish a path for their αi.

We use the subscript ` to index the sets above immediately after the `th
event has occurred. Suppose |M`| = m, and let α`i , β

`
0 and λ` be the values

of these parameters at the point of entry. Likewise f ` is the function at this
point. For convenience we define α0 = λβ0, and hence α`0 = λ`β

`
0.

Since

f(x) =
1

λ




n∑

j=1

yjαjK(x, xj) + α0


 , (12)

for λ` > λ > λ`+1 we can write

f(x) =

[
f(x)− λ`

λ
f `(x)

]
+
λ`
λ
f `(x)

=
1

λ


 ∑

j∈M`

(αj − α`j)yjK(x, xj) + (α0 − α`0) + λ`f
`(x)


 . (13)

The second line follows because all the observations in I` have their αi = 1,
and those in O` have their αi = 0, for this range of λ. Since each of the m
points xi ∈M` are to stay on the margin, we have that

1

λ


 ∑

j∈M`

(αj − α`j)yiyjK(xi, xj) + yi(α0 − α`0) + λ`


 = 1, ∀i ∈ M`. (14)
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Writing δj = α`j − αj , from (14) we have

∑

j∈M`

δjyiyjK(xi, xj) + yiδ0 = λ` − λ, ∀i ∈M`. (15)

Furthermore, since at all times
∑n

i=1 yiαi = 0, we have that

∑

j∈M`

yjδj = 0. (16)

Equations (15) and (16) constitute m+1 linear equations in m+1 unknowns
δj , and can be solved. The δj and hence αj will change linearly in λ, until
the next event occurs:

αj = α`j − (λ` − λ)bj , j ∈ {0} ∪M`. (17)

See [Hastie et al., 2004] for more precise details on solving these equations.
¿From (13) we have

f(x) =
λ`
λ

[
f `(x) − h`(x)

]
+ h`(x), (18)

where
h`(x) =

∑

j∈M`

yjbjK(x, xj) + b0 (19)

Thus the function itself changes in a piecewise-inverse manner in λ.

Finding λ`+1

The paths continue until one of the following events occur:

1. One of the αi for i ∈ M` reaches a boundary (0 or 1). For each i the
value of λ for which this occurs is easily established.

2. One of the points in I` or O` attains yif(xi) = 1.

By examining these conditions, we can establish the largest λ < λ` for which
an event occurs, and hence establish λ`+1 and update the sets.

Termination

In the separable case, we terminate when I becomes empty. At this point,
all the ξi in (4) are zero, and further movement increases the norm of β
unnecessarily.

In the non-separable case, λ runs all the way down to zero. For this to
happen without f “blowing up” in (18), we must have f `−h` = 0, and hence
the boundary and margins remain fixed at a point where

∑
i ξi is as small as

possible, and the margin is as wide as possible subject to this constraint.
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3.1 Computational Complexity

At any update event ` along the path of our algorithm, the main computa-
tional burden is solving the system of equations of size m` = |M`|. While
this normally involves O(m3

` ) computations, sinceM`+1 differs fromM` by
typically one observation, inverse updating can reduce the computations to
O(m2

` ). The computation of h`(xi) in (19) requires O(nm`) computations.
Beyond that, several checks of cost O(n) are needed to evaluate the next
move.
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Fig. 2. [Left] The margin sizes |M`| as a function of λ, for different values of the
radial-kernel parameter γ. The vertical lines show the positions used to compare
the times with libsvm. [Right] The eigenvalues (on the log scale) for the kernel
matrices Kγ corresponding to the four values of γ.The larger eigenvalues correspond
in this case to smoother eigenfunctions, the small ones to rougher. The rougher
eigenfunctions get penalized exponentially more than the smoother ones. For smaller
values of γ, the effective dimension of the space is truncated.

Although we have no hard results, our experience so far suggests that
the total number Λ of moves is O(kmin(n+, n−)), for k around 4− 6; hence
typically some small multiple c of n. If the average size of M` is m, this
suggests the total computational burden is O(cn2m+ nm2), which is similar
to that of a single SVM fit.

Our R function SvmPath computes all 632 steps in the mixture example
(n+ = n− = 100, radial kernel, γ = 1) in 1.44(0.02) secs on a Pentium 4,
2Ghz Linux machine; the svm function (using the optimized code libsvm,
from the R library e1071) takes 9.28(0.06) seconds to compute the solution
at 10 points along the path. Hence it takes our procedure about 50% more
time to compute the entire path, than it costs libsvm to compute a typical
single solution.
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4 Mixture simulation continued

The λ` in Figure 1 are the entire collection of change points as described in
Section 3. We were at first surprised to discover that not all these sequences
achieved zero training errors on the 200 training data points, at their least
regularized fit. In fact the minimal training errors, and the corresponding
values for γ are summarized in Table 1. It is sometimes argued that the

γ 5 1 0.5 0.1

Training Errors 0 12 21 33
Effective Rank 200 177 143 76

Table 1. The number of minimal training errors for different values of the radial
kernel scale parameter γ, for the mixture simulation example. Also shown is the
effective rank of the 200× 200 Gram matrix Kγ .

implicit feature space is “infinite dimensional” for this kernel, which suggests
that perfect separation is always possible. The last row of the table shows
the effective rank of the 200× 200 kernel Gram matrix K (which we defined
to be the number of singular values greater than 10−12). In general a full
rank K is required to achieve perfect separation. This rank-deficiency of the
Gram matrix has been noted by a number of other authors.

This emphasizes the fact that not all features in the feature map implied
by K are of equal stature; many of them are shrunk way down to zero.
Rephrasing, the regularization in (3) penalizes unit-norm features by the
inverse of their eigenvalues, which effectively annihilates some, depending on
γ. Small γ implies wide, flat kernels, and a suppression of wiggly, “rough”
functions.

Writing (3) in matrix form,

min
β0,θ

L[y,Kθ] +
λ

2
θTKθ, (20)

we reparametrize using the eigen-decomposition of K = UDUT . Let Kθ =
Uθ∗ where θ∗ = DUT θ. Then (20) becomes

min
β0,θ∗

L[y,Uθ∗] +
λ

2
θ∗TD−1θ∗. (21)

Now the columns of U are unit-norm basis functions (in R2) spanning the
column space of K; from (21) we see that those members corresponding to
near-zero eigenvalues (the elements of the diagonal matrix D) get heavily
penalized and hence ignored. Figure 2 shows the elements of D for the four
values of γ.
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5 Discussion

Our work on the SVM path algorithm was inspired by early work on exact
path algorithms in other settings. “Least Angle Regression” [Efron et al.,
2002] show that the coefficient path for the sequence of “lasso” coefficients
is piecewise linear. The lasso uses a quadratic criterion, with an L1 con-
straint. In fact, any model with an L1 constraint and a quadratic, piecewise
quadratic, piecewise linear, or mixed quadratic and linear loss function, will
have piecewise linear coefficient paths, which can be calculated exactly and
efficiently for all values of λ [Rosset and Zhu, 2003]. This includes the L1

SVM [Zhu et al., 2003].

The SVM model has a quadratic constraint and a piecewise linear (“hinge”)
loss function. This leads to a piecewise linear path in the dual space, hence
the Lagrange coefficients αi are piecewise linear.

Of course, quadratic criterion + quadratic constraints also lead to exact
path solutions, as in the classic ridge regression case, since a closed form
solution is obtained via the SVD.

The general techniques employed in this paper are known as paramet-
ric programming in convex optimization. After completing this work, it
was brought to our attention that [Pontil and Verri, 1998] reported on the
picewise-linear nature of the lagrange multipliers, although they did not de-
velop the path algorithm. [Fine and Scheinberg, 2002, Cauwenberghs and
Poggio, 2001] employ techniques similar to ours in incremental learning for
SVMs. These authors do not construct exact paths as we do, but rather fo-
cus on updating and downdating the solutions as more (or less) data arises.
[Diehl and Cauwenberghs, 2003] allow for updating the parameters as well,
but again do not construct entire solution paths.

The SvmPath has been implemented in the R computing environment, and
is available from the R website.
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Abstract. To understand evolutionary processes better, biologists use aggrega-
tion methods to estimate evolutionary relationships; yet properties of the methods
are sometimes so imprecisely defined, and their interrelationships so poorly under-
stood, that useful formal results may be difficult to obtain. To address this problem
I describe a strategy for modeling aggregation methods and studying their prop-
erties. The approach accommodates impossibility results for aggregating rankings,
nonhierarchical classifications, hierarchies, and phylogenies. It remains to formu-
late other relevant models of biological aggregation and to characterize methods for
solving biological problems of agreement and synthesis.
Keywords: Aggregation, Agreement, Axiom, Consensus, Impossibility, Synthesis.

The axiomatic method is, strictly speaking, nothing but this art of
drawing up texts whose formalization is straightforward in principle.
As such it is not a new invention; but its systematic use as an in-
strument of discovery is one of the original features of contemporary
mathematics. — Nicolas Bourbaki [Bourbaki, 1968, p. 8]

1 Aggregation problems in biology

Mathematical models of aggregation have long been used in systematic or evo-
lutionary biology [Day and McMorris, 2003]. Given a sequence of trees that
estimate phylogenetic relationships among species, for example, one wants
to develop methods to synthesize these trees into a single large phylogenetic
supertree [Steel et al., 2000, Wilkinson et al., 2004]. If estimating supertrees
is an exemplar of biological aggregation, the following questions pertain.

What is a supertree? Most biologists understand biological supertrees and
their use to estimate evolutionary history, while mathematicians wish to know
no more about supertrees than is necessary to construct appropriate models.
Here I assume that supertrees and other relevant objects are defined so that
their essential features are expressible by sets of elementary structures.

What is a supertree rule? I describe an abstract framework in which
aggregation can be modeled and concepts investigated. Given a profile (se-
quence) of objects: an agreement rule returns an object having only features
in common agreement among the profile’s objects, a consensus rule returns
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an object best representing the profile’s objects, and a synthesis rule returns
a composite of the profile’s objects.

What biologically relevant properties should supertree rules exhibit? Prop-
erties of aggregation constrain the formal model so as to improve its capability
to approximate a biological process [Wilkinson et al., 2004]. Here I ignore
issues of practicality and computational complexity since analyses of time
and space resources are best left to computer scientists. I am particularly in-
terested in axioms that if satisfied by an aggregation rule may increase one’s
confidence in the biological relevance of that rule’s results.

Can supertree rules exhibit particular sets of desirable properties? What
properties do known supertree rules exhibit? Since little has yet been done
to answer such questions, here I simply mention some biologically interesting
impossibility results and some open problems concerning the axiomatics of
biological aggregation rules.

2 Aggregation models

For 30 years researchers have striven to develop consensus rules for biological
applications. Although inappropriate for investigating agreement or synthe-
sis, consensus rules are a useful point of reference. There is a set of voters.
Each voter votes by specifying an object. A consensus rule C accepts a
profile of objects and returns a unique consensus object that in some sense
best represents the profile. A simple model requires that C be a function
C : X k −→ X , where X is a set of objects such as those in table 1 and X k is

X is the set of all . . .

E Nonhierarchical classifications or partitions of S, each being a set of
nonempty classes or subsets of S that are pairwise disjoint and that
include every element of S.

O Rankings of S, each being a partition of S the classes of which are linearly
ordered from most to least preferred.

H Rooted trees, each with n leaves, such that the root vertex has degree at
least 2, every other interior vertex has degree at least 3, and every leaf
is labeled with a distinct element of S.

P Unrooted trees, each with n leaves, such that no vertex has degree 2 and
every leaf is labeled with a distinct element of S.

Table 1. Objects defined in terms of S, n = |S| > 0

the set of all profiles (k-tuples) of X . C is further specified by a set K of k
indices to name the voters, a set S of n labels or species names with which to
describe objects, encoding functions to represent objects in meaningful ways,
and reduction functions to reveal the structure of objects. Since the concepts
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of object, index, label, encoding, and reduction appear naturally in models
of agreement, consensus, or synthesis, the incremental strategy in table 2 can
be used to study them.

1. Begin with the basic concepts of object, index, and label.
2. Design an aggregation model. Specify axioms and use them to prove things.
3. Add a concept of encoding. Specify axioms and use them to prove things.
4. Add a concept of reduction. Specify axioms and use them to prove things.
5. Add other relevant concepts. Specify axioms and use them to prove things.
6. Repeat steps 2–5 for related aggregation models.

Table 2. Strategy to investigate aggregation

To specify models let K = {1, . . . , k}, S = {s1, . . . , sn}, and for every
X ⊆ S let XX be a set of objects defined in terms of each and every label of
X . For every X ⊆ S let X[X] =

⋃
Y⊆X XY where XX ⊆ X[X]. An object of

XX has the label set X , but an object of X[X] may have as its label set any
subset of X ; thus HS is the set of hierarchies having exactly n leaf labels and
H[S] is the set of hierarchies having at most n leaf labels. X , K, S then yield

C : X kS −→ X[S], a model of agreement, (1)

C : X kS −→ XS , a model of consensus, and (2)

C : X k[S] −→ XS , a model of synthesis. (3)

The essence of consensus is that profile objects and consensus result have the
same label set S. Agreement (1) is more general than consensus (2) since,
although the domains are identical, an agreement result’s label set may be a
proper subset of S. Synthesis (3) is more general than consensus (2) since,
although the codomains are identical, the label set of any synthesis profile
object may be a proper subset of S.

Models (1)–(3) can be modified into rules that accept profiles of varying
lengths or return more than one aggregated object. Let X ∗ =

⋃
k≥1 X k be the

set of all profiles of finite positive length and call any aggregation rule with
domain X ∗ a complete rule. Let 2X \ {Ø} be the set of all nonempty subsets
of X and call any aggregation rule with codomain 2X \{Ø} a multiaggregation
rule. Thus a complete multisynthesis rule is modeled by a function

C : X ∗
[S] −→ 2XS \ {Ø}. (4)

3 Aggregation axioms

The axioms in table 3 address issues of impartiality (whether rules favor one
label or index more than another), delegation of authority (whether determin-
ing outcomes resides with proper subsets of indices), optimality (how rules
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Line Axiom Concept Reference

(5) S-Ntr: Neutrality of Labels Label [Steel et al., 2000]
(6) Sym: Symmetry of Indices Index [Steel et al., 2000]
(7) Prj: Projection ” [Barthélemy et al., 1991]
(8) Dct: Weak Dictatorship Encoding [Arrow, 1963]
(9) Olg: Oligarchy ” [Mirkin, 1975]
(10) PO: Pareto Optimality ” [Arrow, 1963]
(11) SO: Strong Optimality ” [Steel et al., 2000]
(12) RC: Reduction Consistency Reduction [Wilkinson et al., 2004]
(13) Ind: Independence ” [Arrow, 1963]
(14) Dsp: Display ” [Steel et al., 2000]
(15) Agr: Agreement ” [Day and McMorris, 2003]

Table 3. Axioms and their related concepts

behave in the presence of object agreement), contexture (how rules respond
to changes in structure or composition), and resolvability (how rules preserve
relationships between objects).

To motivate axioms I give informal prose descriptions, but to specify
axioms I define them using the logical symbols for negation (¬), conjunction
(∧), disjunction (∨), implication (=⇒), equivalence (⇐⇒), and universal (∀)
and existential (∃) quantification. Since axioms may apply to more than one
model, in their definitions I assume as little as possible about the model’s
form: unless stated otherwise let it be a function C : X k −→ Y for X ,Y ⊆
X[S] where X ⊆ Y and/or Y ⊆ X . Such an axiom might be relevant to any
of the models (1)–(3).

Let f and g be functions, let x be an element in g’s domain, and let g(x)
be in f ’s domain; then I reduce notational clutter by writing fgx instead of
f(g(x)). Thus CσP = C(σ(P )) as in (6). To specify objects of P ∈ X k let
P = (T1, . . . , Tk) as in (7).

3.1 Basic axioms

Three axioms treat objects as atomic and indivisible.
S-Ntr: Neutrality of Labels. Let φ : S −→ S be a function that

permutes the labels in S. Let φ : X −→ X permute the labels of an object:
for every T ∈ X , φT is the object obtained by using φ to permute the labels
of T . Let φ : X k −→ X k permute the labels in every object of a profile:
(∀P ∈ X k)(φP = (φT1, . . . , φTk)). Although three functions are named φ,
context shows which φ pertains. Motivation: If a profile P is described by
a data matrix in which each row represents a label then the aggregation
of P should be insensitive to the relative order of P ’s rows (labels). Put
another way, for every P and every S-permutation φ, the relabeling by φ of
the aggregation of P should equal the aggregation of the profile in which P ’s
objects are relabeled by φ. Axiom:
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(∀P ∈ X k)(∀S-permutations φ)(CφP = φCP ) (5)

Sym: Symmetry of Indices. Let σ : K −→ K be a function that per-
mutes the indices in K = {1, . . . , k}. Now σ can permute objects in a profile
by permuting the indices of the objects in that profile, i.e., let σ : X k −→ X k
be a function such that (∀P ∈ X k)(σP = (Tσ1, . . . , Tσk)). Although two func-
tions are named σ, context shows which σ pertains. Motivation: If a profile
P is described by a data matrix in which each column represents an object
then the aggregation of P should be insensitive to the relative order of P ’s
columns (objects). Put another way, for every P and every K-permutation
σ, the aggregation of P should equal the aggregation of the profile in which
the positions of P ’s objects are permuted by σ. Axiom:

(∀P ∈ X k)(∀K-permutations σ)(CP = CσP ) (6)

Prj: Projection (Strong Dictatorship). Motivation: In nontrivial
oligarchies and dictatorships the power to control aggregation is shared un-
equally by voters. In a strong dictatorship, for some index j and every profile
P , the aggregation of P is the jth object of P . Axiom:

(∃j ∈ K)(∀P ∈ X k)(CP = Tj) (7)

Thus if P is a point in a k-dimensional space then C projects P onto a single
dimension.

3.2 Axioms using object encodings

Whereas in section 3.1 objects were atomic and indivisible, now let every
object T ∈ X be a set of elementary structures that are defined using the
labels of S. Specifically let ES be a complete set of elementary structures
defined using the labels of S, and let r denote an encoding by which every
T ∈ X is a well-defined subset of ES . The encodings in table 4 may be
familiar to biologists; the axioms in sections 3.2 and 3.3 assume that such an
encoding has been applied.

X r Using r, T ∈ X is a Reference

O w weak order [Arrow, 1963]
E e equivalence relation [Mirkin, 1975]
H c set of clusters [Margush and McMorris, 1981]
H t set of triads [Colonius and Schulze, 1981]
H n set of nestings [Adams III, 1986]
P s set of splits [Buneman, 1971]
P q set of quartets [Colonius and Schulze, 1981]

Table 4. Encodings (r) to represent objects as sets of elementary structures
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Dct: Weak Dictatorship. Motivation: In a weak dictatorship, for some
index j and every profile P , the aggregation of P contains as a subset the
jth object of P . Axiom:

(∃j ∈ K)(∀P ∈ X k)(Tj ⊆ CP ) (8)

Olg: Oligarchy. Motivation: Oligarchy extends the strong dictatorial
concept to forms of aggregation in which ruling power is shared by a set of
individuals: for some index set V and every profile P , the aggregation of P
is the set intersection of the objects of P that are specified by V . Axiom:

(∃V ⊆ K)(∀P ∈ X k)(∩j∈V Tj = CP ) (9)

An oligarchy of one individual is a strong dictator; an oligarchy of k individ-
uals is a form of rule by unanimity.

PO: Pareto Optimality. Motivation: Proposals may require for adop-
tion the unanimous support of a society’s members. For every profile P the
aggregation of P should include those elementary structures (i.e., proposals)
that are in every object of P (i.e., are supported by every member). Axiom:

(∀P ∈ X k)(∩i∈KTi ⊆ CP ) (10)

SO: Strong Optimality. Motivation: Instead of requiring unanimous
support, proposals may be adopted if they are unopposed by conflicting pro-
posals. With hierarchies represented by sets of triads (see figure 1), for every

xy |z yz |x xyzxz |y

x y z y z x x y zx z y

Fig. 1. Triads for representing hierarchies.

profile P and every three labels x, y, z, if xy|z is in some object of P but nei-
ther xz|y nor yz|x are in P ’s objects, then xy|z should be in the aggregation
of P . Axiom:

(∀P ∈ Hk)(∀x, y, z ∈ S)(

[(∃j ∈ K)(xy|z ∈ Tj) ∧ (∀i ∈ K)(xz|y 6∈ Ti ∧ yz|x 6∈ Ti)]
=⇒ xy|z ∈ CP ) (11)

With phylogenies represented by sets of quartets the axiom becomes

(∀P ∈ Pk)(∀w, x, y, z ∈ S)(

[(∃j ∈ K)(wx|yz ∈ Tj) ∧ (∀i ∈ K)(wy|xz 6∈ Ti ∧wz|xy 6∈ Ti)]
=⇒ wx|yz ∈ CP )

In such cases SO is stronger than PO in the sense that SO =⇒ PO .
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3.3 Axioms using object encodings and reductions

Let an encoding (as in table 4) be applied so that every object in X is repre-
sented by a set of elementary structures. Like an X-ray machine, reduction
penetrates the surfaces of such objects to reveal hidden structure. For every
X ⊆ S, let the function ξX : X[S] −→ X[X] reduce objects on subsets of S to
objects on subsets of X : for every T ∈ X[S], ξXT is the object obtained by
suppressing in T the structure associated with S \X . Thus if T were a graph
G with vertex set S then ξXT might be the subgraph of G that is induced
by X . Also let ξX : X k[S] −→ X k[X] reduce profiles rather than single objects:

for every X ⊆ S then (∀P ∈ X k[S])(ξXP = (ξXT1, . . . , ξXTk)). Although two
functions are named ξX , context shows which ξX pertains.

RC: Reduction Consistency. Motivation: The order in which reduc-
tion and aggregation functions are applied ought not to matter: for every
profile P and subset X of labels, the aggregation of the reduction of P to X
by ξ should equal the reduction to X by ξ of the aggregation of P . Axiom:

(∀P ∈ X k[S])(∀X ⊆ S)(CξXP = ξXCP ) (12)

Ind: Independence. Profiles P, P ′ ∈ X k[S] are called equal, i.e., P = P ′,
if and only if (∀i ∈ K)(Ti = T ′

i ). Motivation: For all profiles P and P ′ and
every subset X , if P and P ′ are equal when reduced to X by ξ then the
aggregations of P and P ′ must be equal when reduced to X by ξ. Axiom:

(∀P, P ′ ∈ X k[S])(∀X ⊆ S)(ξXP = ξXP
′ =⇒ ξXCP = ξXCP

′) (13)

Ind, which Arrow [Arrow, 1963] called independence of irrelevant alternatives,
imposes on aggregation rules a form of context insensitivity. Ind is weaker
than reduction consistency in the sense that RC =⇒ Ind. Some researchers
have confounded Ind with RC, a result perhaps unsurprising since [Arrow,
1963, pp. 26–27] motivated his definition of Ind with examples of both RC
and Ind ([McLean, 1995, p. 108]).

Dsp: Display. An object T is said to resolve an object T ′ if T ′ can be
obtained from T by a sequence of simplifying elementary transformations.
For partitions an elementary transformation forms the union of two classes
of the previous partition; for rankings those two classes must be adjacent
in the previous linear order. For hierarchies or phylogenies an elementary
transformation contracts an interior edge by identifying its endpoints and
deleting the resulting loop. For every T, T ′ ∈ X[S], T is said to display T ′ if,
for some X ⊆ S, ξXT = T ′ or ξXT resolves T ′. An object also can display a
profile: for every object T and profile P , T is said to display P if T displays
Ti for every i ∈ K. Motivation: For every profile P if some object displays
P then the aggregation of P should display P . Axiom:

(∀P ∈ X k[S])[(∃T ∈ X[S])(T displays P ) =⇒ (CP displays P )] (14)
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Agr: Agreement. For every P ∈ X k[S] let D(P ) be the set of all non-

trivial objects (i.e., those having nontrivial elementary structures) that are
displayed by every Ti ∈ P . Motivation: For every profile P if some nontrivial
object is displayed by P then the aggregation of P should be nontrivial and
should be displayed by P . Axiom:

(∀P ∈ X k[S])(D(P ) 6= Ø =⇒ CP ∈ D(P )) (15)

4 Problems at the interface

Researchers have used the axiomatic approach to prove impossibility results
(table 5) for models (1)–(3) of aggregation, a result being called impossible
if an undesirable property, e.g., Dct or Olg, follows from desirable properties,
e.g., Ind and PO. Consequently the following questions may be relevant when
assessing the efficacy of such models for biological aggregation.

Model X r Impossibility Result Reference

consensus O w Ind ∧ PO =⇒ Dct [Arrow, 1963, p. 97]
consensus E e Ind ∧ PO ⇐⇒ Olg [Mirkin, 1975, p. 446]
consensus H c Ind ∧ PO ⇐⇒ Prj [Barthélemy et al., 1992, p. 63]

agr,con,syn H t SO ⇐⇒ ¬SO [Steel et al., 2000, p. 367]
consensus P q Ind ∧ PO ⇐⇒ Prj [McMorris and Powers, 1993, p. 54]
consensus P q S -Ntr ∧ PO =⇒ ¬Sym [Steel et al., 2000, p. 366]
synthesis P q S -Ntr ∧ Dsp =⇒ ¬Sym [Steel et al., 2000, p. 364]

agreement P q S -Ntr =⇒ ¬Agr [Day and McMorris, 2003, p. 108]

Table 5. Impossibility results for aggregation models (1)–(3), the representation
of objects in X being determined by the encoding r. For many other such results
see [Day and McMorris, 2003] and references therein.

Are we using the right axioms? [Wilkinson et al., 2004] argue that elusive
properties of input trees involving tree size, tree shape, or the location or size
of conflicting structures may adversely bias methods to build supertrees. How
should such properties be included in formal studies of aggregation models?
Even devising adequate definitions of such properties may be problematic.
Would some particular encoding provide a natural setting in which such prop-
erties could be investigated? Since the strategy in table 2 is simplistic, using
it to guide the analysis of such models may be ineffective or infeasible.

Engaging but specific problems exist. How strong is S-neutrality? For
agreement, consensus, or synthesis rules on phylogenies, characterize those
rules that satisfy S-Ntr. Since independence (Ind) imposes a strong concept
of context insensitivity, could it be replaced by biologically useful concepts
of context sensitivity?



Biological Aggregation at the Interface 51

Are we solving the right problems? Impossibility results encourage math-
ematicians to explore the boundary areas between feasible and infeasible
aggregation rules. Biologists might be more excited by axiomatic character-
izations of actual or ideal aggregation rules for biologically relevant objects.

Are we using the right models? Since much is known about complete
multiconsensus median rules [McMorris et al., 2000, McMorris et al., 2003],
do such axiomatic results generalize to the complete multisynthesis model
(4)? Do the concepts of agreement, consensus, synthesis, multiaggregation,
and completeness yield useful aggregation models for biological applications?
Although an extensive literature on biologically relevant consensus rules ex-
ists [Day and McMorris, 2003], axiomatic investigations of agreement and
synthesis rules are just beginning [Steel et al., 2000] and show great promise.

Have we the right perspective? If objects are complex structures, one
can exploit that complexity to study the interrelationships among objects;
but if objects are taken to be atomic and indivisible, one must use object
interrelationships to study the basic properties of sets of objects. Would it be
useful to investigate agreement or synthesis models from an order theoretic
perspective, as was done for consensus models by [Monjardet, 1990] and
[Leclerc and Monjardet, 1995]?

For some readers this paper may have little of biological interest since its
biological relevance emerges only by specifying undefined terms, e.g., object,
and open-ended concepts, e.g., encoding or reduction. If then the axioms or
models prove to be inappropriate for analyzing biological problems, perhaps
biologists and mathematicians would collaborate to refine the approach.

Acknowledgements. My views have been influenced by [Steel et al., 2000],
who investigate supertrees axiomatically and whose clarity of exposition is
exemplary, and by [Wilkinson et al., 2004], who examine biologically desirable
properties of synthesis rules for supertrees. I am indebted to Robert C.
Powers for criticizing preliminary drafts of this paper.
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Abstract. We propose a new method to compute option prices based on GARCH
models. In an incomplete market framework, we allow for the volatility of asset
return to differ from the volatility of the pricing process and obtain adequate pricing
results. We investigate the pricing performance of this approach over short and
long time horizons by calibrating theoretical option prices under the Asymmetric
GARCH model on S&P 500 market option prices. A new simplified scheme for
delta hedging is proposed.
Keywords: GARCH models.

Introduction

There is a general consensus that asset returns exhibit variances that change
through time. GARCH models are a popular choice to model these chang-
ing variances. However the success of GARCH in modelling return variance
hardly extends to option pricing. Models by [Duan, 1995], [Heston, 1993]
and [Heston and Nandi, 2000] impose that the conditional volatility of the
risk-neutral and the objective distributions be the same. Total variance, (the
expectation of the integral of return variance up to option maturity), is then
the expected value under the GARCH process. Empirical tests by [Chernov
and Ghysels, 2000], (see also references therein), find that the above mod-
els do not price options well and their hedging performance is worse than
Black-Scholes calibrated at the implied volatility of each option.

A common feature of all the tests to date is the assumption that the
volatility of asset return is equal to the volatility of the pricing process. In
other words, a risk neutral investor prices the option as if the distribution of
its return had a different drift but unchanged volatility. This is certainly a
tribute to the pervasive intellectual influence of the [Black and Scholes, 1973]
model on option pricing. However, Black and Scholes derived the above prop-
erty under very special assumptions, (perfect complete markets, continuous
time and price processes). Changing volatility in real markets makes the
perfect replication argument of Black-Scholes invalid. Markets are then in-
complete in the sense that perfect replication of contingent claims using only
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the underlying asset and a riskless bond is impossible. Of course markets be-
come complete if a sufficient, (possibly infinite), number of contingent claims
are available. In this case a well-defined pricing density exists.

In the markets we consider the volatility of the pricing process is differ-
ent from the volatility of the asset process. This occurs because investors
will set state prices to reflect their aggregate preferences. The pricing dis-
tribution will then be different from the return distribution. It is possible
then to calibrate the pricing process directly on option prices. Although this
may appear to be a purely fitting exercise, involving no constraint beyond
the absence of arbitrage, verification of the stability of the pricing process
over time and across maturities imposes substantial parameter restrictions.
Economic theory may impose further restrictions from investors’ preferences
for aggregate wealth in different states.

[Carr et al., 2003] propose a similar set-up for Lévy processes. They use
a jump process in continuous time. We propose to use discrete time and a
continuous distribution for prices. Moreover we use GARCH models to drive
stochastic volatility.

[Heston and Nandi, 2000] derived a quasi-analytical pricing formula for
European options assuming a parametric linear risk premium, Gaussian in-
novations and the same GARCH parameters for the pricing and the asset
process. In our pricing model we relax their assumptions. We allow for
different volatility processes and time-varying, nonparametric risk premia—
set by aggregate investors’ risk preferences. We use not only Monte Carlo
simulation, but also filtered GARCH innovations.

Our method is different from [Duan, 1996], where a GARCH model is cali-
brated to the FTSE 100 index options assuming Gaussian innovations and the
locally risk neutral valuation relationship, which implies that the conditional
variance returns are equal under the objective and the risk neutral measures.
[Engle and Mustafa, 1992] proposed a similar method to calibrate a GARCH
model to S&P 500 index options in order to investigate the persistence of
volatility shocks.

The final target is the identification of a pricing process for options that
provides an adequate pricing performance. A surprising result concerns hedg-
ing performance. Hedging performance, contrary to what is commonly sought
in the stochastic volatility literature, cannot be significantly better than the
performance of the Black-Scholes model calibrated at the implied volatility
for each option. This result stems from the fact that deltas, (hedge ratios),
for Black-Scholes can be derived applying directly the (first degree) homo-
geneity of option prices with respect to asset and strike prices, without using
the Black-Scholes formulas. Therefore, hedge ratios from Black-Scholes cal-
ibrated at the implied volatility are the “correct” hedge ratios unless a very
strong departure from “local homogeneity” occurs. This is not the case for
the continuous, almost linear volatility smiles commonly found. In practice,
for regular calls and puts, this is the case only for the asset price being equal
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to the strike price one instant before maturity. In summary, although it
may be argued that calibrating Black-Scholes at each implied volatility does
not give a model of option pricing, the hedging performance of this common
procedure is almost unbeatable. [Barone-Adesi and Elliott, 2004] further
investigate the computation of the hedge ratios under similar assumptions.

Our tests use closing prices of European options on the S&P 500 Index
over several months. After estimating a GARCH model from earlier S&P 500
index data we search in a neighborhood of this model for the best pricing
performance. Care is taken to prevent that our results be driven by mi-
crostructure effects in illiquid options.

The structure of the paper is the following. Section 1 presents option and
state prices under GARCH models when the pricing process is driven by sim-
ulated, Gaussian innovations. Section 2 investigates the pricing performance
of the proposed method when the pricing process is driven by filtered, esti-
mated GARCH innovations. Section 3 discusses hedging results and Section 4
concludes.

1 Option and State Prices under the GARCH Model

Consider a discrete-time economy. Let St denote the closing price of the S&P
500 index at day t and yt the daily log-return, yt := ln(St/St−1). Suppose
that under the objective or historical measure P, yt follows an Asymmetric
GARCH(1,1) model; see [Glosten et al., 1993],

yt = µ+ εt,
σ2
t = ω + αε2t−1 + βσ2

t−1 + γIt−1ε
2
t−1,

(1)

where ω, α, β > 0, α + β + γ/2 < 1, µ determines the constant return
(continuously compounded) of St, εt = σt zt, zt ∼ i.i.d.(0, 1) and It−1 = 1,
when εt−1 < 0 and It−1 = 0, otherwise. The parameter γ > 0 accounts for
the “leverage effect”, that is the stronger impact of “bad news” (εt−1 < 0)
rather than “good news” (εt−1 ≥ 0) on the conditional variance σ2

t .
The representative agent in the economy is an expected utility maximizer

and the utility function is time-separable and additive. At time t = 0, the
following Euler equation from the standard expected utility maximization
argument gives the price of a contingent T -claim ψT ,

ψ0 = EP[ψT U
′(CT )/U ′(C0)|F0] = EP[ψT Y0,T |F0]

= EQ[ψT e
−rT |F0],

where EG[·] denotes the expectation under the measure G, r is the risk-free
rate, U ′(Ct) is the marginal utility of consumption at time t and Ft is the
information set available up to and including time t. The state price density
per unit probability process Y is defined by Yt,T := e−r(T−t)Lt and

Lt =
dQt

dPt
=
q dS

p dS
=
q

p
,
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where Q is the risk neutral measure absolutely continuous with respect to
P, the subindex t denotes the restriction to Ft, q and p (time subscripts are
omitted) are the corresponding density functions. When the financial market
is incomplete, Lt is not unique and is determined by the representative agent’s
preferences. Intuitively, if p(ST ) was a discrete probability, the state price
density evaluated at ST , Yt,T (ST ) p(ST ), gives at time t the price of $1 to be
received if state ST occurs. The state price per unit probability, Yt,T (ST ),
is then the market price of a state contingent claim that pays 1/p(ST ) if
state ST , which has probability p(ST ), occurs. The expected rate of return
of such a claim under the physical measure P is 1/Yt,T (ST )− 1. As marginal
utilities of consumptions decrease when the states of the world “improve”,
Yt,T is expected to decrease in ST .

1.1 Monte Carlo Option Prices

Monte Carlo simulation is used to compute the GARCH option prices, be-
cause the distribution of temporally aggregated asset returns cannot be de-
rived analytically. We present the computation of a European call option
price; other European claims can be priced similarly.

At time t = 0 the dollar price of a European call option with strike price
$K and time to maturity T days is computed by simulating log-returns in
model (1) under the risk neutral measure Q. Specifically, we draw T indepen-
dent standard normal random variables (z?i )i=1,...,T , we simulate (yi, σ

2
i ) in

model (1) under the risk neutral parameters ω∗, α∗, β∗, γ∗, µ = r− d−σ2
i /2,

where r is the risk-free rate and d is the dividend yield on a daily ba-

sis, and we compute S
(n)
T = S0 exp(

∑T
i=1 yi). Then, we compute the dis-

counted call option payoff C(n) = exp(−r T ) max(0, S
(n)
T − K). Iterating

the procedure N times gives the Monte Carlo estimate for the call option
price, Cmc(K,T ) := N−1

∑N
n=1 C

(n). To reduce the variance of the Monte
Carlo estimates we use the method of antithetic variates; cf., for instance,

[Boyle et al., 1997]. Specifically, C(n) = (C
(n)
a + C

(n)
b )/2, where C

(n)
a is

computed using (z?i )i=1,...,T and C
(n)
b using (−z?i )i=1,...,T . Each option

price Cmc is computed simulating 2N sample paths for S. In our calibra-
tion exercises we set N = 10,000. To further reduce the variance of the
Monte Carlo estimates we calibrate the mean as in the empirical martin-
gale simulation method proposed by [Duan and Simonato, 1998]. Scaling

the simulated values S
(n)
T , n = 1, . . . , N , by a multiplicative factor, the

method ensures that the risk neutral expectation of the underlying asset

is equal to the forward price, i.e. N−1
∑N

n=1 S̃
(n)
T = S0 exp((r − d)T ), where

S̃
(n)
T := S

(n)
T S0 exp((r − d)T ) (N−1

∑N
n=1 S

(n)
T )−1. Then, option prices are

computed using S̃
(n)
T . In our calibration exercises at least 100 simulated

paths of the underlying asset end at maturity “in the money” for almost all
the deepest out of the money options.
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1.2 Calibration of the GARCH Model

The risk neutral parameters of the GARCH model, θ∗ = (ω∗ α∗ β∗ γ∗), are
determined by calibrating GARCH option prices computed by Monte Carlo
simulation on market option prices taken as averages of bid and ask prices
at the end of one day.

Specifically, let Pmkt(K,T ) denote the market price in dollars at time
t = 0 of a European option with strike price $K and time to maturity T
days. The risk neutral parameters θ∗ are determined by minimizing the
mean squared error (mse) between model option prices and market prices.
The mse is taken over all strikes and maturities,

θ∗ := arg min
θ

m∑

i=1

(
P garch(Ki, Ti; θ)− Pmkt(Ki, Ti)

)2
, (2)

where P garch(K,T ; θ) is the theoretical GARCH option price and m is the
number of European options considered for the calibration at time t = 0.

As an overall measure of the quality of the calibration we compute the
average absolute pricing error (ape) with respect to the mean price,

ape :=

∑m
i=1

∣∣P garch(Ki, Ti; θ
∗)− Pmkt(Ki, Ti)

∣∣
∑m

i=1 P
mkt(Ki, Ti)

. (3)

1.3 Empirical Results

We calibrate the GARCH model to European options on the S&P 500 index
observed on a random date t := August 29, 2003 and we set t = 0. Estimates
of σ2

0 and z0 are necessary to simulate the risk neutral GARCH volatility and
are obtained in the next section.

1.3.1 Estimation of the GARCH Model Percentage daily log-returns,
yt × 100, of the S&P 500 index are computed from December 11, 1987 to
August 29, 2003 for a total of 4,100 observations. Model (1) is estimated using
the Pseudo Maximum Likelihood (PML) estimator based on the nominal
assumption of conditional normal innovations. The parameter estimates are
reported in Table 1. The current August 29, 2003 estimates on a daily base of
σ2

0 and z0 are 0.635 and 0.604, respectively, and will be used as starting values
to simulate the risk neutral GARCH volatility in the calibration exercise.

1.3.2 Calibration of the GARCH Model with Gaussian Innova-
tions Initially we calibrate the GARCH model (1) to the closing prices
(bid-ask averages) of out of the money European put and call options on
the S&P 500 index observed on August 29, 2003. Precisely, we only consider
option prices strictly larger than $0.05—discarding 40 option prices to avoid
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that our results be driven by microstructure effects in very illiquid options—
and maturities T = 22, 50, 85, 113 days for a total of m = 118 option prices.
Strike prices range from $550 to $1,250, r = 0.01127/365, d = 0.01634/365
on a daily basis and S0 = $1,008.

To solve the minimization problem (2) we use the Nelder-Mead simplex
direct search method implemented in the Matlab function fminsearch. This
function does not require the computation of gradients. Starting values for
the risk neutral parameters θ∗ are the parameter estimates given in Table 1.
Calibrated parameters, root mean squared error (rmse) and ape measure for
the quality of the calibration are reported in the first row of Table 2. The
“leverage effect” in the volatility process under the risk neutral measure Q
(γ∗ = 0.288) is substantially larger than under the objective measure P (γ =
0.075). The average pricing error is quite low and equals to 2.54%. Figure 1
shows the pricing performance of the GARCH model which seems to be
satisfactory. Figure 2 shows the calibration errors defined as P garch − Pmkt.
Such errors tend to be larger for near at the money options (these options
have the largest prices) and for deep out of the money put options.

1.3.3 State Price Density Estimates with Gaussian Innovations
For the maturities T = 22, 50, 85, 113 days we compute the state price
densities per unit probability of ST , Y0,T , as the discounted ratio of the risk
neutral density over the objective density. Under the objective measure P,
the asset prices S are simulated assuming the drift µ = r+0.08/365−σ2

t /2 in
equation (1) and the parameter estimates in Table 1. Under the risk neutral
measure Q, µ = r − d − σ2

t /2 and the calibrated GARCH parameters are
given in the first row of Table 2. The density functions are estimated by
the Matlab function ksdensity using the Gaussian kernel and the optimal
default bandwidth for estimating Gaussian densities.

Figure 3 shows the estimated risk neutral and objective densities and
the corresponding state price densities per unit probability; see also Table 3.
As expected the state price densities are quite stable across maturities and
monotonic, decreasing in ST . However, the high values on the left imply
very negative expected rate of return for out of the money puts, that appear
intuitively “overpriced”. As an example, a state price per unit probability
of $6 corresponds to an expected rate of return of 1/6 − 1 = −0.833 for
a simple state contingent claim. State price densities outside the reported
values for ST tend to be unstable, as the density estimates are based on very
few observations.

2 GARCH Option Prices with Filtering Historical
Simulations

In this section we investigate the pricing performance of the GARCH model
when the simulated, Gaussian innovations—used to drive the GARCH pro-
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cess under the risk neutral measure—are replaced by historical, estimated
GARCH innovations. We refer to this approach as the Filtering Historical
Simulation (FHS) method. [Barone-Adesi et al., 1998] introduced the FHS
method to estimate portfolio risk measures.

This procedure is in two steps. Suppose we aim at calibrating the GARCH
model on market option prices Pmkt(Ki, Ti), i = 1, . . . ,m observed on day
t := 0. In the first step, the GARCH model is estimated on the historical log-
returns of the underlying asset y−n+1, y−n+2, . . . , y0 up to time t = 0. The
scaled innovations of the GARCH process ẑt = ε̂t σ̂

−1
t , for t = −n+ 1, . . . , 0,

are also estimated.

In the second step, the GARCH model is calibrated to the market option
prices by solving the minimization problem (2). The theoretical GARCH
option prices, P garch(K,T ; θ∗), are computed by Monte Carlo simulations as
in Section 1.1, but the Gaussian innovations are replaced by innovations ẑt’s
estimated in the first step, randomly drawn with uniform probabilities. To
preserve the negative skewness of the estimated innovations the method of
the antithetic variates is not used.

2.1 Calibration of the GARCH model with FHS Innovations

We apply this two steps procedure to the option prices on the S&P 500
observed on a random date July 9, 2003. Specifically, in the first step we es-
timate the GARCH model (1) on n = 3,800 historical returns of the S&P 500
index from December 14, 1988 to July 9, 2003 and we estimate the corre-
sponding innovations ẑ. In the second step, we calibrate the GARCH model
to the out of the money put and call options with maturities T = 10, 38, 73,
164, 255, 346 days for a total of m = 151 option prices; 45 options with bid
price lower than $0.05 are discarded. The PML estimates of model (1) are
reported in Table 4. The last panel in Figure 4 shows the estimated scaled
innovations, ẑt’s, used to drive the GARCH process under the risk neutral
measure. The skewness and the kurtosis of the empirical distribution of ẑ are
−0.6 and 7.4, respectively. Calibration results are reported in the first row
of Table 5 and Figure 5. The average pricing error is 3.5% and the overall
pricing performance is quite satisfactory given the wide range of strikes and
maturities of the options used for the calibration.

We calibrate the GARCH model using the FHS method also on the same
options considered in the calibration for August 29, 2003. The results are
reported in the second row of Table 2. Given the limited number of options
used in this calibration, the GARCH pricing model with Gaussian innovation
has already a very low pricing error. However, using the FHS method both
the rmse and the ape measure are reduced by about 10%. The asymmetry
parameter γ∗ decreases from 0.288 to 0.201 when filtered, estimated inno-
vations rather than Gaussian innovations are used, because of the negative
skewness, −0.61, of the filtered innovations.
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2.2 State Price Density Estimates with FHS Innovations

The state price densities per unit probability on July 9, 2003, computed
similarly as in Section 1.3.3, are shown in Figure 6. Using FHS innovations,
the asymmetry parameter γ∗ is now very close to γ (cf. Tables 4–5) and
state prices per unit probability are still monotone, but much closer to each
other. In particular the state prices per unit probability on the left are
now in line with the remaining ones. This implies that “excess” out of the
money put prices can be explained by the skewness of FHS innovations. The
volatility smile—computed using out of the money European put and call
options—for 38 days to maturity on this date is reported in Figure 7. Notice
that the sample period to estimate the GARCH model (1) starts after the
October 1987 crash. Such a large negative return would inflate the variance
estimates and this tends to produce non monotone state price densities per
unit probability.

The state price densities per unit probability on August 29, 2003 using
the FHS method are quite close to those on July 9, 2003 and are omitted.

2.3 Short Run Stability of the GARCH Pricing Model

To investigate the stability of the pricing performance for the GARCH model
over a “short” time horizon, i.e. one month, we calibrate the model for several
dates from July 9 to August 8, 2003 on out of the money European option
prices with maturities less than a year. The calibration results are reported in
Table 5. The GARCH parameters tend to change over time, but the pricing
performances are quite stable in terms of rmse and ape measures. Moreover,
the estimates of the long run level of the risk neutral variance EQ[σ2] are
quite stable and about 1% on a daily base.

To check for the stability of the GARCH parameters we calibrate one
GARCH model to the option prices on July 9, 10, 11, and 14, 2003. The
initial variances and innovations, σ2

0 ’s and z0’s, for the dates July 10, 11, 14
are computed updating the corresponding estimates for July 9, i.e. 0.793,
−0.667, and using the objective GARCH estimates in Table 4. This proce-
dure ensures that future, not yet available information is not used for the
fitting of earlier option prices. The GARCH parameter of the “pooled” cali-
bration are ω∗

pool = 0.016, α∗
pool = 0.000, β∗

pool = 0.924, γ∗pool = 0.121, which

imply a long run level of the risk neutral variance EQ[σ2
pool] = 0.99. Table 6

compares the pricing errors—the differences between theoretical and observed
option prices—of the pooled calibration with the corresponding errors for the
single day calibration given in Table 5. As expected the rmse’s for the pool
calibration are larger than the corresponding rmse’s for the single day cali-
brations. However, differences are small and the correlation between the two
pricing errors is on average 0.92, meaning that the two pricing performances
are quite close.
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2.4 Long Run Stability of the GARCH Pricing Model and
Comparison with CGMYSA Model

To investigate the pricing performance of the GARCH model over a “long”
time horizon, i.e. one year, we calibrate the model on out of the money
European option prices with maturities between a month and a year for the
dates January 12, March 8, May 10, July 12, September 13 and November 8
for the year 2000. For each calibration we use about the last seven years of
S&P 500 daily log-returns to implement the FHS method. We also compare
the pricing performance of the GARCH model with the CGMYSA model
proposed by [Carr et al., 2003] for the dynamic of the underlying asset, which
is a mean corrected, exponential Lévy process time changed with a Cox,
Ingersoll and Ross process. Average absolute pricing errors are somewhat in
favour of the CGMYSA model as this model has nine parameters while the
GARCH model has four parameters. The results are reported in Table 7.
There is evidence that the GARCH parameters tend to change from month
to month, but the pricing performance is quite stable especially in terms of
the ape measure. Moreover, the mean and the standard deviation of the ape
measures for the GARCH model are 4.07, 1.03 and for the CGMYSA model
are 3.91, 1.17, respectively. Hence, the pricing performance of the GARCH
model is more stable than the pricing performance of the CGMYSA model,
but the last model is superior in terms of average ape measure. [Carr et
al., 2003] proposed also more parsimonious (six parameters) models, namely
the VGSA and NIGSA models, which are, respectively, finite variation and
infinite variation mean corrected, exponential Lévy processes with infinite
activity for the underlying asset. For the previous dates, the GARCH model
outperforms the VGSA and NIGSA models in five and four out of six cases,
respectively.

3 Hedging

Extension to the GARCH setting of the delta hedging, [Engle and Rosenberg,
2002], does not show an improvement on the delta hedging strategy based on
the Black-Scholes model calibrated at the implied volatility. To understand
why this is the case consider the example presented in Table 8. The three
rows in the middle are market option prices from Hull’s book. The first row
is obtained multiplying the middle row times 0.9 and the last row is obtained
multiplying the middle row by 1.1, that is assuming an homogeneous pricing
model.

Incremental ratios, that is change in option price over change in stock
price, can be computed between the first two and then again the last two
rows, i.e. ∆45 := (5.60− 2.16)/(49− 44.1) and ∆55 := (2.64− 1.00)/(53.9−
49). Taking the average of these two ratios, for the strike price K = 50 we
obtain an estimate of delta equals to 0.518, which is almost identical to the
delta from the Black-Scholes model calibrated at the implied volatility for
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the middle row, i.e. 0.522—the implied volatility is equal to 0.2 when r =
0.05 and T = 20/52 years. Hence, the application of first-degree homogeneity
to non-homogeneous prices has led to an essentially correct hedge ratio! To
understand this paradoxical result consider the sources of errors in the above
computations. There is a discretization error and an error due to the volatility
smile. In fact, in the absence of a volatility smile, Black-Scholes option
prices would be homogeneous functions of the stock and the strike price.
The discretization error leads to a discrete delta which is approximately the
average of the Black-Scholes deltas computed at the two extremes of each
interval and approximated by ∆45 and ∆55. Formally, denote by ∆(K) the
delta as a function of the strike price K. For small intervals the delta hedge
is approximated by

∆(50) ≈ ∆(50) +

>0︷ ︸︸ ︷
∆′(50)(45− 50) + ∆(50) +

<0︷ ︸︸ ︷
∆′(50)(55− 50)

2
≈ ∆45 +∆55

2
.

Therefore, the two discrete ratios considered, ∆45 and ∆55, are affected by
opposite errors up to the first order. Taking their average eliminates these
errors. The only error left is due to the smile effect. However, this error is
very small if the strike price increment is small relative to the asset price and
its volatility. See [Barone-Adesi and Elliott, 2004] for further discussion. The
reader may verify this simple result on the options of his choice. It appears
therefore that deltas are to a large degree determined by market option prices,
independently of the chosen model. Therefore, models alternative to Black-
Scholes calibrated at the implied volatility will generally lead to very similar
hedge ratios, if they fit well market prices. The only significant deterioration
of hedging occurs in the presence of large volatility shocks, which diminish
the effectiveness of delta hedging. To observe this compare a day with a
modest change in volatility, e.g. t2 := July 10, 2003, with a day in which
a large negative index return led to a large increase in volatility, e.g. t1 :=
January 24, 2003. Specifically, for the day t1 we consider out of the money
put and call options with maturities equal to 30, 58, 86, 149, 240, 331 days for
a total of 160 option prices and for the day t2 we consider the same options
as in Section 2.3. Then, we run the following set of regression for t+ 1 = t1,
t2

1) Pmktt+1 = η0 + η1P
bs
t,t+1 + error,

2) Pmktt+1 = η0 + η1P
bs
t,t+1 + η2P

garch
t,t+1 + error,

3) Pmktt+1 = η0 + η2P
garch
t,t+1 + error,

where Pmktt+1 are the option prices observed on time t + 1, P bst,t+1 are the
Black-Scholes forecasts of option prices for t + 1 computed by plugging in
the Black-Scholes formula St+1, r, d at time t+ 1 and the implied volatility
observed on time t (i.e. January 23 and July 9, 2003, respectively). P garcht,t+1 are
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the GARCH forecasts obtained using St+1, the GARCH parameter calibrated
at time t and σt+1 updated according to the objective estimates at time t.

The ordinary least square (OLS) estimates of the previous regressions are
given in Table 9. In terms of the error variance the Black-Scholes forecasts
in regressions 1) are superior to the GARCH forecasts in regressions 3) for
both days t1 and t2. Moreover, in the regressions 2) the weights η1 of the
Black-Scholes forecasts are larger than the weights η2 for the GARCH fore-
casts. This is due to the “initial advantage” of the Black-Scholes forecasts,
i.e. the zero pricing error at time t. However, for the day January 24, 2003,
from regression 1) to regression 2) the variance of the prediction error is re-
duced about 60% adding the GARCH forecast as a regressor. Hence, the
GARCH model carries on large amount of information on option price dy-
namics. Moreover, the GARCH model provides a dynamic model for the risk
neutral volatility, while the Black-Scholes model does not.

Interestingly, the Black-Scholes forecasts tend to underestimate option
prices observed on January 24, 2003 (while the GARCH forecasts tend to
overestimate option prices). An explanation is the following. The daily
log-return of the S&P 500 for January 24, 2003 is −2.97%, which induces
an increase in the volatility of the underlying asset. Such an increase in
the volatility can not be detected by the Black-Scholes model with constant
implied volatility, but it is reflected in the GARCH forecasts of volatilities
and option prices. This effect is stronger in days with large returns. For the
day July 10, 2003 the reduction in the variance of the prediction error is only
11%, as the return of the S&P 500 is −1.36% only.

Unfortunately, our GARCH price forecast is conditioned on the current
index and it cannot be used to improve significantly delta hedging. Its ex-
planatory power simply indicates that delta hedging is less effective in the
presence of large volatility shocks. They are linked to the index return in a
nonlinear fashion in the GARCH model.

4 Conclusion

Casting the option pricing problem in incomplete markets allows for more
flexibility in the calibration of market prices. Investors’ preferences can be
inferred comparing the physical and the pricing distributions. Using filtered
historical simulation the volatility smile appears to be explained by innova-
tion skewness, with no need of much higher state prices for out of the money
puts. Delta hedging does not require a large computational effort under con-
ditions usually found in index option markets, removing a major drawback of
simulation-based option pricing. Further refinements of pricing and stability
issues are left to future research.
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Table 1. PML estimates of the GARCH model (1), yt × 100 = µ + εt, σ
2
t = ω +

αε2t−1+βσ2
t−1+γIt−1ε

2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), (p-values in parenthesis) for the S&P 500 index daily log-returns yt in
percentage from December 11, 1987 to August 29, 2003.

µ ω α β γ

0.033 0.009 0.006 0.946 0.075
(0.008) (0.000) (0.416) (0.000) (0.000)

Table 2. Calibrated parameters of the GARCH model (1), σ2
t = ω∗ + α∗ε2t−1 +

β∗σ2
t−1 + γ∗It−1ε

2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), using Gaussian innovations (first row) and FHS method (second row)
on August 29, 2003 out of the money European put and call options (m = 118) and
time to maturities T = 22, 50, 85, 113 days. The root mean squared error (rmse) is in
$, the ape measure is defined in equation (3).

ω∗ α∗ β∗ γ∗ rmse ape%

Gauss. z 0.037 0.000 0.833 0.288 0.27 2.54
FHS 0.037 0.000 0.870 0.201 0.24 2.29

Table 3. State price densities estimates per unit of probability, Y0,T , time to maturities
T = 22, 50, 85, 113 days for August 29, 2003. Y0,T := e−rTL0 and L0 = dQ0/dP0,
where Q is the risk neutral measure absolutely continuous with respect to the objective
measure P and the subindex t = 0 denotes the restriction to F0.

ST 900 1,000 1,100 1,200

Y0,22 1.882 1.001 0.437 —
Y0,50 1.284 1.011 0.773 0.254
Y0,85 1.197 1.003 0.844 0.597
Y0,113 1.281 1.028 0.834 0.641

Table 4. PML estimates of the GARCH model (1), yt × 100 = µ + εt, σ
2
t = ω +

αε2t−1+βσ2
t−1+γIt−1ε

2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), (p-values in parenthesis) for the S&P 500 index daily log-returns yt in
percentage from December 14, 1988 to July 9, 2003.

µ ω α β γ

0.033 0.012 0.005 0.936 0.093
(0.008) (0.000) (0.547) (0.000) (0.000)
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Table 5. Calibrated parameters of the GARCH model (1), σ2
t = ω∗ + α∗ε2t−1 +

β∗σ2
t−1 + γ∗It−1ε

2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), under the risk neutral measure Q, using FHS on several days and m
out of the money European put and call options. T is the time to maturity in days.
The root mean squared error (rmse) is in $, the ape measure is defined in equation (3).

date ω∗ α∗ β∗ γ∗ EQ[σ2] m min(T ) max(T ) rmse ape%

Jul 9 0.019 0.000 0.912 0.138 1.00 151 10 346 0.64 3.50
Jul 10 0.008 0.000 0.953 0.078 1.00 148 9 345 0.49 2.75
Jul 11 0.016 0.000 0.921 0.125 0.98 146 8 344 0.64 3.64
Jul 14 0.009 0.000 0.949 0.083 0.96 146 5 341 0.43 2.33
Jul 16 0.011 0.000 0.946 0.086 1.00 141 3 339 0.67 3.59
Jul 21 0.005 0.000 0.964 0.061 0.86 156 26 334 0.94 3.61
Jul 25 0.054 0.000 0.787 0.319 1.03 165 22 330 0.69 4.24
Jul 30 0.010 0.000 0.943 0.092 0.97 161 17 325 0.40 2.26
Aug 1 0.022 0.000 0.912 0.137 1.12 163 15 323 0.59 3.38
Aug 4 0.016 0.000 0.928 0.117 1.21 163 12 320 1.02 5.64
Aug 8 0.017 0.000 0.925 0.119 1.10 159 8 316 0.65 3.69

Table 6. Comparison between pricing errors, i.e. the differences between theoretical
and observed option prices, of the calibration pool for July 9, 10, 11, 14, and the single
day calibrations. The root mean squared error (rmse) is in $, corr(err single day, err
pool) denotes the correlation between the pricing errors for the single day calibration
and the corresponding pricing errors for the pooled calibration.

Jul 9 Jul 10 Jul 11 Jul 14 average

rmse single day 0.639 0.487 0.636 0.434 0.549
rmse pool 0.725 0.584 0.686 0.481 0.619
corr(err single day, err pool) 0.935 0.877 0.943 0.895 0.915

Table 7. Calibrated parameters of the GARCH model (1), σ2
t = ω∗ + α∗ε2t−1 +

β∗σ2
t−1 + γ∗It−1ε

2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), under the risk neutral measure Q, using FHS on m out of the money
European put and call options for the year 2000 and comparison with the CGMYSA
model. The root mean squared error (rmse) is in $, the ape measure is defined in
equation (3).

date ω∗ α∗ β∗ γ∗ EQ[σ2] m rmse ape% ape% CGMYSA

Jan 0.016 0.000 0.914 0.155 1.80 177 1.62 4.78 3.78
Mar 0.118 0.000 0.635 0.600 1.82 143 1.61 5.13 5.23
May 0.158 0.000 0.526 0.839 2.90 155 1.93 4.74 5.48
Jul 0.006 0.000 0.963 0.065 1.38 159 0.91 2.34 3.26
Sep 0.041 0.000 0.866 0.189 1.04 151 1.08 3.67 2.87
Nov 0.017 0.000 0.903 0.159 0.97 169 1.22 3.74 2.85
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Table 8. “Homogeneous hedging of the smile”. The three rows in the middle are
market option prices form Hull’s book. The first row is obtained multiplying the middle
row times 0.9 and the last row is obtained multiplying the middle row by 1.1.

Strike price Asset price Option price
45 44.1 2.16

45 49 5.60
50 49 2.40
55 49 1.00

55 53.9 2.64

Table 9. OLS regression estimates and variance of forecast errors for time t + 1,
i.e. January 24, 2003 (first panel) and July 10, 2003 (second panel): 1) Pmkt

t+1 =
η0 + η1P

bs
t,t+1 + error; 2) Pmkt

t+1 = η0 + η1P
bs
t,t+1 + η2P

garch
t,t+1 + error, 3) Pmkt

t+1 =

η0 +η2P
garch
t,t+1 +error, where Pmkt

t+1 are the option prices observed on time t+1, P bs
t,t+1

are the Black-Scholes forecasts of option prices for t + 1 computed by plugging in the
Black-Scholes formula St+1, r, d at time t + 1 and the implied volatility observed on
time t (i.e. January 23 and July 9, respectively). P garch

t,t+1 are the GARCH forecasts
obtained using St+1, the GARCH parameter calibrated at time t and σt+1 updated
according to the estimates at time t.

η0 η1 η2 V ar[error]
1) 0.823 0.996 — 0.761
2) −0.037 0.558 0.436 0.316
3) −1.073 — 0.988 1.035

1) −0.118 0.997 — 0.188
2) −0.213 0.293 0.704 0.161
3) −0.429 — 0.997 0.315
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Fig. 1. Monte Carlo calibration results of the GARCH model to m = 118 out of the
money European put and call option prices observed on August 29, 2003.
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Fig. 2. Pricing errors of the GARCH model for m = 118 out of the money European
put and call option prices observed on August 29, 2003.
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estimates per unit of probability (right plots) for July 09, 2003.
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Visualization of textual data:

unfolding the Kohonen maps.
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Abstract. The Kohonen self organizing maps (SOM) can be viewed as a visuali-
sation tool that performs a sort of compromise between a high-dimensional set of
clusters and the 2-dimensional plane generated by some principal axes techniques.
The paper proposes, through Contiguity Analysis, a set of linear projectors pro-
viding a representation as close as possible to a SOM map. In so doing, we can
assess the locations of points representing the elements via a partial bootstrap pro-
cedure.
Keywords: Contiguity analysis, Kohonen maps, SOM, Bootstrap.

1 Introduction

For many users of visualisation tools, the Kohonen self organising maps
(SOM) outperform both usual clustering techniques and principal axes tech-
niques (principal components analysis, correspondence analysis, etc.). In-
deed, the displays of identifiers of words (or text units) within rectangular or
octagonal cells allow for clear and legible printings. The SOM grid, basically
non-linear, can then be viewed as a compromise between a high-dimensional
set of clusters and the planes generated by any pairs of principal axes. One
can regret however the absence of assessment procedures and of valid sta-
tistical inference as well. The paper proposes, through Contiguity Analysis
(briefly reminded in section 2), a set of linear projectors providing a repre-
sentation as close as possible to a SOM map (section 3 and 4). An example
of application is given in section 5. Via a partial bootstrap procedure, we
can now provide these representations with the projection of confidence areas
(e.g. ellipses) around the location of words (section 6).

2 Brief reminder about contiguity analysis

Let us consider a set of multivariate observations (n observations described by
p variables, leading to a (n, p) matrix X), having an a priori graph structure.
The n observations are also the n vertices of a symmetric graph G, whose
associated (n, n) matrix is M (mii′ = 1 if vertices i and i′ are joined by
an edge, mii′ = 0 otherwise). We denote by N the (n, n) diagonal matrix
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having the degree of each vertex i as diagonal element ni (ni stands here for
nii). y is the vector whose ith component is yi. Note that: ni =

∑
i′ mii′ .

U designates the square matrix such that uij = 1 for all i and j. y being a
random variable taking values on each vertex i of a symmetric graph G the
local variance of y, v∗(y), is defined as:

v∗(y) = (1/n)
∑

(yi −m∗
i )

2

where: m∗
i= (1/ni)

∑
i′ mii′yi′ . It is the average of the adjacent values of

vertex i. Note that if G is a complete graph (all pairs (i,i’) are joined by an
edge), v∗(y) is nothing but v(y), the classical empirical variance. When the
observations are distributed randomly on the graph, both v∗(y) and v(y) are
estimates of the variance of y. The contiguity ratio (analogue to the Geary
contiguity ratio [Geary, 1954]), is written: c∗(y) = v∗(y)/v(y). It can be
generalized : a) to different distances between vertices in the graph, b) to
multivariate observations (both generalizations are dealt with in: [Lebart,
1969]). This section is devoted to the second generalization: multivariate
observations having an a priori graph structure. The multivariate analogue
of the local variance is now the local covariance matrix V*, given by (using
the previously defined notation):

V∗ = (1/n)X′(I−N−1M)′(I−N−1M)X

The diagonalization of the corresponding local correlation matrix (Local Prin-
cipal Component Analysis) [Aluja Banet and Lebart, 1984] produces a de-
scription of the local correlations that can be compared to the results of a
PCA . Comparisons between correlation matrices (local and global) can be
done through Procustean Analysis (see: [Gower and Dijksterhuis, 2004]). If
the graph is made of k disjoined complete subgraphs, V* coincide with the
classical within covariance matrix used in linear discriminant analysis. If the
graph is complete (associated matrix = U defined above), then V* is the
classical global covariance matrix V.

Let u be a vector defining a linear combination u(i) of the p variables for
vertex i:

u(i) =
∑

j

ujyij = u′yi

The local variance of u(i) is: v∗(u) = u′V∗u. The contiguity coefficient of
u(i) can be written: c(u) = u′V∗u/u′Vu. Contiguity Analysis is the search
for u that minimizes c(u). It produces linear functions having the properties
of ”minimal contiguity”. Instead of assigning an observation to a specific
class, (case of discriminant analysis) these functions allows one to assign it
in a specific part of the graph. Therefore, Contiguity Analysis can be used
to discriminate between overlapping classes.
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3 SOM maps and associated graphs

The self organizing maps (SOM maps) [Kohonen, 1989] aim at clustering a
set of multivariate observations. The obtained clusters are displayed as the
vertices of a rectangular (chessboard like) or octagonal graph. The distances
between vertices on the graph are supposed to reflect, as much as possible,
the distances between clusters in the initial space. Let us summarize the
principles of the algorithm:

The size of the graph, and consequently, the number of clusters are chosen
a priori (for example: a square grid with 5 rows and 5 columns, leading to 25
clusters). The algorithm is similar to the MacQueen algorithm [MacQueen,
1967] in its on-line version, and to the k-means algorithm [Forgy, 1984] in its
batch version. Let us consider n points in a p-dimensional space (rows of the
(n, p) matrix X). At the outset, to each cluster k is assigned a provisional
centre Ck with p components (e.g.: chosen at random). For each step t, the
element i(t) is assigned to its nearest provisional centre Ck(t). Such centre,
together with its neighbours on the grid, is then modified according to the
formula: Ck(t+1) = Ck(t) + ε(t)(i(t) − Ck(t)). In this formula, ε(t) is an
adaptation parameter (0 ≤ ε ≤ 1) which is a (slowly) decreasing function
of t, as those usually involved in stochastic approximation algorithms. The
process is reiterated, and eventually stabilizes, but the partition obtained
may depend on the initial choice of the centres. In the batch version of the
algorithm, the centres are updated only after a complete pass of the data.
Figure 1 represent a stylised symmetric matrix (70, 70) M0 associated to a
partition of n=70 elements in k=8 classes (or clusters). Rows and columns
represent the same set of n elements (elements belonging to a same class of
the partition form a subset of consecutive rows and columns). The graph
consists of 8 cliques. All the cells of the black blocks contains the value 1.
All the cells outside these diagonal blocks contains the value 0 . The 8 classes
of the previous partition have been obtained through a SOM algorithm from
a square 3 x 3 grid (with an empty class).

The left hand side matrix of figure 1 does not take into account the
topology of the grid: links between elements do exist only within clusters. In
the right hand side of figure 1, two elements i and j are linked (mij = 1) in the
graph if they belong either to a same cluster, or to contiguous clusters. Owing
to the small size of the SOM grid (figure 2), the diagonal adjacency is not
taken into account. (e.g.: elements belonging to cluster 7 are considered as
contiguous to those of clusters 4 and 8, but not to the elements of cluster 5).
Similarly to matrices M0 and M1, a matrix M2 can be defined, that extends
the definition of the edges of the graph to diagonal links. In the simple
example of figure 3, the elements of cluster 7, for example, are considered as
contiguous to the elements of clusters 4, 8, and 5.
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Fig. 1. Stylised incidence matrices M0 of the graph associated with a simple parti-
tion (left), and M1, relating to a SOM map (right) (all the cells in the white areas
contain the value 0 whereas those in the black areas contain the value 1)

Fig. 2. The a priori SOM grid

4 Linear projectors onto the best SOM plane

The matrices M0, M1, and M2 can be easily obtained as a by-product of the
SOM algorithm. In the case of contiguity analysis involving the graph G0 the
associated matrix of which is M0, the local variance coincide with the ”within
variance”, and the result is a classical linear discriminant analysis of Fisher
(LDA). In the plane spanned by the two first principal axes, the clusters are
optimally located in the sense of the LDA criterion. In the cases of contiguity
analysis using the graphs G1 or G2 (associated matrices M1, or M2), the
principal planes strive to reconstitute the positions of the clusters in the SOM
map. In the initial p-dimensional space, the SOM map can be schematised by
the graph whose vertices are the centroids of the clusters. Those vertices are
joined by an edge if the corresponding clusters are contiguous in the grid used
in the algorithm. This graph in a high dimensional space will be partially or
totally unfolded by the contiguity analysis. The following example will show
the different phases of the procedure.

5 An example of application

An open-ended question has been included in a multinational survey con-
ducted in seven countries (Japan, France, Germany, Italy, Nederland, United
Kingdom, USA) in the late nineteen eighties [Hayashi et al., 1992]. The
respondents were asked : ”What is the single most important thing in life
for you?” . The illustrative example is limited to the British sample. The
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counts for the first phase of numeric coding are as follows: Out of 1043 re-
sponses, there are 13 669 occurrences (tokens), with 1 413 distinct words
(types). When the words appearing at least 25 times are selected, there
remain 9815 occurrences of these words, with 88 distinct words. In this ex-

Fig. 3. A (3 x 3) Kohonen map applied to the words used in the 1043 responses

ample we focus on a partitioning of the sample into 9 categories, obtained by
cross-tabulating age (3 categories) with educational level (3 categories). The
nine identifiers combine age categories (-30, 30-55, +55) with educational
levels (low, medium, high). Note that the SOM map (figure 3) provides a
simultaneous representation of words and of categories of respondents. This
is due to the fact that the input data are the coordinates provided by a
correspondence analysis of the lexical contingency table cross-tabulating the
words and the categories. Figure 4 represents the plane spanned by the two
first axes of the contiguity analysis using the matrix M1. We can check that
the graph describing the SOM map (the vertices of which C1, C2, ...C9 are
the centroids of the elements of the corresponding cells of figure 3), is, in this
particular case, a satisfactory representation of the initial map. The pat-
tern of the nine centroids is similar to the original grid exemplified by figure
3. The background of figure 5 is identical to that of figure 4. It contains
in addition the convex hulls of the nine clusters C1, C2, ..., C9.. Each of
those convex hulls correspond exactly (if we except some double or hidden
points) to a cell of figure 3. We note that these convex hulls are relatively
well separated. In fact, figure 5 contains much more information than figure
3, since we have now an idea of the shapes and sizes of the clusters, of the
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Fig. 4. Principal plane of the contiguity analysis using matrix M1. The points C1,
C2, ...C9 represent the centroids of the 9 clusters derived from the SOM map.

degree to which they overlap. We are now aware of their relative distances,
and, another piece of information missing in figure 3, we can observe the
configurations of elements within each cluster.

Fig. 5. Principal plane of the contiguity analysis using matrix M1, with both the
centroids of the 9 clusters and their convex hulls
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6 Assessing SOM maps through partial bootstrap

We are provided at this stage with a tool allowing us to explore a continuous
space. We can take advantage of having a projection onto a plane (and pos-
sibly onto a higher dimensional space, although the outputs are much more
complicated in that case) to project the bootstrap replicates of the original
data set. This can be done in the framework of a partial bootstrap proce-
dure. In the context of principal axes techniques (such as SVD, PCA, and
also contiguity analysis), Bootstrap resampling techniques [Efron and Tibshi-
rani, 1993] are used to produce confidence areas on two-dimensional displays.
The bootstrap replication scheme allows one to draw confidence ellipses for
both active elements (i.e.: elements participating in building principal axes)
and supplementary elements (projected a posteriori).

Fig. 6. Bootstrap ellipses of confidence of the 5 words: freedom, health, money,
peace, wife in the same principal contiguity plane as in figure 4 and 5

In the example of the previous section, the words are the rows of a contin-
gency table. The perturbation of such table under a bootstrap re-sampling
procedure leads to new coordinates for the replicated rows. Without re-
computing the whole contiguity analysis for each replicated sample (conser-
vative procedure of total bootstrap), one can project the replicated rows as
supplementary elements on a common reference space, exemplified above by
figures 4 and 5. Always on that same space, figure 6 shows a sample of the
replicates of five points (small stars visible around the words freedom, health,
money, peace, wife) and the confidence ellipses that contain approximately
90 % of these replicated points. Such procedures of partial bootstrap [Lebart,
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2004] give satisfactory estimates of the relative uncertainty about the loca-
tion of points. Although the background of figures 5 and 6 are the same, it
is preferable, to keep the results legible, to draw the confidence ellipses on
a distinct figure. It can be seen for instance that the words freedom and
money, both belonging to cluster C4, have different behaviours with respect
to the re-sampling variability. The location of freedom is much more fuzzy.
That word could belong to some neighbouring clusters as well.

7 Conclusion

We have intended to immerse the SOM maps, obtained through an algorithm
often viewed as a black box, into an analytical framework (the linear algebra
of contiguity analysis) and into an inferential setting as well (re-sampling
techniques of bootstrap). That does not question the undeniable qualities of
clarity and readability of the SOM maps. But it may perhaps help to assess
their scientific status: like most exploratory tools, they help to rapidly un-
cover some patterns. However, they should be complemented with statistical
procedures whenever deeper interpretation is needed.
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Botanická 68a, 602 00 Brno, Czech Republic
E-mail: xkadlec@fi.muni.cz

2 Artificial Intelligence Laboratory, Computer Science Department
Swiss Federal Institute of Technology (EPFL)
1015 Lausanne, Switzerland

E-mail: {marita.ailomaa,jean-cedric.chappelier,martin.rajman}@epfl.ch

Abstract. This paper compares two techniques for robust parsing of extra-gram-
matical natural language that might be of interest in large scale Textual Data
Analysis applications. The first one returns a “correct” derivation for any extra-
grammatical sentence by generating the finest corresponding most probable optimal
maximum coverage. The second one extends the initial grammar by adding relaxed
grammar rules in a controlled manner. Both techniques use a stochastic parser that
selects a “best” solution among multiple analyses. The techniques were tested on
the ATIS and Susanne corpora and experimental results, as well as conclusions on
performance comparison, are provided.
Keywords: Robust, Parsing, Coverage.

1 Introduction

Formal grammars are traditionally used in NLP applications to describe well-
formed sentences. But in large scale Textual Analysis applications it is not
practical to rely exclusively on a formal grammar because of the large frac-
tion of sentences that will receive no analysis. This undergeneration problem
has lead to a whole field of research called robust parsing, where the goal is
to find domain-independent, efficient parsing techniques that return a cor-
rect or usefully “close” analysis for almost all of the input sentences [Carroll
and Briscoe, 1996]. Such techniques need to handle not only the problems of
undergeneration but also the increased ambiguity which is usually a conse-
quence of the robustification of the parser.

In previous works, a variety of approaches have been proposed to robustly
handle natural language. Some techniques are based on modifying the input
sentence, for example by removing words that disturb the fluency [Bear et
al., 1992, Heeman and Allen, 1994]. More recent approaches are based on
selecting the right sequence of partial analyses [Worm and Rupp, 1998, van
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Noord et al., 1999]. Minimum Distance Parsing is a third approach based
on relaxing the formal grammar, allowing rules to be modified by insertions,
deletions and substitutions [Hipp, 1992].

Most of these approaches make the distinction between ungrammatical-
ity and extra-grammaticality. Ungrammatical sentences might contain errors
such as wrong agreement in the case of casual written text like mails, or hesi-
tations and other types of disfluencies in the case of spoken language. On the
other hand, extra-grammatical sentences are linguistically correct sentences
that are not covered by the grammar.

This paper presents two new approaches that focus on extra-grammatical
sentences. The first approach described in section 2 is based on the selection
of a most optimal coverage with partial analyses, while the second, presented
in section 3, uses controlled grammar rule relaxation. Section 4 describes the
comparison of these two approaches and shows that they present differences
in behavior when given the same grammar and the same test data.

2 Selecting the most probable optimal maximum
coverage

2.1 Concepts

For a given sentence a coverage, with respect to an input grammar G, is
a sequence of non-overlapping, possibly partial, derivation trees, such that
the concatenation of the leaves of these trees corresponds to the whole input
sentence (see figure 1).

If there are no unknown words in the input sentence, then at least one
trivial coverage is obtained, consisting of the trees that all use only lexical
rules (i.e. one rule per tree).

Fig. 1. A coverage C = (T1, T2, T3) consisting of trees T1, T2 and T3. If there are

T
′

1 and T
′

3 , T
′

1 is a subtree of tree T1 and T
′

3 is a subtree of T3, then we also have
coverage C

′

= (T
′

1 , T4, T
′

3). Conversely (T1, T
′

3) and (T1, T4, T3) are not coverages.

A maximum coverage (m-coverage) is a coverage that is maximal with
respect to the partial order relation ≤, defined as reflexive transitive closure
of the subsumed relation ≺ (see figure 2). The relation ≺ is a relation over
coverages such that, for coverages C and C

′

:
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C
′ ≺ C iff ∃i, j, k, 1 ≤ i ≤ k, 1 ≤ j and there exists rule r in the grammar G

such that C = (T1, ..., Ti, ..., Tk), C
′

= (T1, ...Ti−1, T
′

1, T
′

2, ..., T
′

j , Ti+1, ..., Tk)

and Ti = r ◦ T ′

1 ◦ T
′

2... ◦ T
′

j ,

i.e. if there exists a sub-sequence of trees in C
′

that can be connected by rule
r and the resulting tree is element of C, the other trees in C

′

being the same
as in C. Notice that the rule r can be an unary rule.

If there is a successful parse (a single derivation tree that covers the whole
input sentence) then there are as many m-coverages as full parse trees and
every m-coverage contains only one tree.

Fig. 2. An example to illustrate a maximum coverage. The coverage C1 = (T3) is
m-coverage. The coverage C2 = (T1, T2) is not maximum, because C2 ≤ C1. There
is also another m-coverage C3 = (T4). Notice that C1 and C3 are not comparable
with relation ≤.

In addition to maximality, we focus on optimal m-coverage, where opti-
mality could be defined with respect to different measures. In contrast to
maximality, the choice of a measure depends on the concrete application.
Several optimality measures could be defined. For instance, the optimality
measure can look at the intended structure of trees in a coverage, e.g. it can
count the number of nodes in trees. In the presented work, we used the follow-
ing optimality measure which relates to the average width (number of leaves)
of the derivation trees in the coverage. For an m-coverage C = (T1, T2, ...Tk)
of input sentence w1, w2, ..., wn, n > 1, we define

S1(C) = 1
n−1 (nk − 1).

Notice that 0 ≤ S1(C) ≤ 1 and n
k is the average width of the derivation

trees in the coverage. With this measure, the value of a coverage made
exclusively of lexical rules is 0 and the value of a successful parse is 1.

For standard SCFG derivation, the probability of a coverage is defined as
the product of the probabilities of the trees it contains. The probability of
a coverage could also be viewed as another optimality measure. So the most
probable coverages can be found in the same way as optimal m-coverages.
But, usually we find all optimal m-coverages (OMC) first (optimal with re-
spect to some other measure than probability) and then the most probable
of these is chosen. Notice that both OMC and most probable OMC are not
unique.
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Fig. 3. An example to demonstrate the optimal m-coverage. C1 = (T1, T2, T3) and

C2 = (T4, T5) are m-coverages. The coverage C
′

1 = (T
′

1 , T2, T3) is not m-coverage.
The coverage C2 is optimal for the measure S1, S1(C1) < S1(C2). Notice that the
coverages C1 and C2 are not comparable with relation ≤.

2.2 Algorithm

We use a bottom-up chart parsing algorithm [Chappelier and Rajman, 1998]
that produces all possible incomplete parses1. The incomplete parses are
then combined to find the maximum coverage(s).

The described algorithm finds OMC with respect to the measure S1 (the
average width of the derivation trees in the coverage), but it can be easily
adapted to different optimality measures. All operations are applied to a set
of Earley’s items [Earley, 1970]. In particular, no changes are made during
the parsing phase (except some initialization of internal structures for better
efficiency of the algorithm).

The Dijkstra’s algorithm for shortest path problem in graphs is used to
find OMC. The input graph for the Dijkstra’s algorithm consists of weighted
edges and vertices. The edges are Earley’s items and the weight of each edge
is 1. The vertices are word positions, thus for n input words we have n + 1
vertices. Whenever the Dijkstra’s algorithm finds paths with equal length
(i.e. identical number of items), we use the probability to select the most
probable ones. Notice that, if all the words are known, there exists at least
one path from position 0 to n corresponding to the trivial coverage.

The output of the algorithm is a list of Earley’s items, which can represent
several derivation trees. To get OMC, the most probable tree from each item
is selected.

3 Deriving trees with holes

Our second approach to robust parsing is based on the idea that, in the case
of a rule-based parser, the parser fails to analyze a given extra-grammatical
sentence because one or several rules are missing in the grammar. If a rule-
relaxation mechanism is available2, it can be used to cope with such situ-

1 Whenever there exists a derivation tree that covers the part of the given input
sentence, the algorithm produces that tree

2 A mechanism that can derive additional rules from the ones present in the gram-
mar
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ations. In that case the goal of the robust parser is to derive a full tree
where the subtrees corresponding to the used relaxed rules are represented
as “holes” (see figure 4).

Fig. 4. A tree with a hole representing a missing NP rule
NP → NNA AT1 JJ NN1.

We use the principle called Minimum Distance Parsing which has been
introduced in earlier robust parsing applications [Hipp, 1992]. This approach
relaxes rules in the grammar by inserting, deleting or substituting elements
in their right hand side (RHS). Derivation trees are ranked by the number
of modifications that have been applied to the grammar rules to achieve a
complete analysis. One important drawback is that, in its unconstrained
form, the method produces many incorrect derivations and works well only
for small grammars [Rosé and Lavie, 2001].

To prevent such incorrect derivations, we make restrictions on how the
rules can be relaxed based on observations and linguistic motivations. One
such restriction is to only relax grammar rules for which the LHS is frequently
represented in the grammar, e.g. NP. Another restriction is to allow only
one type of relaxation, namely insertion. The inserted element is hereafter
referred to as a filler. A further refinement of the algorithm is to specify what
syntactic category a filler is allowed to have when being inserted into a given
position in the RHS. To illustrate the ideas, an example is now provided.

Assume that there is a grammar with two NP rules. (The head is indicated
with underlined syntactic categories):

R1 : NP → ADJ N
R2 : NP → POS N

According to this grammar “successful brothers” and “your brother” are
syntactically correct NPs while “your successful brother” is not. In order to
parse the last one, some NP rule needs to be relaxed. We select the second
one, R2 (though both are possible candidates). If the filler that needs to
be inserted is ADJ (in this case “successful”), then the relaxed NP rule is
expressed as:
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Fig. 5. An example of how a hole is derived by relaxing a rule and inserting a filler.

R3 : ∼NP → POS@ ADJfiller N@

We use the category ∼NP instead of NP to distinguish relaxed rules from
initial ones, the “filler” subscripts to identify the fillers in the RHS in the
relaxed rule, and the @ to label the original RHS elements. The decision
of allowing an insertion of an ADJ as filler is based on whether ADJ is a
possible element before the head or not. Since there is a rule in the grammar
where an ADJ exists before the head (R1), the insertion is appropriate.

4 Validation

The two robust parsing techniques presented in the previous sections were
tested on subsets of two treebanks, ATIS and Susanne. From these treebanks
two separate grammars were extracted having different characteristics. Con-
cretely each treebank was divided into a learning set that was used for pro-
ducing the probabilistic grammar and a test set that was then parsed with
the extracted grammar. Around 10% of the sentences in the test set were not
covered by the grammar. These sentences represented the real focus of our
experiments, as the goal of a robust parser is to process the sentences that
the initial grammar fails to describe.

The sentences were first parsed with technique 1 and technique 2 sepa-
rately and then with a combined approach where the rule-relaxation tech-
nique was tried first and only when it failed the most probable OMC was
selected. For each sentence the 1-best derivation tree was categorized as
good, acceptable or bad, depending on how closely it corresponded to the
reference tree in the corpus and how useful the syntactic analysis was for
extracting a correct semantic interpretation. The results are presented in
table 1. It may be argued that the definition of a “useful” analysis might not
be decidable only by observing the syntactic tree. Although we found this
to be a quite usable hypothesis during our experiments, some more objective
procedure should be defined. In a concrete application, the usefulness might
for example be determined by the actions that the system should perform
based on the produced syntactic analysis.
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Good Acceptable Bad No analysis
(%) (%) (%) (%)

ATIS corpus

Technique 1 10 60 30 0
Technique 2 24 36 9 31
Technique 1+2 27 58 16 0

Susanne corpus

Technique 1 16 29 55 0
Technique 2 40 17 33 10
Technique 1+2 41 22 37 0

Table 1. Experimental results. Percentage of good, acceptable and bad analyses
with technique 1 (optimal coverage), technique 2 (tree with holes) and with the
combined approach.

From the experimental results one can see that, for both grammars, tech-
nique 2 is more accurate than technique 1. However, if both good and accept-
able results are taken into account, technique 1 behaves better with the ATIS
grammar that has relatively few rules, and technique 2 better with Susanne,
which is a considerably larger grammar describing a rich variety of syntactic
structures.

Regardless of the technique used, the number of bad 1-best analyses that
are produced can be explained by the fact that the probabilistically best
analysis is not always the linguistically best one. This is a non-trivial problem
related to all types of natural language parsing, not only to robust parsers.

An interesting result is that when the sentences are processed sequentially
with both techniques, the advantage of each approach is taken into account
and the performance is better than when either technique is used alone.

5 Conclusions

In this report we presented and compared two approaches to robust stochas-
tic parsing. First we introduced the optimal maximum coverage framework
and associated measures for the optimality of the parser. Then we introduced
a rule-relaxation strategy based on the concept of holes, using several linguis-
tically motivated restrictions to control the relaxation of grammar rules.

Experimental results show that a combination of the techniques gives a
better performance than each technique alone, because the first one guaran-
tees full coverage while the second has a higher accuracy. The richness of
the syntactic structures defined in the initial grammar tends to have some
impact on the performance in the second approach but less in the first one.
This can be linked to the restrictions that were chosen for the relaxation
of the grammar rules. It is possible that different types of restrictions are
appropriate for different grammars.
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The evaluation of the robust parsing techniques was based on manually
checking the derivation trees. An important issue is to integrate the tech-
niques into some target application so that we have more realistic ways of
measuring the usefulness of the produced robust analyses.

As a final remark, we would like to point out that this paper has addressed
the problem of extra-grammaticality but did not address ungrammaticality,
which is also a very important phenomenon in robust parsing, though more
relevant in spoken language applications than in textual data analysis.
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Abstract. Clustering units from heterogeneous data such as nominal and fre-
quency variables is a relevant challenge. This kind of clustering requires to define
a global distance between the units that takes into account the specificity of the
data. An important application is clustering the respondents to a questionnaire
including both closed and open-ended questions. The main arguments for using a
global distance defined through a geometrical and multidimensional approach are
exposed and illustrated through an example.
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1 Introduction

In very different studies, the statistical units are described by both nominal
and frequency variables. In ecology, it is common to describe different sites
by counting up the occurrences of every species as well as by identifying
several soil and climatic attributes. In economic studies, the regions are
often characterized by the counts of inhabitants in socioeconomic categories
and by nominal attributes. A particular case arises in survey data, when
a complex topic is tackled by using closed and open-ended questions: the
statistical analysis of the latter starts from counting up the occurrences of
the different words in every individual answer.

Each set of nominal variables provides a units × variables subtable. Each
frequency variable provides a contingency table units × categories. So, the
global table juxtaposes units × nominal variables and contingency subtables,
i.e. heterogeneous data.

We want here to cluster the units, using both kinds of data but taking
into account their specificity. The starting point consists in defining a global
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distance, based on a geometrical approach to the data, in such a way that
the influence of the different groups is balanced.

Section 2 presents the notations. Section 3 addresses the global distance
definition and Section 4 comments the clustering step. The results obtained
with an actual example are discussed in Section 5. Finally, Section 6 values
the contribution of such a methodology for clustering heterogeneous data.

2 Notation

A set of I statistical units are described by Jc groups of frequency variables
(leading to build up Jc contingency tables with dimension I ×Kj; Kj here is
the number of categories of the variable j) and Jq groups of nominal variables
(leading to Jq individuals×indicator variables tables with dimension I ×Kj ;
Kj here is the number of categories of all the nominal variables of the set
j).The whole of these J tables (J = Jc+ Jq) make up a multiple table I ×K
(K =

∑
j∈J Kj).

At the crossing of row i and column k (belonging to table j) we have,

• if j is a contingency table: fikj the relative frequency, in table j (j =
1, ..., Jc), with which row i (i = 1, ..., I) is associated to column k (k =
1, ...,Kj). (

∑
ijk fikj = 1).

• if j is an indicator table : xik = 1 if i belongs to the category k and 0 if
not.

We denote: fi.j =
∑Kj

k=1 fikj and f.jk =
∑

i fikj the row and column
margins of the contingency table j as subtable of the global table; fi.. =∑

kj fikj the row margin of the table gathering all the Jc contingency tables.
The margins of the tables of indicator variables, which are constant, do not
intervene in the calculus.

Remark: the row margin of the table gathering all the Jc contingency
tables fi..; i = 1, ..., I will be used as row weights (and metric in the column
space). In the case of tables with notable higher frequencies than others, the
former can strongly dominate those weights. As an alternative, it is possible
to firstly transform the data into proportions before the concatenation.

3 Definition of a global distance

The first (and fundamental) step for clustering consists in choosing the dis-
tance (or the similarity measure) between the units. The case we have to deal
with, heterogeneous data with frequency and nominal variables, presents spe-
cific problems, close to the problems faced when mixed variables, quantitative
and qualitative, are considered. In both cases, we have to choose:

• a distance between units within every group of columns (separate dis-
tances)
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• an aggregation function of these separate distances in a global distance
in such a way that the different groups have a balanced influence.

3.1 Separate distances between units, as induced by every group
of columns

For nominal and frequency variables groups, it is usual to consider the χ2

distance, i.e. the distance between profiles considered, respectively, in corre-
spondence analysis (CA) and in multiple correspondence analysis (MCA).

3.2 Aggregation strategy

It is not a straightforward matter to define an aggregation strategy, even in
the case of different groups made up by the same type of variable, that gives
a balanced influence to every group of variables.

Geometrical approach

[Escofier and Pagès, 1998] propose a geometrical approach in the mixed
case, with quantitative and qualitative variables. They consider the struc-
tures of the clouds of individuals as induced by every separate distance and
propose to re-scale every subcloud in order to have the same greatest axial
inertia. For that, a suited principal axes method is performed on every sep-
arate table, principal component analysis (PCA) in the case of quantitative
variables and multiple correspondence analysis (MCA) in the case of quali-
tative variables. So, the highest axial inertia λj1 is measured, that allows for

re-scaling the distances by dividing by λj1 the separate distance corresponding
to set j. Furthermore, the global distance, as weighted sum of the re-scaled
separate distances, is automatically calculated by performing MFA on the
juxtaposed table.

Besides, this approach allows for transforming the initial mixed variables
into only quantitative variables (that are the principal components) while the
genuine distances, as defined from qualitative variables, are conserved in the
case of considering all the principal axes. Nevertheless, in some cases, it can
be useful to keep only the first principal axes.

Global distance in the case of heterogeneous data

For considering frequency groups, we have already adapted MFA to con-
tingency tables and proposed the multiple factor analysis for contingency
tables (MFACT: [Bécue and Pagès, 1999], [Bécue and Pagès, 2004]). With
this aim, MFACT transforms the juxtaposed contingency table as in inter-
nal CA [Cazes and Moreau, 2000] and adopts the point of view of MFA for
balancing the influence of the different tables in the global analysis. Besides,
the combination of MFACT with the usual MFA makes possible to deal with
contingency tables and indicator tables in a same analysis [Bécue and Pagès,
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2001]. The initial global table, multiple table row-wise juxtaposing the con-
tingency and the indicator variables tables, is transformed as shown in Figure
1.
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Fig. 1. Multiple table issued from the original table by suited transformations

Then, a non-normalized weighted PCA is performed using:

• as row weights (and metric in the column space): fi..; i = 1, ..., I, where
fi.. is the mean relative weight of the rows on all the contingency tables
that are considered;

• as column weights (and metric in the individuals space) the initial weight
of the column divided by λj1, and so {(Ik/IJ)/λj1; k = 1, ...,Kj; j =

1, ..., Jq; f.kj/λ
j
1; k = 1, ...,Kj; j = Jq+1, ..., Jc}. Ik (k being an indicator

variable) is the number of individuals belonging to category k.

In such a way, MFACT automatically induces the squared distance be-
tween rows i and l given by (1):

d2(i, l) =
∑

j∈Jc

1

λj1

∑

k∈Kj

1

f.kj

[(
fikj
fi..
− flkj
fl..

)
− f.kj
f..j

(
fi.j
fi..
− fl.j
fl..

)]2

+
∑

j∈Jq

1

λj1

∑

k∈Kj

I

KjIk
[xik − xlk]

2

(1)

The contingency table j brings the contribution to the global distance
indicated by the term j of the first block of (1): the deviation between the
row profiles i and l is relativized, for each column of table j, by the deviation
between the row margins in this table j. The qualitative variable j brings
the contribution to the distance indicated by the term j of the second block
of (1). Every contribution to the distance is rescaled by 1/λj1, thus balancing
the influence of the different groups of variables.
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4 Clustering step

Clustering method

For the clustering step, different methods can be used, although a hier-
archical clustering, using generalized Ward’s criterion, is a suited clustering
method when operating from quantitative variables, especially when they are
principal components.

Characterization of the clusters and validation of the partition

For every cluster, the significantly over and under represented categories,
in the case of the nominal variables, are selected by using a statistical test
[Lebart et al., 1998]. A very similar reasoning allows for selecting the signi-
ficatively frequent words in every cluster. The count miq of word i in cluster
q is compared to the counts that would be obtained with all the samples com-
prised of m.q occurrences (m.q: total length of cluster q) randomly extracted
from the whole corpus without replacement [Lebart et al., 1997], [Bécue and
Lebart, 2000].

Furthermore, for every cluster, the modal answers are identified. They
are actual responses, given by respondents, that are considered as represen-
tative according to two different criterions. The first criterion is linked to
the frequency of the characteristic words in the answer while the second one
is induced by the definition of a distance between the response lexical profile
and the cluster lexical profile. It is usual to consider that the most represen-
tative answers are those which are selected by both criterions [Lebart et al.,
1997].

5 Example: practices and opinions of the children
about reading

5.1 Data

The application is extracted from a large study carried out in the outskirts
of Barcelona. 895 children studying fifth grade (about 10 or 11 years old)
answered a closed questionnaire concerning attitude about reading and had
to complete the two following assertions:

1. Para mı́ leer es...(For me, to read means. . . );
2. Creo que leer es importante porque...(I believe that reading is important

because. . . ).
We only keep the 816 children having answered to the active questions.

The closed questions concerning the attitudes about reading correspond to
the first group (nominal variables) and, respectively, the two open-ended
questions make up groups 2 and 3. So, the columns of the first group (indi-
cator variables) are the categories of the closed questions and the columns of
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the second and third groups correspond to the words used in the correspond-
ing open-ended question, whose frequency is counted up for every child. We
only keep the words used at least 8 times by the whole of the respondents.

Additional information is also used, as supplementary, to illustrate the
clusters

Table 1. Closed active questions
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5.2 Results

The three groups of variables contribute, in a balanced way, to the variances
of the seven first principal axes, those that are taken into account in the
clustering step. So, we can expect that the partition into clusters would
depend from the closed questions but also the free answers.

Hierarchical clustering

The hierarchical clustering, from the coordinates on the 7 first principal
axes, shares out seven clusters. The between-classes inertia/global inertia
ratio is only 43%, showing that the clusters so identified do not correspond
to clear frontiers, this could be expected due to the fact that there is a great
homogeneity in the socio-economic conditions of the children as well as in
their age.

The partition shows that the attitudes and opinions towards reading vary
more than the only closed questions was indicating. We find not only bad
(clusters 6 and 7) and medium or good readers (clusters 1, 2, 3 and 5) but
also nuances that differentiate them. So, the bad readers can be bad students
(cluster 7) or fair (cluster 6), the medium or good readers can favor the scholar
aspect of reading (cluster 2) or reading as a hobby (cluster 5).

Table 2 presents a detailed description of clusters 1 and 5. These two
clusters are clearly different from the closed questions point of view. The
children in cluster 1 read only fair enough and with some difficulty while
those of cluster 5 read a lot and easily.

Therefore, these clusters do not contain all the children having chosen
these items: so, only 56% of the children who declare ”I read a lot” are
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located in cluster 5: the children of this cluster have other characteristics
issued from their free answers.

In cluster 5, the children have a rich vocabulary taking into account their
youth (10-11 years); for them, reading is not a scholar duty but a hobby.
Other children also read a lot but preferably in the scholar context and so
they are located in another cluster. This distinction is due to the fact that
the open-ended questions are active in the clustering step.

In the cluster 1, the children read only fair enough and with some diffi-
culty. However they are interested by reading, but for scholar reasons. In
other clusters, we find children who read fair enough and with some difficulty
but without any interest for reading. The characteristics of the children in
cluster 1 are also the result of the simultaneous influence of the open-ended
and closed questions.

6 Conclusion

To be able to simultaneously take into account open-ended and closed ques-
tions for clustering the respondents to a questionnaire is the ”natural” wish
of the researcher. In such a clustering,

• the closed questions bring a solid framework, whereas they tend to re-
produce the a priori which underlie the construction of the questionnaire
when they are separately analysed;
• the open-ended questions bring their richness, whereas they can discon-

cert the researcher when they are examined in a separate way.

To take into account both points of view seems to allow, at least in this
example, for cumulating all their advantages. This approach was little used
up to now, indubitably because of the technical problems that are raised.
To combine an extension of the MFA, able to deal with contingency tables
(MFACT), with the usual MFA, for taking into account the qualitative vari-
ables, offers a possibility for such an approach.
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Table 2. An excerpt of the description of the clusters

� � � � � � � �� � � 	 � 


� �  � � � � � 	 � � 
 � �

�� 	 �� � � � � � � � � � � �

� �� � � 	 � �
� � �  � � � � � 	 � � � � �

�� 	 � � � � � � � � � � � � �
 ! ! " ! # $ % & ' ( # !
) % & $ " * +
, - . / 0 1 2 3 4 1 0 5 6 / 7 0 8
9 - 5 6 : 1 ;

< = 1 9 2 > 9 6 = 1 7 / 4 ? @ , A B 8 C D ;
< = 1 9 2 E 6 5 @ 0 / F 1 2 6 > > 6 - 4 . 5 G , C C 8 H A ;
< I = 1 > 1 = = 1 9 2 6 7 ? 9 . / 4 2 , H D 8 J K ; / = L / 5 @
9 . / 4 2 9 7 2 0 6 . 1 7 5 . G , M 8 C ;
< 2 / 5 7 / 5 . 6 N 1 5 @ 1 0 - @ / . 9 = L / / N 0 , O O 8 C ;
P 5 @ / F 1 Q E 1 @ 9 : 1 1 7 / 4 ? @ L / / N 0 , K A 8 H R ;
< = 1 9 2 E @ 1 7 < 9 F 05 4 2 G 6 7 ? , J K 8 O D ;

< = 1 9 2 9 . / 5 , C J 8 H R ;
< = 1 9 2 1 9 0 6 . G , D J 8 B R ;
< = 1 9 2 0 6 . 1 7 5 . G , D C 8 A O ;
< = 1 9 2 E @ 1 7 < > 1 1 . . 6N 1 = 1 9 2 67 ?
< / 7 . G 0 / F 1 5 6F 1 0 . 6 N 1 5 @ 1 0 - @ / . 9 = L / / N 0
, O O 8 C ;
< . 6 N 1 L / / N 0 ? 6 : 1 7 L G 5 @ 1 5 1 9 - @ 1 = , M R 8 D C ;

S T U ( V & ) W & ) X Y
, - . / 0 1 2 3 4 1 0 5 6 / 7 0 8
6 . . 4 0 5 = 9 5 6 : 1 ;

Z . / L 9 . 3 4 9 . 6 > 6 - 9 5 6 / 7 [ I 9 0 0 , J M 8 J R ;
\ 9 7 ? 4 9 ? 1 3 4 9 . 6 > 6 - 9 5 6 / 7 [ I 9 0 0 , H O 8J J ;

Z . / L 9 . 3 4 9 . 6 > 6 - 9 5 6 / 7 [ : 1 = G ? / / 2 , K O 8 H R ; / =
1 ] - 1 . . 1 7 5 , K C 8 O A ;
\ 9 7 ? 4 9 ? 1 3 4 9 . 6 > 6 - 9 5 6 / 7 [ : 1 = G ? / / 2 , H C 8 J D ;
/ = 1 ] - 1 . . 1 7 5 , OA 8 OJ ;

 ^ ( ) W % _ ! ( ) % & $
W % & * Y `
, > = 1 1 5 1 ] 5 8 9 - 5 6 : 1 ;

Z . / L 9 . F 1 9 7 . 1 7 ? 5 @ [
B a D E / = 2 0

b / = 2 0 [ - / 0 9 , 5 @ 67 ? 8 H H / > C K ; . 1 1 = , 5 / = 1 9 2 8K C / > O R M ; 2 6 : 1 = 5 6 2 9 , > 4 7 7 G 8 D / > O R ; 0 9 L 1 0, G / 4 N 7 / E 8 D / > OR ; 0 6 c 7 / , 6 > 7 / 5 8 O A / > H K ;
I 9 0 9 0 , G / 4 0I 1 7 2 8 A / > OJ ;

d / 2 9 . 9 7 0E 1 = 0 [ F 1 9 7 . 1 7 ? 5 @ D aJ E / = 2 0
e  f g h i j k l g j m h n o n p h g q j o h k r l , 6 5 6 0 95 @ 67 ? 5 @ 9 5 < 1 7 s / G 9 . / 5 ;
e  t i j k l g j o hu vo w l x q j i q n , 9 : 1 = G
6F I / = 5 9 7 5 5@ 67 ? ;

b / = 2 0 [ I 9 0 9 = , 5 / @ 9 : 1 9 ? / / 2 5 6F 1 ; 8 J B / >
J D ; Q 2 6 : 1 = 0 6y 7 , > 4 7 8 H R / > K J ; Q 9 : 1 7 5 4 = 9, 9 : 1 7 54 = 1 8 K K / > C D ; Q = 9 5 / , 5 6F 1 8 J O / > J D ; Q
5 61 F I / , 5 6F 1 8 OK / > O B ; Q 2 6 : 1 = 5 6 = F 1 , J J / >
H H ; Q F 4 7 2 / , E / = . 2 8 O H / > O B ; Q . 6 L = / , L / / N 8
J K / > H D ; Q 1 7 5 = 9 = , 5 / ? / 6 7 8 M / > OR ; Q
2 6 : 1 = 5 6= 0 1 , 5 / @ 9 : 1 >4 7 8 OR / > OJ ; Q > 9 7 5 9 0 6 9, > 9 7 5 9 0 G 8 M / > O O ; Q 6F 9 ? 67 9 - 6 y 7, 6F 9 ? 67 9 5 6 / 7 8 A / > M ; Q I 9 0 / , 5 / @ 9 : 1 , 9 ? / / 2
F / F 1 7 5 ; 8 M / > O H ; Q > / = F 9 ,E 9 G 8 D / > OJ ;

d / 2 9 . 9 7 0E 1 = 0 [ F 1 9 7 . 1 7 ? 5 @ D aD E / = 2 0
e  f i q xj x n i n z z v { x l m h n n g q lu z nu n i | l u
w j g j x zj g j } n i qh x j g m h n r ju n i n z z v { x l
, 5 / ? / 6 7 5 @ 1 L / / N 5 @ 9 5 < 9 F = 1 9 2 67 ? Q 5 /. 6 : 1 / 4 5 5 @ 1 9 2 : 1 7 5 4 = 1 0 5 @ 9 5 65 - / 7 5 9 6 7 0 ;

e  f i q xj x n i n z z v { x l ~ g n x n z w x l qj p l i v g q j u
w j g j x j } n i q h x j g z nu n i | l , 5 / ? / 6 7 5 / 5 @ 1
L / / N Q 5 / L 1 5 @ 1 I = / 5 9 ? / 7 6 0 5 9 7 2 5 / . 6 : 1
/ 4 5 9 2 : 1 7 5 4 = 1 0 E @ 1 7 = 1 9 2 67 ? ;

� ' % V " % � % ! U & !
) % & $ " * + " Y " W � ( ) ! & * !' % T & # Y %
, > = 1 1 5 1 ] 5 8 9 - 5 6 : 1 ;

Z . / L 9 . F 1 9 7 . 1 7 ? 5 @ [
A aK E / = 2 0

b / = 2 0 [ 9 I = 1 7 2 / � 9 I = 1 7 2 1 0� 9 I = 1 7 2 1 F / 0 , 5 /
. 1 9 = 7 8 O OK / > H J O ; Q F 4 - @ / �F 4 - @ 9 0 , 9 . / 5
/ > 8 C D / > OK J ; Q - / 0 9 0 , 5 @ 6 7 ? 0 8 D B / > J M K ; Q
6F I / = 5 9 7 5 1 0 , 6F I / = 5 9 7 5 8 OR / > O B ; Q I 4 1 2 / , <
- 9 7 8 D / > O B ;

d / 2 9 . 9 7 0E 1 = 0 [ F 1 9 7 . 1 7 ? 5 @ O R aK E / = 2 0
e  � w x n i | n g o h k r j g k l g j g �G / 4 . 1 9 = 7 9 . / 5
/ > 5 @ 6 7 ? 0 ;

e  � w x n i | n g k l g j g , G / 4 . 1 9 = 7 5 @ 67 ? 0 ;

b / = 2 0 [ 6F 9 ? 67 9 - 6 y 7 , 6F 9 ? 67 9 5 6 / 7 8 O D / >
O M ; Q @ 9 - 1 , 5 / 2 / 8 D / > O O ; 8 : / - 9 L 4 . 9 = 6 /, : / - 9 L 4 . 9 = G 8 O R / > OB ; Q 9 I = 1 7 2 1 , 5 / . 1 9 = 7 8
J C / > C H ;

d / 2 9 . 9 7 0E 1 = 0 [ F 1 9 7 . 1 7 ? 5 @ D aA E / = 2 0
e  � n n i g n � j w j z j { x j g i h n } j g � � vj� j g j
w j v g n g k l i zj vo j p vi j k v � i , 65 5 1 9 - @ 1 0G / 4 7 1 E E / = 2 0 a � / 4 5 = 9 : 1 . 5 / / 5 @ 1 =
- / 4 7 5 = 6 1 0 E 6 5@ G / 4 = 6F 9 ? 67 9 5 6 / 7 ;

e  � w x n i | l l q x l p x j� �j � u j g n o n j { x n zj
vo j p vi j k v � i , < . 1 9 =7 0 I 1 . . 6 7 ? 9 7 2 6 5
0 5 6F 4 . 9 5 1 0 F G 6F 9 ? 67 9 5 6 / 7 ;
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Abstract. Automatic indexing is one of the important technologies used for Tex-
tual Data Analysis applications. Standard document indexing techniques usually
identify the most relevant keywords in the documents. This paper presents an
alternative approach that aims at performing document indexing by associating
concepts with the document to index instead of extracting keywords out of it. The
concepts are extracted out of the EDR Electronic Dictionary that provides a con-
cept hierarchy based on hyponym/hypernym relations. An experimental evaluation
based on a probabilistic model was performed on a sample of the INSPEC biblio-
graphic database and we present the promising results that were obtained during
the evaluation experiments.
Keywords: Document indexing, Large scale semantic dictionary, Concept extrac-
tion.

1 Introduction

Keyword extraction is often used for documents indexing. For example, it
is a necessary component in almost any Internet search application. Stan-
dard keyword extraction techniques usually rely on statistical methods [Zipf,
1932] to identify the important content bearing words to extract. However
it has been observed that such extractive techniques are not always efficient,
especially in situations where important vocabulary variability is possible.

The aim of this paper is to present a new algorithm that does not extract
keywords from the documents, but associates them with concepts represent-
ing the contained topics [Rajman et al., 2005]. The use of a concept ontology
is necessary for this process. In our work, we use the EDR Electronic Dic-
tionary (developed by the Japan Electronic Dictionary Research Institute
[Institute (EDR), 1995]), a semantic database that provides associations be-
tween words and all the concepts they can represent, and organizes these
concepts in a concept hierarchy based on hyponym/hyperonym relations.
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In our approach, the indexing module first divides the documents into
topically homogeneous segments. For each of the identified segments, it se-
lects all the concepts in EDR that correspond to all the terms contained
in the segment. The conceptual hierarchy is then used to build the mini-
mal sub-hierarchy covering all the selected concepts and this sub-hierarchy
is explored to identify a set of concepts that most adequately describes the
topic(s) discussed in the document. A ”most adequate” set of concepts is de-
fined as a cut in the sub-hierarchy that jointly maximizes specific genericity
and informativeness scores.

An experimental evaluation, based on a probabilistic model, was per-
formed on a sample of the INSPEC bibliographic database [INSPEC, 2004]
produced by the Institution of Electrical Engineers (IEE). For this purpose,
an original evaluation methology was designed, relying on a probabilistic
measure of adequacy between the selected concepts and available reference
indexings.

The rest of this contribution is organized as follows: in section 2, we de-
scribe the EDR semantic database that we use for concept extraction. In
section 3, we present the necessary text pre-processing steps that need to be
applied for concept extraction to be performed. In section 4, we present the
concept extraction algorithm. In section 5, we describe the evaluation frame-
work and the obtained results. Finally, in section 6, we present conclusions
and future works.

2 The Data

The EDR Electronic Dictionary [Institute (EDR), 1995] is a set of linguistic
resources that can be used for natural language processing. It consists of sev-
eral parts (dictionaries). For our work, we used the Concept dictionary that

implement

information medium trunk worm shell

document dictionary bulletin

agenda archives books

Fig. 1. An example of Concept classifica-
tion in the EDR Concept dictionary.

provides about 400’000 concepts
organized on the basis of hyper-
nym/hyponym relations (See figure
1), and the English word dictionary
that provides grammatical and se-
mantic information for each of the
dictionary entries. Dictionary en-
tries can be either simple words or
compounds.

At the semantic level , the EDR
word dictionary provides relations
between words and concepts. No-
tice that, in the case of polysemy,
one word can be associated with
more than one concept.
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3 Pre-processing the texts

Document segmentation The first pre-processing step is document seg-
mentation. Segmentation is necessary because it allows not to have to process
simultaneously all the concepts that might be potentially associated with a
large document, in which case concept extraction would be computationally
inefficient. However, to preserve the quality of the extracted concepts, the
used segments must be topically homogeneous. For this purpose, we imple-
mented a simple, well known, Text Tiling technique [Hearst, 1994], where
segmentation is based on a measure of proximity between the lexical profiles
representing the segments. For the rest of this document, we will consider
that the segmentation step has been preformed and the elementary unit for
concept association will be the segment, not the document. Once concepts
are associated with all the segments corresponding to a document, they are
simply merged to produce the set of concepts associated with the document
itself.

Tokenization The next pre-processing step is tokenization, which is neces-
sary to decompose the document in distinct tokens that will serve as elemen-
tary textual units for the rest of the processing. For this purpose, we used the
Natural Language Processing library SLPtoolkit developed at LIA [Chappe-
lier, 2001]. In this library, tokenization is driven by a user defined lexicon,
and the resulting tokens can therefore be simple words or compounds. For
this purpose, the used lexicon had to be adapted to EDR, so as to contain
every possible inflected form of any EDR entry. As EDR does not directly
provide these inflected forms, but only the lemmas with inflexion information,
we had to write a specific program that exploits the available information to
produce the required inflected forms.

Part of Speech Tagging and Lemmatization This pre-processing step
consists in identifying, for each token, the lemma and Part Of Speech (POS)
category corresponding to its context of use in the document. For our exper-
iments, we used the Brill POS tagger [Brill, 1995].

The output of all the pre-processing steps is the decomposition of each
of the identified segments in sequences of lemmas corresponding to EDR
entries and associated with the POS category imposed by their context of
occurrence. However, because of the polysemy problem already mentioned
earlier, this is not sufficient to associate each of the triggered EDR entries with
one single concept corresponding to its contextual meaning. Some technique
performing semantic disambiguation would be required for that. However,
as semantic disambiguation is currently not yet efficiently solved, at least for
large scale applications, we decided to keep the ambiguity by triggering all the
concepts potentially associated with the (lemma, POS) pairs appearing in the
segments. The underlying hypothesis is that some semantic disambiguation
will be implicitly performed as a side-effect of the concept selection algorithm.
This aspect should however be further investigated.
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4 Concept Extraction

The goal of the concept extraction algorithm is to select a set of concepts
that most adequately represents the content of the processed document.

w1    w2    w3    w4 

Fig. 2. On the left: links between words and the cor-
responding triggered concepts. On the right: the cor-
responding closure and two of its possible cuts (one in
black and the other in squares)

To do so, we first
trigger all the pos-
sible concepts that
are associated, with
the EDR word entries
identified in the doc-
ument. Then, we ex-
tract out of the EDR
hierarchy the minimal
sub-hierarchy that cov-
ers all the triggered
concepts. This min-
imal hierarchy, here-
after called the ances-
tor closure (or sim-
ply the closure), is de-
fined as the part of
the EDR conceptual
hierarchy that only contains, either the triggered concepts themselves, or
any of the concepts dominating them in the hierarchy. Notice that the only
constraint imposed on the conceptual hierarchy for the definition of a closure
to be valid is that the hierarchy corresponds to a non cyclic directed graph. In
such a hierarchy, we call leaves (resp. roots) all the nodes connected with only
incomming (resp. outgoing) links. The EDR hierarchy ideed corresponds to
a non cyclic directed graph and, in addition, each of its two distinct parts
(the technical concepts and the normal concepts) contains only one single
root (hereafter called the root).

Once the closure corresponding to the triggered concepts is produced, the
candidates for the possible set of concepts to be considered for representing
the content of the document are the different possible cuts in the closure.

For any non cyclic directed graph, we define a cut as a minimal set of nodes
that dominates all the leaves of the graph. Notice that, by definition, the set
of the roots of the graph, as well as the set of its leaves, both correspond a
cut.

4.1 Cut Extraction

The idea behind our approach is to extract a cut that optimally represents
the processed document. To do so, our algorithm explores the different cuts
in the closure, scores them, and select the best one with respect to the used
score. As a cut can be seen as a more or less abstract representation of the



102 Rajman et al.

leaves of the closure, the score of a cut is computed relatively to the covered
leaves. In our algorithm, a local score is first computed for the concepts in
the cut, and a global score is then derived for the cut from the obtained
local scores. Notice also that, as the number of cuts in a closure might be
exponential, evaluating the scores of all possible cuts is not realistic for real
size closures. A dynamic programming algorithm was therefore developed to
avoid intractable computations [Rajman et al., 2005].

In this algorithm, the local score U (the definition of U is given in section
4.2) is computed for each concept c in the cut. This local score measures how
much the concept c is representative of the leaves of the closure. The global
score of the cut is then computed as the average of U over all concepts in the
cut.

4.2 Concept Scoring

The local score U is decomposed into two specific components, genericity and
informativeness.

Genericity It is quite intuitive that, in a conceptual hierarchy, a concept is
more generic than its subconcepts. At the same time, the higher a concept
lays in the hierarchy, the larger is the number of the leaves it covers. Following
this, a simple score S1 was defined to describe the genericity of a concept.
We made the assumption that this score should be proportional to the total
number n(c) of leaves covered by the concept c. Because of the linearity
assumption, the score S1 of a concept c can therefore be written as:

S1(c) = n(c)−1
N−1 , where N is the total number of leaves in the closure.

Informativeness If only genericity would be taken into account, our al-
gorithm would always select the roots of the closure as the optimal cut.
Therefore, it is important to also take into account the amount of informa-
tion preserved about the leaves of the closure by the concepts selected in the
cut. To quantify this amount of preserved information, we defined a second
score S2 for which we made the assumption that the score S2(c) defined for
a concept c in a cut should be linearly dependent on the average normalized
path length d(c) between the concept c and all the leaves it covers in the
closure. Because of the linearity assumption, the score S2 of a concept c can
therefore be written as: S2(c) = 1− d(c).
Score Combination As two scores are computed for each concept in the
evaluated cut, a combination scheme was necessary to combine S1 and S2

into a single score. A weighted geometric mean was chosen:
U(c) = S1(c)

1−a × S2(c)
a.

The parameter a offers a control over the number of concepts returned
by the selection algorithm. If the value of a is close to one, then it will favor
the score S2 over S1, and the algorithm will extract a cut close to the leaves,
whereas a value close to zero will favor S1 over S2 and therefore yield more
generic concepts in the cut.
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5 Evaluation

The evaluation of the Concept Extraction algorithm was made on a sample
from the INSPEC Bibliographic database, a bibliographic database about
physics, electronics and computing [INSPEC, 2004]. The sample was com-
posed of short abstracts manually annotated with keywords extracted from
the abstracts. For the evaluation, a set of 238 abstracts was randomly se-
lected in database, and these abstracts were manually associated with two
sets of concepts: the ones corresponding to a simple keyword in the reference
annotation, and, the ones corresponding to compound keywords.

In our case, only the concepts of the first kind were considered and all
compound keywords were first decomposed into their elementary constituents
and then associated with the corresponding concepts.

To measure the similarity between the concept derived from the reference
annotation and the ones produced by our algorithm, we used the standard
Precision and Recall measures. For any indexed document, Precision is the
fraction of identified correct concepts in all concepts associated with the
document by the algorithm, while Recall is the fraction of the identified
correct concepts in all concepts associated with the document in the reference
annotation. For any set of documents, the quality of the concept association
algorithm was then measured by the average Precision and Recall scores over
all the documents in the sample.

However, if applied directly, an evaluation based on Precision and Re-
call scores would be quite inadequate, as it does not take at all into ac-
count the hyponym/hypernym relations relating the concepts. For example
if a document is indexed by the concept ”dog” and the algorithm produces
the concept ”animal”, this should not be considered as a total failure as it
would be the case with the standard definition of Precision and Recall. To
take this into account, we replaced the binary match between produced and
reference concepts by a similarity measure based on the available concept
hierarchy. The selected similarity measure was the Leacock-Chodorow sim-
ilarity [Leacock and Chodorow, 1998] that corresponds to the logarithm of
the normalized path length between two concepts. The probabilistic model
then used for the evaluation was the following: the normalized version of the
concept similarity between a produced concept ci and a reference concept
Ck, denoted by p(ci, Ck), is interpreted as the probability that the concepts
ci and Ck can match. Then, if Prod = {c1, c2, ..., cn} is the set of concepts
produced for a document and Ref = {C1, C2, ..., CN} is the correspond-
ing set of reference concepts, for each concept ci (resp. Ck) the probability
that it matches the reference set Ref (resp. the produced set Prod) is:

p(ci) = 1 − ∏N
k=1(1 − p(ci, Ck)) (resp.p(Ck) = 1 − ∏n

i=1(1 − p(ci, Ck))),
and the expectations for Precision and Recall can therefore be computed as:
E(P ) = 1

n ×
∑n
i=1 p(ci) and E(R) = 1

N ×
∑N

i=k p(Ck).
For the obtained expected values for P and R, the usual F-measure can

then be computed.
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5.1 Results and Interpretation

A first experiment was carried out to select which value of a should be used
for the evaluation. Observing the average results obtained for each value of a

Fig. 3. Comparison of the algorithm re-
sults with varying values of a

(see figure 3), one can see that
a has a very limited impact on
the algorithm performance (the F-
measure is quasi constant until a
= 0.6). The obtained results there-
fore seem to indicate that the value
of a can be chosen almost arbitrar-
ily between a=0.1 and a=0.7.

In a second step, the following
procedure was applied to compute
the average Precision and Recall:
(1) all the probabilities p(ci) and
p(Ck) were computed for each doc-
ument in the evaluation corpus;(2)
the concepts ci in Prod and Ck in
Ref were sorted by decreasing prob-
abilities;(3) for each value Θ in an equi-distributed set of threshold values in
[0,1[, an average (Precision, Recall) pair was computed, taking only into ac-
count the concepts c for which p(c) > Θ;(4) average values of Precision,
Recall and F-Measure were computed over all the produced pairs.

Fig. 4. averaged(non-interpolated)Precision/Recall curves and the corresponding
average result table for two values of the a parameter

The obtained curves shown in figure 4 display an interesting behavior:
when Recall increases, Precision first starts to raise and then falls down.
This might be explained by the fact that cuts corresponding to higher Recall
values contain more concepts and that there is therefore a good chance that
these concepts are lower in the hierarchy and have more chances to be close to
the concepts in the reference. Then, when the number of produced concepts
is too large, its exceeds what is necessary to cover the reference concepts and
the added noise therefore entails a drop in Precision. A second interesting
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observation is that, for a=0.6 and a=0.7, there are no (Precision, Recall)
pairs with Recall larger than 0.8. This might be explained by the fact that,
for small values of a, there is only a small chance that the extracted cut is
specific enough to have a good probability to match all the reference concepts,
and therefore makes it hard to reach high values of Recall.

6 Conclusion

Current approaches to automatic document indexing mainly rely, on purely
statistical methods, extracting representative keywords out of the documents.
The novel approach proposed in this contribution gives the possibility of as-
sociating concepts instead of extracting keywords. For that, the construction
of the ancestor closure over the segment’s concepts is used to choose the
best representative set of concepts to describe the document’s topics. The
novel evaluation method developed to measure the proposed concept extrac-
tion algorithm lead to promising results in terms of Precision and Recall,
and also gave the opportunity to observe interesting features of the concept
association mechanism. It proved that extracting concepts instead of simple
keywords can be beneficial and does not require intractable computation.

As far as future works are concerned, more sophisticated methods to
solve the ambiguity in concept association related to word polysemy should
be investigated. A more general theoretical framework providing some well
grounded justification for the scoring scheme should also be worked out.
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Abstract. The aim of the work presented here is to clean up a dictionary of
synonyms which appeared to be ambiguous, incomplete and inconsistent. The key
idea is to use Markov Clustering and Clustering Stability techniques on the network
that represents the synonymy relation contained in the dictionary. Each densely
connected cluster is considered to correspond to a specific concept, and ambiguous
words are identified by the evaluation of the stability of the clustering under noise.
This allows to disambiguate polysemic words, introducing missing senses where
required, and merge similar senses of a same word if necessary.
Keywords: Complex Network, Markov Clustering Algorithm, Clustering Stability,
Community Structure, Synonymy, Word Sense Disambiguation.

Introduction

One aspect of the complexity of text mining comes from the synonymy and
the polysemy of the words. The aim of Word Sense Disambiguation (WSD) is
precisely to associate a specific sense to every word within context [Besançon
et al., 2001, Schütze, 1998]. The determination of the list of possible senses
for a given word is a key aspect in this disambiguation. A possible starting
point could be a dictionary of synonyms. It happens however that, due
to both inherent human errors and errors coming from the automatic (semi-
supervised) construction of the dictionary, the synonymy network can contain
several mistakes and turn out to be ambiguous, incomplete or inconsistent.

This paper starts with a brief description of the synonymy network de-
rived from the dictionary we used. Then, the clustering algorithm applied to
improve it is presented and the general method to identify ambiguities in the
clustering is introduced. Finally, the results obtained are discussed.

1 The Synonymy Network

The synonym network we here consider has been built from a French dictio-
nary of synonyms. The synonymy relation is defined between the words in
one of their senses and is considered to be symmetric. The resulting network

? This work was financially supported by the EU commission by contracts COSIN
(FET Open IST 2001-33555) and DELIS (FET Open 001907).
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corsaire;n.m;0

charognard;n.m;0

gaulois;n;0

falsificateur;n.;1

satyre;n.m.;-3

débauché;n.m.;-2

débauché;n.m.;-3
pouilleux;n.;1

famélique;n;0

apache;n.m;0

dépravé;n;-1

ecumeur de mer;n.m;0

gueux;n.;1
pendard;n.m;-1

galapiat;n.m;-1

copieur;n.;1

chenapan;n.m.;1

délinquant;n.;1

plagiaire;n.;-2

sans abri;n;0

racaille;n.f.;-2

clochard;n.;1

pirate;n.m.;1

pirate;n.m.;2

pillard;n.m.;1

frère de la côte;n.m;0

cochon;n.m.;-3

galopin;n.m.;1

milieu;n.m.;6

pervers;n.;1

obsédé;n.;-2

paillard;n.;1

paillard;n.;2

loqueteux;n.;1

noceur;n.;1

bandit;n.m.;1

clochard;n.;-2

fripon;n.;1

pirate;n.m.;-3

défavorisé;n.;1

démuni;n;0

vautour;n.m.;1

mafioso;n.m;0

salace;n;0

misérable;n.;1

escroc;n.m.;1

laissé pour compte;n;0

faussaire;n.m.;2

voleur;n.;3arnaqueur;n;0

sans-abri;n.;1

sacripant;n.m.;1

dissipé;n;0

sans-le-sou;n;0

coquin;n.m;-1

coquin;n.m;-2

coquin;n.m;-3

misérable;n.;-2

coquin;n.m;-4

coquin;n.m;-5

misérable;n.;-4
coquin;n.m;-6

pilleur;n;0

filou;n.m.;-2

misérable;n.;-5

coquin;n.m;-7

noctambule;n.;1
sans-domicile-fixe;n;0

plagiaire;n.;1

sybarite;n;0

porc;n.m.;1

porc;n.m.;2

brigand;n.m.;1

brigand;n.m.;2

rapace;n.m.;-2

rôdeur;n.;1

vaurien;n.;1
dégoûtant;n.m;0

poulbot;n.m.;1

aigrefin;n.m.;1

faim;n.f.;-4

libertin;n.m.;-2

libertin;n.m.;-3

pendard;n.m;0

épigone;n.m.;1

chemineau;n;-1

chemineau;n;-2

jouisseur;n.;1

malandrin;n.m;-1

indigent;n;-1

vermine;n.f.;3

indigent;n;-2

grivois;n;0

mendiant;n.;1

hédoniste;n;0

pauvre;n.;1

gredin;n.m.;1

débauché;n.m.;1

coquin;n.m;0

gouape;n.f.;1

cochon;n.m.;1

drôle;n.m.;1

pilleur;n;-1

cochon;n.m.;2

fêtard;n.;1

malheureux;n.;1

vagabond;n.;1

licencieux;n;-1

miséreux;n.;-2

va-nu-pieds;n.;1

escroc;n.m.;-3

truand;n.m.;1

goret;n.m.;-2

pègre;n.f.;1

détrousseur;n.m;0

fripouille;n.f.;1

contrefacteur;n.m.;1

aventurier;n.;-3

nécessiteux;n.;1

satyre;n.m.;2

titi;n.m.;1

dépravé;n;0

scélérat;n.;1

clodo;n;0

perverti;n;0

viveur;n.m.;1

voyou;n.m.;1

indigent;n;0

voyou;n.m.;2

crapule;n.f.;1
maraud;n.m;0

canaille;n.f.;1

gamin;n.;2

canaille;n.f.;2

bon vivant;n;-1

requin;n.m.;2

bon vivant;n;-2

frère de la côte;n.m;-1

forban;n.m.;1

boucanier;n.m.;1

forban;n.m.;2

imitateur;n.;2

arsouille;n.m;0

miséreux;n.;1

imitateur;n.;3

polisson;n.;1

malandrin;n.m;0

frappe;n.f;0

égrillard;n;0

sdf;n;0

galapiat;n.m;0

gibier de potence;n.;2

sans-logis;n;0

dévergondé;n.;1

dissolu;n;0

verrat;n.m.;1

suiveur;n.;1

licencieux;n;0

criminel;n.;2

gangster;n.m.;1

gangster;n.m.;2

bambocheur;n.;1

impécunieux;n;0

écumeur de mer;n.m;-1

gueux;n.;-2
garnement;n.m.;1

gueux;n.;-3

vicieux;n.;1

gueux;n.;-4

pourceau;n.m.;1

pourceau;n.m.;2

malfaiteur;n.m.;1

épicurien;n.;1

écumeur des mers;n.m.;1

déshérité;n.;1
gavroche;n.m.;1

diable;n.m.;-4

malfrat;n.m;0

flibustier;n.m.;1

flibustier;n.m.;2

sdf;n;-1

chevalier d’industrie;n.;2

gibier de potence;n.;-3

chemineau;n;0

filou;n.m.;1

Fig. 1. MCL clustering of the component with 185 elements (different level of grey
represent different clusters). Unstable nodes (explained in section 3) are represented
with diamonds.

is thus undirected (and unweighted). It is not fully connected but consists
of many disconnected components1, with a power-law size distribution (see
fig. 2); the nodes inside a single component representing the same “concept”2.

The first encountered problem in this dictionary was the existence of
much too large synonym components (up to almost 10,000 nodes, see fig. 2).
The transitive closure of the synonymy relation connects words which have
different senses; e.g. fêtard (“merrymaker”) and sans-abri (“homeless”) (see
fig. 1). This is due to words which are still ambiguous3 and relate different
“concepts”: even if a path exists between two nodes, the slight changes in
the senses that could occur at each step along this path may result in a quite
different sense between both ends. Moreover these big components clearly
show a sub-structure suggesting a partition into smaller clusters.

The second encountered problem was that some words were given too
many senses, i.e. senses that actually correspond to the same “concept”.

To solve these problems, the Markov clustering algorithm (MCL) [Van Don-
gen, 2000] was first applied to the synonymy network. The idea is that words
with tighter neighborhoods are likely to be less ambiguous than words with

1 i.e. groups of words which are claimed to be synonyms
2 We use the word “concept” to denote a group of senses that are synonyms.
3 i.e. the distinction between two of their senses has not been introduced
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fuzzier neighborhoods [Sproat and van Santen, 1998], and thus a cluster is
likely to correspond to words with a close meaning, and therefore represents
one ”concept”. Then, in order to find ambiguous words, we noise the edges
and compare the clusters obtained for several noisy realizations of the net-
work. This provides informations about the network that could not have
been extracted with the standard clustering algorithms.

2 Markov Clustering

In this section, MCL, the clustering algorithm we used for splitting the big
components into smaller clusters, is briefly described.

Its basis is that “a random walk on a network that visits a dense cluster
will likely not leave it until many of its vertices have been visited” [Van Don-
gen, 2000]. The idea is to favor the most probable random walks, increasing
the probability of staying in the initial cluster. The algorithm works as fol-
lows: (1) consider the adjacency matrix of the network4 ; (2) normalize each
column to one, in order to obtain a stochastic matrix S; (3) square the matrix
S; the element (S2)ij is the probability that a random walk starting at node
j ends up at node i after two steps; (4) take the rth power of every element
of S2 (typically r ≈ 1.5 − 2); this favors the most probable random walks;
(5) go back to 2 until convergence.

After several iterations we end up with a matrix stable under MCL. Only
a few lines of the matrix have non-zero entries, which give the cluster struc-
ture of the network. Note that the parameter r can tune the granularity of
the clustering: a small r corresponds to a few big clusters, whereas a big r
corresponds to smaller clusters. Comparing the results with different r for
some of the components, we chose r = 1.6 as a reasonable value.

As an example, the result of MCL on the component of size 185 is dis-
played in fig. 1. The obtained subdivision into smaller clusters is definitely
more meaningful; e.g. fêtard is no longer in the same cluster as sans-abri.

MCL was applied on the biggest components of the network. We noticed
that, as the size of the components becomes smaller than 40, the clustering
is often not meaningful anymore, since the components do not show any
particular community structure. After clustering the biggest components,
the cluster size distribution shown in fig. 2 is obtained. The power-law is still
conserved, but the size of the biggest components is much reduced.

3 Unstable Nodes

MCL partitions the network into clusters without overlap, i.e. every node
is assigned to a single cluster (“hard-clustering”). However, the resulting

4 For an undirected and unweighted network, this matrix is symmetric and com-
posed only of zeros and ones.
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Fig. 2. Left: Distribution of the size of the components in the whole network (log-
log scale). Right: Distribution of the size of the clusters after MCL with r = 1.6.

clustering is sometimes questionable – both from a topological and a linguistic
point of view –, especially for nodes that “lie on the border” between two
clusters (see fig. 3).

The problem of finding ambiguities is closely related to the evaluation of
the robustness of the clustering. Some attempts, based on particular clus-
tering algorithms, were drawn recently to solve this problem [Wilkinson and
Huberman, 2004, Reichardt and Bornholdt, 2004]. We present here a new
method based on the introduction of a stochastic noise over the edges of the
network, and apply it in the framework of MCL. This consists in adding noise
over the non-zero entries of the adjacency matrix5. Running MCL with noise
several times, some nodes are switching from one cluster to the other (for
example node “reprendre;6” in fig. 3). This procedure is now detailed.

Let pij be the probability for the edge between node i and node j of
being inside a cluster. After several runs of the clustering algorithm with
the noise, a weighted network is obtained where edges with probability 1 are
always within a cluster and edges with probability close to 0 connect two
different clusters. Edges with a probability smaller than a threshold θ are
thus considered as “external edges”. By removing those edges, one gets a
disconnected network6.

5 In this study, the noise added over the edges weights (originally equal to 1) is
equally distributed in [−σ, σ], 0 < σ < 1. With σ close to 0, unstable nodes are
not detected, while with σ ' 1 the topology of the network changes dramatically.
The results were stable for a broad range of values of σ around 0.5. For example
in the component displayed in fig. 3, the node “reprendre;6” was identified as
the only unstable node for 0.35 ≤ σ ≤ 0.8.

6 For the choice of the parameter θ, we looked at the distribution of the probabilities
pij over the whole network. As expected, this distribution has a clear maximum
in 1, corresponding to edges that are never cut by MCL, preceded by a region
corresponding to edges almost never cut. Since for pij ≤ 0.8 the distribution is
almost flat, we choose θ = 0.8.
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ressasser;v.;1

bisser;v.;2

réitérer;v.;1

reprendre;v.;6

recommencer;v.;1

seriner;v.;1

rabâcher;v.;1

rabâcher;v.;2

reproduire;v.;4

confirmer;v.;2

radoter;v.;2

rebattre les oreilles avec;v.;1

rééditer;v.;1

répéter;v.;1

répéter;v.;5

renouveler;v.;3
maintenir;v.;4

réaffirmer;v;0

Fig. 3. Small sub-network with one unstable node (“reprendre;6”), extracted from
a component of 111 nodes. The values over the dashed edges are the probabilities
for the edges to be inside a cluster (average over 100 realizations of the clustering
with r = 1.6, and σ = 0.5.). Only probabilities smaller than θ = 0.8 are shown.
The shape of the nodes indicates the cluster found without noise.

In this section, we use the word “cluster” for the clusters obtained without
noise, and “subcomponent” for the disconnected parts of the network after
the removal of the external edges. If the community structure of the network
is stable under several repetitions of the clustering with noise, the subcompo-
nents of the disconnected network correspond to the clusters obtained without
noise. In the opposite case, a new community structure appears with some
similarity with the initial one.

In order to identify which subcomponents correspond to the initial clusters
and which are new subcomponents, we introduce the notion of similarity
between two sets of nodes. If E1 (resp. E2) is the set of clusters (resp. the
set of subcomponents), we use the Jaccard index to define the similarity sij

between cluster C1j ∈ E1 and subcomponent C2i ∈ E2: sij =
|C2i∩C1j |
|C2i∪C1j | .

If C1j = C2i, sij = 1 and if C1j ∩ C2i = ∅, sij = 0. For every C1j ∈ E1,
we find the component C2i with the maximal similarity and identify it with
the cluster C1j (C2i often corresponds to the stable core of the cluster C1j).
If there is more than one of such components, none of them is identified with
the cluster. In practice, this latter case is extremely rare.

Nodes belonging to subcomponents that have never been identified with
any cluster could be defined as unstable nodes. However, this definition
suffers some drawbacks since it sometimes happens that a big cluster splits
into two subcomponents of comparable size. Considering that almost half of
the nodes of the cluster are unstable is not realistic and a new cluster should
be defined instead. In practice, subcomponents of four nodes or more often
correspond to a cluster not detected by the algorithm. We therefore define
the unstable nodes as the nodes belonging to subcomponents that have not
been identified with a cluster and whose size is smaller than 4.
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Fig. 4. Zoom over the bottom-right of fig. 1. Five unstable nodes have been found
(non-circle nodes). The splitting of them proceeds as follows: removing the edges
with pij < 1−θ (dashed-line), they are divided into two groups ({cochon;-3 libertin;-
2, paillard;2} (diamonds) and {débauché;1, satyre;-3} (squares). The first group
has only one adjacent subcomponent. It is therefore merged to this subcomponent.
The second group has two adjacent subcomponents. It is thus duplicated and
merged into those two subcomponents.

In the framework of a synonymy network, unstable nodes, which lie on
the border of two subcomponents, correspond to polysemic words which have
not been clearly identified as such (i.e. one of their senses is not present in
the dictionary). We thus decided to split these nodes among their adjacent
subcomponents. The adjacent subcomponents are defined as the subcom-
ponents to which the node is connected through at least one edge with a
probability higher than a given threshold θ′. Typically we choose θ′ = 1− θ,
where θ was the threshold for defining an edge as external.

If several unstable nodes are connected together, we split them according
to the following procedure: first group these nodes keeping only the edges
with pij > θ′; then, for each group, duplicate it and join it to its adjacent
subcomponents (see fig. 4).

Finally, the second problem, where the same word appears with different
senses in a cluster (e.g. rabâcher in fig. 3) has been addressed by simply
merging into a single node the nodes that correspond to the same word in
a same subcomponent. Indeed, if a node appears twice in a subcomponent,
both senses are actually not different, at least not at the level of granularity
used. Such a situation occurs 4,642 times in the whole network (the total
number of nodes is 50,913). This number is more than four times smaller
than before the MCL clustering (21,261 “duplicates”).
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4 Discussion and Conclusion

The objective evaluation of the work presented here is not easy. How to
evaluate whether better results are obtained when no reference to compare to
is available7? One possible evaluation could be to compare the performances
obtained in a targeted WSD experiment using the original and the corrected
resource. It is however highly dependent on the targeted application. We
thus rather choose to evaluate the method presented here by a subjective
(i.e. human centered) validation, achieved by sampling components in the
newly obtained network. This evaluation appeared to be very convincing8.

However, we still wanted to develop objective overall clues from the net-
work to try to objectively grasp the benefits of the method. We, for instance,
computed the clustering coefficient of the unstable nodes. The clustering
coefficient (C) of a node is the number (N3) of 3-loops passing through the
node, divided by the the maximal possible number of such 3-loops. When
the node has degree k, C = 2N3

k(k−1) . If a node lies in the middle of a densely

connected cluster, it quite likely has a high clustering coefficient. If the node
lies between clusters, it has a small clustering coefficient9.

Using MCL, the assumption is made that a community structure is present
in the network. Since MCL may also give a partition of random networks
without any community structure, it is important to validate this assumption.
The introduction of the probability pij over the edges provides a way to do
so. In the case of a random network, the community structure found by the
clustering algorithm is expected to be very sensitive to the noise, whereas in
the case of a network with a clear community structure, the clusters are quite
stable, except for a few unstable nodes. To characterize these two situations,
we introduce the clustering entropy Sc as a measure of the clustering stability:

Sc = − 1

M

∑

(i,j)

(
pij log2 pij + (1− pij) log2(1− pij)

)
,

where M is the total number of edges (i, j) in the network.
Important differences in the clustering entropy between networks with a

clear community structure and random networks with no community struc-
ture are expected. If the network is totally unstable (i.e. pij = 1

2 for all
edges), Sc = 1, while if the edges are perfectly stable (pij = 0 or 1), Sc = 0.

To avoid biasing the results, we compare the components with a ran-
domized version of the same component in which the degree of each node is
conserved [Maslov and Sneppen, 2002]. Table 1 shows the comparison for
several big components of the network of synonyms. The clustering entropy

7 had we had one, wouldn’t have we developed a method to correct it!
8 See fig. 1, 2, 4 and 3 for illustrations.
9 For example, twelve unstable nodes were found in the component displayed in

fig. 1. The average clustering coefficient of these nodes is 0.08, while the average
clustering coefficient over the whole component is 0.42.
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Component Size Sc(original) Sc(random)

912 0.25±0.01 0.55±0.01
185 0.19±0.01 0.62±0.02
155 0.27±0.01 0.55±0.03
111 0.21±0.01 0.69±0.02
61 0.20±0.01 0.68±0.04
60 0.19±0.01 0.76±0.04
54 0.21±0.01 0.60±0.07
51 0.21±0.01 0.69±0.05

average 0.21 0.64

Table 1. Comparison for several components. Sc(original) is the clustering entropy
of the original components. Sc(random) is the average clustering entropy for 50
randomized versions of the component. We used r = 1.6 and σ = 0.5.

of the randomly rewired components is at least twice bigger than the entropy
of the original components. This experimentally shows that the clusters ob-
tained with MCL are not an artifact of the method, but correspond to a real
community structure in the network.

Applying the MCL clustering algorithm, the network of synonyms splits
into sensible clusters, significantly improving, at least subjectively, the qual-
ity of the dictionary. Most of the clusters can be interpreted as groups of
synonyms and, at a coarse-grained level of representation, correspond to a
general concept of the language. The method introduced to identify nodes
which lie between clusters and to check the robustness of the clustering ap-
peared to be fruitful in the splitting of polysemic nodes. We emphasize that
this method does not depend of a particular clustering algorithm and can be
applied on any complex network.
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Abstract. In this contribution, we investigate the use of a simple probabilistic
model for unsupervised document clustering in large collections of texts. The model
consists of a mixture of multinomial distributions over the word counts, each com-
ponent corresponding to a different theme.

The evaluation corpus is a medium size subset of the Reuters news feed, which
comes with a manual categorization. The similarity between the clustering pro-
duced and this existing categorization is computed in terms of mutual information,
and compared to the variations of log-likelihood and perplexity. We analyze the
influence of the smoothing parameter, of the size of the vocabulary and of the
addition of supervised information.

Our results, which are somewhat more pessimistic than those usually found in
the literature, show that it is difficult to reach the quality of the manual categoriza-
tion when no hint is given at the initialization step. We also show that a side effect
of the so-called “curse-of-dimensionality” is that this probabilistic model yields the
same results as a simpler, hard clustering algorithm.
Keywords: Text Mining, Unsupervised Clustering, Evaluation.

1 Introduction

Due to the wide availability of huge collections of text documents (news cor-
pora, e-mails, web pages, scientific articles...), unsupervised clustering has
emerged as an important text mining task. Several probabilistic models,
performing a soft (non-deterministic) clustering of the data, such as Prob-
abilistic Latent Semantic Analysis [Hofmann, 2001] or Latent Dirichlet Al-
location [Blei et al., 2002], have been introduced for that purpose. In this
contribution, we study the simpler model [Nigam et al., 2000, Clérot et al.,
2004] in which the corpus is represented by a mixture of multinomial dis-
tributions, each component corresponding to a different “theme”. Dirichlet
priors are set on the parameters and we use the Expectation-Maximization
(EM) algorithm to obtain maximum a posteriori (MAP) estimates of the
parameters.

To get a deeper understanding of the potentials of this approach, we
consider a reasonably simple corpus, consisting of 5000 Reuters news stories
taken from five different categories (as defined by Reuters). After introducing
the two measures used for evaluation (perplexity and mutual information
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between the obtained themes and the Reuters categorization), we investigate
the influence of several aspects of the model. An interesting experimental
outcome of this study is to show that, due to the high dimensionality of the
problem, the model behaves almost like a hard clustering algorithm (with a
specific distance measure).

2 The Model

We denote by nD, nW and nT , respectively, the number of documents, the size
of the vocabulary and the number of themes (that is, the number of compo-
nents of the mixture model). Since we use a bag-of-words representation, the
corpus is fully determined by the count matrix C = (Cd(w))d=1...nD ,w=1...nW ,
where the notation Cd is used to refer to the word counts of a specific docu-
ment d. The multinomial mixture model is such that:

P(Cd;α, β) =

nT∑

t=1

αt
ld!∏nW

w=1 Cd(w)!

nW∏

w=1

β
Cd(w)
wt (1)

which corresponds to the following probabilistic generative mechanism:

• sample a theme t in {1, . . . , nT } with probabilities α = (α1, α2, . . . , αnT );
• sample ld (length of document d) words from a multinomial distribution

with parameter (ld; β1t, β2t, . . . , βnW t).

The notation β is used to denote the collection of theme-specific word fre-
quencies. Note that the document length itself is taken as an exogenous
variable and its distribution is not accounted for in the model. As all docu-
ments are assumed to be independent, the corpus log-likelihood L is given
by
∑nD

d=1 log P(Cd;α, β).
To estimate the model parameters, we use the Expectation-Maximization

(EM) algorithm with independent noninformative Dirichlet priors on α (with
hyperparameter θα) and on the columns β•t, for t = 1, . . . , nT (with hyper-
parameter θβ). Denoting the current estimates of the parameters by α′ and
β′ and the latent (unobservable) theme of document d by Td, it is straightfor-
ward to check that each iteration of the EM algorithm updates the parameters
according to:

P(Td = t|C;α′, β′) =
α′
t

∏nW

w=1 β
′Cd(w)
wt∑nT

t′=1 α
′
t′
∏nW

w=1 β
′Cd(w)
wt′

(2)

αt ∝ θα − 1 +

nD∑

d=1

P(Td = t|C;α′, β′) (3)

βwt ∝ θβ − 1 +

nD∑

d=1

Cd(w) P(Td = t|C;α′, β′) (4)
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where the normalization factors are determined by the constraints
∑nT

t=1 αt =
1 and

∑nW

w=1 βwt = 1, for t in {1, . . . , nT }. It turns out that θα has little, if
any, influence and we set θα = 1 in the following. For obvious reasons, we
refer to θβ − 1 as the smoothing parameter. We set it to 0.1 to begin with.

3 Evaluation

To evaluate the performance of the model for unsupervised document clus-
tering we use two different measures. The perplexity

P̂? = exp[− 1

l?

n?
D∑

d=1

log(

nT∑

t=1

αt

nW∏

w=1

β
C?

d (w)
wt )]

quantifies how much the model is able to predict new data, denoted generi-
cally by the star superscript. The normalization by the total number of word
occurrences l? in the test corpus C? is conventional and used to allow com-
parison with simpler models such as the unigram model, which ignores the
document level. A second indicator is the mutual information between the
clustering produced by the model and the Reuters categories, which is more
directly related to our ability to accurately cluster the data. It is defined as:

M̂I? =

nC∑

c=1

nT∑

t=1

(
1

n?D

n?
D∑

d=1

P(Γc|C?d ) P(Td = t|C?d))

× log
n?D
∑n?

D

d=1 P(Γc|C?d )p(Td = t|C?d)
(
∑n?

D

d=1 P(Γc|C?d ))(
∑n?

D

d=1 P(Td = t|C?d))

where P(Γc|Cd) is the “probability” that document d belongs to category Γc
(usually 0 or 1, as most documents belong to a unique Reuters category) and
P(Td = t|Cd) is the output of the model (probability that the document d
belongs to theme t). The estimated mutual information is then normalized,
respectively, by the marginal entropies of the themes and categories. The
harmonic average of those scores (between 0 and 1) is referred to as the (MI)
F-Score.

3.1 Baseline Performance

We selected 5,000 texts from the 2000 Reuters Corpus, from five well-defined
categories (arts, sports, health, disasters, employment). All experiments are
performed using ten-fold cross-validation (with 10 random splits of the cor-
pus), with 30 iterations of the EM algorithm for each run and with five themes
(nT = 5). As will be seen below, initialization of the EM algorithm does play
a very important role in obtaining meaningful document clusters. After a bit
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of experimentation, we found that a good option is to make sure that, ini-
tially, all clusters overlap significantly and that none of the theme-dependent
word probabilities is too small. The “Dirichlet” initialization thus consists in
sampling an initial (fictitious) configuration of posterior probabilities in (2)
which is close to equiprobability?.
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Fig. 1. Evolution of Perplexity and Log-likelihood over EM iterations.

To get an idea about the best achievable performance, we also used the
Reuters categories as initialization. We establish a one-to-one mapping be-
tween the mixture components and the Reuters categories, setting for every
document the initial posterior probability in (2) to 1 for a given theme. Figure
1 displays the corresponding training data likelihood (right) and perplexity
as a function of the number of iterations. The first striking observation is
that the gap between both initializations is huge. With the “Dirichlet” ini-
tialization, we are able to predict the word distribution more accurately than
with the unigram model but much worse than with the somewhat ideal ini-
tialization. This gap is also patent for the training data log-likelihood. In
the following, we report only the values obtained after the last EM iteration,
since the variations after the first few iterations are small (note that this
phenomenon is particularly marked for the Reuters initialization). Also, we
no more report the perplexity on the training data since it conveys the same
information as log-likelihood.

The Mutual Information F-Score is similarly oriented with a final value of
0.87 for the Reuters initialization and 0.25 for the “Dirichlet” one. To get an
idea of the signification of these numbers, we randomly perturbated a certain
amount of the Reuters tags and computed the MI F-Score with the original

? It is not possible to start with exact equiprobability, or, else, it can be seen from
the update equations that all word distributions are similar and the clusters never
separate from one another. Hence we sample from a Dirichlet distribution with
the same parameter for every component. This variable controls the variance of
the probabilities sampled. It also has an interesting influence on the results that
we do not develop here.
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categorization. Proceeding this way, perturbing (respectively) 5%, 15% and
50% of the document labels gives F-Score of 0.9, 0.7 and 0.25. Hence 0.25
corresponds to a rather poor performance. Now we check if this gap between
both initializations can be reduced when tuning the smoothing parameter.

3.2 Influence of the Smoothing Parameter
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Fig. 2. Perplexity as a function of smoothing.

Figure 2 depicts the influence of the smoothing parameter θβ−1 in terms
of perplexity. For both initializations, the best performances are obtained for
smoothing parameters between 0.1 and 2, with an optimum at 0.5. Clearly
using some prior information about the fact that word probabilities should
not get too small helps to fit the distribution of new data, even for words
that are rarely (or even never) seen in association with a given theme.
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Fig. 3. Evolution of mutual information as a function of smoothing

Figure 3 reveals a slightly different behavior for the MI F-Score. First,
except when using very large (5 or more) values of the smoothing parame-
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ters, which yields a serious drop in performance, the categorization accuracy
is rather insensitive to smoothing for the Reuters initialization. Of more
practical interest however is the behavior for the “Dirichlet” initialization,
which is roughly consistent with what is observed in Figure 2, except for
the fact that the optimum is obtained for higher values of the smoothing
parameter (around 2). A possible explanation of this observation that more
smoothing improves categorization capabilities (even if it slightly degrades
distribution fit) is that the model is so coarse and the data so sparse that
only quite frequent words are helpful in categorizing; the other words are es-
sentially misleading, unless properly initialized. This suggests that removing
rare words from the vocabulary should improve the classification accuracy.

As an aside, it is interesting to observe, in figure 4, that the variations of
the MI F-Score is highly dependent on the initialization and the smoothing
parameter. For large (unrealistic) values, the more iterations we conduct,
the more inaccurate prior information we give to the model and the worst
the performances get. For the initialization “Dirichlet”, the optimal value of
θβ − 1 (2) clearly corresponds to the higher increasing curve. From 3, the
clustering begins to degrade after 5 or 6 iterations.
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Fig. 4. Evolution of mutual information as a function of EM iterations, with dif-
ferent smoothing values

3.3 Adjusting the Vocabulary Size

A valid question, after having decided to ignore part of the vocabulary, is if
we should rather cut rare words (hapax) or frequent words (stop-words). We
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try both strategies, removing consecutevely tens, hundreds and thousands of
terms from the vocabulary. The words discarded are simply not taken into
account in the count matrix??.
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Fig. 5. Evolution of mutual information when removing rare words.

Results in term of perplexity are not helpful, since the size of the vo-
cabulary has an impact on perplexity which is hard to distinguish from the
variations due to a possible better fit of the model. The MI F-Score, on
the other hand, is meaningful even when the vocabulary sizes are different.
The results in Figure 5 suggest that we can substantially improve the per-
formance of the model with the “Dirichlet” initialization, by keeping a very
limited number of frequent words (around 2,000). Note that the obtained
F-Score is still far from reaching the performance attained with the Reuters
initialization. This agrees with our previous observation that even the rarest
word may be informative, when properly initialized.

On the other hand, removing frequent words almost always hurts as one
can see when reading the dashed curves from right (full vocabulary) to left
(all words removed from vocabulary). Only in the case of the “Reuters Ca-
tegories” initialization, discarding the 50 or 100 most frequent words leads
to a slightly better performance but it is hardly visible on the figure. Then
the MI F-Score steadily decreases when cutting frequent words. The score is
almost 0 with 20,000 rare words, which is not surprising, since, in this case,
the vocabulary only consists of words with 1 occurence in the whole corpus
and a text is therefore reduced to at most a dozen of terms.

?? We do not study here the effect of another common trick: grouping all unknown
words under the token “Out Of Vocabulary”.
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3.4 Adding Supervised Information

Clearly none of the variants discussed so far is susceptible of bridging the gap
between the ideal results, obtained using Reuters categories, and the results
achievable in practice. To this aim, we consider using a limited number of
texts (2, 5, 10, 20 or 50) from each theme to initialize the theme-dependent
word frequency parameters. Note that in this case, the EM algorithm is used
in “semi-supervised” mode, updating only the posterior probabilities for the
texts whose category is truly unknown. In each case and each repetition (we
are still using ten-fold cross validation), we repeat the experiment ten times
to make up for the chances of picking “unrepresentative” texts.

0 5 10 15 20 25 30 35 40 45 50
0.2

0.4

0.6

0.8

1

Number of training tags given

M
ut

ua
l I

nf
or

m
at

io
n 

F
−

S
co

re

Semi−supervised
Reuters categories
Dirichlet

Fig. 6. Evolution of mutual information when using partial category information.

Figure 6 shows that, as expected, results improve with the number of
known text tags and that acceptable values are obtained quite fast: with 10
tags per theme (that is 1.1% of the training documents labeled), the obtained
F-Score is already about 0.7 (to be compared with 0.8 when 5.5% of the labels
are known and 0.9 when all the labels are known).

Figure 7 conveys the same impression and suggests that knowing 20 or
50 labels per category is almost equivalent in terms of perplexity and log-
likelihood. Hence, knowing a few percents of the document labels is enough
to catch up on word distribution modelling (perplexity) and a few additional
percents suffice to obtain very good categorization performance.

3.5 Equivalence with a Non-Probabilistic Algorithm

A surprising fact, when working with this model, is the huge fraction of pos-
terior probabilities (that a document belongs to a given theme) dramatically
close to 0 or 1. Indeed, when starting from Reuters categories, the propor-
tion of texts classified in only one given theme (that is, with probability one
up to machine precision) is almost 100%. Since we start from the opposite
point of “extreme fuzziness”, this effect is not as strong with the “Dirichlet”



122 Rigouste et al.

0 10 20 30 40 50
1400

1500

1600

1700

1800

1900

2000

2100

Number of training tags given

P
er

pl
ex

ity

0 10 20 30 40 50
−9.5

−9.45

−9.4

−9.35

−9.3

−9.25
x 10

6

Number of training tags given

Lo
g−

lik
el

ih
oo

dUnigram model
Semi−supervised
Reuters categories
Dirichlet

Semi−supervised
Reuters categories
Dirichlet

Fig. 7. Evolution of perplexity and log-likelihood when using partial category in-
formation.

initialization. Still, after the fifth iteration, more than 90% of the documents
are categorized with absolute certainty.

Therefore, we compare the results obtained with an algorithm similar to
EM but based on hard clustering. This is in fact a version of K-means, with
the following distance between a text d ∈ {1, . . . , nD} and theme (or cluster)
t ∈ {1, . . . , nT } :

dist(d, t) =
1

αt
∏nW

w=1 β
Cd(w)
wt

This distance is computed for every document and every theme and each
document is assigned to its closest theme. The reestimation of the parameters
βwt is done according to (4) where the posterior “probabilities” are always
either 0 or 1. αt simply becomes the proportion of documents in theme t
and βwt the ratio of the number of occurrences of w in theme t over the total
number of occurrences in documents in theme t.

αt =
1

nD

nD∑

d=1

δ{d∈t}

βwt =

∑
d∈t Cd(w)∑nW

w=1

∑
d∈t Cd(w)

We applied this algorithm to the same dataset, with the same initialization
procedures as above. At the end of each iteration, we compute the Mutual
Information F-Score between the fuzzy clustering produced by EM and the
hard clustering produced by this version of K-means.

• With the “Reuters Categories” initialization, the Mutual Information F-
Score between the clusterings produced is 1 after one iteration.
• With the “Dirichlet” initialization, which is somehow the opposite of a

hard clustering, the F-Score between the soft and hard clustering con-
verges very fast to 1 and is greater than 0.99 after five iterations.
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In both cases, the different outputs of the fuzzy and hard methods become
indiscernible after very few iterations. We believe that this behavior of EM
can be partly explained by the large dimensionality of the space of docu-
ments? ? ?. This assumption can be verified with experiments on artificially
simulated datasets.

4 Conclusion

In this article, we study a mixture model of thematic multinomial distribu-
tions for corpus clustering. We show that, even though some parameters have
a real influence and actually help reduce the gap, there exists a large differ-
ence between the best achievable performance and the ones we are able to
obtain without prior supervised information. Eventually, we note that in this
case, a fuzzy clustering approach is just uselessly time consuming since we
get exactly the same results with a hard clustering version of the algorithm.

In future work, it would be interesting to check if the same conclusions
apply to more complicated models such as PLSA and LDA. Besides, we are
still looking for ways to improve the performances of the model with the
“Dirichlet” initialization, for example using other inference methods.
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Abstract. Understanding and predicting protein structures depends on the com-
plexity and the accuracy of the models used to represent them. We have setup a
Hidden Markov Model to optimally compress three dimensional (3D) conformation
of protein into a structural alphabet, i.e. a library of exhaustive and representa-
tive states (describing short fragments) learnt simultaneously with connection logic.
The discretization of protein backbone local conformation as a series of states re-
sults in a simplification of protein 3D coordinates into a unique unidimensional
(1D) representation. We present some evidence that such approach can constitute
a very relevant way to the analysis of protein architecture in particular for protein
structure comparison or prediction.
Keywords: Hidden Markov Models, structural alphabet, protein structural orga-
nization.

1 Introduction

The recent genome sequencing projects [Waterston et al., 2002] have pro-
vided sequence information for large number of proteins. In most cases, an
accurate 3D structural knowledge of the proteins is necessary for a detailed
functional characterization of these sequences. However, even in the days of
high-throughput methods, experimental determination of protein structures
by X-ray crystallography or NMR is quite time-consuming. Thus, there is
an increasing gap between the number of available protein sequences and ex-
perimentally derived protein structures, which makes it even more important
to improve the methods for predicting protein 3D structures. The structural
biology community has long focused on the very hard task of developing algo-
rithms for solving the ab initio protein folding problem - namely, predicting
protein structure from sequence. In its initial phase, the exploration of pro-
tein structure consisted in simplifying the 3D structure into secondary struc-
tures, included the well-known repetitive and regular zone - the α-helix (30%)
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of protein residues and the β-sheet (20%). The remaining elements constitute
a category, often considered as variable (50% of the structures). With the
increasing of available 3D structures of proteins, many studies [Unger et al.,
1989],[Rooman et al., 1990],[de Brevern et al., 2000],
[Micheletti et al., 2000],[Kolodny et al., 2002] have focused on the identifica-
tion of a more detailed but finite set of generic protein fragments. Despite the
fact that such libraries provide an accurate approximation of protein confor-
mation, their identification teaches us little about the way protein structures
are organized. They do not consider the rules that govern the assembly pro-
cess of the local fragments to produce a protein structure. An obvious mean
of overcoming such limitations is to consider that the series of representative
fragments that can describe protein structures are in fact not independent
but governed by a Markovian process. For this purpose we have used Hid-
den Markov Models (HMM). HMM have been applied in several area of
computational biology, for example to model protein families, to construct
multiple sequence alignment or to determine protein domain in a query se-
quence [Krogh et al., 1994],[Durbin et al., 1998],[Bateman et al., 2004]. In
this study, we apply HMM to identify a library of representative fragments
and their transition process, called Structural Alphabet (SA) or HMM-SA.
Such an approach can constitute a very relevant way to the analysis of protein
architecture in particular for protein structure comparison or prediction.

2 Materials and Methods

2.1 Datasets and describing three dimensional conformations

The extraction of SA is performed from a collection of 1429 non-redundant
protein structures presenting less than 30% sequence identity. The structures
are described using the α Carbons (Figure (a.1)), as series of overlapping
fragments of 4 residue length (Figure (a.2)) [Camproux et al., 1999]. Each
fragment h is described by a 4-descriptors vector y(h) with the three distances
between the non consecutive α Carbons, i.e. d1(h)= d{Cα1(h) - Cα3(h)},
d2(h)=d{Cα1(h) - Cα4(h)}, d3(h)=d{Cα2(h) - Cα4(h)}, where C1,..,4 denotes
the 4 residues of fragment h, and the oriented projection P4(h) of the last
alpha-carbon Cα4(h) to the plane formed by the three first ones, as shown
in Figure (a.3). The collection of 1429 proteins represent a total of 332493
four-residues fragments.

2.2 Identification of the optimal structural alphabet (SA)

Models
Suppose that polypeptidic chains are made up of representative fragments
of (R) different types {S1, S2, ..., SR}. We then assume that there are (R)
states of the model. Each state is associated with a multi-normal function
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Fig. 1. Encoding of 3D conformation of proteins using HMM-SA with 27 states:
right part “3D structural space” represents the polypeptidic chain of protein 3chy
(a1) scanned in overlapping windows that encompassed 4 successive-carbons Cα

(a2), thereby producing a series of four-residue fragments. Each fragment is de-
scribed by a vector of four-descriptors (a3). Center part: Figure b1 represents the
BIC evolution versus the number of states considered, Figures b2 and b3 illustrate
the optimal HMM-SA corresponding to both 27 average four-residue fragments as-
sociated to 27 states and transition matrix between states. Bottom part represents
the corresponding encoded chain 3chy (c1) as a states series.
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of parameters θ describing the descriptors and their variability. We consider
two types of model to identify a SA corresponding to R states: a process
without memory or a process with memory of order 1.
(i) Model without memory (order 0), assuming independence of the R states
is identified by training simple finite Mixture Models (MM) of R multi-normal
distributions.
(ii) Model with memory (order 1) is identified, by training a Hidden Markov
Model. Here, the aim is to a learn hidden sequence of states. The succession
of underlying states {x1, x2, ..., xN} emits the series of vectors {y1, y2, ..., yN},
describing consecutive overlapping fragments of the proteins, via a multi-
normal density bSi(y) of parameters θi associated to each state Si,1≤i≤R. We
assume a common state dependence process for all polypeptidic chains gov-
erned by a Markov chain. The evolution of the Markov chain is completely
described by:
1) the law V = V (i) of the initial state of each polypeptidic chain, i.e. the
probability that a polypeptidic chain starts in each of the R different states
2) the matrix of transition probabilities Π = (πii′ )1≤i,i′≤R between R differ-
ent states of the Markov chain, where πii′ = P (Xj = S′

i | Xj−1 = Si) is the
probability for different proteins to evolve from state Si to S′

i at any position
j. For a given set of proteins and a given number (R) of states, unknown
parameters λ = (Π,V, θ) of the selected model are estimated with an Expec-
tation and Maximization (EM) algorithm [Baum et al., 1970] applied on the
complete likelihood.

Complete likelihood of N four-residue fragments {y1, y2, ..., yN} describing a
protein of N+3 residue

V (y1, y2, ..., yN |λ) =
∑

{x1,x2,...,xN}
V (x1)bx1(y1)

N−1∏

t=1

πxtxt+1bxt+1(yt+1) (1)

For practical details on application to protein structures, see
[Camproux et al., 1999].

Encoding proteins using Viterbi algorithm
Our ultimate goal is to reconstruct the unobserved (hidden) states sequence
{x1, x2, ..., xN} of the polypeptide chains, given the corresponding four-dimensional
vectors of descriptors {y1, y2, ..., yN}, and to provide a classification of suc-
cessive fragments in R states. For a given 3D conformation and a selected
model (fixed number R of states), the corresponding best state sequence
among all the possible paths in {S1, . . . , SR}N can be reconstructed by a
dynamic programming algorithm based on Markovian process (Viterbi algo-
rithm [Rabiner, 1989]).

Statistical criteria to determine the optimal number of states
Structural alphabets of different size (R), noted SA−R are learnt using HMM
and MM by progressively increasing R and compared using Bayesian Infor-
mation Criterion (BIC, [Schwartz, 1978]).
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2.3 Assessing the discretization of protein structures

For a given state, the average Cα Root-Mean-Square deviation (RMSd) be-
tween Cα coordinates, that is an euclidean distance, of the fragments to their
centroid is used to measure the structural dispersion of each state. To recon-
struct the protein 3D structures from their description as a series of states,
and to keep some comparison possible, we use the building procedure em-
ployed by Kolodny et al. [Kolodny et al., 2002]. Briefly, the fragments are
assembled using an iterative concatenation procedure to adjust 3D confor-
mation.

2.4 Quantifying structure similarity

During the HMM-SA encoding of proteins of known structures, the prob-
abilities of substituting one state for another are directly provided by the
forward-backward algorithm [Rabiner, 1989]. A lod-score or substitution
matrix is derived from these probabilities:

S(i, j) = ln[
P (Si, Sj)

P (Sj)P (Sj)
] (2)

which can be rewritten as

S(i, j) = ln[
P (Si|Sj)
P (Sj)

] (3)

with P (Si|Sj), the probability of letter Si substitutes for letter Sj at one
position and P (Sj), the probability of state Sj (computed as the proportion
of observed letter Sj). This lod-score matrix quantifying similarity between
states is shightly modified. The score values S(i,j) get to −∞ when the
substitution of state S(i) by S(j) is impossible. All the finite values of S(i,j)
are shifted and made positive, and the infinite one are replaced by large
negative values.

2.5 Measuring sequence-structure consistency

Amino acid / state dependence can be learnt a posteriori from the database
of 1429 proteins encoded in HMM-SA and the corresponding amino acid se-
quences. The specificity of each state in terms of amino acid is assessed using
the “relative entropy” [Kullback and Leibler, 1951].
These amino acid sequence / states dependence can be used to quantify the
consistency of a candidate 3D structure encoded in HMM-SA and its cor-
responding amino acids sequence. Emission probabilities of 20 amino acids
aj,1≤j≤20 from each state Si,1≤i≤R : P (aj |Si) are introduced in the HMM
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to compute the likelihood of an amino acids sequence {a1, a2, ..., aN} corre-
sponding to a structure encoded in states sequence x={x1, x2, ..., xN}.

V (a1, a2, ..., aN , x|λ) = V (x1)P (a1|x1)

N−1∏

t=1

πxtxt+1P (at+1|xt+1) (4)

3 Results

3.1 HMM-SA validation

HMM-SA is few dependent on the learning set
We learn SA of increasing sizes using either HMM or MM, and we compare
them on the basis of their goodness of fit (Figure (b.1)). The influence of
the Markovian process is large, as illustrated by the very different behaviors
of the BIC associated with MM0 or HMM1. For MM, no BIC optimum is
reached until alphabet sizes of 70 whereas for HMM, an optimum is reached
for a number of states of 27 (SA-27), larger than that obtained using MM,
which means a better fit of the data using HMM. Interestingly, the Markov
classification takes advantage of information implicitly contained in the suc-
cession of the observations to greatly reduce the number of states, keeping
a minimal representativity for each (at least 1.5%). Similar results are ob-
tained using two independent learning sets of 250 proteins with similar BIC
curves evolution. The optimum is reached for 27 states in both cases, and
we find that the two SA-27 very similar. It follows that, at the optimum, the
HMM-derived structural alphabet (HMM-SA) is very weakly dependent on
the learning set, which in turn suggests that the learnt model can be consid-
ered as representative of all protein structures.

Geometrical and logical description of the structural alphabet
The 27 identified states are denoted as structural letters: [a, A, B,..., Y, Z].
The set of letters, sorted by increasing stretches in figure (b.2) and their tran-
sitions constitute the SA The “local fit approximation” is low, as quantified
by the average alpha-carbon RMSd to the centroid associated with each state
(0.23 ± 0.14 Å). SA-27 shown very reasonable performance (RMSd value less
than 1Å) in terms of reconstruction of the whole protein structure accuracy,
compared to other recent libraries fragments optimized in a purpose of recon-
struction [Micheletti et al., 2000, Kolodny et al., 2002]. Concerning descrip-
tion of logic of protein architecture, 66% of 729 transitions between states
have probabilities less than 1% (see Transition matrix between 27 states in
b.3), i.e.. We observe the existence of pathways between the states, that
obey some precise and unidirectional rules. Looking in detail, we observe
that the states associated with close shapes have different logical roles. For
instance, the two closest states [A, a] in term of geometry, close to canonical
alpha helix, are distinguished by different preferred input and output states.
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Moreover, the learning process attempts to optimize the likelihood associ-
ated with the entire trajectories of the proteins, resulting in propagation of
such long range conditioning to the short range constraints that are learnt.
For instance, three major types of alpha-helices categorized as linear, kinked
or curved by Kumar and Bansal [Kumar and Bansal, 1998], seem identi-
fied in HMM-SA by [AAAAAAAAAA] series, [AAAAVWAAAA] series and
[aaaaaaaaaa] series. These results are detailed in [Camproux et al., 2004].

3.2 HMM-SA application: HMM structural alphabet as a
general concept to simplify 3D protein structure analysis ?

Discretization of 3D structural space of proteins in SA space
Subsequently, HMM-SA provides some kind of compression from the 3D pro-
tein coordinate space into the 1D structural alphabet space, see Figure 1. We
have explored two directions in which this facility could be of interest.

Categorizing structural similarity
The detection and analysis of structural similarities of proteins can provide
important insights into their functional mechanisms or relationship and offer
the basis of classifications of the protein folds. The global 3D alignment of
two proteins is NP-hard [Lathrop, 1994]. Therefore, approximate methods
have been proposed to achieve fast similarity searching, based on the direct
consideration of protein alpha-carbon coordinates [Gibrat et al., 1996],
[Holm and Sander, 1993, Shindyalov and Bourne, 1998]. Using HMM model,
the lod-score matrix of similarity between states (Eq(2)) allows to quantify
the similarity of protein fragments encoded as different series of states. It
is possible to use it with classical methods developed for the amino acid se-
quences similarity search and thus to reduce 3D searches as a 1-dimensional
sequence alignment problem [Guyon et al., 2004]. Although we currently ob-
tain performance poorer than pure 3D methods, this approach can perform
fast 3D similarity search such as the extraction of exact words using a suffix
tree approach, or the search for fuzzy words and is very promising in a per-
spective of combining with prediction procedure.

Applying sequence-structure consistency measures
All the states of SA-27 have some significant amino acid sequence specificity
compared to the profiles of the collection of 1429 protein fragments (“relative
entropy”, p<0.001). Ab initio prediction is commonly viewed as composed of
two problems (1) generating candidate folds, called decoys ; and (2) devising a
scoring function that discriminates between near native folds and other non-
native folds amongst the decoys [Kolodny et al., 2002]. Concerning point
(2), we can use significant dependence between states and sequence (Eq(3))
to evaluate the consistency of a set of decoys encoded in SA-27 with its
corresponding amino acids sequence. Preliminary results to discriminate 3D
decoys proposed in CASP6 (Critical Assessment of Techniques for Protein
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Structure Prediction) show some correlation with RMSd for decoys library
and this work is in progress.

4 Discussion and perspectives

In the present study, we have discussed an HMM derived 27 states SA based
on a Markov process of order 1. Higher order Markovian dependence could
be considered, but at the cost of a much larger number of parameters, which
may pose practical computational problems. HMM-SA fits well the previ-
ous knowledge related to protein architecture organization and seems able
to grab some subtle details of protein organization, while using a reduced
number of states. Results on dependence between letters and amino acid
sequence confirms that, despite we have learnt SA using only geometric in-
formation, we have not over-split sequence information and that all states
present some sequence signature. The resulting 1D representation of protein
structure can be applied to a large variety of problems recurrent to the field
of protein structure analysis and prediction. Here, we have presented some
evidence of its relevance for categorizing structural similarity, or measuring
some sequence / structure consistency. Work is under progress to enlarge
this to fold classification and prediction.
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Abstract. This paper presents the first real experimentations of the boosting tech-
niques applied to Blast for producing a model of functional domains whose amino-
acids primary sequences are not conserved during evolution. The BlastBoost al-
gorithm is depicted, and first results are analysed, showing the relevance of our
approach.
Keywords: Bioinformatics, Boosting, Sequence similarity, Functional domains.

1 Introduction

The function of a single protein is mainly carried out by a domain which
is a subsequence of amino-acids within the whole sequence of the protein.
During evolution, the sequence of such a domain can be significantly modi-
fied while the function is still conserved. One way of predicting the function
of a protein is to identify a known domain in the protein, despite sequence
modifications such as deletions or substitutions. Domains can be grouped
in functional families, themselves subdivided in subfamilies. Our work deals
with functional families whose domains are not well conserved during evolu-
tion, which means that, given the sequence of a protein, it is hard to predict
whether it carries the domain associated with the function. Formally, let F
be a functional family, let P = {p1, ..., pn} a set of annotated proteins which
are known to belong or not to F , our problem is to decide whether any new
protein p belongs to F . It is a supervised binary classification problem: how
to build a rule from the annotated proteins of P in order to determine the
class of new unannotated proteins.

In many cases, comparing a new sequence of protein p with some se-
quences of the family F is enough for predicting whether p ∈ F . Such a
similarity search may be achieved by using either an alignment program such
as Blast [Altschul et al., 1997] or any model of the family’s sequences, for
example stochastic and probabilistic models such as Hidden Markov Models.
Unfortunately, none of these methods is satisfactory whenever the sequences
of the domains of the family are not conserved: the models are hard to build.
For example, Membrane Spanning Domains (MSD) play the role of a pore
through which a substrate goes in and/or out of the cell. The composition in
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amino-acids of such a domain depends essentially on the nature of membrane
of the considered species, so their sequences are not conserved. As a conse-
quence, using usual alignment programs, or any current probabilistic model,
is not satisfactory for retrieving such a domain onto a protein.

One way for identifying such unconserved domains of a family F on a new
protein p is to successively (1) specialize the family F into several subfamilies,
(2) search significant similarities between p and each known protein of each
subfamily, and (3) check back the obtained predictions in order to remove
false positives. It is the Iris strategy, as presented in [Quentin et al., 2002] for
retrieving proteins that carry a MSD domain. Despite good results, such a
strategy is tedious to set up for many reasons. Among others, the subdivision
of the whole family into many subfamilies is possible only when the considered
domain has been widely experimentally studied. Moreover, since it is still
hand-made, the subdivision may suffer from annotation mistakes.

Our proposal is to use a classification technique which avoids the subdi-
vision of the functional family: how to learn a rule for deciding whether a
given protein’s sequence contains a domain of a given functional family. Usual
techniques in supervised classification consist in computing at once one strong
classification rule, i.e. a rule that is both selective (few false positives) and
sensitive (few false negatives). Instead our proposal is to progressively learn
a sequence of weak rules: each weak rule is not efficient on the whole training
set albeit better than a random prediction. Each weak rule is learnt from an
example that was badly classified using the previous weak rules. A strong
rule is eventually computed by combining weak rules weighted by the confi-
dence we have on each. Such a technique is named boosting [Schapire, 1990]
[Freund, 1995]. Our proposal is to learn those classifiers using Blast, which
is an algorithm to produce and evaluate local sequence alignments based on
a stochastic model.

2 Boosting blast

In the following of the paper, let X be the instance space and Y = {−1,+1}
be the label set. A learning algorithm takes as input a training set S =
{(x1, y1) · · · (xn, yn)} where xi ∈ X and yi ∈ Y . The learnt classifier is a
function H : X 7→ Y that predicts the label of any example of X according
to a model computed from the training set S. The training error of H is
the error rate made on the training set, while the test error of H is an
approximation of the real error rate made byH on all the instances ofX . The
Iris strategy starts from observations which are positive examples described
by their sequence of amino-acids, and applies a combination of alignment
programs in order to tag any new protein. Our approach is to consider the
problem as a classification problem which must be solved by taking advantage
of the predictive power of local alignment programs.



138 Capponi et al.

Since boosting is a general method for improving the accuracy of any given
learning algorithm, we propose to use it in order to improve the significancy
of learning algorithms computed over local sequences alignments. We chose
to boost Blast as it is the most popular tool for investigating sequence
alignments, and because it relies on a stochastic model.

2.1 Boosting: principles and algorithm

Boosting is a machine-learning method which is based on the observation
that finding many moderately inaccurate rules of thumb can be a lot easier
than finding a single, highly accurate prediction rule. Let M be an algorithm
or a method for finding the rules of thumb: let name it a “weak” or “base”
learning algorithm. The boosting approach calls M repeatedly, each time
feeding it with a different subset of S, more precisely a different distribution
over S. Each time M is called, it generates a new weak prediction rule;
after many rounds, the boosting algorithm combines these weak rules into a
single prediction rule that is proven to be much more accurate than any one
of the weak rules when enough data is available [Schapire, 1990]. On each
round, the distribution of S is updated in such a way that the weight on the
examples misclassified by the preceding weak rule is increased: this forces the
base learner M to focus its attention on the “hardest” examples. The final
combination of the weak rules is a simple weighted majority vote of their
predictions: the weight asssigned to a weak rule should actually account for
the confidence one can have on it.

We focus here on the AdaBoost algorithm (cf. Algorithm 1 further on,
introduced by [Freund and Schapire, 1997]), which is of reference. A complete
and easy presentation of practical and theoretical results about boosting and
AdaBoost is available in [Schapire, 2002], especially results concerning error
bounds.

Algorithm 1 AdaBoost(T ), where T is the number of rounds (iterations)

Given: (x1, y1), · · · , (xn, yn) where xi ∈ X and yi ∈ Y = {−1,+1}
Initialize D1(i)← 1/n, ∀i ∈ 1..n (D is indexed by the indices of the examples)
for all t = 1, · · · , T do

Train base learner M using distribution Dt

Get the base classifier ht : X → {−1,+1}
Compute αt ∈ R
Update:

Dt+1(i)← Dt(i) exp(−αtyiht(xi))

Zt

where Zt is a normalization factor chosen so that Dt+1 will be a distribution
of probabilities.

end for
Output the final classifier: H(x) = sign

“PT
t=1 αtht(x)

”
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Let us here comment the Algorithm 1 which considers the simplest case:
the range of each ht is binary. D is a distribution over the sample S which is
updated at each iteration t. Let εt = PrDt [ht(xi) 6= yi] be the training error
of the base classifier ht. The parameter αt should measure the importance
assigned to ht: it is usually related to εt. For binary base classifiers, we

typically set αt = 1
2 ln

(
1−εt
εt

)
as suggested in [Schapire, 2002].

2.2 Aligning sequences with Blast

For finding similarities between protein sequences, some algorithms compare,
in a pairwise fashion, a query sequence to all the sequences of a specified
database. Each comparison is given a score reflecting the degree of similarity
between the sequences. The similarity is measured and shown by aligning two
sequences, globally or locally. A global alignment is an optimal alignment
that includes all characters from each sequence, whereas a local alignment is
an optimal alignment that includes only the most similar local region(s) (e.g.
[Smith and Waterman, 1981]).

Among these algorithms, heuristic algorithms such as Blast and Fasta

trade reduced accuracy for improved efficiency. Blast [Altschul et al., 1990]
is actually a set of sequence comparison algorithms that are used to search
sequence databases for optimal local alignments to a query. Blast improves
the overall speed of searches while retaining good sensitivity by breaking the
query and database sequences into fragments (words), and initially seeking
exact matches between fragments. The algorithm then tries to significantly
raise the length of each match: the obtained extended fragments are named
high-scoring segment pairs (HSPs). Hence, each pairwise sequence alignment
is first assigned a raw score S (which accounts for the score of its HSP). Then,
if the raw score is over a given threshold, a statistical score is computed in
such a way one can discriminate between real and artefactual matches: the
expected number of HSPs with score at least S is given by : E = Kmn exp−λS

whereK and λ are parameters of the scoring system (gap costs and the matrix
of amino-acids substitutions), and m and n are the lengths of the sequences.
This score E, named the e-value of an alignment, is the expected number of
chance alignments with a score larger than (or equal to) S [Altschul et al.,
1997]. The smaller the e-value is, the most significant the alignment is.

Let A(x,D, τ) be a formatted result of the blastp program (program of
the Blast software for aligning proteins sequences) with x as a query, and
D as the database: it is a set that contains all the proteins of D aligned with
x with an e-value less than τ .

2.3 Boosting Blast

Experimentations of the Iris strategy show that some functional subfamilies
of MSD are more difficult than others to be delimited. Consequently, our
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major intuition was that the boosting principle should help to slim over the
covering of the description space of the subfamilies, by focusing on the pro-
teins that are on the boundaries hence improving the whole covering of each
subfamily. Indeed, many false positives are produced by all the tested recog-
nition methods (HMM, profiles, etc.) while they could help to make more
accurate the model of the subfamilies We then supposed that the boosting
techniques would help to focus on proteins of the boundary of each subfamily.

The Algorithm 2 depicts the backbone of “boosting blast” for computing
a model of one type of functional domains. At each iteration of the boosting
algorithm, the obtained weak classifier ht is a decision tree, built from a
Blast alignment of sequences whose query has been randomly selected in
the learning sample with respect to the distribution Dt. In order to compute
a decision tree of deepness 1 (a stump), a Blast program is launched with
query xt over the set of known protein’s sequencesX , which leads to the set of
proteins aligned with xt under the given threshold τ of e-value: A(xt, X, τ).
The base classifier ht generated at iteration t is then obvious: for any sequence
of protein x ∈ X , if x ∈ A(xt, X, τ) (i.e. x is aligned with xt) then x is
tagged as xt, otherwise it is classifed like the majority (according to Dt) of
the learning examples which are out ofA(xt, X, τ). With such a decision tree,
we can expect that the training error of each weak classifier is usually less
than 0.5 (which is a condition of the boosting technique). Indeed, the Blast

model of alignments is usually very predictive locally, so a few errors should
be observed for examples aligned with xt; moreover, since the majority class
is chosen for classifying proteins that are not aligned with the xt, the training
error over them is less than 0.5. We expect that boosting would then extend
the local predictivity of Blast to a global predictivity.

We actually set up many different kinds of weak classifiers. Two possible
variants among others are:

1. the deepness of the decision trees. The algorithm 2 considers trees with
only one test. The generalization to decision trees with d tests (a comb)
is straightforward: if the test j does not lead to a valuable alignment,
another example is selected from the same distribution Dt from which a
new test j + 1 is achieved, and so on until d blastp have been launched
with d different queries of the sample. Such a generalization should raise
the number of examples covered by each weak classifier, hence hopefully
decrease the training error εt.

2. The class of the selected example. If considering all proteins of a species,
the ratio between positive and negative proteins is very low. As a con-
sequence, we chose only negative examples which are known to be close
to the positive examples. Then, since both classes may be randomly
selected, we authorize to allow different thresholds τ+ and τ− for the
e-value, whether the query is a positive or a negative example. An im-
portant variant is to only authorize the selection of positive examples: in
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Algorithm 2 BlastBoost(τ ,T )

Given: (x1, y1), · · · , (xn, yn) where xi ∈ X and yi ∈ Y = {−1,+1}
Initialize D1(i)← 1/n
for all t = 1, · · · , T do

Select xi,t according to the distribution Dt

Compute At = A(xi,t,X, τ ) with blastp

Get ht : X → {−1,+1} such that ∀x ∈ X:

if x ∈ At then ht(x) = yi,t else ht(x) = argmaxk∈{−1,+1}
X

j,yj=k,xj 6∈At

Dt(j)

Compute

εt =
X

i=1..n,ht(xi) 6=yi

Dt(i) and αt =
1

2
ln

„
1− εt
εt

«

Update:

Dt+1(i)← Dt(i) exp(−αtyiht(xi))

Zt

end for
Output the final classifier:

H(x) = sign

 
TX

t=1

αtht(x)

!

such a way, the learning algorithm does not try to learn negative exam-
ples, instead it focuses on the boundaries of the family.

3 Experimentation

3.1 Protocols

The performance of the approach has been evaluated on a specific domain
found as a component of ABC transporters: the Membran Spanning Domain
(MSD). These domains have been chosen because they are poorly conserved
in sequence and their identification led to a large number of false positives in
previous analysis [Quentin et al., 2002]. We used five genomes to learn the
model, and five other genomes to test it. Genomes, both in the learning and
the test sets, were chosen according to the phylogeny. These sets are made
up of all the positive proteins (i.e. those proteins that carry a MSD domain),
and all the negative proteins that are close to the positive ones (i.e. they are
known to be aligned with one or more proteins of a MSD subfamily). Each
experiment has been launched 10 times with the same parametrization: the
reported results of one experiment are actually a mean of the results. These
first experiments helped us to investigate the role of parameters (d, τ , etc.).
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Ideally, the BlastBoost algorithm should run each Blast against the
whole set of known protein sequences. As it would be too long during both
the learning and the testing steps, we precomputed with Blastp, and stored,
the alignement of each sequence of a species with each sequence of all the
species.

As far as we known, no other algorithm seeking similarities between pro-
teins have been integrated within a boosting algorithm. As a consequence,
we compare the results of BlastBoost with the Iris strategy which previously
subdivided the MSD functional family into 18 subfamilies in order to be able
to annotate any new example with a low error test.

3.2 Results and discussion

The figure 1 presents the best results that we obtained by tuning up the
set of parameters and alternative algorithms presented section 2.3. The four
categories of test share the same d = 3; in all categories, positive and negative
examples were selected during the learning step.

Fig. 1. The number of iterations corresponds to the parameter T in the algorithms.
In tests of category A, τ+ = 10−2 and τ− = 10−10. In tests of category B, τ+ =
10−10 and τ− = 10−2. In tests of category C, τ+ = 10−2 and τ− = 10−2. In tests
of category D, τ+ = 10−5 and τ− = 10−5.
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The training (resp. testing) set contains 161 (resp. 172) positive proteins
and 73 (resp. 84) negative proteins. The selectivity of our method is almost
as good as this of the Iris method applied to MSD, while our sensitivity is
better (up to 0.999 with BlastBoost, and 0.946 with Iris). Yet, their method
previously subdivides the functional families into 18 subfamilies, so their
learning and testing steps are independant from one subfamily to another,
therefore more accurate. As a consequence, the results of BlastBoost are
good: with comparable results, BlastBoost is efficient on the whole functional
family even if the proteins sequences are not conserved. When analyzing
the misclassified data, we noticed that the problematic subfamilies identified
by Iris (M7 and M9) were better characterized by BlastBoost, while one
subfamily has not been circled by BlastBoost whereas it was an “easy” family
for Iris (M12). This last point results from an under-representation of M12
members in the learning set (1 out of 161 proteins), leading to false negatives
during the tests. So, in order for our result to be statistically significant, we
still have to work out the samples so that each subfamily is represented.

We improved our results by increasing the number of genomes in both
samples: with eight in each, the test error is less than 0.1 in the categories
of test B and C while the selectivity gets perfect in these categories. The ac-
curate study of the produced weak classifiers shows that some sets of aligned
sequences have a poor significance in their globality, for example when pro-
teins are dimers. Thus, we think of defining and importing the significancy
of an alignment within the boosting model, in addition to the significancy
of pairwise alignments (e-value). The InfoBoost algorithm [Aslam, 2000]
should be a first step towards the integration of sequences alignements prop-
erties within a boosting algorithm, for it pays attention on the quantitative
and qualitative performance of each weak classifier, which in our case can be
measured from the properties of each sequences alignement.

4 Conclusion

We presented a new way for learning a model of unconserved functional fam-
ilies, without dividing them into subfamilies, which is based on amino-acids
sequences, by applying the boosting techniques to one performant alignment
program, Blast. Our first results are good and promising. We think that
several improvments could be carried out, independently from the tuning of
the involved parameters. Among other, our first perspective is to integrate in
the boosting model, and especially in the rated confidence of weak classifiers,
some properties of alignment algorithms such as the density of an alignment,
which involves its covering rate of the database and the inner significancy of
the e-value’s distribution.
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Abstract. Microarray-CGH experiments are used to detect and map chromosomal
imbalances, by hybridizing targets of genomic DNA from a test and a reference
sample to sequences immobilized on a slide. A CGH profile can be viewed as a
succession of segments that represent homogeneous regions in the genome whose
representative sequences (or BACs) share the same relative copy number on average.
Segmentation methods constitute a natural framework for the analysis, but they do
not assess a biological status to the detected segments. We propose a new model
for this segmentation-clustering problem, combining a segmentation model with a
mixture model. We present an hybrid algorithm to estimate the parameters of the
model by maximum likelihood. This algorithm is based on dynamic programming
and on the EM algorithm. We also propose to adaptively estimate the number of
segments when the number of clusters is fixed. An example of our procedure is
presented, based on publicly available data sets.
Keywords: Segmentation methods, Mixture Models, Dynamic Programming, EM
algorithm, Model Selection.

Introduction

Chromosomal aberrations often occur in solid tumors: tumor suppressor
genes may be inactivated by physical deletion, and oncogenes activated via
duplication in the genome. The purpose of array-based Comparative Ge-
nomic Hybridization (array CGH) is to detect and map chromosomal aber-
rations, on a genomic scale, in a single experiment. Since chromosomal copy
numbers can not be measured directly, two samples of genomic DNA (re-
ferred as the reference and the test DNA) are differentially labelled with
fluorescent dyes and competitively hybridized to known mapped sequences
(referred as BACs) that are immobilized on a slide. Subsequently, the ratio
of the intensities of the two fluorochromes is computed and a CGH profile
is constituted for each chromosome when the log2 of fluorescence ratios are
ranked and plotted according to the physical position of their corresponding
BACs on the genome.

Each profile can be viewed as a succession of ’segments’ that represent
homogeneous regions in the genome whose BACs share the same relative
copy number on average. Array CGH data are normalized with a median
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set to log2(ratio)= 0 for regions of no change, segments with positive means
represent duplicated regions in the test sample genome, and segments with
negative means represent deleted regions. It has to be noted that even if the
underlying biological process is discrete (counting of relative copy numbers
of DNA sequences), the signal under study is viewed as being continuous,
because the quantification is based on fluorescence measurements, and be-
cause the possible values for chromosomal copy numbers in the test sample
may vary considerably, especially in the case of clinical tumor samples that
present mixtures of tissues of different natures.

Segmentation methods seem to be a natural framework to handle the
spatial coherence on the genome that is a specificity of array CGH data
[Autio et al., 2003, Jong et al., 2003]. These methods provide a partition of
the data into segments, each segment being characterized by its mean and
variance µk and σ2

k in the Gaussian case. Nevertheless, even if the data are
instrinsically segmented, they are also structured into clusters which have a
biological interpretation: we can define a group of deleted segments, a group
of unaltered segments, and many groups of amplified segments for instance.
This refinement means that the mean and variance of each segment should be
restricted to a finite set such that µk ∈ {m1, . . . ,mP } and σ2

k ∈ {s21, . . . , s2P }
if the segments are structured into P clusters.

We propose to handle this segmentation-clustering problem combining a
segmentation model and a mixture model to assign a biological status to seg-
ments. Section 1 is devoted to the precise definition of such model. In Section
2 we propose an hybrid algorithm combining dynamic programming and the
EM algorithm to alternatively estimate the break-point coordinates and the
parameters of the mixture. The convergence properties of this algorithm are
presented.

Once the parameters of the model have been estimated, a key issue is
the estimation of the number of segments and of the number of clusters. We
propose to estimate the number of segments when the number of groups is
fixed, using a penalized version of the likelihood. We propose to apply the
procedure defined by [Lavielle, 2005], that has been successfully applied to
array CGH data [Picard et al., 2005]. An example of our method is provided
in Section 3, using publicly available data sets.

1 A new model for the segmentation-clustering
problem

Let yt represent the log2 ratio of the tth BAC on the genome and y =
{y1 . . . , yn} the entire CGH profile constituted by n data points. We suppose
that y is the realization of a Gaussian process Y whose mean and variance are
affected byK+1 abrupt changes at unknown coordinates T = {t0, t1, . . . , tK}
with the convention t0 = 1 and tK = n. This defines a partition of the
data into K segments of length nk. We write Y as {Y 1, . . . , Y K}, where
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Y k = {Yt, t ∈ Ik}, with Ik = {t, t ∈]tk−1, tk]}. We suppose that the mean
and the variance of the process are constant between two break-points and
they are noted µk and σ2

k.
More than classical segmentation models, we assume that the mean and

variance of the segment Y k can only take a limited number of values with µk ∈
{m1, . . . ,mP }, and σ2

k ∈ {s21, . . . , s2P }. In addition to the spatial organization
of the data, via the partition T , there exists a secondary structure of the
process into P clusters, and we adopt a mixture model approach to handle
this problem.

We assume that the partitionned data {Y 1, . . . , Y K} are structured into
P clusters with weights πp (

∑
p πp = 1). We introduce a sequence of inde-

pendent hidden random variables, Zk = {Zk1 , . . . , ZkP } such that Zk is dis-
tributed according to a multinomial distribution consisting of one draw on P
categories with probabilities π1, . . . , πP . The mixing proportions π1, . . . , πP
then represent the prior probability for segment Y k to belong to the pth com-
ponent, while the posterior probability of membership to the pth component
with yk having been observed is: τkp = Pr

{
Zkp = 1|Y k = yk

}
. Contrary to

classical mixture models, where the indicator variables provide informations
about the labelling of individual data points (which would be Yt in our case),
our model focuses on the belonging of the segments Y k to different clusters.

We focus on the case where the data are supposed to be drawn from a
mixture of Gaussian densities, with parameters θp = (mp, s

2
p). If we suppose

the indepence of individual data points Yt within a segment, the model can
be formulated as follows:

Y k|Zkp = 1 ∼ N (mp1lnk
, s2pInk

).

We note ψ = {π1, . . . , πP−1, θ1, . . . , θP } the vector of unknown independent
parameters of the mixture, and the log-likelihood of the model is:

logLKP (T, ψ) =

K∑

k=1

log

{
P∑

p=1

πpf(yk; θp)

}
.

f(yk; θp) represents the conditional density of a vector of size nk. Our purpose
is to optimize this likelihood to estimate the parameters of the model using
an hybrid algorithm.

2 An hybrid algorithm combining the EM algorithm
and Dynamic Programming

The principle of our algorithm is simple: when the break-point coordinates
T are known, the EM algorithm is used to estimate the mixture parameters
ψ, and once ψ has been estimated, the break-point coordinates are computed
using dynamic programming. This algorithm requires the prior knowledge
of both the number of segments K and the number of populations P . The
choice for these components of the model will be discussed in a later section.
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2.1 Estimating the break-point coordinates when the mixture
parameters are known

When the number of segments K and the parameters of the mixture are
known, the problem is to find the best K-dimensional partition of the data
according to the log-likelihood logLKP (T, ψ). Since the number of of par-
titions of a set with n elements into K segments is CK−1

n−1 , and because of
the additivity in K of the log-likelihood, we use a dynamic programming ap-
proach to reduce the computational load from O(nK) to O(n2), as suggested
by [Auger and Lawrence, 1989].

Let Ĉk+1,P (i, j;ψ) be the maximum log-likelihood obtained by the best
partition of the data Y ij = {Yi, Yi+1, ..., Yj} into k + 1 segments, when the
mixture parameters ψ are known. The algorithm starts as follows: for k = 0
and for (i, j) ∈ [1, n]2, with i < j, calculate:

Ĉ1,P (i, j;ψ) = log

{
P∑

p=1

πpf(yij ; θp)

}
= log

{
P∑

p=1

πp

j∏

t=i+1

f(yt; θp)

}
.

Ĉ1(i, j;ψ) represents the local log-likelihood for segment Y ij . Then the al-
gorithm is run as follows:

∀k ∈ [1,Kmax] Ĉk+1,P (1, j;ψ) = max
h

{
Ĉk,P (1, h;ψ) + Ĉ1,P (h+ 1, j;ψ)

}

Dynamic programming considers that a partition of the data into k + 1 seg-
ments is a union of a partition into k segments and a set containing 1 segment.
More than a reduction in the computational load, this approach provides an
exact solution for the global optimum of the likelihood, that will be central
for downstream model selection procedures.

2.2 Estimate the mixture model parameters when the
break-point coordinates are known

When the break-point coordinates are known, we dispose of a partition of
the data into K segments {Y 1, . . . , Y K}. This partition defines the statisti-
cal units of a mixture model whose parameters have to be estimated. The
purpose is then to maximize the log-likelihood of the model logLKP (T, ψ)
according to ψ. As it is the case in classical mixture models, the direct op-
timization of the likelihood is impossible, but can be handled using the EM
algorithm in the complete-data framework [Dempster et al., 1977]. Let us
define the complete-data log-likelihood:

logLcKP (T, ψ) =

K∑

k=1

P∑

p=1

zkp log
{
πpf(yk; θp)

}
.

The EM algorithm is as follows:
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- E-step: compute the conditional expectation of the complete-data log-
likelihood, given the observed data Y , using the current fit ψ(h) for ψ.

QKP (ψ|ψ(h);T ) =

K∑

k=1

P∑

p=1

τk(h)
p log

{
πpf(yk; θp)

}
,

with

τk(h+1)
p =

π
(h)
p f(yk; θ

(h)
p )

∑P
`=1 π

(h)
` f(yk; θ

(h)
` )

.

- M-step: The M-step on the (h+ 1)th iteration requires the global max-
imization of QKP (ψ|ψ(h);T ) with respect to ψ to give the updated esti-
mate ψ(h+1):

ψ(h+1) = Argmax
ψ

{
QKP (ψ|ψ(h);T )

}
.

2.3 Convergence properties of the hybrid algorithm

The proof of the convergence of our algorithm is based on the properties
of both dynamic programming and EM. It can be seen that both algorithms
are linked through the likelihood they alternatively optimize: the incomplete-
data likelihood of the mixture of segments.

Dynamic programming globally optimizes the likelihood with respect to
T . At iteration (`) we have:

logLKP
(
T (`+1);ψ(`)

)
≥ logLKP

(
T (`), ψ(`)

)
.

On the other hand, the key convergence property of the EM algorithm is the
increase of the incomplete-data log-likelihood at each step [Dempster et al.,
1977]:

logLKP
(
T (`), ψ(`+1)

)
≥ logLKP

(
T (`), ψ(`)

)
.

Put together, our algorithm generates a sequence
(
T (`), ψ(`)

)
`≥0

that in-

creases the incomplete-data log-likelihood such as:

logLKP
(
T (`+1), ψ(`+1)

)
≥ logLKP

(
T (`), ψ(`)

)
.

3 Estimating the number of segments K when the
number of clusters P is fixed.

Once the parameters of the model have been estimated (for a fixed K and a
fixed P ), the next question is the estimation of the number of segments and
of the number of clusters. Since the principal objective of biologists is rather
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the detection of biological events on the genome rather than the clustering of
those events into groups, we choose to focus on the estimation of the number
of segments when the number of groups is fixed.

The maximum of the log-likelihood log L̂KP = logLKP (T̂ , ψ̂) can be
viewed as a quality measurement of the fit to the data of the model with K
segments. In classical segmentation models, this quantity is maximal when
the number of segments equals the number of data points. Nevertheless, as
our model also considers the clustered nature of segments, it appears that
the quality of fit of the model is not always increasing with the number of
segments, as shown in Figure 1. For P = 2 the incomplete-data log-likelihood
is decreasing for a number of segments K ≥ 12 for instance. This behavior
of the model can be interpreted as follows: since the segmentation-clustering
model is under the constraint P ≤ K, the addition of new segments can
lead to contiguous segments affected to the same cluster. This configuration
leads to an increase in the number of parameters (one additional break-point)
without any gain for the fit of the mixture model. These considerations imply
that there will be a number of segments above which the addition of a new
segment will not increase the log-likelihood.
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Fig. 1. Evolution of the incomplete-data log-likelihood log L̂KP with the number
of segments K for different number of clusters (P = 2, 3, 4).

A penalized version of the likelihood is used as a trade-off between a
good adjustement and a reasonnable number of break-points. The estimated
number of segments is such as:

K̂P = Argmax
K

(
L̂KP − βP pen(K)

)
,
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with pen(K) a penalty function that increases with the number of segments,
and βP a penalty constant. The definition of an appropriate penalty function
and constant has lead to theoretical developments in the context of break-
point detection models. Recently, [Lavielle, 2005] proposed to use an adaptive
procedure to estimate the penalty constant, that has been successfully ap-
plied to array CGH data [Picard et al., 2005]. The principle of this procedure
is to find the number of segments for which the log-likelihood ceases to in-
crease significantly. It is geometrically linked to the finding of the number
of segments for which the second derivative of the log-likelihood function is
maximal (see [Lavielle, 2005] for further details). A result of our procedure
is shown in Figure 2. For a number of clusters P = 3, the adpative proce-
dure estimates a number of segments K̂3 = 10. This leads to a profile which
presents three types of segments that can be interpreted in terms of biological
groups, as shown in Figure 2.
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Fig. 2. Result of the segmentation-clustering procedure for a fixed number of clus-
ters P = 3 and an estimated number of segments K̂3 = 10. These data concern
chromosome 1 of breast cancer cell lines Bt474.

4 Discussion

Microarray CGH currently constitutes the most powerful method to detect
gain or loss of genetic material on a genomic scale. We introduced a statis-
tical methodology for the analysis of CGH microarray data, that combines
segmentation methods and clustering techniques. It terms of modeling, the
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discovery of homogeneous regions clustered into groups could have been han-
dled using Hidden Markov Models, as in [Fridlyand et al., 2004]. In those
models, the segmented structure of the data is recovered using the posterior
probability of membership of individual data points into a fixed number of
hidden groups, whereas our method focuses on the labelling of segments to
hidden groups. Moreover, a property of Hidden Markov Models is that the
distance between two ’break-points’ is dependent on the probability distri-
bution of the hidden sequence: the within-class sojourn time is geometrically
distributed. Our approach is free from those constraints, since break-point
coordinates are ’real’ parameters of the model that are not randomly dis-
tributed.

The definition of this new model leads to unusual statistical considera-
tions: it appears that the statistical units of the mixture model (when the
segmentation is known) are segments of different size. Since the partition
of the data is random, the individuals of the mixture model themselves are
random. This explains the difficulty of the joint estimation of K the number
of segments, and P the number of clusters, since classical model selection
procedures are based on a compromize between a reasonnable number of
parameters to estimate given a fixed number of statistical units. To these
extents, this problem of model selection for two components remains an open
question.
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Abstract. The number of statistical tools used to analyze transcriptome data is
continuously increasing and no one, definitive method has so far emerged. There
is a need for comparison and a number of different approaches has been taken to
evaluate the effectiveness of the different statistical tools available for microarray
analyses. In this paper we describe a simple and efficient protocol to compare the
reliability of different statistical tools available for microarray analyses. It exploits
the fact that genes within an operon exhibit the same expression patterns. We have
compared five statistical tools using Bacillus subtilis expression data: ANOVA,
PCA, ICA, the t-test and the paired t-test. Our results show ICA to be the most
sensitive and accurate of the tools tested.
Keywords: operon, criterion of comparison, transcriptome, expression analysis.

1 Introduction on microarrays and their analysis

Protein activities are the bases of cell and organism functioning. In order
to fit to changes in extern or interne physiological conditions the expression
level of some genes and the quantity of the corresponding proteins may vary.
As proteins are much harder to analyze than mRNAs, techniques for tran-
scriptome analysis have been more popular up to now. In the last decades
a tool has been developed in order to measure the expression levels of many
genes (several thousands of genes) at the same time.

As microarrays allow measuring the expression levels of thousands of
genes at the same time, this opens the possibility to identify differentially
expressed genes [Callow et al., 2000] and to cluster those genes sharing sim-
ilar expression patterns [Heyer et al., 1999]. This allow the identification of
gene functions, regulation and networks.

Different tools have been developed for or adapted to the analysis of the
huge amount of data created in microarray experiments. The number of tools
is continuously increasing and no one, definitive method has so far emerged.
There is a need of comparing the tools, but identifying an unbiased and
biologically relevant criterion for the comparison is difficult [He et al., 2003].
A number of different approaches has been taken to compare the effectiveness,
or reliability, of the different statistical tools available for microarray analyses:
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* Some are based on artificial data to define precisely the specificity and
sensitivity of these statistical tools ([Reiner et al., 2003]).

* Others are based on experimental data. The quality of a statistical tool
can be measured by the number of differentially expressed genes which it
reveals. A statistical parameter like the p-value may be used [Pan, 2002].

* Finally some authors combine two criteria, the number of identified
genes and their physiological coherence, based on an a priori knowledge of
the biological phenomenon studied [Troyanskaya et al., 2002].

In this paper we try to establish a protocol for the comparison of sta-
tistical tools (available for microarray analysis) which is objective, reflects
a biological reality and is not bound to one, particular set of experimental
conditions. It is based on the expression coherence of genes belonging to the
same operon. In bacteria a number of genes are organized in operons, that
is to say clusters of contiguous genes transcribed from one promoter. For
an operon a single mRNA corresponds to several genes whereas for isolated
genes one mRNA corresponds to one gene. It has been shown that the genes
within an operon exhibit the same expression patterns [Sabatti et al., 2002].

That is why, a good and reliable statistical tool is one that, when detecting
an over- or under-expression for a gene belonging to an operon, also detects
this pattern for the other genes belonging to this operon. This criterion,
based on the expression coherence of genes belonging to the same operon,
therefore reflects a biological property that is not bound to a particular set
of experimental conditions.

We have tested this criterion on five statistical tools using Bacillus subtilis
expression data [Sekowska et al., 2001]: The Analysis of Variance (ANOVA),
the Principal Component Analysis (PCA), the Independent Component Anal-
ysis (ICA), the t-test and the paired t-test. Note: ANOVA and the t-tests
need the a priori definition of factors, which could influence the level of gene
expression; ICA and PCA do not need the definition of any factor for their
use.

2 Methods

The microarray data used in this study stem from experiments on the sulphur
metabolism of Bacillus subtilis [Sekowska et al., 2001]. The experiments
were carried out using B. subtilis gene arrays; each array contained all of B.
subtilis ’ genes and one gene is represented by one spot. Each gene spot is
represented twice on the array.

The aim of these experiments was to identify the genes differentially ex-
pressed when the bacteria are grown with methionine or methyl-thioribose
as sulphur source. The experiments followed a fully crossed factorial design
with 4 factors (sulphur source, day of experiment, amount of RNA used and
duplicate of each spot).
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We have used the logarithm (base 10) of these raw data in order to re-
move much of the proportional relationship between random error and signal
intensity. We have normalized the data (mean equal to 0 and variance equal
to 1 for each experimental condition).

We have chosen to analyze the expression data for the two experimental
factors ”sulphur source” and ”day of experiment”. For ICA and PCA the
axes which correspond to these two factors are determined a posteriori. For
PCA the factor ”day” corresponds to the third axis and the factor ”sulphur
source” to the fifth. The fourth axis corresponds to an interaction between
these two factors.

For each gene, the model used for ANOVA is the following:

Yijkl = µ+ Si + Jj + Ck +Dl + εijkl

where Yijkl is the gene intensity
µ is the mean of the intensities of expression measured for the gene
Si, Jj , Ck and Dl are, respectively, the effects of sulphur source i, exper-

iment day j, RNA concentration k and duplicate l on the gene intensity
εijkl is the residual error.
We need to know how the genes of Bacillus subtilis are organized into

operons. A presumed operon is defined as a group of contiguous genes that are
on the same reading strand delimited either by a promoter and a terminator
(predicted or not) or a gene, which lies on the other DNA strand. This
allowed to find the operons in Bacillus subtilis (Subtilist).

To compare statistical tools, one needs to define quantitative criteria that
will measure the ”tool reliability”: sensitivity, accuracy and the detection of
false positives need to be evaluated.

The following procedure was applied:

1. The genes are ranked as a function of their expression changes (rank #1
is the most significant).
In order to compare the five tools under the best possible conditions, the
genes are ranked according to the most relevant criterion for each tool,
that is to say, the one that gives the most coherent results for the tool:
* for ANOVA and the t-tests, the p-value obtained for each gene;
* for PCA and ICA, the remoteness from the cloud centre of the projec-
tion of the gene on the axis studied.
We thus obtain for each tool a list of genes, ranked according to a specific
criterion. The order of the genes on the lists obtained may differ from
each other.

2. ”Detected Operons” are identified based on the ranks (one gene of the
operon with rank ≤ 20 and another gene with rank ≤ 100).
It should be noted that a priori the ”Detected Operons” may be different
for the various tools tested.

3. The Most Significant Interval (MSI) is determined.
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In order to facilitate the analysis and comparison of the statistical tools
we introduce the Most Significant Interval (MSI). It is calculated for each
”Detected Operon” in the following manner:

MSIj = medianj − firstj

Where MSIj is the MSI of ”Detected Operon” j
medianj is the median of the rank values of the genes belonging to ”De-
tected Operon” j
firstj is the smallest rank value within ”Detected Operon” j

4. False positives are evaluated (MSI≥700).
The reliability of a statistical tool will also be measured by the absence
of false positives. For the definition of false positives we exploit the
fact that each gene spot had been duplicated on the microarrays and
any difference measured for two spots belonging to the same gene cannot
have a biological cause. We ranked the genes according to this ”duplicate
factor ”, as described under point 1 and identified ”Detected Operons” as
described under point 2. As there is no biological cause for this detection,
we find ourselves with false positives. The results of this analysis lead us
to conclude that a ”Detected Operon” is a false positive when MSI≥700
(see table 1 for details).

Operon name Operon MSI (most significant interval)
size ANOVA t-test Paired

t-test
PCA ICA

fliLMY cheY fliZPQR flhBAF

ylxH cheBAWCD sigD ylxL

19 2385 2242 1613 1193 2499

yonRSTUVX yopAB 8 61 134 124 127 251
hemAXCDBL 6 1360 1547
ruvAB queA tgt yrbF 5 1005 707

Table 1. Quantification of false positives

[We find ourselves with false positives. One exception is the operon yonRSTUVXyopAB, de-

tected by all four tools, with small MSIs. As we cannot give a biological reason, we suspect that

its detection is due to a default on the microarray used in the experiments.]

5. ”Relevant Detected Operons” are identified (MSI<700). The definition of
”Relevant Detected Operons” follows from the definition of false positives:
”Relevant Detected Operons” have an MSI<700.

6. The accuracy of a ”Relevant Detected Operon” is evaluated (MSI<150).
We define that an operon is detected with good accuracy if its MSI is
lower then a given threshold. Our results lead us to state that: Operons
detected with good accuracy have an MSI<150.

7. The sensitivity of a tool is evaluated.
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The sensitivity of the tools is estimated by comparing the number or
”Relevant Detected Operons” identified by each tool.

We have decided to compare the five statistical tools under three experi-
mental conditions biologists are frequently faced with:

* The experimental factor is identified and fully controlled. In the case
of the microarray data used in this study, this factor is the sulphur source
contained in the growth medium. In one case the sulphur source was me-
thionine, in the other case it was methylthioribose. The five statistical tools
were tested on these experimental data. The results obtained are displayed
in table 2.

Operon name Operon MSI (most significant interval)
size ANOVA t-test Paired

t-test
PCA ICA

yqiXYZ 3 1 1 4 3 6
argCJBD carAB argF 7 15 28 29 201 56
argGH ytzD 3 1 1 6 6 2
ahpCF 2 46 7 85 11 13
lctEP 2 26 36 8
levDEFG sacC 5 316 220 287
sunAT yolIJK 5 634 13
ydcPQRST yddABCDEFGHIJ 15 1313 116
ytmIJKLM hisP ytmO ytnIJ ribR

hipO ytnM

12 45 92

flgM yvyG flgKL yviEF csrA hag 8 509
fliLMY cheY fliZPQR flhBAF ylxH

cheBAWCD sigD ylxL

19 350

yxbBA yxnB asnH yxaM 5 15
yvrPONM 4 494
ycbCD 2 40
comGABCDEFG yqzE 8 49

Relevant detected operons 6 6 9 7 9

Table 2. Comparison of the statistical tools when the experimental factor is iden-
tified and fully controlled

* The experimental factor is identified but not under control. In this case
it was ”day”. The experiments were carried out twice, on different days. The
protocol followed was the same on these two days; however, parameters like
”room temperature” were not necessarily the same, thus introducing a factor
in the experimental setup that was identified but not under control. The
results obtained are displayed in table 3.

* The interaction between experimental factors. The aim of a protocol
is to separate completely the different experimental factors. However, the
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Operon name Operon MSI (most significant interval)
size ANOVA t-test Paired

t-test
PCA ICA

comGABCDEFG yqzE 8 16 26 28 6 4
comFABC yvyF 4 339 66 19
cotVWXYZ 5 148 315 417
groESL 2 37
yvaVWXY 4 53
yqxM sipW cotN 3 79
comEABC 3 35

Relevant detected operons 2 2 2 5 4

Table 3. Comparison of the statistical tools when the experimental factor is iden-
tified but not under control

expression of certain genes may be under the control of more than one fac-
tor. In this case one talks of an ”interaction between experimental factors”.
ANOVA and the t-tests are adapted to the analysis of variations due to a
single experimental factor; they are not well suited for the study of inter-
actions between factors; they were not tested under this condition. On the
other hand, ICA and PCA are well adapted to cope with possible interac-
tions; these interactions are identified because more than one factor plays a
major role in the definition of an axis. The results obtained are displayed in
table 4.

Operon name Operon MSI
size PCA ICA

purMNHD 4 71 57
ybaC rpsJ rplCDWB rpsS rplV rpsC

rplP rpmC rpsQ rplNXE rpsNH rplFR

rpsE rpmD rplO secY adk map

25 51 56

alsS alsD 2 25
rpsL rpsG fus tufA 4 21
yvaVWXY 4 73
yxbBA yxnB asnH yxaM 5 126
yyaEF rpsF ssb rpsR 5 408

Relevant detected operons 3 6

Table 4. Comparison of the statistical tools to detect possible interactions between
the experimental factors
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3 Results and discussion

Microarrays are defined as a tool for analyzing gene expression that consists
of a small membrane or glass slide containing samples of many genes ar-
ranged in a regular pattern. They are widely used for analyzing the relative
transcription level of genes. The number of statistical tools for analyzing the
huge amount of data created in the experiments is continuously growing and
no-one of these tools has yet emerged as the definitive one.

We have developed a protocol for the comparison of statistical tools ap-
plied to the analysis of transcription data. We have applied this method to
compare five statistical tools (ANOVA, t-test, paired t-test, ICA and PCA)
under three typical experimental conditions. All five tools were compared un-
der two of these conditions (see tables 2 and 3 for details), whilst only ICA
and PCA, which do not need the a priori definition of experimental factors,
could be tested under the third condition (see table 4 for details).

Based on our observations, we have defined threshold values to define
”Relevant Detected Operons” (MSI<700), false positives (MSI≥700) and to
define a good accuracy (MSI<150); the sensitivity of the tools is estimated
by comparing the number of ”Relevant Detected Operons” identified by each
tool.

ANOVA t-test Paired t-test PCA ICA

Relevant detected operons
Table 2-4 8 8 11 15 19
Table 2-3 8 8 11 12 13

Accuracy of Detection
Table 2-4 75% 75% 82% 80% 84%
Table 2-3 75% 75% 82% 83% 77%

Table 5. Overview of the results

[The table sums up the results obtained in this study. The first part of the table relates to the

number of ”Relevant Detected Operons” identified and thus to the tools’ relative sensitivities.

”Tables 2 - 4”: adding the results from Tables 2, 3 and 4, the total of ”Relevant Detected

Operons” has been calculated for each tool. The entries for ”Tables 2 - 3” have been obtained

accordingly. The second part of the tables relates to the tools’ accuracies: the percentage of

”Relevant Detected Operons” identified with a ”good accuracy” (MSI<150) has been calculated

for each tool, adding the results from Tables 2, 3 and 4 (”Tables 2 - 4”) etc.]

Table 5 sums up the results obtained. Overall, we observe that ANOVA
and t-test have the lowest sensitivity, whilst ICA is the tool with the highest
sensitivity. The same observations can be made regarding the accuracies of
the tools. It is interesting to note that even under the two experimental
conditions for which ANOVA and the t-test were conceived (tables 2 and 3),
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it performs less well than ICA. The paired t-test has a high accuracy but
a lower sensitivity than ICA just like PCA. However, each tool may detect
operons not identified by the other tools.

The results obtained by testing the five statistical tools show us that ICA
has overall the best performance.

In this paper we have set out to describe a simple and efficient protocol
to compare the reliability of different statistical tools available for microar-
ray analyses. The criterion used in our method is based on the expression
coherence of genes belonging to the same operon. The method is objective,
reflects a biological reality and is not bound to one, particular set of experi-
mental conditions. It allows to compare the sensitivity, the accuracy and the
detection of false positives of different statistical tools.

Here we have used this method to compare statistical tools applied to the
analysis of differential gene expression. However, the above protocol can also
be applied without modification to compare the statistical tools developed for
other types of transcriptome analyses, like the study of gene co-expression.
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Assistance Publique - Hôpitaux de Paris - INSERM U707
184 Rue du Faubourg Saint-Antoine
75012 PARIS

1 Introduction and biological background

With currently available genomic methods, it is increasingly easy to obtain
detailed information on the genetic code, found in most organisms in the
form of DNA strands or chromosomes. Due to the nature of DNA, it is not
a surprise that the smallest detectable difference between two chromosomes
is the ”Single Nucleotide Polymorphism” (SNP), corresponding to a change
in a base occurring at a given position (or locus) in two chromosomes. SNPs
happen to be fairly common in the genome (≈ 1 every 100 to 300 base pairs),
and have become of primary importance for mapping purposes (i.e. locating
a gene within a chromosome) because they provide a very dense set of mark-
ers.
In diploid organisms, chromosomes are found in homologous pairs. There-
fore, the genetic information, or genotype, consists of the sequences of both
copies. While this information is readily obtained from sequencing, it is not
technically feasible, at least with today’s high throughput methods, to obtain
phased information, corresponding to the exact two sequences underlying the
genotype. Consider for example a situation where at a first locus, the geno-
type A T was found (A on one chromosome, T on the other), and on a nearby
locus the genotype G C was found. Knowing phase amounts to know if one
chromosome bore A and G and the other T and C, or alternatively A and C
and T and G. When phase is known, a genotype may be split in two haplo-
types : these correspond to a combination of SNPs on the same chromosome.
Haplotypes give a more global picture of genetic variation, are more closely
related to the notion of allele, and provide more opportunity to detect a
dysfunctional version of a gene: it is therefore important to obtain this infor-
mation, especially to correlate it with phenotypic information, corresponding
to symptoms or conditions seen in individuals in case of polygenic disease.
In this text, a presentation of statistical haplotype reconstruction is given,
and a review of currently used algorithms is presented. We conclude with
some considerations regarding inclusion of these haplotypes in the analysis
of correlation between haplotypes and phenotypes.
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2 Notation

Consider a DNA region where K SNPs have been identified, and sequenced in
a sample of individuals. We obtain a n−sample of genotypes G = (gi)1≤i≤n
taken from (assumed) independent individuals, each consisting of K×2 val-
ues. Each genotype is made of two unobserved haplotypes Hi = (hi,1, hi,2)
taken in a collection H = (hj)1≤j≤m haplotypes existing in the popula-
tion. The distribution of probability on haplotype s in the population is
Θ = (θj)1≤j≤m , with

∑
Θj = 1

The precise number of haplotypes is generally unknown, but is obviously
bounded upwards by 2K. It is generally far less, and probably limited in
most cases to a few dozens. Furthermore, in a given sample, random fluctu-
ations may cause the absence of some haplotypes.
A pair of haplotypes is consistent with a genotype if the union of the pair
sums up to the genotype. Such a pair is called a resolution of the genotype.
The covering of a haplotype h is the number of individuals whose genotype
may be resolved using h and another haplotype.

3 Methods based on parsimony

These methods, first proposed by Clark, provide a very straightforward ap-
proach to haplotype reconstruction(1). First, the set of haplotypes H is set
to that of the “unambiguous” haplotypes H U determined from all individuals
who have at most one discordant SNP among the K sequenced sites. Some
ambiguous subjects may readily be resolved using pairs of haplotypes found
in H U . In case of multiple solutions, one is taken at random. Some subjects
may be resolved using one haplotype in H U and another haplotype h ,in this
case the latter is added to H . By repeatedly applying the last step with un-
resolved genotypes , the set of haplotypes is grown to explain the maximum
number of genotypes. Limitations of the method include that some genotypes
may not be resol ved at all by this procedure; furthermore it is dependant
on the order of presentation of the genotypes. Clark advocated repeating the
procedure several times to choose the most parsimonious solution.
A more systematic approach was presented recently, using a branch and
bound algorithm(2). Instead of adding sequentially haplotypes from ran-
domly chosen genotypes, the set of resolutions consistent with each ambigu-
ous haplotype is first enumerated. Then, starting from a solution (for example
take the first resolution of each genotype), all combinations are sequentially
explored. When it appears that the explored solution will require more hap-
lotypes than the best current solution, it is discarded at once. When an
explored solution requires less haplotypes than the best current, it replaces
this latter. A solution with the least possible haplotypes is ultimately recov-
ered. With minor improvements, this approach is able to deal with missing
data at some SNPs: it suffices to include as resolutions all pairs of haplotypes
consistent with the observed sites.
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4 Haplotype reconstruction as perfect phylogeny

One model for describing genetic evolution is known as the coalescent . In
summary, evolution is described along a tree, starting from a single branch
corresponding to a unique ancestral allele, and where each embranchment
corresponds to the occurrence of a new haplotype, appearing by mutation
from an already existing one. The resulting tree is called a phylogeny, where
all leaves correspond to existing haplotypes. In practical problems, phyloge-
nies are unknown, but because haplotypes are thought to have occurred by
the coalescent, it is tempting to impose that the set of haplotypes used to
explain a sample of genotypes should form a phylogeny(3). In this approach,
a further hypothesis is that recombination has been rare, whereby new hap-
lotypes as a mixture of already existing ones is neglected.
The set of genotypes is presented as a n × K matrix, with values 0, 1, 2
corresponding to a “wild” homozygous, “mutated” homozygous, and het-
erozygous site. The Perfect Phylogeny Haplotype problem is then to find a
2n × K binary matrix M of resolutions, with each row a haplotype, and a
phylogeny where each row of M corresponds to a leaf.
An algorithm has been proposed to efficiently find a solution to this problem
, when it exists. It rests on the characterization of a matrix M as defining
a perfect phylogeny if no submatrix of size 2n × 2 may be extracted that
contains all rows to exclude possible resolutions. A bound is available for
the number of solutions: if K−K0 is the number of sites where heterozygos-
ity has been observed, then there are at most 2K0 solutions allowing perfect
phylogeny.

5 Maximum likelihood with the EM algorithm

EMalgorithm(4)

Under the assumption of random mating, the probability of finding a
genotype made of the pair ( h.,1= hj, h., 2=hk ) is the product θi, θj of
the individual haplotype frequencies. If the pairs making a genotype g are
not observed, it is still possible to write the likelihood of this genotype by
summing the probabilities over a ll its resolutions. Therefore, the likelihood
is available, and maximum likelihood estimates may be obtained.
It turns out that a solution may be obtained by the EM algorithm. Write Θt

for the distribution of the m g enotypes. A formal EM algorithm is obtained
by iterating over equation

θt+1
g =

Eθt(ng|G)

2n

until probabilities do not change much. Uncertainty on the frequencies may
be obtained from the associated Fisher’s information matrix.
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Contrary to the two methods described above, the method does not end up
with a single possibility for each genotype. On the contrary, the probability
of each consistent resolution may be determined and taken into account in
further calculations. Like all instances of the EM algorithm, convergence
may be rather slow, all the more when K increases.

6 Haplotype reconstruction using Bayesian methods

PHASE(5)

To improve on EM reconstruction, Bayesian methods have been pro-
posed that incorporate imputation of haplotypes using Gibbs sampling. In
this approach, convergence to a stationary distribution of haplotypes may
theoretically be obtained.

Starting form an initial set of resolutions H(0) = (H
(0)
i )1≤i≤n for G, where

each H
(0)
i corresponds to a pair of haplotypes resolving individual i , the fol-

lowing steps are repeatedly applied to obtain an updated resolution H (t+1)

from the current set H (t) :

1. choose an individual i from all ambiguous individuals,

2. sample H
(t+1)
i from the law of H

(t+1)
i |G,H(t)

−i , where H
(t)
−i is the current

set of resolutions excluding subject i ,

3. set H(t+1) = (H
(t+1)
i )1≤i≤n

The distribution is updated a large number of times, and samples from
the distribution on haplotypes is obtained by states of H(t), after an appro-
priate burn−in period has been discarded, and with suffic ient thinning to
avoid correlation in the output.
The only problem left in this approach is the determination of a convenient

proposal law for H
(t+1)
i |G,H(t)

−i . Stephens has shown that this law was pro-
portional to π(hi,1|H−i)π(hi,2|H−i, hi,1) , where π (h |H ) was the conditional
probability of a haplotype h given a set H of previously sampled haplotypes.
Fur ther, they proposed, from an analysis of the distribution of haplotypes
generated under the coalescent theory in randomly sampled individuals that
this conditional probability could be approx imated by a parametric law de-
pending on a mutation rate and mutation matrix that could efficiently be
sampled from.
However, when haplotypes are made of a large number of SNPs, it becomes
impractical to adopt the above approach. Therefore, instead of updating the
whole haplotype for subject i , only a subset of SNPs is updated at a given
time, giving a local updating strategy.
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HAPLOTYPER(6)

Another take at updating a large number of haplotypes is to explicitly
subset the problem, using a “divide and conquer” strategy. In this approach,
the set of K SNPs is split in adjacent blocks of moderate length L (≤ 8
for example). Because there are less than 2L haplotypes, it is possible to
enumerate all haplotypes in the block, and to sample from their distribution
by Gibbs sampling, using a Dirichlet prior for the frequency of haplotypes.
Once convergence is met on the separate blocks, ligation may occur: adjacent
blocks are united either sequentially or hierarchically. At each ligation, a set
of haplotypes for exploration is made by combination of the best B haplotypes
of each block. This strategy leads to much improved computational efficiency.

7 Conclusion

Several strategies have been described for haplotype reconstruction from
genotypic data. The first are combinatorial, and proceed by a systematic
exploration of all resolutions. These methods have two characteristics: they
are easily understood, and efficient algorithms have been found to reach a
solution when it exists. However, these methods are not cast in a statistical
framework, and may give a false sense of certainty when a solution is found.
Indeed, statistical uncertainties due to sampling and ad hoc simplifications
are not taken into account.
The second kind of methods is based on statistical maximum likelihood es-
timation, either in a frequentist or Bayesian framework. The EM approach
was until recently the only available approach of this kind. Of practical im-
portance is that it is possible to analyse the association between phenotypes
and haplotypes, even if these have not been observed(7).
In fact, it is possible by spreading every observed genotype on the set of
compatible haplotypes.
Methods based on more Bayesian sampling, using the Gibbs sampler have
emerged as a very efficient alternative, consistently outperforming the previ-
ous methods. Software packages have been released that make the approach
available to the community. They differ in how much data they can handle
in the same run; and also in how missing data is dealt with. Some progress
is possible on the algorithms : for example, Stephens recently incorporated
the idea of partition/ligation in their approach, leading to much improved
performance(8). It is still unknown if perfect sampling could be used in this
respect.
Finally, it should be remarked that the presented methods have been eval-
uated mostly using simulated data. It may now be technically possible to
obtain phased information on small samples, which will provide an opportu-
nity to test the methods with real data.
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Abstract. Modeling, reverse-engineering and analysis of macromolecular networks
has spurred increasing interest in the computational biology and the biostatistics
communities. Biologists need rigorous and flexible tools to describe, infer and study
these complex systems. This survey focuses on some of the latest advances on the
corresponding direct and reverse modeling approaches.
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1 Introduction

With the availability of complete genome sequences and high-throughput,
post-genomics experimental data, the last 5 years have witnessed a growing
interest in the study of networks of macromolecular interactions.

During the last few years, modeling efforts have targeted several dis-
tinct types of networks at the molecular level : gene regulatory networks,
metabolic networks, signal transduction networks or protein-protein interac-
tion networks, not to mention networks of interactions that are not restricted
to a cell (intercellular communications) or take place at an altogether differ-
ent level of detail (immunological networks, ecological networks). Here, we
focus exclusively on molecular processes that take place within a cell, and
more specifically on two distinct types of cellular mechanisms : transcrip-
tional regulation and metabolism.

A major challenge consists in identifying with reasonable accuracy those
complex macromolecular interactions that take place at different levels from
genes to metabolites through proteins. Once identified, a network model can
be used to simulate the process it represents, or for a variety of analyses,
ranging from statistical properties of its topology to predictions of features
of its dynamic behavior, or even prediction of cellular phenotypes.

This review focuses on modeling frameworks for biological networks, and
on the existing methods to identify models from data within these frame-
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works. Framework choice and design are influenced both by targeted anal-
yses, and by the need for model identification methods that will yield ex-
ploitable results given available experimental data and prior knowledge.

2 Models of biological networks

Why design models of biological networks ? A first motivation is to present a
synthetic view of the current state of biological knowledge on a given network,
and to structure it in a way that brings to sight relevant properties that might
remain hidden without the model, or with a less relevant model. A second
motivation is to allow predictions of (properties of) the network’s dynamical
behavior, one key point being that if these predictions can be compared with
experimental results, they should allow either confirmation of the model’s
accuracy or, better yet, correction of the model.

Recent modeling framework proposals abound (see [de Jong, 02] for a
detailed review), resulting in significant advances in the biological network
modeling field, but also in a conceptual landscape that seems somewhat clut-
tered and unstructured. This impression is only superficial, however. The
landscape can be simplified by regrouping frameworks that have similar un-
derlying mathematical structure. In addition, models are very often goal-
oriented, each framework was originally designed with some analytical aim
in mind. In the rest of this section, we review families of formalisms classified
according to the types of analyses and predictions for which they are best
suited.

As we will see in the section 3, however, such a classification is only
one-half of the story : available experimental data and model identification
methods can also have a strong influence on the choice or design of a frame-
work. The final modeling choice is often the result of a subtle balancing
act between the requirements of model identification and the goals of the
intended analyses.

2.1 Gene regulatory networks

Transcriptional regulation is the process by which genes regulate the tran-
scription of other genes. A gene A directly regulates a gene B if the protein
that is encoded by A is a transcription factor for gene B, ie if it binds to DNA
on a specific site near the sequence coding for B, called a regulatory region
of B, and activates or inhibits its rate of transcription. Regulation can be
indirect, e.g. A activates B, which activates C, and cooperative, i.e. several
genes regulate the same target gene in a non purely additive manner.

Several types of experimental data provide information on the transcrip-
tional regulation process, some of which can be produced at high-throughput,
while others still result from targeted, context-dependent assays and there-
fore can be acquired only for small networks. The main high-throughput
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technology is DNA chips which measure the concentration of mRNAs (a.k.a
the expression level of genes) corresponding to all genes (or a large set of
genes) in the organism under study, for several time-points or several differ-
ent conditions, i.e. environmental changes, genetic or chemical perturbations
of the system [Spellman et al., 98]. These experiments can be seen as pro-
viding instantaneous pictures of the state of the regulatory network. Other
sources of information include ChIP-chip ([Lee et al., 02]) assays, that de-
tect direct regulatory influences by identifying the binding of a protein to
a regulatory region (in other words, a protein-DNA interaction), as well as
the identification of sequence segments that are similar to known regulatory
sequences, using sequence comparison methods. So far, large-scale expression
and protein-DNA datasets have been generated mainly for model organisms,
i.e. Saccharomyces cerevisiae (common yeast) and to a lesser extent the bac-
terium E.coli, making these the most likely candidates for any large scale
reverse modeling effort.

2.1.1 Analyses of network topology : directed graphs The first cate-
gory of properties of interest in biological networks are those related to their
(static) network structure. Such topological analyses are most meaningful
when applied to large (‘genome-scale’) networks, the aim being to identify
statistical properties that can be interpreted as ‘traces’ of underlying biolog-
ical mechanisms or design principles, related for instance to their dynamics
[Shen-Orr et al., 02, Watts and Strogatz, 98] ( how the connectivity structure
of the biological process reflects its dynamics), to their evolution [Jeong et al.,
00, Wagner, 01] (i.e. likely scenarios for the evolution of a network exhibiting
the observed property or properties), or to both [Jeong et al., 01, Milo et al.,
04].

One should emphasize that those analyses that are motivated by the
search for insights into network dynamics focus on network structure mostly
because large-scale data on network dynamics is not yet available. They
can provide valuable insight insofar as the interpretative leap between static
structure and dynamic behavior is performed carefully. Statistical graph
properties that have been studied in this context include the distribution of
vertex degrees [Jeong et al., 01], the distribution of the clustering coefficient
and other notions of density [Newman, 03, Guelzim et al., 02], the distri-
bution of vertex-vertex distances [Ravasz et al., 02], and the distribution of
network motifs occurrences [Milo et al., 02].

The framework of choice to study these properties is also the most straight-
forward one. A gene regulatory network is viewed as a directed graph : a pair
(V,E) where V is a set of vertices and E a set of directed edges, i.e. pairs (i,j)
of vertices, where i is the source vertex and j the target vertex. Vertices of
the graph represent genes, edges represent regulatory influences. Note that
in some cases, it may be preferable to work with undirected graphs instead,
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for instance when only the existence of a correlation between the expression
levels of two genes is known, but not the causal direction.

This simple model can be enriched by adding information (labels) on
vertices or edges : for instance, ’+’ or ’-’ labels on edges may indicate positive
or negative regulatory influence, the existence of an edge may be specified as
conditional on the cell being in a specific global state, or on the source gene
(the regulator) being expressed above a given threshold. These latter types
of additional information, however, refer implicitly to notions of state and
temporal evolution, and thus lead naturally towards qualitative dynamical
models.

Finally, it is worth mentioning that enriched graph representations are
also at the core of most existing biological pathways databases [Cary et al.,
05]. One reason is their simplicity, another one is that basic or complex
queries on biological networks often correspond to classical operations on
graphs, e.g. the search for paths between genes obeying given conditions.

2.1.2 Analyses of network dynamics : continuous models, discrete
models The dynamics of regulatory processes has been the object of intense
recent scrutiny. Whereas understanding the detailed dynamics of a regulatory
network requires more experimental information than deciphering its static
structure, dynamics is obviously one step closer to biological function.

Models can be used to run simulations of the biological system under
study, with various choices of values for parameters corresponding either to
unknown system characteristics or to environmental conditions. Comparison
of simulated dynamics with experimental measurements can help refine the
model or provide insight on qualitative properties of the system’s dynamical
behavior. The latter can also be addressed directly, by reasoning on or iden-
tifying properties of the system’s behavior instead of simulating it, with the
help of theoretical tools that depend on the choice of formalism. Dynamical
properties of interest include the identification of steady states or limit cy-
cles, identification of multistable (e.g. switch-like) behavior , identification of
oscillatory behavior, characterization of the role of some parts of the network
in terms of signal processing (e.g. amplifiers, derivators, logic gates) , and
assessment of robustness environmental changes or genetic perturbation (see
[Tyson et al., 03, Wolf and Arkin, 03] for detailed review).

The default modeling option to simulate the dynamics of regulatory pro-
cesses is to write a system of differential equations that govern the evolution
of mRNA and protein concentrations. Typically, a gene regulatory network
is modeled as a system of rate equations of the form : dxi

dt
= fi(x), 1 ≤ i ≤ n

where x= (x1, . . . , xn) is the vector of concentrations (of mRNAs, proteins
or small molecules) and fi : < → <n a function, not necessarily linear. The
level of detail and the complexity of these kinetic models can be adjusted,
through the choice of the rate functions fi. Typical tradeoffs include :
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• using a more or less simplified set of entities and reactions, e.g. choosing
whether to take into account mRNA and protein degradation,

• including delays to account for transcription, translation or diffusion time

• using more or less detailed kinetics, i.e. specific forms of fi

Systems of differential equations as a modeling framework for biological
networks presents two major drawbacks. Each equation in the model requires
the knowledge of one or several parameter values (thermodynamic constants,
rate constants), which is out of the present reach of high-throughput data
production techniques. It is thus difficult to instantiate models of large net-
works directly, and reverse-engineering techniques are limited in how much
information they allow to extract from limited datasets. Moreover, deriv-
ing meaningful dynamical properties of large differential equations system is
a challenge : the fi being nonlinear, analytical solutions are not known in
the general case. So far these systems have been mainly used for numer-
ical simulations within given parameter ranges (realistic or not), possibly
complemented by bifurcation analysis, rather than submitted to analytical
approaches [de Jong, 02].

These limitations have motivated two main tracks of investigation on
alternative modeling frameworks for biological networks : simplified kinetic
models on one hand, and discrete1 models on the other hand.

Simplified continuous frameworks include piecewise-linear differential equa-
tions, a special case of rate equations where the response of a gene to regu-
latory stimuli (the function fi) is approximated by a step function [de Jong,
02]. Linearity facilitates the analytical treatment of some dynamical proper-
ties, such as steady states. Systems of piecewise-linear differential equations
can also be analyzed qualitatively by discretizing and recasting them within
the framework of qualitative differential equations, where variables and their
derivatives take qualitative (discrete) values and functions fi are abstracted
into sets of qualitative constraints.

Several discrete modeling frameworks have been proposed, each with a
specific tradeoff between the level of detail of its chosen observables and the
type of analyses that it enables : boolean networks (see below), generalized
logical networks [Thomas et al., 1995](a generalization of boolean networks
that increases biological realism by allowing variables to have more than two
values and using asynchronous transitions ), petri-nets [Matsuno et al., 2000],
process-algebra [Regev et al., 2001], rule-based formalisms [Chabrier et al.,
04].

1 Here, we mean that time is discretized, leading to frameworks where the dynamics
is governed by state transitions between t and t+1. Discretization of expression
levels and/or of rate functions are a different path to simplification of either
time-continuous or time-discrete frameworks.
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2.2 Metabolic networks

Metabolism is the set of processes by which a cell extracts energy and raw ma-
terial from its environment, and uses both to produce the components (DNA,
proteins, lipids...)necessary for its survival and function, and to interact with
its environment. Metabolic networks are thus networks of biochemical re-
actions : each reaction transforms one or several substrates (metabolites,
i.e. small organic molecules) into one or several products (metabolites as
well).To occur within a cell at a significant rate, a metabolic reaction needs
to be catalyzed by an enzyme (a protein with catalytic activity) specific to
that reaction.

Much of the classification introduced above for regulatory networks ap-
plies to metabolic networks ; indeed, several formalisms and analytical tools
have been used on both. One should not be misled by these similarities,
however : metabolic networks and regulatory networks represent very dis-
tinct, albeit interrelated, biological mechanisms, and this does translate into
mathematical differences.

The framework of choice to capture the connectivity structure of a metabolic
network is a directed bipartite graph (rather than a simple directed graph)
: vertices correspond respectively to metabolites and reactions, edges repre-
sent production or consumption of a metabolite by a reaction. Two types
of simpler graphs can be extracted from such a bipartite graph : enzyme
graphs, where an edge between two reaction vertices denotes the fact that
a product of the source reaction is a substrate of the target reaction (and
can also denote the causal ordering of reactions in metabolic processes), and
metabolite graphs, where vertices representing metabolites are linked when a
reaction consumes one to produce the other. For all three graph types, active
areas of research include the definition of biologically meaningful distances
and the design of relevant and computable subgraph similarity measures to
allow comparative studies.

Metabolic networks dynamics can be expressed as described above, us-
ing systems of rate equations and a given approximation for rate functions.
Attempts at analytical reasoning have spurred the development of various
simplified frameworks, including Biochemicals Systems Theory [Savageau,
1991] where production and consumption rates are expressed using a power-
law approximation, and Metabolic Control Analysis [Westerhoff et al., 1994],
which focuses on a first-order approximation of the dynamical system in the
neighborhood of steady-state. It is worth noticing that discrete frameworks
have seldom been used to model metabolism : metabolite fluxes and con-
centrations are the key variables of interest here, in contrast with regulatory
networks where an on/off discretization of the state of a gene already pro-
vides valuable information on the regulatory logic. Another type of abstract,
scalable framework have been successfully applied to metabolic modeling :
constraint-based modeling.
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Constraint-based modeling is a framework dedicated to the modelling of
metabolic processes at steady state : a global state of the metabolic network
is defined as a distribution of fluxes within the network reactions. It emerged
in the 90s as a simplification of kinetic models (mostly in the Schuster and
Palsson groups), and was developed to allow tractable modelling of genome-
scale metabolic networks [Price et al., 04]. The steady-state hypothesis po-
sitions the framework at a level of detail intermediate between description
of static network structure and representation of network dynamics. It is
designed to represent incomplete information, yet to allow some prediction
of metabolic behavior. The focus, rather than being on fully instantiated
descriptions of the system’s behavior, is on sets of such descriptions, i.e.
sets of flux distributions compatible with a set of constraints representing
the current knowledge on the structure of the network, on thermodynamic
and kinetic parameters, and on input/output relationships of the network
with its environment. The solution set can be refined incrementally as new
constraints are added, ensuring some robustness in structural analyses and
metabolic behaviour predictions with respect to modifications of the model.
As this framework has been applied successfully to a variety structural anal-
yses and predictive tasks on large metabolic networks in bacteria and yeast,
yielding interesting biological results, efforts are under way to extend it while
preserving simplicity and tractability.

3 Model identification: a machine learning problem

Once a formal framework is defined to describe models of biological networks,
the question of how to choose parameters arises. Various works have shown
that this identification problem can be expressed in the framework of ma-
chine learning. Given a family of mathematical models of gene interactions
and a set of observations, learning consists here in optimizing the parame-
ters of the model in such way that it captures the observed behavior of the
true system. The ability of the instantiated model to be used in prediction
is referred as the generalization property. A model is able to generalize if
learning ensures a trade-off between a good fit to the data and simplicity of
the model. Solving a learning problem leads to three key questions : the rep-
resentation problem, the optimization problem and the validation problem.
The representation problem concerns mostly the choice of the formalism in
which data and the model are going to be expressed, and the method to en-
code them into this formalism. Both symbolic and numerical learning leads
to an optimization problem whose nature is combinatorial (for symbolic
learning) and numeric (for statistical learning). Statistical approaches gen-
erally use maximum likelihood criteria penalized by a parsimony constraint.
Combinatorial approaches are solved using heuristics to ensure a large ex-
ploration of the models spaces. At last validation is required to identify
how one can trust the inferred model. In this area statistical approaches
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benefits from an important background in statistical validation of estimation
methods. The validation question is far from being solved in the context of
network reconstruction, however.

Most efforts on biological networks identification fall into this framework,
albeit most of them do not address each of the above key issues. They can
be divided into two categories: on one hand, the static approaches that ne-
glect temporal aspects and focus on the sole reconstruction of the interaction
graph, and on the other hand, the dynamic approaches that aim at model-
ing the underlying dynamic system providing both structure and dynamics
parameters.

3.1 Static approaches

Several static approaches have yielded promising results in reconstructing
gene networks. In order to focus on the structure identification problem,
they ignore the temporal aspects and search for causality chains among the
variables at hand. This point of view is based on the implicit assumption
that the underlying dynamical process is at equilibrium, and that no circuit
exists among studied genes.

Bayesian networks are undoubtedly the most successful approach to gene
networks structure reconstruction.They represent the expression levels of
genes as random variables, whose joint probability law has to be identified.
This model has two major advantages : it takes into account the inherent
stochastic character of biological processes and it is able to cope with noisy
data. A graphical display of such models can be obtained by considering di-
rected acyclic graphs whose vertices are genes and whose edges are modeled
by conditional probabilities distributions. Choosing discrete or continuous
variables, parametric or non parametric forms for the cpd’s are the main
questions in the representation problem.

Learning bayesian networks consists in estimating the joint probability
distribution of the variables using available data. The core issue is to find
the decomposition of the joint law in the conditional probability distributions
(cpd’s) among the relevant variables. This decomposition defines the graph
structure. Once the structure of a network is given, the task of learning cpd
’s is not difficult. Learning the structure, however, is an NP-hard problem
that can only be tackled by heuristics. Several pioneering results in this area
have been achieved using a constructive strategy. Reconstruction has been
shown to be successful on the yeast cell cycle dataset of [Spellman et al., 98].

Extensions of these results were obtained by integration of prior knowl-
edge into the model. For instance, [E.Segal et al., 01] introduced an enriched
formalism, probabilistic relational networks (PRN) that allows to deal with
object variables instead of simple discrete or continuous variables. Informa-
tion about promoters and genomic sequence can be thus be introduced. While
information propagation in the net is modified and for this reason learning
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becomes also more complex, this work opens the door to new formalisms that
couple high level descriptions with a probabilistic framework.

Another variations on bayesian networks models is the so-called ’module
networks’ approach. Module networks introduced in [E.Segal et al., 03] have
been proposed as bayesian networks with a special structure, where the vari-
ables sharing the same parents are gathered into a so-called module, i.e. a
set of genes that appear to be co-regulated in some experimental conditions.
Elucidating which are the genes that belong to the same modules and what
are the conditions under which these regulations occur can be solved using
a Expectation-Maximization(EM) based algorithm that starts from relevant
initializations.

Validation can consist in the comparison between the inferred structure
and the true structure. The simplest way consists in a comparison between
the inferred network with other sources of knowledge. Precision and recall
measures, ROC curves have also been proposed to evaluate the power of
learning algorithms [Husmeier, 03].

However all these static approaches are not able to discover circuits in a
graph interaction. The reason is that without considering time, it is not pos-
sible to elucidate feedback interactions that can only be observed an through
time.

3.2 Dynamic approaches

Dynamic approaches aim at identifying the dynamics of the system imple-
mented by a biological network while extracting the structure. Only discrete-
time models are considered for learning since experimental data come from
discrete-point measurements. In the area of genetic networks, the available
data take the form of gene expression kinetics measured after some perturba-
tion of the studied organism. While these data are more expensive to generate
than static data, a few subsets exist and mainly concerns model organisms
such as bacteria or yeast. Modeling dynamics of a network can serve both
exploratory and explanatory goals. A long-term goal is of course to exploit
these models in simulation and prediction for drug-design and therapeutical
targeting. However its should be stresses that this feature has not yet been
fully exploited in the existing works.

Dynamic models that have been considered for learning include Boolean
networks, artificial recurrent neural networks, dynamic bayesian networks
including state-space models. Learning in boolean networks has first been
tackled with combinatorial algorithms [Akutsu et al., 1999]and then renewed
by using a randomized algorithm. However the best way to reduce complexity
of the problem is to reduce the class of boolean functions as proposed in[Gat-
Viks et al., 03] with the so-called chain functions. Promising new directions
have also been introduced by [Shmulevich et al., 02] with the introduction
of Probabilistic Boolean networks and learning algorithms devoted to their
reverse engineering.
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While boolean networks simplify the description of the system’s dynamical
behavior, quantitative models have attracted much attention from machine
learning community because of the existence of a large set of efficient learn-
ing algorithms for numerical data. These models are usually based on the
quantization of differential equations. Again the representation issue implies
to choose among linear/non linear models and discrete/continuous variables.
Keeping the model deterministic allows its implementation as a recurrent
artificial network (see for instance [D’haeseleer et al., 00]and [Mjolness et
al., 00]) for which learning algorithms such as genetic algorithms and back-
propagation through time have been designed .This last feature avoids avoids
data-overfitting. This framework can be compared to dynamic Bayesian net-
works that are inspired from stochastic differential equations [Hoon et al.,
03], or can simply be obtained by adding a noise component to the equation
[Perrin et al., 03]. These approaches aim at estimating the joint probability
of the temporal sequence of network states. The optimization task takes the
form of a likelihood maximization problem with a parsimony constraint.

Several dynamic approaches have been applied to different models, first
order [Hoon et al., 03], second order models [Perrin et al., 03], and from
linear to non linear [Nachman et al., 04] to splines-based models. Validation
of dynamical approaches can be performed by measuring the ability of the
model to make k-step predictions or to predict the last part of the sequence
used for training. However the most difficult point remains the ability of the
algorithm to retrieve the structure of the network which can be deduced from
the identified parameters.

4 Conclusion and perspectives

We have reviewed modeling formalisms for biological networks and their re-
lationship to down stream analysis and reverse engineering methods. As this
field of research matures, it is becoming increaslingly clear that there is no
one-size-fits-all solution, but rather a range of frameworks and methods, each
with its specific trade-off between abstraction and tractability, the ultimate
test being the ability to answer relevant biological questions. Indeed, network
models are only starting to become useful tools for biological investigation.
Promising research directions include the design of frameworks that allow
joint modeling of metabolism and regulation, the refinement of stochastic
rule-based frameworks that are meant to capture intrinsic stochasticity in
regulatory networks dynamics, the design of dedicated process calculi, and
the development of model-checking tools. Another key direction, towards,
efficient model inference is the elaboration of formalisms that are able to
support high level language of description while managing uncertainty in the
data.
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Abstract. We address the problem of protein secondary structure prediction with
Hidden Markov Models. A 21-state model is built using biological knowledge and
statistical analysis of sequence motifs in regular secondary structures. Sequence
family information is integrated via the combination of independent predictions of
homologous sequences and a weighting scheme. Prediction accuracy with single
sequences reaches 65.3% and raises to 72% of correct classification with profile
information.
Keywords: α-helix, β-sheet, prediction.

1 Introduction

Proteins are the main actors of living cells. Many cellular constituents are
made out of proteins. Almost all enzymes are proteins, cellular pumps and
motors are made out of proteins.

The function of a protein strongly depends of its 3D-structure. For in-
stance, enzymes need to have a tight spatial complementarity with their
substrates (reaction partners). Thus knowledge of a protein structure gives
relevant clues to its function.

Since genome sequencing started, the even widening gap between the
number of protein sequences and protein structures available in databases en-
hances the utility of structure prediction methods. Because of the structure-
function relationship, structures are more conserved than sequences during
evolution and therefore different sequences can have the same 3D structure.

Structure prediction methods fall into two categories:

• comparative modeling if a related structure is known and can be used to
derive a global model,
• de novo prediction if there is no related structure available.

We are presently interested in the latter. De novo prediction methods of-
ten require a first step of local structure prediction: secondary structure
prediction in our case. Three canonical classes of secondary structures are
considered : α-helices, β-strands and coil, see figure 1.
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Fig. 1. Secondary structure of proteins. A 3D protein structure (center) can be
described in term of secondary structures: α-helices, β-strands (left side) and coil
(right side). Only C-α are shown, periodic substructures are indicated in black in
the full 3D structure.

α-helices and β-strands are geometrically periodic sub-structures frequently
occurring in 3D structures (about 50% of residues in proteins are involved in
α-helices and β-strands). Coil denotes all sequence segments which do not
fall into one of these two categories.

We use Hidden Markov Models to predict the three classes of secondary
structure. The model is built using prior biological knowledge and pattern
analysis in protein sequences.

2 Data set

The data set is a subset of 2530 structural domains taken from ASTRAL 1.65
[Brenner et al., 2000], determined by X-ray, with a resolution factor less than
2.25 Å and less than 25% sequence identity. Secondary structure definition
is given by an assignment method developed in our laboratory (manuscript
in preparation) or by STRIDE method [Frishman and Argos, 1995]. 489743
residues have a defined secondary structure in our data set. 2024 sequences,
randomly selected, are used in a four-fold cross validation procedure: three
quarters of these sequences are used for parameter estimation and one quarter
is used for the test. The remaining 506 sequences are used as an independent
test set. This test set is never used to estimate model parameters. The use of
an independent test set allows to check that no bias is introduced during the
model design when searching for characteristic motifs in secondary structures
(see hereafter). The number of residues with a defined secondary structure
are 94790, 101521, 99796 and 99031 in the cross validation subsets and 94605
in the independent test set. The secondary structure contents are similar in
all the subsets: about 39% of residues in α-helix, 24% in β-strand and 37%
in coil with our assignment and 38%/22%/40% with STRIDE assignment.
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3 Hidden Markov Models: application to secondary
structure

In a Markovian sequence, the character appearing at position t only depends
on the k preceding characters, k being the order of the Markov chain. Hence,
a Markov chain is fully defined by the set of probabilities of each character
given the past of the sequence in a k-long window: the transition matrix.
In the hidden Markov model, the transition matrix can change along the
sequence. The choice of the transition matrix is governed by another Marko-
vian process, usually called the hidden process. Hidden Markov models are
thus particularly useful to represent sequence heterogeneity. These models
can be used in predictive approaches: some algorithms like the Viterbi algo-
rithm and the forward-backward procedure allow to recover which transition
matrix was used along the observed sequence.

In our case, it is known that different structural classes have different
sequence specificity. Intuitively we want to use different Markov chains
to model different secondary structures. Figure 2 illustrates the HMM-
translation of our secondary structure prediction problem.

D        E         V       H       A         S       V                            I

H        H         H       H       C        B       B          ....             C

Fig. 2. Secondary structure prediction via a hidden Markov model. The upper
line represents the secondary structure along a protein sequence: H for a residue
in α-helix, B for β-strand, C for coil. The arrows between symbols symbolize the
first order dependency of the hidden process. The lower line represents the amino-
acid sequence of the protein. This is the observed sequence. Arrows between the
two lines symbolize the dependency between the observed sequence and the hidden
chain. The forward/backward algorithm will be used to recover the hidden process
from the observed sequence.

The hidden process to be recovered is the secondary structure of the pro-
tein. The observed process is the amino-acid sequence. The hidden chain
process is a first order Markov chain. Each hidden state is characterized by a
distribution of amino-acids. Due to the large alphabet size, the order of the
observed chain is 0, which means that amino-acids are independent condition-
ally on the the hidden process. We use the software called SHOW1[Nicolas
et al., 2002] to design and train the model and to recover the hidden process.
The prediction is achieved with the forward/backward algorithm. Note that
this algorithm provides the probability associated to each hidden states at
each position.

1 http://www-mig.jouy.inra.fr/ssb/SHOW/
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The simplest model for three-classes prediction is a HMM with three hid-
den states, each state accounting for a secondary structure class. Parameter
estimation of such a model is straightforward because the segmentation is
fully determined. But the performance of this model is limited: the Q3
score (proportion of residues with correct prediction) is 58.3%. A random
prediction gives a Q3 score equals to 34.5%.

We thus want to design a model that takes into account the specific fea-
tures of secondary structures.

4 Model of α-helices

A well-characterized sequence motif in α-helices is the amphiphilic motif, i.e.,
a succession of two polar residues and two apolar residues. This motif occurs
when an helix has a side facing the solvent (thus preferentially supporting
polar residues) while the other side faces the core of the protein (preferen-
tially supporting apolar residues). This motif is very frequent. With the
amino-acids classification; A,V,L,I,F,M,W,C=hydrophobic (h), S,T,Y,N,Q,-
H,P,D,E,K,R=polar (p), the motif hhpphh or pphhpp is found in 24% of the
helices in our cross-validation set. Glycine (G) residues do not exhibit strong
preference for either polar or apolar environment. It is thus considered as a
special type of residue and left apart. When reduced to hhpp or pphh, the
motif is found in 69% helices. Figure 3 shows the model we propose to take
into account the amphiphilic nature of α-helices. States H5 and H6 help to
fit the periodicity of an α-helix which is 3.6 residues.

States with hydrophobic preference favour amino-acids A, V, L, I, F, P
and M. States with polar preference favour S, T, N, Q, H, D, E, K and R.

H1 H2

H3H4

H6

H5

Polar preference

preference
Hydrophobic

Fig. 3. Model for amphipatic helices

5 Model of β-strands

There is no strong motif characterizing β-strands similar to the amphipatic
motif for α-helices. Characteristic motifs are found using a statistical ap-
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proach based on exceptional words. A word is over (resp. under)-represented
if its frequency in the data is significantly greater (resp. lower) than its
expected frequency under some Markovian model. The R’MES software2

[Bouvier et al., 1999] is dedicated to this task. Amino-acids are grouped as
before, the G is put into the hydrophobic group. Sequences of β-strands
and α-helices in the cross-validation set are analyzed with R’MES using the
Gaussian approximation.

Because the HMM uses a zero order for the observed chain, exceptional
words when compared to a zero order Markov model are interesting. Inter-
esting words should also be frequent in absolute (over-represented words are
not necessarily frequent) and must not be over-represented in α-helices. We
also consider some frequent words, although not over-represented, if they are
under-represented in α-helices. Table 1 contains interesting words found in
β-strand with R’MES. The over-representation is assessed by R’MES. The
relative abundance is evaluated by looking at rank of the word when sorted
according to the frequency.

Motif Occurrence in β-strands Occurrence in α-helices

hphp over-represented and frequent under-represented and not frequent

phph over-represented and frequent under-represented and not frequent

pphhh over-represented and very frequent under-represented and not frequent

pphph over-represented and very frequent under-represented and not frequent

hhhhp not over-represented, but very frequent under-represented and not frequent

phhhhp not over-represented but very frequent under-represented

Table 1. Interesting motifs in β-strands

Figure 4 shows the model we propose to take into account these words in
β-strands. Words hphp and phphp are favoured by the alternation between
states b1 and b2. This alternation corresponds to the case of β-strands at
the solvent interface with one side facing the solvent and one side facing
the core of the protein. The transition from state b4 to itself favours long
runs of hydrophobic amino-acids in words pphhh, hhhhp, phhhhp. Long
runs of hydrophobic residues are seen when β-strands are buried in the core
of proteins. The transition between b2 and b3 favours the apparition of two
polar amino-acids surrounded by hydrophobic ones appearing in words pphhh
and pphph.

Note that the study of exceptional words on α-helices reveals that the
motifs occurring in amphipatic α-helices are over-represented.

2 http://www-mig.jouy.inra.fr/ssb/rmes/
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Polar preference

preference
Hydrophobic

b1

b4b3

b2

Fig. 4. Model for β-strands

6 Complete HMM for secondary structures

Models of β-strands and α-helices are merged to form a full model of sec-
ondary structures.

b1 b2

b3 b4

Polar preference
preference
Hydrophobic

H1

H5

H2

H3

H6

H4

H8

H7

H9
C4

C1

C2 C3

C5 b7

b5

b6

HELIX COIL STRAND

Fig. 5. Full model for secondary structure

Figure 5 shows the full model. Models of α-helices and β-strands integrate
informations about frequent/over-represented words, but they don’t necessar-
ily reflect the totality of motifs in periodic structures. To allow the presence
of β-strands and α-helices that do not fit well in the constrained models, two
“generic” states were added (H7, b5). These states show no prior preference
for polar or hydrophobic amino-acids. Transitions are allowed between all
states of the constrained models and the “generic states”. Specific states are
added at secondary structure ends (H8, H9, b6, b7), as it is known that there
are specific signals such as helix-caps. The coil is not well characterized yet,
except the states preceding and following regular secondary structures.
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Initial parameters for estimation by the EM algorithm are set as follows:

• Initial transition probabilities are set to 1
n , with n the number of outgoing

states.
• Initial emission probabilities are derived from those obtained on a simple

3-states model. Emission probabilities are manually modified to favour
the apparition of polar amino-acids and penalize the emission of hy-
drophobic amino-acids in polar-preferring states (and vice-versa). No
such bias is introduced in other states.

Prediction of the three structural classes (α-helix, β-strand, coil) is achieved
by the forward-backward algorithm. The predicted structure is the one with
the greatest posterior probability.

7 Integrating information from homologous sequences
in the prediction

Protein structures are more conserved than sequences during evolution. Thus
different sequences can have the same structure. This information has been
successfully used in secondary structure prediction methods [Rost, 2003].
To integrate this information, the prediction is done independently on each
sequence of a family. These sequences are detected using a search with PSI-
BLAST against a database were the redundancy is reduced to 80% sequence
identity. This search generates an average number of 60 sequences per family.
Independent predictions are combined with a weighting scheme to generate
a prediction for the sequence family using the formula

P (state = S/family) =
∑

i

λi × P (state = S/sequencei)

with P (state = S/sequencei) provided by the forward-backward proce-
dure and λi the weight of sequence i in the family. Sequence weights are
computed as proposed in Henikoff and Henikoff [Henikoff and Henikoff, 1994].

Prediction on single sequence provides an accuracy of 65.2% residues cor-
rectly classified when compared to our secondary structure assignment, on
the cross-validation test set. This score is 65.3% on the learning set and
65.6% on the independent test set. When compared with stride assignment,
the accuracy is around 66.3% for all data sets. Hence, we experienced no
over-fitting on the training data.

With the family sequence information, the percentage of correct predic-
tion is in the range 71.3 to 72%. Best available methods, that also use
sequence families, have achieved accuracy in the range of 78% (reported for
reasonnably big datasets on the continuous evaluation server EVA,
[Koh et al., 2003]). Thus our results are not fully satisfying yet. However we
think that our approach is promising because our model is relatively small,
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statistically speaking: the number of independent parameters is only 471.
Most of existing methods use neural networks. The number of parameters,
when reported, seems to be of the order of thousands [Pollastri et al., 2002].
Moreover, the graphical nature of hidden Markov models allows intuitive data
modeling. Along this line, an important perspective of this work is to intro-
duce a geometrical description of coil. The coil class represents about 50% of
residues in proteins. Even a perfect three state prediction would leave half
of the data with no structural clue. We also think that the sequence family
information could be taken into account more efficiently that it is done here.
This is another of our perspectives.
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Abstract. Assessing rule interestingness is the cornerstone of successful applica-
tions of association rule discovery. In this article, we present a new measure of
interestingness named IPEE. It has the unique feature of combining the two fol-
lowing characteristics: first, it is based on a probabilistic model, and secondly, it
measures the deviation from what we call equilibrium (maximum uncertainty of the
consequent given that the antecedent is true). We study the properties of this new
index and show in which cases it is more useful than a measure of deviation from
independence.
Keywords: Data mining, Association rules, Interestingness measures, Statistical
significance, Deviation from equilibrium.

1 Introduction

Among the knowledge models used in Knowledge Discovery in Databases
(KDD), association rules [Agrawal et al., 1993] have become a major concept
and have received significant research attention. Association rules are im-
plicative tendencies a→ b where a and b are conjunctions of items (boolean
variables of the form databaseAttribute = value). Such a rule means that
if a record verifies the antecedent a in the database then it certainly verifies
the consequent b.

A crucial step in association rule discovery is post-processing, i.e. the
interpretation, evaluation, and validation of the rules in order to find in-
teresting knowledge for decision-making. Indeed, due to their unsupervised
nature, the data mining algorithms can produce a great many rules, many
of which have no interest. To help the user (a decision-maker specialized
in the data studied) to find relevant knowledge in this mass of information,
one of the main solutions consists in evaluating and sorting the rules with
interestingness measures. There are two kinds of measures: the subjective
(user-oriented) ones and the objective (data-oriented) ones. Subjective mea-
sures take into account the user’s goals and user’s a priori knowledge of the
data [Liu et al., 2000] [Padmanabhan and Tuzhilin, 1999] [Silberschatz and
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Tuzhilin, 1996]. On the other hand, only the data cardinalities appear in the
calculation of objective measures [Tan et al., 2004] [Bayardo and Agrawal,
1999] [Guillet, 2004] [Lenca et al., 2004] [Lallich and Teytaud, 2004]. In this
article, we are interested in the objective measures.

We have shown in [Blanchard et al., 2004] that there exist two different
but complementary aspects of the rule interestingness: the deviation from
independence and the deviation from what we call equilibrium (maximum
uncertainty of the consequent given that the antecedent is true). Thus, the
objective measures of interestingness are divided into two groups:

• the measures of deviation from independence, which have a fixed value
when the variables a and b are independent (n.nab = nanb)

1;
• the measures of deviation from equilibrium, which have a fixed value when

examples and counter-examples are equal in numbers (nab = nab = 1
2na).

The objective measures can also be classified according to their descriptive
or statistical nature [Lallich and Teytaud, 2004] [Gras et al., 2004]:

• The descriptive (or frequential) measures are those which do not vary
with the cardinality expansion (when all the data cardinalities are in-
creased or decreased in equal proportion).
• The statistical measures are those which vary with the cardinality ex-

pansion. Among them, one can find the probabilistic measures, which
compare the observed distribution to an expected distribution, such as
the implication intensity [Gras, 1996] [Blanchard et al., 2003b] or the
likelihood linkage index [Lerman, 1991].

Measures of deviation
from equilibrium

Measures of deviation
from independence

Descriptive
measures

– confidence,
– Sebag et Schoenauer index,
– example and
counter-example ratio,
– Ganascia index,
– moindre-contradiction,
– inclusion index...

– correlation coefficient,
– lift,
– Loevinger index,
– conviction,
– J-measure,
– TIC,
– odds ratio,
– multiplicateur de cote...

Statistical
measures

– implication intensity,
– implication index,
– likelihood linkage index,
– oriented contribution to χ2,
– rule-interest...

Table 1. Classification of the objective measures of rule interestingness

With these two criteria, we classify the objective measures of rule inter-
estingness into four categories. As shown in table 1 (cf. [Guillet, 2004] for

1 The notations are defined in section 2
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the references), there are no statistical measures which evaluate the deviation
from equilibrium. Nevertheless, the statistical measures have the advantage
of taking into account the size of the phenomena studied. Indeed a rule is
statistically all the more reliable since it is assessed on a large amount of
data. Moreover, when based on a probabilistic model, a statistical measure
refers to an intelligible scale of values (a scale of probabilities); this is not
the case for many interestingness measures. Also, such a measure facilitates
the choice of a threshold for filtering the rules, since the complement to 1 of
the threshold has the meaning of the significance level of a hypothesis test
(generally in a test, one chooses α ∈ {0.1%, 1%, 5%}).

In this article, we propose a new measure of rule interestingness which
evaluates the deviation from equilibrium while having a statistical nature.
More precisely, this index is based on a probabilistic model and measures the
statistical significance of the deviation from equilibrium (whereas implication
intensity or likelihood linkage index, for example, measure the statistical
significance of the deviation from independence). In the next section, we
present a probabilistic index of deviation from equilibrium named IPEE, and
then study in section 3 its properties. Section 4 is devoted to the comparison
between the measures of deviation from equilibrium and the measures of
deviation from independence.

2 Measuring the statistical significance of the deviation
from equilibrium

We consider a set O of n objects described by boolean variables. In the as-
sociation rule terminology, the objects are transactions stored in a database,
the variables are called items, and the conjunctions of variables are called
itemsets. Given an itemset a, we note A the set of the objects which verify
a, and na the cardinality of A. The complement of A in O is the set A of
cardinality na. An association rule is a couple (a, b) noted a → b where a
and b are two itemsets which have no items in common. The rule examples
are the objects which verify the antecedent a and the consequent b (objects
in A∩B), while the rule counter-examples are the objects which verify a but
not b (objects in A ∩B). In the following, we call ”variables” the itemsets.

2.1 Random model

Given a rule a→ b, we want to measure the statistical significance of the rule
deviation from equilibrium. As the equilibrium configuration is defined by
the equidistribution in A of examples A∩B and counter-examples A∩B, the
null hypothesis is the hypothesis H0 of equiprobability between the examples
and counter-examples. So, let us associate to the set A a random set X of
cardinality na drawn in O under this hypothesis: P(X ∩ B) = P(X ∩ B)
(cf. figure 1). The number of counter-examples expected under H0 is the
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Fig. 1. Random draw of a set X under the equiprobability hypothesis between the
examples and counter-examples

cardinality of X ∩B, noted
∣∣X ∩B

∣∣. It is a random variable whose nab is an
observed value. The rule a→ b is even better since there is a high probability
that chance creates more counter-examples than data.

Définition 1 The probabilistic index of deviation from equilibrium
(IPEE2) of a rule a→ b is defined by:

IPEE(a→ b) = P(
∣∣X ∩B

∣∣ > nab | H0)

A rule a → b is said to be acceptable with the confidence level 1 − α if
δ(a→ b) ≥ 1− α.

Therefore, IPEE quantifies the unlikelihood of the smallness of the num-
ber of counter-examples nab with respect to the hypothesis H0. In particular,
if δ(a → b) is close to 1 then it is unlikely that the features (a and b) and
(a and b) are equiprobable. This new index can be seen as the complement
to 1 of the p-value of a hypothesis test (and α as the significance level of this
test). However, following the implication intensity and the likelihood linkage
index (where H0 is the hypothesis of independence between a and b), the aim
is not testing a hypothesis but actually using it as a reference to evaluate and
sort the rules.

2.2 Analytical expression

In the case of drawing random sets with replacement,
∣∣X ∩B

∣∣ is binomial
with parameters na and 1

2 :

δ(a→ b) = 1− 1

2na

nab∑

k=0

(
na
k

)

2 IPEE is for Indice Probabiliste d’Ecart à l’Equilibre in French
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IPEE depends neither on nb (it does not increase with the rarity of the
consequent), nor on n since the equilibrium hypothesis H0 is not defined
by means of nb and n (contrary to the independence hypothesis). It must
be noticed that the statistical significance of the deviation from equilibrium
could be measured by comparing not the counter-examples but the examples:
IP̂EE(a → b) = P(|X ∩B| < nab | H0). However, since the binomial
distributions with parameter 1

2 are symmetrical, the two indexes are identical:

IPEE(a→ b) = 1− 1

2na

na∑

K=nab

(
na

na −K

)
= 1− 1

2na

na∑

K=nab

(
na
K

)
= IP̂EE(a→ b)

where K = na − k.

When na ≥ 10, the binomial distribution can be approximated by the
normal distribution with mean na

2 and standard deviation
√

na

4 . The stan-
dardized number of counter-examples ñab can be interpreted as the oriented
contribution to the χ2 of goodness-of-fit between the observed distribution of
examples/counter-examples, and the uniform distribution: χ2 = ñab

2 This
constitutes a strong analogy with the implication intensity and the likelihood
linkage index, since in the poissonian models of these two measures, the stan-
dardized values of nab and nab can be seen as oriented contributions to the
χ2 of independence between a and b [Lerman, 1991].

3 IPEE properties

Range [0; 1]

Value for logical rules 1 − 1
2na

Value for equilibrium 0.5

Variation w.r.t. nab with fixed na ↘
Variation w.r.t. na with fixed nab ↗

Table 2. IPEE properties

The properties and the graph of IPEE are given respectively in table 2
and figure 2. We can observe that :

• IPEE varies slightly with the first counter-examples (slow decrease).
This behavior is intuitively satisfactory since a small number of counter-
examples do not question a rule [Gras et al., 2004].

• The discarding of the rules gets quicker in an uncertainty range around
the equilibrium nab = na

2 (fast decrease).



196 Blanchard et al.

As shown in figure 3, with a ratio examples/counter-examples which is
constant, the values of IPEE are all the more extreme (close to 0 or 1) since
na is large. Indeed, owing to its statistical nature, the measure takes into
account the size of the phenomena studied: the larger na is, the more one
can trust the imbalance between examples and counter-examples observed in
the data, and the more one can confirm the good or bad quality of the rule
deviation from equilibrium. In particular, for IPEE, the quality of a logical
rule (rule with no counter-examples, i.e. nab = 0) depends on na (cf. table 2).
Thus, contrary to the other measures of deviation from equilibrium (cf. table
1), IPEE has the advantage of systematically attributing the same value to
the logical rules. This allows to differentiate and sort the logical rules.

Fig. 2. Plot of IPEE w.r.t. the number of counter-examples nab

It must be noticed that IPEE has no symmetry: it does not assign the
same value to a rule a→ b and to its converse b→ a, or to its contrapositive
b→ a, or to its opposite a→ b. Nevertheless, we have the following relation:

δ(a→ b) = 1− δ(a→ b)− C
nab
na

2na (the last term is negligible when na is large).

We have seen that the strength of statistical significance measures lies
in the fact that they take into account the size of the phenomena studied.
On the other hand, it is also their main limit: the measures have a low
discriminating power when the size of the phenomena is large (beyond around
104) [Elder and Pregibon, 1996]. Indeed, with regard to large cardinalities,
even minor deviations can be statistically significant. IPEE does not depart
from this: when na is large, the measure tends to evaluate the rules as either
very good (values close to 1), or very bad (values close to 0). In this case,
to fine-tune the filtering of the best rules, it is necessary to use a descriptive
measure (cf. table 1) such as the inclusion index [Blanchard et al., 2003b] in
addition to IPEE. On the other hand, contrary to the implication intensity
or the likelihood linkage index, IPEE does not depend on n. Therefore, the
measure is sensitive to both the specific rules (”nuggets”) and the general
rules ; it can be used on either small or large databases.
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Fig. 3. Plot of IPEE w.r.t. cardinality expansion
(na = 20× γ, nab ∈ [0× γ ; 20× γ], γ ∈ {1; 5; 40; 1000})

4 Measures of deviation from equilibrium and
independence: a comparison

Let us consider a rule with the cardinalities nab, na, nb, n. By varying nab
with fixed na, nb, and n, one can distinguish two different cases [Blanchard
et al., 2004] :

• If nb ≥ n
2 (case 1), then

nanb

n ≤ na

2 , so the rule goes through the inde-
pendence before going through the equilibrium when nab increases.
• If nb ≤ n

2 (case 2), then
nanb

n ≥ na

2 , so the rule goes through the equilib-
rium before going through the independence when nab increases.

Let us now compare a measure of deviation from equilibrium Meql and a
measure of deviation from independence Midp for these two cases. In order
to have a fair comparison, we suppose that the two measures have similar
behaviors:

• same value for a logical rule,
• same value for equilibrium/independence,
• same decrease speed with regard to the counter-examples.

For example, Meql and Midp can be the Ganascia and Loevinger indexes
[Ganascia, 1991] [Loevinger, 1947] (cf. the definitions in table 3), or IPEE
and the implication intensity. As shown in figures 4 and 5, Midp is more
filtering than Meql in case 1, whereas Meql is more filtering than Midp in case
2. In other words, in case 1, it is Midp which contributes to rejecting the bad
rules, while in case 2 it is Meql. This confirms that the measures of devia-
tion from equilibrium and the measures of deviation from independence have
to be regarded as complementary, the second ones not being systematically
”better” than the first ones. In particular, the measures of deviation from
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equilibrium must not be neglected when the realizations of the studied vari-
ables are rare. Indeed, in this situation, should the user not take an interest
in the rules having non-realizations (which is confirmed in practice), case 2
is more frequent than case 1.

Ganascia index Loevinger index

2nab−na
na

1 − nn
ab

nan
b

Table 3. Ganascia and Loevinger indexes for a rule a→ b

(a) case 1 (nb ≥ n
2

) (b) case 2 (nb ≤ n
2

)

Fig. 4. Comparison of the Ganascia and Loevinger indexes
(E: equilibrium, I: independence)

(a) case 1 (nb ≥ n
2

) (b) case 2 (nb ≤ n
2

)

Fig. 5. Comparison of the measures IPEE and implication intensity (II )
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5 Conclusion

In this article, we have presented a new measure of rule interestingness
which evaluates the deviation from equilibrium with respect to a probabilis-
tic model. Due to its statistical nature, this measure has the advantage of
taking into account the size of the phenomena studied, contrary to the other
measures of deviation from equilibrium. Moreover, it refers to an intelligible
scale of values (a scale of probabilities). Our study shows that IPEE is effi-
cient to assess logical rules, and well adapted to the search for specific rules
(”nuggets”).

IPEE can be seen as the counterpart of the implication intensity [Gras,
1996] [Blanchard et al., 2003b] for the deviation from equilibrium. Used
together, these two measures allow an exhaustive statistical evaluation of the
rules. To continue this research work, we will integrate IPEE into our rule
validation system ARVis [Blanchard et al., 2003a] in order to experiment
with the couple (IPEE, implication intensity) on real data.
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la fouille de données.

[Lerman, 1991]I.C. Lerman. Foundations in the likelihood linkage analysis classifi-
cation method. Applied Stochastic Models and Data Analysis, 7:69–76, 1991.

[Liu et al., 2000]Bing Liu, Wynne Hsu, Shu Chen, and Yiming Ma. Analyzing
the subjective interestingness of association rules. IEEE Intelligent Systems,
15(5):47–55, 2000.

[Loevinger, 1947]J. Loevinger. A systematic approach to the construction and eval-
uation of tests of ability. Psychological Monographs, 61(4), 1947.

[Padmanabhan and Tuzhilin, 1999]Balaji Padmanabhan and Alexander Tuzhilin.
Unexpectedness as a measure of interestingness in knowledge discovery. Deci-
sion Support Systems, 27(3):303–318, 1999.

[Silberschatz and Tuzhilin, 1996]Avi Silberschatz and Alexander Tuzhilin. What
makes patterns interesting in knowledge discovery systems. IEEE Transactions
on Knowledge and Data Engineering, 8(6):970–974, 1996.

[Tan et al., 2004]Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting
the right objective measure for association analysis. Information Systems,
29(4):293–313, 2004.



Implicative statistical analysis applied to

clustering of terms taken from a psychological
text corpus
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Abstract. In order to validate a textual base contained in a behavioural skill-
testing software, we suggest a methodology which can extract subsets of charac-
teristic terms used to describe personality traits. Our approach permits, after an
automatic language processing task, to evaluate the association rules between terms
and descriptors (personality traits) structuring the corpus with the help of the the-
ory of statistic implication.
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1 Introduction

Text-mining consists in finding knowledge structures in large text databases.
To accomplish this work, text-mining uses some methods of data-mining
such as association rule discovery ([Maedche and Staab, 2000], [Janetzko et
al., 2004], [Roche, 2003]).
Association rule discovery aims at finding implicative relations between
boolean items. To evaluate these associations, the measures of support and
confidence are commonly used, despite some deficiencies. In addition, many
other measures are proposed ([Tan et al., 2004], [Guillet, 2004], [Lenca et al.,
2004]). In this article, we are focusing on the implicative statistical analysis
([Gras, 1979], [Gras and others, 1996]) which offers measures such as impli-
cation intensity and entropic implication intensity ([Gras et al., 2001]).
Nevertheless, we must perform some automatic language processing tasks
in order to obtain a strutured list of terms representing the textual base.
Many approaches are available : statistic approaches ([Salem, 1986]), lin-
guistic approaches (([David and Plante, 1990], [Bourigault and Fabre, 2000],
[Jacquemin, 1997]) and combined approaches of these two ([Smadja, 1993],
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[Daille, 1994]).
In this paper, we suggest a methodology to associate each descriptor of an
indexed corpus with a set of terms describing the descriptor studied. In other
words, our method clusters terms with the help of other variables. First of
all, we present the data, the problem and our general methodology. Then,
we briefly introduce the principles of implication intensity. Next, we describe
our method more precisely. Finally, we evaluate and analyse our results.

2 Methodology.

2.1 Analysed data and the problem

Our approach has been designed for a textual database extracted from a
personality test, DIALECHO software, distribued by PERFORMANSE SAS
company. This program is used by human resources managers. After a
binary-choice questionnaire of 70 questions, this program provides a scored
evaluation of 10 personality variables and a behavioural assessment report.
The generation process of the report is perform in 2 steps : (1) discretisa-
tion on 3 modalities of the scored personality variables;(2) by parsing and
selecting the annotated paragraphs by a conjunction of modalities named per-
sonality traits. Examples of traits: Extroversion/Introversion (discrete values
: EXT+, EXT0, EXT-), Anxiety/Relaxation (ANX+, ANX0, ANX+).
Our corpus is a set of 12 805 documents. Each document is made of a para-
graph (text) and a rule (conjunction of traits) as shown in figure 1. Accord-
ing to DIALECHO software, a document implies: ”If a psychologic profile
matches the rule (the conjunction) then the paragraph below will be included
in the personality report”. We have extracted and selected 6 977 terms from
the paragraphs.

Fig. 1. The strucure of a document.
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The finality of this approach is to enabled the author of the expert
analysis to verify if the vocabulary used is in adequation with the personality
traits described in the paragraphs. Our problem consists in finding for each
item, the set of terms which best describes them.

First, we represent the paragraphs by a list of binary terms. These binary
terms are noun phrases composed of two meaningful words. This terminolog-
ical process (step 1, figure 2) is performed by ACABIT, an automatic term
acquisition software program ([Daille, 1994]). Next, we add the personality
traits set to the paragraph representation (step 2, figure 2). At this stage, a
document is represented by a set of terms and personality traits. Then, we
consider the set of association rules ”term ⇒ trait” whose validity depends
on their intensity of implication value (step 3, figure 2). For each distinct
rule head (i.e. for each traits), we aim at all their bodies (terms) (step 4,
figure 2). This last stage generates one cluster of terms by personality trait.
Finally, the expert (author of the texts) evaluates the quality of the clusters
(step 5, figure 2). According to this last stage, the expert can verify if the
vocabulary used matches the personality traits.

Fig. 2. Process sequence.

2.2 Rules evaluation using the implication intensity.

Association rules ([Agrawal et al., 1993]) are almost like logic implications
but admit some counter-examples. The quality of such rules is usually eval-
uated by two measures : support and confidence. Nevertheless, we intend
to evaluate infrequent but interesting rules. Indeed Y. Kodratoff has said
([Kodratoff, 2001]) that ”the best rules are often the least frequent”. The
confidence measure is not quite perfect: it cannot reject the statistical inde-
pendence ([Blanchard et al., 2004]).
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The rule is retained for a given threshold 1 − σ if ϕ(a ⇒ b) ≥ 1 − σ.
Let us now consider a finite set T of n transactions described by a set I of
p items. Each transaction t can be considered as an itemset so that t ⊆ I.
A transaction t is said to contain an itemset a if a ⊆ t and we denote by
A = {t ∈ T ; a ⊆ t} the transaction set in T which contains a and by A its
complementary set in T .

An association rule is an implication of the form a ⇒ b, where a and b
are disjoined itemsets (a ⊂ I, b ⊂ I, and a ∩ b = ∅). In practice, it is quite
common to observe a few transactions which contain a and not b without
contesting the general trend to have b when a is present. Therefore, with
regards to the cardinal n of T but also to the cardinals nA of A and nB of
B, the number nA∩B = card(A∩B) of counter-examples must be taken into
account to statistically accept to retain or not the rule a ⇒ b. Following
the likelihood linkage analysis of Lerman [Lerman, 1981], the implication
intensity expresses the unlikelihood of counter-examples nA∩B in T .

More precisely, we compare the observed number of counter-examples to
a probabilistic model. Let us assume that we randomly draw two subsets
X and Y in T which respectively contain nA and nB transactions. The
complementary sets Y of Y and B of B in T have the same cardinality
nB. In this case, NX∩Y = card(X ∩ Y ) is a random variable and nA∩B an
observed value. The association rule a⇒ b is acceptable for a given threshold
1 − σ if σ is greater than or equal to the probability that the number of
counter-examples in the observations is greater than or equal to the number of
expected counter-examples in a random drawing, i.e. if Pr(NX∩Y ≤ nA∩B) ≤
σ.

The distribution of the random variable NX∩Y depends on the drawing
mode [Gras and others, 1996]. In order to explicitly take into account
the asymmetry of the relationships between itemsets, we here restrict
ourselves to the Poisson distribution with λ = nAnB/n. For cases where the
approximation is justified (e.g. λ > 3), the standardized random variable

ÑX∩Y = (card(X ∩ Y ) − λ)/
√
λ is approximately N(0, 1)-distributed. The

observed value of ÑX∩Y is ñA∩B = (nA∩B − λ)/
√
λ.

The implication intensity of the association rule a ⇒ b is defined by
ϕ(a⇒ b) = 1− Pr(ÑX∩Y ≤ ñA∩B) if nB 6= n ; otherwise ϕ(a⇒ b) = 0.

The rule is retained for a given threshold 1− σ if ϕ(a⇒ b) ≥ 1− σ.

3 Detailed clustering process.

We choose to define the studied database by B = (D,T,C) where D =
{d1, .., dm} is representative of the paragraph set, T = {t1, ..., tn} concerns
the term set and C = {c1, ..., cy} express as the item set. By asserting
A = C ∪T , the value of an item a, for a paragraph dx, is equal to 1 if the at-
tribute describes the document or if not to 0. The following example (table 1)



I.S.A. applied to term clustering 205

shows the values of the documents over the term set (in French): ”conscience
professionelle” (conscienciousness), ”sens de la méthode” (rigour), ”preuve
de créativité” (creativity), ”attrait de la nouveauté” (appeal of novelty), and
the personality trait set : ”Extroversion”, ”Medium extroversion”, ”Rigour”,
”Intellectual dynamism”.

id doc conscience
professionnelle

sens de la
méthode

preuve de
créativité

attrait de la
nouveauté

d1 1 1 0 0

d2 0 0 1 1

id doc Extroversion Medium extro-
version

Rigour Intellectual
dynamism

d1 0 1 1 0

d2 1 0 0 1

Table 1. Extract from the table representing the documents.

In order to build sets of terms which best describe personality traits, we
evaluate for each term t ∈ T and for each personality trait c ∈ C, the rule
t⇒ c. This rule means ”if a paragraph holds the term t then this paragraph
describes (at least) a person who has the personality trait c”. To do this, we
define the matrixMϕ of dimension n×m where rows denote terms, columns

personality traits and whose values are ψt⇒c =

{
ϕ(t⇒ c) if ϕ(t⇒ c) ≥ 0
0 ifnot

.

The following example denotes the implication intensity of the French
terms (”conscience professionnelle”, ”sens de la méthode”, ...) toward the
personality traits (”Extroversion”, ”Medium Extroversion”, ”Rigour”, ”In-
tellectual dynamism”).

t⇒ c Extroversion Medium
extroversion

Rigour Intellectual
dynamism

conscience profes-
sionnelle

0.0 0.63 0.99 0.0

sens de la méthode 0.77 0.0 0.92 0.0

preuve de créativité 0.0 0.0 0.0 0.94

attrait de la nou-
veauté

0.0 0.0 0.0 0.94

domaine de la
communication

0.0 0.0 0.86 0.86

Table 2. Extract from the implication intensities matrix Mϕ.
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Finally, we define the most representative term set of a personality trait
with a threshold ϕthreshold by the following formula :
Tx = {ty | ϕ(ty ⇒ cx) ≥ ϕthreshold}. The choice of a threshold is not easy
because it depends on the database studied. We suggest to choose, firstly,
ϕthreshold = 0, 5 because a rule begin to be interesting from this threshold.
After, the expert could increase this value until he/she is statisfied.

4 Results.

We have tried our method over the 30 personality traits and the expert
evaluated the accuracy of each set of terms. Each set is divided into two
groups by the expert (decision maker): the relevant terms for the cluster
studied and the others. The accuracy value is defined as the proportion of
relevant terms. The following table shows some accuracy values for groups
of terms generated by our process with a threshold value ϕthreshold > 0.5.

Class Accuracy

Rigour (CON+) 1

Combativeness (P+) 0.9

Anxiety (N+) 0.9

Intellectual dynamism
(CLV+)

0.9

Assertion (EST+) 0.9

Questioning (EST-) 0.9

Motivation of power
(LED+)

0.9

Motivation of protection
(LED-)

0.9

Relaxation (N-) 0.8

Improvisation (CON-) 0.8

Class Accuracy

Motivation of belonging
(AFL+)

0.8

Conciliation (P-) 0.7

Motivation of independence
(AFL-)

0.7

Medium Anxiety (N0) 0.6

Intellectual conformism
(CLV-)

0.6

Introversion (E-) 0.5

Extroversion (E+) 0.4

Medium extroversion (E0) 0

Table 3. Accuracy of the cluster.

Results show that some sets have bad accuracy. Indeed, these clusters
describe personality traits which are not directly described in the text but
their occurrence will modulate other traits. For example, the personality
traits ”E+”, ”E0”, ”E-” are not directly described in text but they are used
to reinforce or moderate the expression of other personality traits. However,
we obtain good accuracy values for most clusters. We have 8 good clusters,
that is to say they have an accuracy value superior or equal to 90%. And we
have only 3 bad clusters (accuracy value < 50%)
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5 Conclusion.

In this paper, we have presented a clustering method which matches de-
scriptors with sets of terms based on association rules between terms and
descriptors. We have designed it for a psychological corpus in order to study
the adequation between terms and personality traits.
This process is divided into three steps : first, we extract a selection of rele-
vant terms from the corpus, second, we evaluate all association rules between
terms and descriptors (personality traits) with the help of implication in-
tensity, and last, we generate sets of terms from the results obtained in the
second step.
Our proposal is original in the sense that, it permits to put together terms
and indexation descriptors extracted from a corpus. A prototype software
program has been implemented and tested on the psychological corpus with
good results.
However, we do not currently consider the relationships between descriptors
or between terms. We plan to study this question in the near future in order
to consider taxonomies or assimilated structures. Therefore, we intend to try
our method on other corpuses.
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acquisitions cognitives et de certains objectifs didacticques mathématiques,
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Abstract. A key data preparation step in Text Mining, Term Extraction selects
the terms, or collocation of words, attached to specific concepts. In this paper, the
task of extracting relevant collocations is achieved through a supervised learning
algorithm, exploiting a few collocations manually labelled as relevant/irrelevant.
The candidate terms are described along 13 standard statistical criteria measures.
From these examples, an evolutionary learning algorithm termed Roger, based
on the optimization of the Area under the ROC curve criterion, extracts an order
on the candidate terms. The robustness of the approach is demonstrated on two
real-world domain applications, considering different domains (biology and human
resources) and different languages (English and French).
Keywords: Text Mining, Terminology, Evolutionary algorithms, ROC Curve.

1 Introduction

Besides the known difficulties of Data Mining, Text Mining presents spe-
cific difficulties due to the structure of natural language. In particular, the
polysemy and synonymy effects are dealt with by constructing ontologies or
terminologies [Bourigault and Jacquemin, 1999], structuring the words and
their meanings in the domain application. A preliminary step for ontology
construction is to extract the terms, or word collocations, attached to the
concepts defined by the expert [Bourigault and Jacquemin, 1999, Smadja,
1993]. Term Extraction actually involves two steps: the detection of the
relevant collocations, and their classification according to the concepts.

This paper focuses on the detection of relevant collocations, and presents a
learning algorithm for ranking collocations with respect to their relevance, in
the spirit of [Cohen et al., 1999]. An evolutionary algorithm termed Roger,
based on the optimization of the Receiver Operating Characteristics (ROC)
curve [Ferri et al., 2002, Rosset, 2004], and already described in previous
works [Sebag et al., 2003a, Sebag et al., 2003b], is applied to a few collocations
manually labelled as relevant/irrelevant by the expert. The optimization of
the ROC curve is directly related to the recall-precision tradeoff in Term
Extraction (TE).

The paper is organized as follows. Section 2 briefly reviews the main crite-
ria used in TE. Section 3 presents the Roger (ROc-based GEnetic learneR)
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algorithm for the sake of self-containedness, and describes the bagging of
the diverse hypotheses constructed along independent runs. Sections 4 et
5 report on the experimental validation of the approach on two real-world
domain applications, and the paper ends with some perspectives for further
research.

2 Measures for Term Extraction

The choice of a quality measure among the great many criteria used in Text
Mining (see e.g., [Daille et al., 1998, Xu et al., 2002, Roche et al., 2004b])
is currently viewed as a decision making process; the expert has to find the
criterion most suited to his/her corpus and goals. The criteria considered in
the rest of the paper are:

• Mutual Information (MI) [Church and Hanks, 1990]
• Mutual Information with cube (MI3) [Daille et al., 1998]
• Dice Coefficient (Dice) [Smadja et al., 1996]
• Log-likelihood (L) [Dunning, 1993]
• Number of occurrences + Log-likelihood (OccL)1 [Roche et al., 2004a]
• Association Measure (Ass) [Jacquemin, 1997]
• Sebag-Schoenauer (SeSc) [Sebag and Schoenauer, 1988]
• J-measure (J) [Goodman and Smyth, 1988]
• Conviction (Conv) [Brin et al., 1997]
• Least contradiction (LC) [Azé and Kodratoff, 2004]
• Cote multiplier (CM) [Lallich and Teytaud, 2004]
• Khi2 test used in text mining (Khi2) [Manning and Schütze, 1999]
• T-test used in text mining (T test) [Manning and Schütze, 1999]

Vivaldi et al. [Vivaldi et al., 2001] have shown that the search for a quality
measure can be formalized as a supervised learning problem. Considering a
training set, where each candidate term is described from its value for a set of
statistical criteria and labelled by the expert, they used Adaboost [Schapire,
1999] to automatically construct a classifier.

The approach presented in next section mostly differs from [Vivaldi et al.,
2001] as it learns an ordering function (term t1 is more relevant than term
t2) instead of a boolean function (term t is relevant/irrelevant).

3 Learning ranking functions

This section first briefly recalls the Roger (ROc-based GEnetic learneR)
algorithm, used for learning a ranking hypothesis and first described in [Sebag
et al., 2003b, Sebag et al., 2003a]. The n’Roger variant used in this paper
involves two extensions: i) the use of non-linear ranking hypotheses; ii) the

1 OccL is defined by ranking collocations according to their number of occurrences,
and breaking the ties based on the term Log-likelihood.
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exploitation of the ensemble of hypotheses learned along independent runs
of Roger. Using the standard notations, the dataset E = {(xi, yi), i =
1..n,xi ∈ IRd, yi ∈ {−1,+1}} includes n collocation examples, where each
collocation xi is described by the value of d statistical criteria, and its label
yi denotes whether collocation xi is relevant.

3.1 Roger

The learning criterion used in Roger is the Wilcoxon rank test, measuring
the probability that a hypothesis h ranks xi higher than xj when xi is a
positive and xj is a negative example:

W(h) = Pr(h(xi) > h(xj) | yi > yj) (1)

This criterion, with quadratic complexity in the number n of examples2 offers
an increased stability compared to the misclassification rate (Pr(h(xi).yi >
0), with linear complexity in n); see [Rosset, 2004] and references therein.
The Wilcoxon rank test is equivalent to the area under the ROC (Receiver
Operating Characteristics) curve [Jin et al., 2003]. This curve, intensively
used in medical data analysis, shows the trade-off between the true positive
rate (the fraction of positive examples that are correctly classified, aka re-
call) and the false positive rate (the fraction of negative examples that are
misclassified) achieved by a given hypothesis/classifier/learning algorithm.
Therefore, the area under the ROC curve (AUC) does not depend on the
imbalance of the training set [Kolcz et al., 2003], as opposed to other mea-
sures such as Fscore [Caruana and Niculescu-Mizil, 2004]. The ROC curve
also shows the misclassification rates achieved depending on the error cost
coefficients [Domingos, 1999]. For these reasons, [Bradley, 1997] argues the
comparison of the ROC curves attached to two learning algorithms to be
more fair and informative, than comparing their misclassification rates only.
Accordingly, the area under the ROC curve defines a new learning criterion,
used e.g. for the evolutionary optimization of neural nets [Fogel et al., 1995],
or the greedy search of decision trees [Ferri et al., 2002].

In an earlier step [Sebag et al., 2003b], the search space H considered is
that of linear hypotheses (H = IRd). To each vector w in IRd is attached
hypothesis hw with hw(x) =< w, x >, where < w, x > denotes the scalar
product of w and x. Hypothesis h defines an order on IRd, which is evaluated
from the Wilcoxon rank test on the training set E (Eq. 1), measured after
cross-validation.

The combinatorial optimization problem defined by Eq. 1, thus mapped
onto a numerical optimization problem, is tackled by Evolution Strategies
(ES). ES are the Evolutionary Computation algorithms that are best suited
to parameter optimization; the interested reader is referred to [Bäck, 1995]

2 Actually, the computational complexity is in O(n log n) since W(h) is propor-
tional to the sum of ranks of the positive examples.
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for an extensive presentation. In the rest of the paper, Roger employs a
(µ + λ)-ES, involving the generation of λ offspring from µ parents through
uniform crossover and self-adaptive mutation, and deterministically selecting
the next µ parents from the best µ parents + λ offspring.

3.2 Extensions

An extension first presented in [Jong et al., 2004] concerns the use of non-
linear hypotheses. Exploiting the flexibility of Evolutionary Computation,
the search space H is set to IRd × IRd; each hypothesis h = (w, c), composed
of a weight vector w and a center c, associates to x the weighted L1-distance
of x and c:

h(x = (x1, ..., xd)) =

d∑

i=1

wi|xi − ci|

It must be noted that this representation allows Roger for searching (a lim-
ited kind of) non linear hypotheses, by (only) doubling the size of the linear
search space. Previous work has shown that non-linear Roger significantly
outperforms linear Roger for some text mining applications [Roche et al.,
2004a].

A new extension, inspired from ensemble learning [Breiman, 1998], ex-
ploits the hypotheses h1, . . . , hT learned along T independent runs of Roger.
The aggregation of the (normalised) hi, referred to as H , associates to each
example x the median value of {h1(x), . . . , hT (x)}.

4 Goals of Experiments and Experimental Setting

The goal of experiments is twofold. On one hand, the ranking efficiency
of n’Roger will be assessed and compared to that of state-of-the-art su-
pervised learning algorithms, specifically Support Vector Machines with lin-
ear, quadratic and Gaussian kernels, using SVMTorch implementation3 with
default options. Due to space limitations, only ensemble-based non-linear
Roger, termed n’Roger, will be considered.

On the other hand, the results provided by n’Roger will be interpreted
and discussed with respect to their intelligibility. The experimental setting
is as follows. An experiment is a 5-fold stratified cross-validation process;
on each fold, i) SVM learns a hypothesis hSVM ; ii) Roger is launched 21
times, and the bagging of the 21 learned hypotheses constitutes the hypoth-
esis hn′Roger learned by n’Roger; iii) both hypotheses are evaluated on the
fold test set and the associated ROC curve (True Positive Rate vs False Pos-
itive Rate) is constructed. The AUC curves are averaged over the 5 folds.

3 http://www.idiap.ch/machine learning.php?content=Torch/en OldSVMTorch.txt
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The overall results reported in the next section are averaged over 10 ex-
periments (10 different splits of the dataset into 5 folds).

The Roger parameters are as follows: µ = 20;λ = 100; the self adapta-
tive mutation rate is 1.; the uniform crossover rate is .6.

5 Empirical validation

After describing the datasets, this section reports on the comparative per-
formances of the algorithms, and inspects the results actually provided by
n’Roger.

5.1 Datasets

In both domains, the data preparation step [Roche et al., 2004b] allows for
categorizing the word collocations depending on the grammatical tag of the
words (e.g. Adjective, Noun).

A first corpus related to Molecular Biology involves 6119 paper abstracts
in English (9,4 Mo) gathered from queries on Medline4. The 1028 Noun-
Noun collocations occurring more than 4 times are labelled by the expert;
the dataset includes a huge majority of relevant collocations (Table 1).

A second corpus related to Curriculum Vitae5 involves 582 CVs in French
(952 Ko). The “Frequent CV” dataset includes the 376 Noun-Adjective collo-
cations with at least 3 occurrences (two hours labelling required), with a huge
majority of relevant collocations. The “Infrequent CV” dataset includes the
2822 Noun-Adjective collocations occurring once or twice (two days labelling
required), with a significantly different distribution of relevant/irrelevant col-
locations (Table 1). Examples of relevant vs irrelevant collocations are re-
spectively compétences informatiques and euros annuels;

although both collocations make sense, only the first one conveys useful
information for the management of human resources.

Collocations # collocations Relevant Irrelevant
Molecular Biology 1028 90.9% 9.1%

CV, Frequent collocations 376 85.7% 14.3%
CV, Infrequent collocations 2822 56.6% 43.4%

Table 1. Relevant and irrelevant collocations.

5.2 Ranking accuracy

After the experimental setting described in section 4, Table 2 compares the
average AUC achieved for n’Roger and SVMTorch with linear, Gaussian

4 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi
5 Courtesy of the VediorBis Foundation.
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and quadratic kernels. On these domain applications, both supervised learn-
ing approaches significantly improve on the statistical criteria standalone
(Table 3). Further, n’Roger improves significantly on SVM using any ker-
nel, excepted on the Infrequent CV dataset. A tentative interpretation for
this result is based on the fact that this dataset is the most balanced one;
SVM has some difficulties to cope with imbalanced datasets.

Corpus n’Roger SVM (∼ 1.5s/fold)
(∼ 17s/fold) Linear Gaussian Quadratic

Molecular Biology (MB) 0.73 ± 0.05 0.50 ± 0.08 0.46 ± 0.08 0.59 ± 0.08
Frequent CV (F-CV) 0.64 ± 0.08 0.48 ± 0.08 0.48 ± 0.08 0.50 ± 0.10
Infrequent CV (I-CV) 0.73 ± 0.01 0.72 ± 0.01 0.72 ± 0.02 0.71 ± 0.02

Table 2. Ranking accuracy (Area under the ROC curve) of learning algo-
rithms.

Corpus MI MI3 Dice L OccL Ass J Conv SeSc CM LC Ttest Khi2

MB 0.30 0.35 0.31 0.42 0.57 0.31 0.59 0.35 0.43 0.31 0.46 0.31 0.31
F-CV 0.31 0.40 0.39 0.43 0.58 0.32 0.58 0.39 0.40 0.31 0.44 0.36 0.36
I-CV 0.29 0.30 0.33 0.30 0.37 0.29 0.50 0.40 0.39 0.30 0.45 0.30 0.30

Table 3. Ranking accuracy (Area under the ROC curve) of statistical criteria.

A more detailed picture is provided by Fig. 1, showing the ROC curve
associated to SVM, n’Roger and the OccL and J measures on the Frequent
CV dataset on a representative fold (termed RF in this paper). Interestingly,
the major differences between n’Roger and the other measures are seen at
the beginning of the curve, i.e. they concern the top ranked collocations.
Typically, a recall (True Positive Rate) of 50% is obtained for 18% false
positive with n’Roger, against 23% with OccL, 31% with J measures and
68% for quadratic SVM6.

In summary, n’Roger improves the accuracy of the top-ranked colloca-
tions, and therefore the satisfaction and productivity of the expert if he/she
only examines the top results. A proof of principle of the generality of the
approach has been presented in [Roche et al., 2004b], as the ranking func-
tion learned from one corpus, in one language, was found to outperform the
standard statistical criteria when applied on the other corpus, in another
language.

5.3 Analysis of a ranking function

As shown in [Jong et al., 2004], the weights associated to distinct features by
Roger can provide some insights into the relevance of the features. Accord-
ingly, the hypotheses constructed by n’Roger are examined.

Fig. 2 displays the weights and center coordinates of all 13 features (sec-
tion 2) for a representative Roger hypothesis h (closest to the ensemble

6 SVM ROC Curves is not significant as its AUC is lower than .5 on this test fold.
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Fig. 2. Weights (wj , cj) on the frequent CVs (for the learn set of RF ).

n’Roger hypothesis H) learned on a fold of the Frequent CV dataset. Al-
though AUC(h) is lower than that of H (.61 vs .64), it still outpasses that of
standalone features (statistical criteria).

As could have been expected, Roger detects that the mutual informa-
tion (MI) criterion does badly (AUC(MI)= .31, Table 3), with a high cen-
ter cMI and weight wMI values (collocations with high MI are less rele-
vant, everything else being equal). Inversely, as the OccL criterion does well
(AUC(OccL) = .58), the center cOccL is high associated with a highly neg-
ative weight wOccL (collocations with low OccL are less relevant, everything
else being equal) (see Tab. 4).

Although these tendencies could have been exploited by linear hypotheses,
this is no longer the case for the J criterion (AUC(J) = .58): interestingly,



216 Azé et al.

the center cJ takes on a medium value, with a high negative weight wJ . This
is interpreted as collocations with either too low or too high values of J ,
are less relevant everything else being equal. The current limitation of the
approach is to provide a “conjunctive” description of the region of relevant
collocations7.

MI OccL

wMI = 0.68 wOccL
= -0.41 n’Roger

cMI = 0.59 cOccL
= 0.65

Collocation Rank Rank Rank
expérience commerciale 297 258 1
formation informatique 300 123 2
société informatique 298 299 3
gestion informatique 299 76 4

colonne morris 1 211 90
bouygue telecom 2 213 298

fromagerie riches-mont 3 212 297
sauveteur secouriste 4 151 296

expérience professionelle 146 1 300
ressource humaine 44 2 299

baccalauréat professionel 193 3 22
baccalauréat scientifique 148 4 58

Table 4. Rank of relevant collocations given with 2 measures (MI and OccL) and
n’Roger. For each measure the weights (wi, ci) used by n’Roger are given (on
the learn set of RF ).

6 Discussion and Perspectives

The main claim of the paper is that supervised learning can significantly con-
tribute to the Term Extraction task in Text Mining. Some empirical evidence
supporting this claim have been presented, related to two corpora with differ-
ent domain applications and languages. Based on a domain- and language-
independent description of the collocations along a set of standard statistical
criteria, and on a few collocations manually labelled as relevant/irrelevant by
the expert, a ranking hypothesis is learned.

The ranking learner n’Roger used in the experiments is based on the
optimization of the combinatorial Wilcoxon rank test criterion, using an evo-
lutionary computation algorithm. Two new features, the use of non-linear
hypotheses and the exploitation of the ensemble of hypotheses learned along
independent runs of Roger, have been exploited in n’Roger.

Further research is concerned with enriching the description of colloca-
tions, e.g. adding typography-related indications (e.g. distance to the closest
typographic signs) or distance to the closest Noun, possibly providing ad-
ditional cues on the role of relevant collocations. Another perspective is to

7 In the sense that a single center c is considered, though the condition far from
ci actually corresponds to a disjunction.
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extend Roger using multi-modal and multi-objective evolutionary optimiza-
tion [Deb, 2001], e.g. enabling to characterize several types of relevant collo-
cations in a single run. A long-term goal is to study along a variety of domain
applications and expert goals, the eventual regularities associated to i) the
(domain and language independent) description of the relevant collocations;
ii) the ranking hypotheses.
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d’Habilitation à Diriger des Recherches, Université de Nantes, 1997.
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Abstract. In this paper, we present a original and synthetical overview of most
commonly used association rule interestingness measures. These measure usually
relate the confidence of a rule to an independency reference situation. Others relate
it to indetermination, or impose a minimum confidence threshold. We propose a
systematic generalisation of these measures, taking into account the reference point
choosen by an expert in order to apprehend the confidence of a rule. This general-
isation introduces new connections between measures, leads to the enhancement of
some of them, and we propose new parametrised possibilities.
Keywords: interestingness measure, independency, indetermination.

1 Motivations

In this paper, we focus on the generalisating objective interestingness mea-
sures. We will consider association rule intersetingness measures, which
aim at quantifying the quality of rules extracted from binary transactional
datasets. In such datasets, each row is representing an object of the data
mined, and consists of binary attributes, relating each object with properties
that it may have or not. In this context, an association rule is an implication
A→ B, where A and B (also called itemsets) are conjunctions of attributes.
We denote by n the total number of transactions in the database, na (resp.
nb, nab, nab̄) the number of transactions matching A (resp. B, A and B, A
but not B), and by pa (resp. pb, pab, pab̄) the corresponding relative frequen-
cies. Most objective measures are expressed as real valued functions of n,
of the marginal frequencies pa, pb, and either pab or pab̄, i.e. as functions
of n, and of the confidence (Conf) pab/pa and marginal frequency counts of
the considered rule since pab̄ =pa-pab. The higher the value of the measure,
the better the rule is expected to be. Considering that the more counter-
examples to a rule there are, the worst it is, we restrict our set of measures
to those decreasing with pab̄ (see table 1, references may be found in [Lenca
et al., 2004]). For a larger list of measures the reader should refer to [Guillet,
2004].

Support (Sup) and confidence (Conf) are the most famous of such mea-
sures, being the fundamentals principles of Apriori-like algorithms [Agrawal
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and Srikant, 1994]. These algorithms extract rules such that their Sup and
Conf is above given thresholds, σs and σc. They are deterministic [Freitas,
2000], and produce a large number of rules which may not be interessting:

• one would expect from a rule that its Conf should be above a reference
value, but the later seldom if ever equals σc. Two main references are
clearly identified as worthy from a user point of view. The first one is pb,
which corresponds to the independence of the itemsets A and B. In this
case the user wishes to focus on rules such that the prior knowledge of
A increases the knowledge of B, i.e. rules having a confidence pb/a above
the a priori frequency pb. An alternative reference sometimes used is 0.5,
as in [Blanchard et al., 2005]. In our opinion, the first reference is to be
taken within a targeting strategy, and the second one when considering
a predictive strategy. More generally, a user may be interested in taking
into account a reference value θ, 0 < σc ≤ θ ≤ 1, and will consider only
rules having a Conf greater than θ. Fukuda Gain (Fuku) is an example
of such a measure, where θ = σc.
• what is more, the data mined is often subject to some sampling scheme.

In order to take that into account, a special kind of measures have been
proposed. They are called “statistical” in the sense that, unlike the others
(also called “descriptive” measures), their value rises with n, the relative
frequencies being fixed. This consideration accounts for developping an
inferential approach, and retaining only rules that are significantly well
evaluated by measures, comparison to the reference choosen. Amongst
the issues that arise from this approach, validating a large number of
rules through the control of false rules discovery is assessed in [Lallich et
al., 2004].

Various properties of interestingness measures have been investigated,
in particular in [Piatetsky-Shapiro, 1991], [Hilderman and Hamilton, 1999],
[Freitas, 1999], [Lallich, 2002], [Lallich and Teytaud, 2004], [Gras et al., 2004]
and [Lenca et al., 2004]. One of these properties deals with the reference value
to which the measure compares confidence, that is to say pb (independency),
0.5 (indetermination), or some other value.

In this paper, we present a general survey of association rule interesting-
ness measures and parametrise the reference value to which the measures will
compare the confidence of a rule in order to estimate its quality. Such a con-
sideration leads to an organised review of classical measures, the introduction
of new ones, and enables us to enhance the coherence of some of them. We
will first focus on descriptive measures, and then look at the statistical ones.

2 Descriptives measures

2.1 Reference to independency

Amongst frequently used measures added to Sup and Conf in order to cap-
ture the interestingness of a rule, are those taking the independence of the
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Authors Relative definitions
Sup (Agrawal and Srikant, 1994) pab

Conf (Agrawal and Srikant, 1994) pb/a

r (Pearson, 1896)
pab−papb√

papāpbp
b̄

CenConf pb/a − pb

PS (Piatetsky-Shapiro, 1991) npa

`
pb/a − pb

´
= npapb (Lift − 1)

Loe (Loevinger, 1947)
pb/a−pb

p
b̄

= 1
p

b̄
CenConf = 1 − 1

Conv

- ImpInd (Lerman et al., 1981)
√
n

p
ab̄

−pap
b̄√

pap
b̄

Lift (Brin et al., 1997)
pb/a

pb

LC (Azé and Kodratoff, 2002)
pab−p

ab̄
pb

= 2 pa
pb

(Conf − 0.5)

Seb (Sebag and Schoenauer, 1988)
pab
p

ab̄
= Conf

1−Conf

OM (Jeffreys, 1935)
pb/a/p

b̄/a
pb/p

b̄
=

pab
pb

p
b̄

p
ab̄

= Lift · Conv

Conv (Brin et al., 1997)
pap

b̄
p

ab̄
ECR 1 − pab̄/pab = 1 − 1/Seb
IG (Church and Hanks, 1990) log

pab
papb

= log (Lift)

IntImp (Gras et al., 1996) P [Poi (npapb̄) ≥ npab̄]

EII (Gras et al., 2001)
˘
[(1 − h1(pab)

2)(1 − h2(pab)
2)]1/4ϕ

¯1/2

PDI (Lerman and Azé, 2003) P
h
N (0, 1) > ImpIndRC/B

i

Fuku (Fukuda et al., 1996) npa

`
pb/a − σc

´

Gan (Ganascia, 1988) 2pb/a − 1

• h1(t) = −(1− t
pa

) log2(1− t
pa

)− t
pa

log2( t
pa

) if t ∈ [0, pa/2[; else h1(t) = 1

• h2(t) = −(1− t
pb̄

) log2(1− t
pb̄

)− t
pb̄

log2( t
pb̄

) if t ∈ [0, pb̄/2[; else h2(t) = 1

• Poi stands for Poisson and N (0, 1) for the standard normal distribution

• ImpInd CR/B corresponds to ImpInd, centred reduced (CR) for a rule set B

Table 1. List of measures

itemsets A and B as reference. This is the case of many linear transformation
of Conf: the centered confidence (CenConf), Piatetsky-Shapiro (PS), Lo-
evinger (Loe), the implication index (ImpInd), and the lift (Lift). All these
measures additively centre confidence on pb from pb/a−pb, save Lift for which

the centring is multiplicative and based on
pb/a

pb
. Other monotonically increas-

ing transformations of confidence making reference to independency are the
odd multiplier (OM = 1−pb

pb
× Conf

1−Conf ), the conviction (Conv = 1−pb

1−Conf ),

whereas the information gain (IG = logLift) is a transformation of Lift.

2.2 Reference to indetermination

Some measures may (explicitly or not) refer to the indetermination situation,
when the number of examples and counter-examples is balanced for a given
na [Blanchard et al., 2005]. This is the case of Conf and the two linear trans-
formation: least confidence (LC = 2 × (pb/a − 0.5) × pa

pb
) and the Ganascia

measure (Gan = 2 × (Conf − 0.5)) that both additively centre Conf at
0.5. Other transformations can be listed, in particular the Sebag and Shoe-
nauer measure (Seb = Conf

1−Conf ) and the examples and counter-examples rate

(ECR = 2×(Conf−0.5)
Conf ).
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2.3 Reference at θ

In order to generalise the expression of interestingness measures with respect
to θ, i.e. rules such that 1 ≥ Conf(A→ B) ≥ θ(A→ B), we will alternatively
consider the quantities Conf − θ, Confθ and Conf−θ

1−θ . Descriptive interesting-
ness measures are generalised as follows:

CenConf |θ = Conf − θ
Gan|θ = Conf−θ

1−θ = Loe|θ = 1
1−θCenConf |θ

Fuku|θ = PS|θ = npa (Conf − θ)
Lift|θ = Conf

θ
IG|θ = log(Lift|θ)

Conv|θ = 1−θ
1−Conf

OM |θ = Seb|θ = Conf
θ × 1−θ

1−Conf = Lift|θ × Conv|θ
LC|θ = Conf−θ

1−θ × pa

pb
= Loe|θ × pa

pb

Some measures in table 1 are particular instances of several generalised ex-
pression:

OM |θ=pb
= Seb|θ=0.5, Gan|θ=0.5 = Loe|θ=pb

, Fuku|θ=σc
= PS|θ=pb

3 Statistical measures

3.1 Intrinsics of statistic and probabilistic measures

As mentioned previously, a statistic measure takes into account the size of
the sampling scheme. It is qualified of “probabilistic” when expressed as the
complement of the p-value of the test under pb/a ≤ pb hypothesis. Classical
approaches use the independence of itemsets A and B hypothesis as reference.
The modelling of this hypothesis realised in [Lerman et al., 1981] can be
done in three different ways, with respectively 1, 2 and 3 hazard levels. We
introduce model 1′ which is an alternative to model 1 where pa is fixed, rather
than na (table 2).

We denote by Nab the random variable generating nab, and H and B re-
fer respectively to the hypergeometric and binomial laws. The statistic and
probabilistic index based on nab̄ are built as follows: by establishing the law
of Nab et Nab under null hypothesis (H0) following the choosen modelling,
we can express a centered and reduced index under H0, noted NCR

ab
. Under

standard conditions, the law of this index can be approximated to the nor-
mal distribution, leading to the definition of a probabilistic measure, defined
as the surprise of observing such a high value of the index under H0. The
choosen modelling does not affect the expectation, but does modify the vari-
ance. [Gras, 1979] and [Lerman et al., 1981] prefer the third modelling, that
dissociates most rules A→ B and B→ A whereas the first modelling makes no
dinstinction between these rules. The measure hence obtained is the impli-
cation intensity (IntImp), which is most satisfying on properties one expects
a measure should have [Lenca et al., 2004], [Gras et al., 2004].
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Modelling 1 and 1′ Modelling 2 Modelling 3

Principle

1.1 na fixed,
Nab randomised
1.1’ pa fixed
Nab randomised

2.1 Na≡ B(n, pa)
2.2 /Na= na,
Nab≡ B(na, pb)

3.1 N ≡ P (n)
3.2/N = n,
Na≡ B(n, pa)
3.3 /N = n, Na= na ,
Nab≡ B(na, pb)

Law Nab

under H0

1.1 H(n, na, pb)
1.1’ B(na, pb)

B(n, papb) Poi(npapb)

Law Nab

under H0

1.1 H(n, na, pb)
1.1’ B(na, pb)

B(n, papb) Poi(npapb)

Statistical
index
NCR

ab

1.1
N

ab
−npap

b√
npapapbp

b

= −r√n
1.1’

N
ab

−npap
b√

npapbp
b

N
ab

−npap
bq

npap
b(1−pap

b)

IndImp
N

ab
−npap

b√
npap

b

Probabilistic
index
P (N(0, 1) > NCR

ab
)

1.1 P (N(0, 1) < r)
IntImp

P (N(0, 1) > IndImp)

Table 2. Modelling of the various statistical and probabilistic index

3.2 Retaining the discriminating power

Although having many good properties, one of the major drawbacks of
IntImp (drawback shared by the other statistic and probabilistic measures)
is the loss of discriminating power. By its definition, it will evaluate rules
significantly different from independency between 0.95 and 1. If n becomes
important, which is particularly true in a data mining context, the slightest
divergence from an independency situation becomes highly significant, thus
leading to high and homogeneous values of the measure, close to 1.

In order to counter-balance this loss in discriminating power, [Lerman and
Azé, 2003] introduce a contextual approach where ImpInd is centered and
reduced (CR notation) on a case database B, thus leading to the definition

of the probabilistic discriminant index, PDI = P
[
N(0, 1) > ImpIndCR/B

]
.

[Gras et al., 2001] propose an alternative solution by wheighting IntImp

through the use of an inclusion index. This index is based on the entropy
of experiments B/A and A/B. We denote by H(X) = px log2 px + px log2 px
the entropy associated with an event X . In [Blanchard et al., 2004] the most
general form of the inclusion index is given as:

i(A ⊂ B) =
[
(1−H∗(B/A)α)

(
1−H∗(A/B)α

)] 1
2α

where H∗(X) = H(X) if px > 0.5, H∗(X) = 1 otherwise. The α parameter
is choosen by the user. The value α = 2 is advised if one wants that this
index should be tolerant to initial counter-examples, and we will use this
value from now on. Hence, [Gras et al., 2001] define the entropic intensity of

implication as EII = [IntImp · i(A ⊂ B)]
1
2

The shift from H(X) to H∗(X) aims at discarding uninteresting situa-
tions, such as pb/a < 0.5 or pa/b < 0.5, and complies with a predictive strat-
egy. In a targeting strategy, the value of pb/a should have been compared to
pb, and the value of pa/b to pa.



Parametrised measures for association rules 225

The wheighting of the implication of intensity by the inclusion index,
although effective, is problematic. The inclusion index is a measure of the
distance to indetermination based on entropy, thus being null when pb/a =
0.5, and so is EII. Still, IntImp values 0.5 at independency. Hence EII is

not always null at independency: EII = 8

√
(1−H(A)2)(1−H(B)2)

16 if pa < 0.5

and pb > 0.5, and is null otherwise.

3.3 Revised entropic intensity of implication

We will now propose two adaptations if EII in order to cope with the above
mentioned issues: REII (Revised EII) et TEII (Troncated EII). Our first
proposal consists in replacing IntImp by IntImp∗ = max{2IntImp − 1; 0}
in EII. This will solve the issues pointed out, but has the inconvenient of
modifying the entire spectrum of values taken by EII:

REII = [IntImp∗ · i(A ⊂ B)]
1
2

Our second proposal solely nullifies the values of EII when nanb̄

n ≤ nab ≤
min{na

2 ,
nb̄

2 }, whithout modifying its values otherwise. To achieve this, we
introduce an adequate version of H(X). In order to take into account both
predictive and targeting strategies, a rule will have a null evaluation by the
inclusion index, and hence by TEII when the following conditions are jointly
met:

• pb/a > 0.5 (prediction) and pb/a > pb (targeting); i.e. pb/a > max(0.5, pb)
• pa/b > 0.5 (prediction) and pa/b > pa (targeting); i.e. pa/b > max(0.5, pa)

With these new conditions, TEII is null whenever the num-
ber of counter-examples is above min

(nanb̄

n ; na

2 ; nb̄

2

)
. TEII =

[IntImp(A→ B)× it(A ⊂ B)]
1
2 , with:

• it(A ⊂ B) =
[
(1−H∗

t (B/A)α)
(
1−H∗

t (A/B)α
)] 1

2α ,
• H∗

t (B/A) = H(B/A) if pb/a > max(0.5, pb), H
∗
t (B/A) = 1 otherwise,

• H∗
t (A/B) = H(A/B) if pa/b > max(0.5, pa), H

∗
t (A/B) = 1 otherwise.

3.4 Measures making reference to indetermination

[Blanchard et al., 2005] propose IPEE, a probabilistic measure of deviation
from equilibrium. The authors implicitly use modelling 1′ since they consider

Nab ≡ B(na, 0.5) under indetermination hypothesis, i.e. NCR
ab

=
Nab−0.5na

0.5
√
na

.

They introduce IPEE = P
[
B(na, 0.5) > nab

]
≈ P

[
N(0, 1) >

nab−0.5na

0.5
√
na

]
.

Under normal approximation, IPEE equals 0.5 at indetermination. This
measure corresponds to the probalistic index associated to modelling 1′ (see
table 2), where pb is replaced by 0.5. IPEE will hence inherit of the weak
discriminating power of this kind of measures, thus leading the authors to
propose that it should be modulated by the inclusion index, which is all the
most coherent, since both index make reference to indetermination.
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3.5 Generalised intensity of implication

Using the same approach as with descriptive measures, we can generalise
statistical measures and evaluate the interestingness of a rule by comparing
its Conf to θ. This is done by considering in table 2 that for each modelling
under H0, the probability of an example, conditionally to na, of an example
is θ: Nab ≡ B(na, θ).

The results of the hence adapted modelling 1 is immediate, and those
of modelling 2 and 3 are easily obtained through the use of the probability
generating functions. If X ≡ B(m, p), its generating function then is G(s) =
E(sX) = (1− p+ ps)m, and if X ≡ Poi(λ), it is G(s) = E(sX) = e−λ(1−s).

• In modelling 2, n is fixed, Na ≡ B(n, pa) and Nab/(Na = na) ≡ B(na, θ).
Since GNab

(s) = E(sNab) = E(E(sNab/Na)) = E
(
(1− θ + θs)Na

)
, we

have:
Nab ≡ B(n, θpa) and Nab̄ ≡ B(n, (1− θ)pa)

• In modelling 3, we have N ≡ Poi(n), Na/(N = n) ≡ B(n, pa), and
Na/(N = n and Na = na) ≡ B(na, θ).
AsGNa(s) = E(sNa) = E(E(sNa/N)) = E((1−pa+pas)N ) = e−npa(1−s),
then Na ≡ Poi(npa).
Similarly, since GNab

(s) = E(sNab) = E(E(sNab/Na)) = E((1 − θ +
θs)Na) = e−nθpa(1−s), we have:

Nab ≡ Poi(nθpa) and Nab ≡ Poi(n(1− θ)pa)
From these results, we propose a range of generalised measures (see ta-

ble 1), and will focus on two of them. The first one, GIPE|θ, associated to
modelling 1′ and generalises IPEE. It corresponds to the χ2 adjustment of
B/A distribution and (θ; 1− θ). The second one, GIntImp|θ, associated to
modelling 3 generalises IntImp.

Modelling 1 and 1′ Modelling 2 Modelling 3

Principle

1.1 na fixed,
Nab randomised
1.1’ pa fixed,
Nab randomised

2.1 Na≡ B(n, pa)
2.2 /Na= na,
Nab ≡ B(na, θ)

3.1 N ≡ Poi(n)
3.2/N = n,
Na≡ B(n, pa)
3.3 /N = n, Na= na,
Nab≡ B(na, θ)

Law Nab
1.1 H(n, na, θ)
1.1’ B(na, θ)

B(n, θpa) Poi(npaθ)

Law Nab

1.1 H(n, na, 1− θ)
1.1’ B(na, 1− θ)

B(n, (1− θ)pa) Poi(npa(1− θ))

Statistical
index

NCR
ab

1.1
N

ab
−npa(1−θ)√

npapaθ(1−θ)

1.1’
N

ab
−npa(1−θ)√

npaθ(1−θ)

N
ab

−npa(1−θ)√
npa(1−θ)(1−pa(1−θ))

GIndImp|θ
N

ab
−npa(1−θ)√
npa(1−θ)

Probabilistic
index
P (N(0, 1) > NCR

ab
)

1.1’ GIPE|θ
GIntImp|θ =

P (N(0, 1) > GIndImp|θ)

Table 3. Modelling of the various generalised index
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3.6 Discriminant power of the generalised measures

The generalised statistical or probabilistic measures have, as the original ones
do, a weak discriminating power. In order to enhance these measures, we will
consider two approaches, one being contextual, like [Lerman and Azé, 2003],
the other one relying on a weighting through the use of an inclusion index,
like [Gras et al., 2001].

In the contextual approach, GIndImp |θ (or its equivalent following mod-
elling 1 and 2) is centred and reduced on a case database B, and thus define
a generalised probabilistic discriminant index, GIPD |θ, as follows.

GIPD|θ = P
(
N(0, 1) > GIndImp

CR/B
|θ

)

This way, we also define the generalised entropic intensity of implication,
GEII|θ, as the product of GIndImp|θ and an inclusion index. In order to
remain coherent, we think advisable to use a generalised inclusion index i|θ,
using θ as reference value and not 0.5. This can be achieved by replacing in
the original formula H(B/A) by H̃|θ(B/A) and H(A/B) by H̃|θ(A/B) where:

• H̃|θ(B/A) is expressed as H(B/A), in which we replace pb/a by p̃b/a
defined as follows:

p̃b/a =
pb/a

2θ
if pb/a ≤ θ, p̃b/a =

pb/a + 1− 2θ

2(1− θ) otherwise

• H̃|θ(A/B) can be expressed either:

– by considering θ as reference, in which case we form H̃|θ(A/B) as we

did for H̃|θ(B/A), by replacing pa/b by p̃a/b in H(A/B), with:

p̃a/b =
pa/b
2θ

if pa/b ≤ θ, p̃a/b =
pa/b + 1− 2θ

2(1− θ) otherwise

This first possibility generalises the inclusion index proposed in [Gras
et al., 2001], and can be found back using θ = 0.5.

– or using 1− pa

pb
× (1− θ) as reference, since pa/b = 1− pa

pb
× (1−pb/a).

In this case, when considering independancy (i.e. θ = pb), the refer-

ence value for H̃|θ(A/B) is pa.

H̃∗
|θ(B/A) and H̃∗

|θ(A/B), are defined as:

H̃∗
|θ(X) = H̃|θ(X) if px > θ, H̃∗

|θ(X) = 1 otherwise

and i|θ as:

i|θ =
[(

1− H̃∗
|θ(B/A)α

)(
1− H̃∗

|θ(A/B)α
)] 1

2α

, with α = 2.
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From this, we deduce GEII|θ as GEII |θ =
[
IntImp|θ × i|θ

] 1
2

, which is

a more discriminating version of GIntImp. A similar approach leads to the
definition of a generalised probabilistic measure of deviation, GEIPE|θ, as

GEIPE|θ =
[
GIPE|θ × i|θ

] 1
2 .

Their behaviour, compared to their original counterparts, is represented
figure 1. They were obtained using 3 different values for θ, θ = 0.1 (thus
targeting at independency), θ = 0.2 (targeting for situations such that B

happens twice more often when A is true) and θ = 0.5 (prediction).

Fig. 1. Behaviour of the measures, in function of pb/a for n = 1000, pa = 0.05 and
pb = 0.10

4 Conclusion

Following modelling and coherence principles, we proposed in this paper an
innovating framework, from which a unified view of a large number of interest-
ingness measures can be drawn, and which clarifies some of the links between
these measures. Moreover, this framework is at the basis of the definition
of new measures, namely the generalised intensity of implication, generalised
probabilistic discriminant index, generalised entropic intensity of implication
and the generalised probabilistic measure of deviation from equilibrium, that
all compare the confidence of a rule to a reference parameter.
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Visualisation and exploration of

high-dimensional data
using a “force directed placement”method:

application to the analysis
of genomic signatures

Sylvain Lespinats, Alain Giron, and Bernard Fertil

INSERM Unité 678, CHU Pitié-Salpêtrière
91 bd de l’hôpital, 75634 PARIS (France)

Abstract. Visualization of high-dimensional data is generally achieved by pro-
jection in a low dimensional space (usually 2 to 3 dimensions). Visualization is
designed to facilitate the understanding of data sets by preserving some “essen-
tial”information. We have designed a non-linear multi-dimensional-scaling (MDS)
tool relying on the force directed placement (FDP) algorithm to help dynamically
discover features of interest in data sets. A user-driven relaxation of constraints
built on the preservation of pairwise distances between data allows getting subjec-
tive representations of data that meet some specific angle. In a context of classifica-
tion, we examine the impact of metric, sample size, and neighborhood preservation
on the mapping of genomic signatures.
Keywords: Multi-Dimensional Scaling, Force Directed Placement, Classification,
Proximity visualisation, Metric.

1 Introduction

High dimensional data raise unusual problems of analysis, given that some
properties of the spaces they live in cannot be extrapolated from our current
experience [Verleysen, 2001]. The notion of neighborhood in particular must
be revised to take into account the number of dimensions. In particular
(notably in the case of Euclidean spaces), we often face the problems of
empty space and concentration of measure: when the number of dimensions
is high, the neighborhood of each object is scarcely filled whereas most of
the other objects are found in a thin outer shell. Distances between high
dimensional objects are usually very concentrated around their average.

Exploration and analysis of high dimensional data are often made by
means of dimension reduction techniques. Since human experience mostly
deals with 3D space (and most data display devices are two-dimensional),
finding a meaningful mapping of data in such low dimensional spaces is the
issue. Principal component analysis (PCA), multidimensional scaling (MDS)
[Cox and Cox, 1994], Kohonen maps (SOM) [Kohonen, 1997] are classic ap-
proaches in this context. In general, a loss function is defined to characterize
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the error in representing the dissimilarity between objects. It allows building
the rules of projection from the original space of the data on to a smaller
dimensional space. It is important to realize that any reduction of dimen-
sion leads to a subjective data representation. Depending on the purpose,
different mappings may be achieved for the same set of data. For classifica-
tion tasks, for example, the preservation of the neighborhood appears one of
the aspects important to master. In this work, we examine some interest-
ing mappings obtained by means of a nonlinear MDS-based projection. In
particular, the consequences of dimension reduction on the classification of
genomic signatures (256-dimension data originally) are analyzed.

2 Reduction of data dimension: principles ruling the
present study

The approach that is presented here belongs to the MDS group of methods.
It is thus advisable to define metrics for the original data space and for the
target space (called output space thereafter), a lost function and a mapping
algorithm. Usually, the characteristics of the data to be analyzed are to be
considered to choose these various elements.

2.1 Data, metric and lost function

Data under investigation in this work concern the genomic signature. The
whole set of short oligonucleotide frequencies observed in a DNA sequence is
species-specific and is thus considered as a genomic signature (Deschavanne et
al., Karlin et al.). The genomic signature characterizes the DNA molecule by
256 frequency variables, defined in the range [0-1]. Counts (and frequencies)
of oligonucleotides can be displayed as parametric images allowing fast visual
examination and comparison (http://genstyle.imed.jussieu.fr). It has been
observed that the genomic signature results from a species-specific “writing
style”[Deschavanne et al., 1999]. Indeed, on one hand, the genomic signa-
tures of species differ from one another; on the other hand, the majority of
DNA segments isolated from the genome of a given species have comparable
signatures. As a consequence, each species is given a genomic signature that
can be derived from most of its available DNA fragments. The DNA style is
obtained from the examination of relatively small chains of the genetic ma-
terial. In practice, a sequence as short as 2000 nucleotides usually provides
a good estimate.

The Euclidean metric allows showing statistically significant differences
between species’ genomic signatures [Deschavanne et al., 1999]. This metric
will thus be chosen to illustrate the method, for typical examples at first
(projection from a 3D space towards a 2D space), then for the problem of
classification of genomic signatures. In some instances, we may consider pre-
serving only the rank order of distances between objets, not the exact values.



232 Lespinats et al.

Such a procedure is found useful when the projection provides “unsatisfac-
tory”results. The projection should then try matching the rank order of
distances between objects in the two-dimensional output space to the rank
order in the original space.

The lost function is defined as a weighted sum of errors over dissimilarities
(distances or ranks) between all pairs of objects in the original space and the
output space. Eventually, subsets of data may be considered to test the ro-
bustness of projection. A part of data is used to define the mapping whereas
the remaining part serves checking representiveness of output space. In order
to preferentially favor close proximity, a weighting scheme reducing the im-
pact of errors related to large dissimilarities may be gradually applied during
the phase of optimization. This approach takes benefit from the work by P.
Demartine and J. Herault [Demartine and Herault, 1997] and T. Kohonen
[Kohonen, 1997].

2.2 Loss function minimization algorithm

In general, the optimal position of data in the output space cannot be ob-
tained analytically. It is necessary to implement a function minimization al-
gorithm with widely recognized robustness and convergence aptitudes. Clas-
sically, in the context of MDS, one alternatively uses the generalized Newton-
Raphson algorithm, TABU Search [Glover and Laguna, 1995], genetic algo-
rithms [Goldberg, 1989] or simulated annealing [Dowsland, 1995].

Regarding our model (called FDP-MDS thereafter), we propose to set up
a dynamic algorithm grounded on the “Force Directed Placement”paradigm
(FDP) [Fruchterman and Reingold, 1999]. Firstly described at the beginning
of the Eighties, the FPD method is yet popular in only a limited number of
fields. In particular, it is extensively used for the design of printed circuits.
It is on the other hand little known in the field of data analysis. The force
directed placement metaphor may be clarified in the following way: the data
to place in the output space are bounded by forces (materialized by springs
for example) the magnitude of which are related to the satisfaction of dissim-
ilarities. In the case of springs, length at rest corresponds to the dissimilarity
between the connected objects in data space. Any departure from the resting
value consequently results in a recall force contributing in the movement of
object and accounting for the energy of the system. Starting from an initial
state with the objects placed the most judiciously possible in output space,
the system is allowed to relax towards a minimum state of energy for which
the constraints of dissimilarities between objects are satisfied as much as pos-
sible. FPD algorithm is very interesting in the case of MDS, considering its
speed of convergence and its possibilities to escape from local minima.

For problems dealing with few thousands of objects, it is possible to di-
rectly run the FDP algorithm with the whole set of data. For larger data
collections, it is often interesting to select a subset of objects to coarsely de-
fine the topology of the output space, in a first step. Remaining data are
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subsequently positioned with respect to preceding ones, by preferentially sat-
isfying local constraints. In our hands, the incremental approach shows up
very effective, especially when initial objects are selected after clustering.

2.3 Non-linear projection achieved by FDP-MDS: examples

Two boxes: Data to be projected have three dimensions. Objects are orga-
nized to represent 2 cubic boxes with an open side not pointing in the same
direction. Projection onto a 2D space with FDP-MDS correctly develops the
2 boxes and carries out a twist on a large scale (fig. 1). Relations of vicinity
are satisfactorily preserved.
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Fig. 1. Mapping of 2 3D open boxes in a 2D space. Upper left: orig-
inal data (3D space), upper right: mapping (2D space), lower left, satis-
faction of constraints on objects (satisfaction increases from black to white,
LUT of fire), lower right, pairwise distances preservation (color codes for den-
sity of distances). NB: Colored figures are available from our WEB site
<http://e6.imed.jussieu.fr/afficherpub.php/ASMDA05.pdf>

Earth globe: Data to be projected are the big cities around the word
(3D). Projection accounts for local density of cities. The north hemisphere
is properly developed (Fig. 2). Cities-free areas are distorted although con-
tinuity is preserved in most places (The grid is not used during the mapping
construction).

2.4 Mapping high dimensional data: the genomic signature
issues

The data concerned with this study belong to two families; the signatures of
5000 species constitute a subset of the diversity of ADN molecules on earth.
The signature of a species, B. subtilis, is studied in detail. One thousand
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Fig. 2. Mapping of the earth globe (defined by the big cities) in a 2D space. Color
indicates satisfaction of pairwise distances for the corresponding city (Color scheme
is similar to Fig. 1).

eight hundred and twenty four signatures corresponding to the analysis of
B. subtilis genome through a sliding window of preset size (5000 nucleotides)
are calculated. The signature of each of these windows (called local signatures
thereafter) generally displays the characteristics of B. subtilis. All signatures
are defined by 256 frequency variables.

The first issue to be addressed in this work concerns the effect of sampling
on the mapping of high dimensional data. Five hundred local signatures of
B. subtilis are randomly selected to build a proximity preserving 2D output
space (Fig 3, left panel). The 1324 remaining signatures are subsequently
placed, using the FDP algorithm. It appears clearly that the mapping is not
suitable to handle the diversity of local signatures of B. subtilis. Most of the
signatures that were not considered for the mapping are concentrated around
the center of the space, whereas a randomly placement would be expected.
Obviously, pairwise distances between 500 local signatures are not enough to
properly describe the proximity characteristics of these highly dimensional
objects. New objects cannot fit in the output space. It must be pointed out
that this peculiar behavior is not observed for the 5000 genomic signatures
although their dimension is the same (result not shown). It is suggested
that the intrinsic dimension of signatures is the key to explain this surprising
result. Local signatures may stretch over most of the avaible dimensions
(sampling effect) whereas variations among genomic signatures only concern
specific directions characterizing the restricted set of possible pathways for
species differentiation.

Surprisingly, switching from the Euclidean metric to the rank pseudo-
metric solves the problem (Fig. 3, right panel)! It may be considered that
the mapping obtained using the rank pseudo-metric is robust to sampling
size, but additional experiments and theoretical developments are required
to firmly conclude on this point.

The second issue deals with classification. Local signatures are expected
similar to the genomic signature of the species they come from. It should be
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Fig. 3. Mapping of B. subtilis local signatures. Red crosses (500) are for signatures
used to construct the mapping, blue circles (1324) are for additional local signatures
placed afterwards.

subsequently possible to search for the species of origin of any local signature
of B. subtilis, using a nearest neighbor classifier exploring the 5000 genomic
signature set. Within the framework of this paper, 2 situations are consid-
ered: i) the mapping is learned using the species’ signatures, ii) the mapping
is learned with all available signatures, including B. subtilis’ local signatures.

In data space (256 dimensions), only 64% of local signatures are correctly
assigned to B. subtilis. In fact there are about one hundred of species in the
hyper-sphere holding 95% of local B. subtilis’ signatures, some of them being
even very close to B. subtilis. It should be noted that an important subset
of local signatures is misclassified for known biological reasons. When the
space of projection is learned from the species’ signatures, the rate of good
classification falls to 0,7%(fig. 4, left panel). It is 24% when the space of
projection is learned from the whole set of signatures (species and local, fig.
4, right panel). The zone devoted to local signatures in the output space
is extended to satisfy constraints of distances between local signatures when
they are included in the training sample. Even so, quality of classification
remains poor.

3 Discussion et conclusion

The nonlinear approach of mapping described in this article was designed
to preferentially preserve proximity. For small dimension problems, it ap-
pears that its effectiveness is quite good. It is unfortunately not the case for
high dimension data where the learning sample size seems to be a critical
parameter and the efficiency of local signature nearest neighbor classification
is strongly reduced in the output space. The method of classification used
in this work is particularly sensitive to “errors”of placement since only one
“mis-placed”species may cause multiple classification errors. However, this
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situation is likely to occur many times in such dramatic reductions of dimen-
sion (256 towards 2-3). Considering that the growth of neighborhood with
increasing radius (around every object) in a high dimensional space cannot
be effectively matched in a low dimensional space, only data with a small in-
trinsic dimension may be properly mapped in a small dimensional Euclidean
space.
An interesting alternative is proposed by H. Ritter and J. Walter [Ritter,
1999] [Walter and Ritter, 2002]: they use a 2-dimensional hyperbolic plane
as output to simulate the singular growth of neighborhood of high dimen-
sional space. The approach seems very promising. The learning sampling
size is also an important parameter to master. Obviously, the conjunction
of the empty space phenomenon with the singular growth of neighborhood
in high dimensional space make the sampling phase (when required) partic-
ularly tricky. All together, it seems useful to recall that the analysis of the
data resulting from consequent compression ratios must be carried out with
infinite precautions.

Fig. 4. mapping of genomic signatures in a small dimensional space: Species’ sig-
natures are in blue (dark), well-classified local B. subtilis’ signatures (in the data
space) are in yellow (light), mis-classified signatures are in red (see text). Left
panel: mapping obtained with species’ genomic signatures, right panel: mapping
obtained with the full set of available signatures (species and local).
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Abstract. Gaussian kernels are widely used in many data analysis tools such as
Radial-Basis Function networks, Support Vector Machines and many others. Gaus-
sian kernels are most often deemed to provide a local measure of similarity between
vectors. In this paper, we show that Gaussian kernels are adequate measures of
similarity when the representation dimension of the space remains small, but that
they fail to reach their goal in high-dimensional spaces. We suggest the use of p-
Gaussian kernels that include a supplementary degree of freedom in order to adapt
to the distribution of data in high-dimensional problems. The use of such more
flexible kernel may greatly improve the numerical stability of algorithms, and also
the discriminative power of distance- and neighbor-based data analysis methods.
Keywords: High dimensional spaces, Local Models, Gaussian Kernels.

1 Introduction

Data analysis is one of the areas where artificial neural networks and machine
learning techniques in general, have the most impact. During the last twenty
years, there has been a considerable effort to develop data analysis techniques
that are adapted to the abundance of data in nowadays information society.
Although those tools are different in many aspects, be it from theoretical,
technical or historical point of view, many of them share a common charac-
teristic: for one reason or another, they use kernels. This is for example the
case for Radial-Basis Function Networks (RBFN) [Bishop, 1995], for Sup-
port Vector Machines (SVM) [Cristianini and Shawe-Taylor, 2000], but also

1 The work of D. Francois is funded by a grant from the Belgian FRIA. Part
of the work of D. Francois and of the work of V. Wertz is supported by the
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for the more traditional Parzen estimators of probability densities [Parzen,
1962], for mixtures of Gaussians [McLachlan and Peel, 2000], etc.

Kernels can be defined in various ways. In most cases however, Kernel
means a function whose value only depends on a distance between the input
and a constant, named center; the input and the center may be vectors. Nat-
urally, the most often used kernel is the Gaussian one. There are several good
justifications to using Gaussian kernels. The first one is that the Gaussian
function is a natural one: by the Central Limit Theorem, the sum of inde-
pendent variables having the same distribution, whatever the distribution is,
tends to a Gaussian distribution as the number of terms in the sum tends
to infinity. The Gaussian function or distribution is also the only one that
can be described without loss of information by its two first moments; it is
therefore of particular interest for second-order statistics, including all linear
data analysis methods.

Besides these general considerations, Gaussian kernels are most often used
for their locality property: it is obvious that the Gaussian output may be
considered as high when the input is close from the center and low (or even
negligible) when the argument is far from the center. Locality is a primary
importance concept for many reasons that range from the interpretability
of the models to their numerical stability, through experimentally observed
advantages with specific types of data.

This paper aims to show that the use of Gaussian kernels may be valid
when the data are represented in low-dimensional spaces, but fails to reach
its objectives in high-dimensional spaces. It is shown that high-dimensional
Gaussian kernels are usually not local, and cannot be made local through scal-
ing factors. This paper suggests using the so-called Generalized p-Gaussian
kernel, which can be made local in any-dimensional space through the adap-
tation of a supplementary parameter.

This paper is organized as follows. Section 2 briefly recalls why the con-
cept of locality is important in data analysis methods. Section 3 shows that
Gaussian kernels are not local functions in high-dimensional spaces. Finally,
in Section 4 Generalized p-Gaussian kernels are introduced as a possible al-
ternative to Gaussian kernels for high-dimensional data analysis methods.

2 Why is locality so important?

While the locality property seems important in many algorithms, few papers
address the reasons why it is indeed important. In the following, some in-
tuitive arguments in the favor of local kernels are developed, without any
attempt to be exhaustive.

2.1 Interpretability

The main argument for locality is interpretability. In most if not all applica-
tions, practitioners are not happy about responses given by blind models, i.e.
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models that do not provide interpretability of their outputs. Nevertheless
several algorithms are mostly blind, or at least have the reputation to be
blind; examples are feed-forward artificial neural networks such as the Multi-
Layer Perceptron (MLP) and RBFN. Interpretation in the latter models can
however come from an examination of their hidden units outputs.

Indeed, the Kernel function can be seen as measure of similarity. The
range of the kernel is between zero and one (note that when kernels are used
for density estimation they are normalized so that their integral equals one ;
this is not the case here. In any case, scaling does not change the arguments
below). An input may be considered as close to the kernel center when the
kernel output is near 1, and far when the output is near 0 ; indeed the ouptu
of a Gaussian kernel decreases from 1 to 0 according to a negative exponential
of the squared Euclidean distance between the vectors. Kernels may then be
used to express in a numerical form the intuitive notion of closeness, i.e.
similarity, with the continuity and derivability properties that are necessary
in most algorithms. Regions spanned by kernels up to the limits defined (in
afuzzy way) by the notion of closeness may help to the interpretation of the
model.

The closeness concept is essential in local mmodels. For instance, RBFN
and SVM models build the output corresponding to a new input x as a
weighted sum of the output values associated to certain entities living in
the input space (respectively called centroids and support vectors) ; while
the weight is the similarity measurement between x and those entities. In
other words, the more similar the new input is to a given entity, the more
importance that entity has in computing the predicted value. Many Lazy
Learning methods can be interpreted this way too.

2.2 Numerical stability

For RBFN as for SVM, the values of each kernel at each data point is gathered
into a matrix which is used to formulate the corresponding optimization
problem. The conditioning, and thus the sensitivity and numerical stability
of the problem, depends on the condition number of that matrix. This section
illustrates the fact that building a kernel-based model leads to an ill-formed
optimization problem when locality of the kernels is not ensured.

Suppose N points randomly drawn according to a uniform distribution
in the [0, 1]d d-dimensional cube. A vector quantization is then performed
on these N points to obtain M centroids, representative on the initial dis-
tribution. A traditional RBFN learning consists in placing Gaussian kernels
on each of the M centroids, and evaluating the scalar RBFN output as a
linear combination of the kernel outputs [Hwang and Bang, 1997]. The M
linear coefficients are found by least squares. The matrix of the system is
the N ×M matrix built by evaluating each kernel on each data point. It is
known that the numerical stability of the system depends on the condition
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Fig. 1. Condition number of the system matrix in a RBF network, with respect to
the standard deviation (width) of the kernels.

number of the matrix, which is defined as the ratio between the largest and
smallest singular value of the matrix [Golub and van Loan, 1996].

Figure 1 shows an example of this condition number, for a system with
200 data points and 10 centroids. The condition number is plotted versus the
common standard deviation (width) of the kernels. As the centroids learned
by vector quantization have a distribution equal to the distribution of the
initial data, i.e. they are uniformly distributed, it is natural to assume that
all kernel standard deviations are equal.

One can see on Figure 1 that an optimum exists in the condition number
of the system matrix, corresponding to an optimal standard deviation. While
the exact value does not matter here, one can easily see that deviations much
smaller or larger than the optimal lead to ill-conditioned matrices.

If the standard deviation is too small, the Gaussian kernels will not reach
(with a significant value) the data points, even those that are close to the
centroids. Very large coefficients will thus result from the system solution,
both in positive and negative values, in order to both include all data into
the radius of attraction of at least one Gaussian kernel, and at the same
time keeping a weighted sum into a small range (corresponding to a smooth
function to approximate).

On the contrary, if the standard deviation is too large, the Gaussian ker-
nels will be very flat, leading to having most or all points into their respective
radius of attraction. Approximating a smooth but non-flat (constant) func-
tion therefore also results in very large, both positive and negative, model
coefficients.

Both situations therefore lead to ill-defined systems. Locality (not too
large standard deviation) is thus also important for the numerical stability
of the algorithms. Of course, too narrow kernels should be avoided too, as
this corresponds to a kind of overfitting.
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3 Gaussian kernels are not adequate in
high-dimensional spaces

At first sight, the objective, i.e. measuring the similarity between two vectors,
and the way to reach the goal, i.e. using a Gaussian kernel, perfectly match.
However, without reference to Gaussian kernels, one could define an ideal
kernel as a kernel whose output gives an acceptable measure of the similarity
between two vectors; acceptable means for example that among a finite dis-
tribution, the closest vectors to a query should be evaluated as similar to the
query, while vectors that are far from the query should be evaluated as non
similar. In other words, among a finite distribution, the selected similarity
measure should be able to find in acceptable proportions both similar and
non similar vectors to a query point. In the next section, it will be shown
that Gaussian kernels fit with this definition in low-dimensional spaces, while
they do not fit it in high-dimensional spaces. To illustrate this problem, let
us imagine that data have a Gaussian distribution centered at C (the follow-
ing is qualitatively valid for any distribution though). We will compare the
distribution of distances between any point and C, to the shape of a kernel
centered on C too. As the kernel will be used to assess if points are close or
not from C, this experiment allows to verify that the kernel is discriminative
(is not too flat) in the effective range of the distance distribution. On Figure
2, the thick line represents the kernel value, while the thin line (and grayed
area) represent the distance distribution. One easily sees on graphs (a) and
(b) that, in low dimension, for a well-chosen kernel width value, the small
(resp. large) distances in the distribution will be mapped onto kernel values
close to one (resp. zero). This matches the definition of an ideal kernel as
detailed in the previous paragraph.

However when the space dimension increases, the correspondence between
the range of distances in the histogram, and the range of the decreasing slope
in the Gaussian kernel cannot be guaranteed anymore. Graphs (c) and (d)
refer to space dimensions 10 and 100 respectively, for several kernel width
values. It is seen that it is more difficult to adjust the value of the kernel
width is in order to cope with the ideal kernel definition: in all cases, there is
a large part of the Gaussian kernel decreasing slope that falls out of the range
of distances in the histogram. This means that close distances (left queue
of the distribution) and large distances (right queue of the distribution) are
hardly distinguishable from their kernel values; the notion of similarity itself
(are data close or far one from another) looses its significance. Needless to
say, the consequences in methods based on nearest neighbors are dramatic.

Another view of the same phenomenon comes from the following exper-
iment. Let us imagine a d-dimensional uniform distribution, quantized into
a predefined number M of centroids. A Gaussian kernel is centered on each
initial point of the distribution; the kernel is evaluated on the furthest and
closest centroids. Then the difference between the two Gaussian outputs is
taken, and averaged over all points of the distribution. The result is repre-
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Fig. 2. Kernel values as a function of the distance to their centers for several space
dimensions, along with the distribution of distances for normally distributed data.
Vertical lines correspond to 5 and 95 percentile resp.

sentative of the contrast between the similarity of a point to its closest and
furthest away centroids; if the contrast is large, a model built with such a
kernel can be considered ‘local’ ; if it is small, the notion of neighborhood
looses its significance.

Figure 3 shows this contrast with respect to the width of the kernels.
In dimension 2 (left), the contrast is close to 1 for a well-chosen value of
the kernel; distances are easily distinguishable. Note that the ideal kernel
standard deviation is relatively small, which corresponds to a kernel having a
local character. In dimension 100, the contrast hardly reaches 0.2; distances
are far less distinguishable, whatever the kernel standard deviation is.

4 Recovering locality in HD spaces

The necessity to more or less span the effective range of distances between
data in a real distribution setting, by the effective part of the kernel (i.e. the
part with the decreasing slope), requires to add a parameter with respect to
the Gaussian kernel. Besides the width that controls the slope of the kernel,
there is a need for a supplementary parameter that controls the smallest
distance corresponding to the decreasing part of the kernel. An example of
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dimensional (right) uniform distribution, with respect to the kernel standard devi-
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kernel that fulfills this requirement is the p-Gaussian kernel :

K(x, y) = exp(−d(x, y)p/σp),

where p and σ are the two parameters. Normalizing coefficient for density
estimation can be found in [Kassam, 1988], but once again this is not needed
for measuring similarities. Figure 4 (left) shows an example of p-Gaussian
kernel, width p = 11 and σ = 4.3. It is seen that the kernel slope effectively
covers the range of distances, according to the definition of ideal kernel

The method to set adequate values to p and σ can easily be deduced from
the same requirements. As the decreasing slope of the kernel has to cover the
effective range distances in the histogram built on the sample distribution,
two equations can be deduced once this range is known: one for the lowest
value of the range, one for the highest one. Of course, as we are speaking
about distributions, taking extreme values is not a good idea; rather, for
example, the 5% and 95% percentiles of the distribution should be estimated.
Let dN and dF be these two values respectively. Then two equations can be
written by making the p-Gaussian kernel evaluated at dN (resp. dF ) equal
to 95% (resp. 5%) of the full kernel range :

p =
ln
(

ln(0.05)
ln(0.95)

)

ln dF

dN

; σ =
dN

(− ln(0.05))1/p
=

dF
(− ln(0.95))1/p

Figure 4 (right) shows the results of the experiment described earlier to
estimate the contrast, with respectively, the Gaussian kernel and a kernel
with optimized p and σ values.

5 Conclusion

Local kernels or functions are used in many data analysis paradigms and al-
gorithms, such as Radial-Basis Function networks, Support Vector Machines,
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Fig. 4. (left) Kernel values along with distance distribution for the ideal kernel,
p = 11; (right) contrast for Gaussian kernel and ideal kernel in dimension 100.

some Vector Quantization methods, etc. Locality is used as a way of inter-
pretation, and also to provide measures of similarities between data. In this
paper, we show that the widely used Gaussian Kernel is appropriate to rep-
resent similarities in low-dimensional spaces, but fails to fulfill this goal in
high-dimensional ones. When similarities cannot be expected anymore to
be measured adequately, many problems may be expected, for example in
nearest neighbor search. The numerical stability of the methods may be lost.

p-Gaussian kernels are presented as an alternative to Gaussian kernels.
An additional parameter makes it possible to keep the effective part of the
Gaussian slope in the effective part of the distribution of distances between
data. In this way, p-Gaussian kernels will adequately discriminate small and
large distances between pairs of data even in a high-dimensional setting, a
task that Gaussian kernel fails to fulfill. A methodology is presented to set
the parameters according to a specific data sample. Future work will consist
in using such flexible kernels in learning algorithms for high-dimensional data.
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Laboratoire E.R.I.C, Université Lumière Lyon 2
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Abstract. In supervised learning, the prediction of the class is the ultimate goal.
On a broader basis, a good learning methodology is expected to (1) enable a rep-
resentation of the data in order to facilitate user’s navigation within the data set
and (2) contribute to the choice of examples and attributes, while ensuring a struc-
tured, understandable prediction. Various studies have shown how the so-called
neighbourhood graph, from the predictors, gives ground to such a methodology
(e.g.: the relative neighbourhood graph of Toussaint). However, the construction
of such a graph (O(n3)) remains complex. Moreover, when the number of dimen-
sions increases, distance becomes hard to compute and lose their selectivity.

In the case of large high dimensional dataset, we propose to substitute a self-
organized map built on the predictors to the neighbourhood graph. After a short
reminder on the principles of the SOM for unsupervised learning, we analyse how
it can found an optimized strategy of learning. Then we propose to use original
statistics (narrowly correlated with the error in generalization) in order to assess
the level of quality of this strategy. Diverse experiments highlight the feasibility
of this approach, therefore reliable criterion are available for us to select relevant
examples and attributes.
Keywords: supervised learning, Kohonen maps, statistical validation.

1 Motivation

Supervised learning methods of a categorical variable aim at predicting the
class of a new instance from a sample of labelled examples. Indeed, pre-
diction is only a step in the learning process, which is enriched through the
exploratory analysis of the data. This allows to clean and transform the
data, to select features and subsets of records, and to detect outliers, while
integrating possible contextual information.

In such a perspective, resorting to neighbourhood graphs brings an effec-
tive solution. One builds the neighbourhood graph based on the predictors,
for example the Relative neighbourhood Graph of Toussaint [1980] (RNG).
The vertices of the graph are then colored according to the class they belong
to. To find the class of a new instance, it is first inserted in the neighbourhood
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graph and then it is attributed the majority class among its neighbours on
the graph. Various studies proposed a statistic: the cut edge weight statistic.
This statistic evaluates the predictive capacity of a neighbourhood graph. It
also allows for the selection of relevant variables or for the detection of out-
liers by spotting the impact of an example or of a variable on the predictive
capacity of the graph ([Sebban, 1996], [Zighed et al., 2001], [Lallich, 2002],
[Muhlenbach et al., 2003], [Zighed et al., 2004]).

In comparison with the k-Nearest Neighbour method (kNN), neighbour-
hood graphs adapt the number of nearest neighbours to the local topology.
On those graphs, the cut edge weight statistic that evaluates their predictive
capacity is strongly correlated to their error rate in generalization. Their
results in generalization are at least as good and they have the advantage of
establishing an effective procedure of navigation within the basis of examples.
Furthermore, the neighbourhood graph allows to navigate efficiently in the
database, making the exploratory analysis of the data easier.

Neighbourhood graphs present a double difficulty when confronted to
large high-dimensional datasets. Firstly, their great complexity - O(n3) for
Relative Neighbourhood Graphs of Toussaint - makes them poorly adapted to
very large datasets. The second issue is linked to the curse of dimensionality
which triggers a loss of selectiveness of euclidean distance.

Faced with this double difficulty, we propose to replace the RNG issued
from the predictors with a Self Organized Map (SOM ). We thus get a rep-
resentation of the information given by the predictors. That method has the
advantage of preserving the local topology in case of high dimensional data
while using a complexity which varies linearly with the number of examples.
The advantages of neighbourhood graphs are also maintained in the SOMs :
especially the spatialisation of the information obtained from the predictors
and the efficient navigation in the database.

In this article, we show that it is possible to construct a cross-product
statistic which is closely linked to the predictive ability of the map in gener-
alization. This statistic has the advantage of helping us in data preparation,
especially to select relevant variables or detect outliers. After presenting the
notations we used (see section below), we introduce the SOM algorithm and
its use in supervised learning (section 3). Then we present our cross-product
statistics estimates in SOM (section 4). Their validation on different datasets
is presented in section 5.

2 Notations

• m: number of examples, d: number of predictors, p: number of classes,
n: number of neurons.
• X : (m, d) matrix of data; line i corresponds to example i and column j

to predictor j.
• y: vector with m components indicating the class of each example.
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• W : (n, d) matrix of general term wij , designating the weight of neuron i
for predictor j.
• c: vector with n components indicating the class of each neuron; ci = 0

if neuron i is ambiguous, ci = −1 if neuron i is empty.
• bmui = arg minr ‖wr − xi‖, index of best matching unit, the nearest

neuron to example i.
• distc(r, q): distance between neurons r and q, according to the map.
• distp(r, q): Euclidean distance between the weights of neurons r and q.
• PPV : (n, n) symmetrical matrix of general term ppvij , worth 1 if
distc(i, j) ≤ max (distc(i, k), distc(j, k)) , ∀k, k 6= i, k 6= j; ci, cj, ck 6= −1
(i, j connected), 0 otherwise; ppvr+ represents the number of neurons
connected to neuron r.

3 SOM and supervised learning

The Self Organized Map allows i) a fast unsupervised learning of input exam-
ples and ii) their representation. The map is built on a uniform distribution
of neurons in 2 or 3 dimensions. Each neuron is associated to a vector in
the space of the example. Originally, that association was called a model.
During the learning, the input examples are successively presented to the
map. Assuming a general distance measure between inputs and models (usu-
ally euclidian distance), the neuron the nearest to the input (called the Best
Matching Unit) is modified with its neighbourhood so that all of them get
closer to the input example.

The iterative algorithm for the input example i at time t is summarized
by the following formula updating the weights W of the neuron r:

wt+1
r = wtr + htr × (xi − wtr)

where htr = αt×vtr, with αt the learning-rate factor and vtr the neighbourhood
function which represents the size of the modified neighbourhood. Both αt

and vtr are monotonically decreasing as a function of time.
This algorithm ensures a local preservation of the topology through a non

linear projection. Thus, after learning, two close input examples will have
close models on the SOM. Nevertheless this non linear projection is particular
in the sense that it does not preserve the distances from the input space.

Because of those properties (fast algorithm and topology preservation)
some authors have adapted them to a supervised learning. The most popular
of those algorithms is the LVQ proposed by Kohonen [1988]. Here, the classes
of the input examples are used to control the modification of the models.
Another idea is used by Midenet [1994] in the LASSO model. In that case,
the classes are used during the learning phase in the same way as other input
variables. Two phenomena result in the use of classes during learning. First,
the prediction is more robust: more information is used. But at the same
time the local topology preservation is changed. It is not simply a function
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of the input variables (as in the original SOM algorithm) but also a function
of the classes.

To avoid that problem some authors have proposed a different approach.
On that account, the class of the input example is only used after a classical
learning of the SOM on the input variables. During that second step, the
neurons take the class of the inputs they represent. The reverse happens
during prediction: the class of a new input example is determined by the
class of the best matching unit of that example. Three methods use that
principle: Kohonen-KNN [Zupan et al., 1994], Kohonen-WI [Song and Hopke,
1996] and Kohonen-Opt [Prudhomme and Lallich, 2005]. There are at least
two cases which show the difference between those three approaches. First
empty neurons: after the learning phase some neurons do not match any
input example. Secondly ambiguous neurons: after the learning phase some
neurons match the same proportion of examples from different classes. So
each method proposes a way of predicting a new example which matches one
of those two type of neurons. Prudhomme and Lallich [2005] have shown that
Kohonen-Opt generally gives better results in generalisation than the others.
Moreover, the results obtained with Kohonen-Opt on different datasets are
almost equivalent to those obtained by the ID3 method of classification.

Consequently, SOMs could be used in supervised learning. In that case
there is a double advantage. First the non linear projection is particulary
adapted to high dimensional spaces. It allows a dimension reduction based
on the most significant feature. Secondly the examples are synthetically
represented by the models. Thus the SOM representation is well adapted
to large datasets. In the rest of the document we propose a statistic which
takes advantage of those two points in order to assess the predictive capacity
of the SOM. Because this statistic is based on the neighbourhood, distance
preservation is not mandatory.

4 Quality measures for SOM under supervised learning

We therefore suggest a learning strategy that relies on the construction of
the SOM. The reliability of the SOM, reagrdless of any consideration of class,
can be assessed through various statistical tools proposed notably by [Bodt
et al., 2002]. We suggest here an assessment of the predictive ability of the
SOM through different statistics. We will experimentally show the strong
correlation of those statistics with the precision in generalization. Similarly
to the cut edge weight statistic worked out for neighbourhood graphs [Lal-
lich, 2002], those different statistics are based on the notion of cross-product
statistic [Mantel, 1967]. Thus they are constructed as the scalar product of
two proximity measures, the first one depending on the predictors and the
other one depending from the class.
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4.1 Definition of J type statistics

To assess the strength of the link between proximity in the sense of the map
and proximity in the sense of the classes, one can reason about examples
or neurons. Reasoning about neurons helps to deal with a large amount of
examples.

When reasoning on examples, the proximity between examples based on
the map is assessed by the matrix T ′ of general term t′ij , which is worth 1 if
the examples i and j are represented by the same neuron, and 0 otherwise. In
order to take into account the topological properties of the map, one also can
resort to the matrix T ′′ of general term t′′ij , which is worth 1 if the examples
i and j are represented by the same neuron, norm(distp(wbmui , wbmuj )) if i
and j are represented by adjacent neurones (i.e. distc(bmui, bmuj) = 1), and
0 otherwise. The proximity between examples based on the class is assessed
by the matrix U of general term Uij, which is worth 1 if the examples i and
j do not have the same class (i.e ci 6= cj), and 0 otherwise.

When reasoning on neurons, the proximity between neurons based on
the map is assessed by the matrix T ′′′, of general term t′′′ij , which is worth
norm(distp(wi, wj)) if ppvij = 1, and 0 otherwise. The proximity between
neurons based on the class is assessed by the matrix R, of general term rij ,
which is worth 1 if the neurons i and j do not have the same class, 0 otherwise.

As a result, one will obtain three different statistics, J ′, J ′′ and J ′′′ which
are defined below.

J’ J” J”’
1
2

Pn
i=1

Pn
j=1 T

′
ijUij

1
2

Pn
i=1

Pn
j=1 T

′′
ijUij

1
2

Pm
i=1

Pm
j=1 T

′′′
ij Rij

The following simplifying notations are used, where T can take the value
of T ′,T ′′ or T ′′′ and the sums finishing respectively in m for the two former
cases and in n for the latter one:

S0 S1 S2P
i=1

P
j=1 tij

1
2

P
i=1

P
j=1(tij + tji)

2 P
i=1(ti+ + t+i)

2

J Type statistics vary between 0 and 1
2S0. They are the weakest when

the link between proximity according to the class and proximity according to
the map is strongly positive. They may be standardized by forming 2J/S0

which varies between 0 and 1.
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Dataset Variables Classes Example Dimensions Times

(1) Abalone 8 29 4177 25× 25 90000

(2) Balance Scale 4 3 625 15× 15 60000

(3) Breast Cancer 9 2 699 20× 20 90000

(4) Glass Indent 9 6 214 10× 10 10000

(5) Haberman 3 2 306 10× 10 20000

(6) Ionosphère 34 2 351 10× 10 20000

(7) Iris 4 3 150 10× 10 2000

(8) Italian Olive Oil 9 9 572 15× 15 45000

(9) Liver 6 2 345 10× 10 35000

(10) Yeast 8 10 1484 25× 25 90000

Table 1. dataset and associate parameters

4.2 Meaning of J type statistics

In order to know to which extent the evaluation given by J is not due to
chance, a random multinomial outline was defined. The null hypothesis (H0)
was that the examples (the neurons) are labelled independently from each
other, with the same probability distribution (πr)r where πr denotes the
frequency of the class yr, r = 1, 2, . . . , p.

The significance of the observed value of J is appraised with its left uni-
lateral p-value. This is the probability of getting a value of J as extreme as
or more extreme than the observed one if H0 is true. That calculation can
be done either by simulation or more quickly by normal approximation [Cliff
and Ord, 1981]. In the last case, we have to calculate µ = E(J/H0) and

σ2 = V ar(J/H0). It is easy to calculate µ = S0

∑p−1
r=1

∑p
s=r+1 πrπs. One can

find in Lallich [2002], following Cliff and Ord [1981], the calculation of the
variance σ2, which depends on S0, S1 and S2.

5 Experiment

Those different statistics were tested on 10 datasets, coming from the reposi-
tory of the University of Irvine [Blake and Merz, 1998] (except for one Italian
Olive Oil which is from [Hopke and Massart, 1993]). Table 1 details those
datasets in terms of the number of input variables for each example, the num-
ber of classes and the number of input examples in each dataset. This table
also summarizes some parameters of the SOM used for learning: the total
number of input examples presented (called time) and the size of the SOM.
The algorithm used for learning is the classical one presented in section 3.
Table 2 shows the value of each statistic, their associated p-value and the
error rate in generalization with the Kohonen-Opt method.

The p-values are significant (p < 0, 05) for J ′′, and for J ′ (except for
Haberman where p = 0.08). Thus they are sufficiently robust to assess the



252 Prudhomme and Lallich

Base 2J ′/S0 p-value 2J ′′/S0 p-value 2J ′′′/S0 p-value Error

(1) 79,96 0 79,88 0 81,97 1 73,86

(2) 21,66 0 23,68 0 22,28 0 17,3

(3) 0,40 0 1,10 0 8,30 0 3,21

(4) 43,29 0 44,64 0 61,65 0,02 34,21

(5) 34,57 0,078 32,51 0,005 28,20 0,022 24,06

(6) 10,92 0 14,76 0 36,11 0,022 11,6

(7) 3,60 0 4,70 0 8,50 0 4,67

(8) 41,40 0 8,05 0 20,06 0 7,69

(9) 60,58 0,0031 0,3750 0 58,28 0,9989 37,53

(10) 50,00 0 52,40 0 64,52 0 47,53

Means 31,64 0,0081 29,92 0,0005 27,99 0,2045

Table 2. Statistic, their associated p-value and error rate in test with Kohonen-Opt

quality of the representation built by the SOM. In the case of J ′′′, two p-values
are almost equal to 1. For this statistic, the link between two ambiguous
neurons is a cut edge one. In the two cases, the graph extracted from the
SOM has a many ambiguous neurons. So, in the statistic sense, the class of
the neuron is independent from the topology of the map. For that reason,
the p-value is high. In fact, this happened only when the error rate was high
too.

A more interesting property is the correlation between that statistic and
the error rate in generalization. r2 of this correlation is respectively 0.78, 0.98
and 0.88 for J ′, J ′′ and J ′′′. J ′ just takes into account the input example of
different classes matching the same neurons. So this statistic does not use the
information contained in the local topology of the SOM. That information is
used by J ′′. For that reason that statistic has a better correlation with the
error rate. The correlation between J ′′′ and the error rate is intermediate.
That statistic takes into account the local topology of the SOM thanks to
the the neighbourhood graph which was built on the map. On the other
hand, the input examples are not used. Therefore some information is lost
during the projection of the input space on the map. However the estimation
of that statistic has a low complexity as only the neurons are used. In the
case of datasets composed by a high number of examples, it is an interesting
property. On the contrary, J ′′ needs the examples.

Moreover, we have tested the capacity of that approach to be applied
on large datasets. Therefore, we used Wave [Blake and Merz, 1998], which
allows to randomly generate a user fixed number of input examples. For each
generated dataset, the error rate in generalization is know and constant. We
applied Kohonen-Opt and our statistics on different datasets containing 5
000 to 1 280 000 examples. The learning time was reported on table 3. The
SOM used for each dataset is the same and the test was made on the same
dataset of 100 000 examples, never used in learning.
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The table 3 shows the results. First, the error rate in generalization is
stable regardless of the number of input examples (approximatively 15%).
Secondly the time needed for learning increases linearly from a factor 2 (like
the number of examples). Finally, the statistics (2J/S0) are stable too with
a little decrease when the number of examples increases. Their p-values are
always equal to 0.

This experiment shows that the quality of the learning by the SOM does
not decrease when the number of examples increases. Thus they could be
used in the case of large datasets. This is also the case for the proposed
statistics which are relatively stable.

Size 2J ′/S0 2J ′′/S0 2J ′′′/S0 Error Time (s)

1250 26,67 26,27 17,80 16,03 2

2500 26,08 26,09 13,39 15,70 5

5000 24,57 24,92 9,87 15,46 10

10000 24,45 24,36 9,44 15,57 20

20000 23,25 23,68 7,42 14,92 41

40000 22,65 23,04 7,78 14,84 78

80000 22,64 23,22 7,40 15,25 127

160000 22,53 23,03 7,45 14,93 245

320000 22,94 23,37 7,92 15,04 500

640000 22,54 23,09 7,18 15,17 1073

1280000 22,32 22,94 7,98 15,22 2014

Table 3. Statistic, their associate p-value and error rate in test with Kohonen-Opt
on different Waves dataset

Finally, we have tested the capacity of that approach on high dimensional
datasets. Here we use the Forest CoverType dataset [Blake and Merz, 1998].
That dataset presents 54 input variables for 8 classes. Moreover the classifi-
cation performance on that dataset is known. It was obtained by Blackard
[1998] for neural networks and linear discriminant analysis.

Table 4 shows those results and those obtained with Kohonen-Opt. A
direct application of Kohonen-Opt on this dataset gives poor results. To avoid
that problem, a normalization of the attributes was carried out i) with the
Milligan and Cooper (MC ) procedure [1988] and ii) with a standardization
by removing the mean and dividing by the standard deviation (s). Since
attributes are both boolean and continuous, the MC procedure gives better
results. In that case, the error rate is in the same order as the one obtained
by the neural network. That result tends to show that the learning based on
the SOM is robust when the number of input variables increases.
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Kohonen-Opt Other
Method None s MC ANN linear discriminant

Error Rate 45,7 43,4 32,2 30 42

Table 4. Result in classification task on Forest CoverType dataset

6 Conclusion

SOMs are popular algorithm in unsupervised learning. Their complexity is
linear with the number of example and they allow for a data exploration
[Lechevallier, 2002]. In that paper we suggested that they can be used in
supervised learning. In that case SOMs synthesize the information of the
predictors through a non linear projection and enable a navigation through
the dataset. Even if that non linear projection does not maintain the distance,
it is nevertheless a way to assess our statistic (2J/S0) which is correlated to
the error rate.

In further work we want to use that statistic for outliers detection and
feature selection from large high dimensional datasets. In addition, we want
to test the effect of the choice of the distance on the learning process. We
hope to show that fractional distance metrics are more useful than euclidian
distance to learn high dimensional datasets with SOMs, as it is the case for
k-means [Aggarwal et al., 2001].
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Abstract. Association Rules (AR) represent one of the most powerful and largely
used approach to detect the presence of regularities and paths in large databases.
Rules express the relations (in terms of co-occurence) between pairs of items and
are defined in two parts: support and confidence. Most techniques for finding AR
scan the whole data set, evaluate all possible rules and retain only rules that have
support and confidence greater than thresholds, which should be fixed in order to
avoid both that only trivial rules are retained and also that interesting rules are
not discarded. This paper proposes a two steps interactive, graphical approach that
uses factorial planes in the identification of potentially interesting items.
Keywords: Association Rules, Classification, Binary variables.

1 Introduction

Association rules (AR) [Agrawal et al., 1993] represent a suitable data mining
tool to identify frequently occurring patterns of information in large data
bases. The classic field of application of AR mining is market basket analysis
(MBA); in this context, data are stored as transactions: each transaction is
a binary sequence that records the presence/absence of a set of p features.
The basic data structure consists of an n × p Boolean matrix; the terms of
the table are 1 and 0, which correspond to the states presence and absence,
respectively. MBA is one of the first and better known application fields of
AR mining: however, the binary structure of the data makes AR applicable in
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many different contexts. AR are largely used in text mining, image analysis
and microarray data analysis.

An AR in its simplest form involves a pair of items playing different
roles: the antecedent part of the rule (body), and the consequent part of
the rule (head). The relation characterizing the considered items is usually
expressed in two different measures: support and confidence. The support is
the intensity of the association between the considered items; the confidence
measures the strength of the logical dependence expressed by the rule.

An example illustrates an AR in its simplest form: let A and B be a pair
of items, beer and chips for example, the following notation represents the
achieved AR:

A =⇒ B = {support = 20%, confidence = 80%} .
The rule shows that 20 percent of customers buy both beer and chips,

and if a customer buys beer, in 80 percent of cases buys chips too.
Simple rules does not represent the whole output of a mining process,

since complex AR are extracted too. In its most general definition a complex
AR is a rule in which there are one or more antecedent items and one or more
consequents. Complex AR represent a more powerful tool, but they are even
harder to handle.

The large size of the starting data matrix implies very high computational
efforts in mining rules, and it can lead to a massive quantity of rules. Many
proposed algorithms lead to mine rules in more and more efficient ways, but
the identification and selection of interesting rules remains a still opened
problem. It requires the definition of consistent criteria to avoid the risk
that the truly interesting information is hidden by the presence of trivial and
redundant rules.

The great part of the contributions in the AR literature is aimed to the
implementation of algorithms for the generation of AR in reduced computa-
tional costs and output amount, as well as for the generalization of AR to
categorical and numerical data.

The reference point among these algorithms is the Apriori, introduced
by [Agrawal and Srikant, 1994]. This algorithm consists of two phases: the
frequent itemset mining phase and the properly defined association rule min-
ing phase. An itemset is frequent if the items involved in it co-occur with a
frequency greater than a user-defined threshold, in other words the itemset
support is greater than the assigned minimal support threshold. In the sec-
ond phase, there is the generation of all the possible rules deriving from the
itemsets previously selected: the output rules provided by the procedure are
those characterized by confidence exceeding a minimal confidence threshold.

Based on the same idea of the Apriori, the AprioriTid [Agrawal and
Srikant, 1994] introduces an encoding of the founded frequent itemsets in
order to reduce the computational effort.

The AprioriHybrid is a combination of both Apriori and AprioriTid, in
the earlier and the latter iterations respectively [Agrawal and Srikant, 1994].
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Other interesting algorithms are the DHP (Direct Hashing and Pruning)
[Park et al., 1995], the Partition algorithm [Savasere et al., 1995], the DIC
(Dynamic Itemset Counting ) algorithm [Brin et al., 1997] and the FP-growth
(Frequent Pattern growth) algorithm [Han et al., 2000] for which we refer the
reader to the bibliography. The procedures above are applicable to Boolean
data. To generalize the algorithms to numerical and categorical AR, a previ-
ous recoding of the data is required: in this sense the contribution of [Srikant
and Agrawal, 1996] and [Miller and Yang, 1997]. A last class of proposals is
aimed to solve a common problem of AR mining, the huge number of rules
generated, selecting and identifying the interesting generated AR. The con-
tributions belonging to this class, like [Zaki, 2000] and [Liu et al., 1999], are
characterized by a same target as well as approaches of different nature.

Almost all AR mining algorithms use thresholds whose settings are related
to a trade-off: tight thresholds can cause loss of interesting information;
otherwise, loose thresholds cause an excessive number of uninteresting rules
to be selected. In addition, notice that the reduction of output rules is anyway
linked to the generation of all potential rules.

The present paper proposes an exploratory strategy to identify a priori
items that are potentially interesting as antecedent or consequent parts of
rules. The method does not produce AR but provides the user with informa-
tion about the most probably interesting items. One of the above mentioned
algorithms must be used, focusing the attention only to those items that
the procedure indicated as interesting, to obtain the AR set. Reducing the
number of considered items, the user can define looser thresholds, avoiding
as well the risk of a huge amount of rules. In addition, information about
the items help the user to pay greater attention to the rules containing the
previously identified items.

The proposed strategy exploits the graphical and analytical capabilities
of multidimensional data analysis (MDA), in particular the paper will focus
on the computational aspects when n and p are large.

The procedure deals with the following data structures: let Z be a (n× p)
presence/absence matrix characterized by n binary sequences considered with
respect to p Boolean variables; in our application the n rows refer to baskets
of items purchased and the p columns refer to the items (with coding 1 = buy
and 0 = not buy). Let S = n−1ZTZ be a symmetric contingency table, whose
general extra-diagonal term sjj′ = sj′j represents the support with respect to
the items j and j′, in our case, the relative frequency of purchasing pairs of
items. The asymmetric square matrix C is defined as C = ZTZD−1, where
D is a diagonal matrix having general term djj = sjj (j = 1, . . . , p). Matrix
C has the general diagonal term cjj = 1 while for j 6= j′ the term cjj′
corresponds to the confidence of the rule {Aj =⇒ Aj′}.

In Section 2 we present the steps of the strategy and the related tools:
clustering phase (subsection 2.1), items selection according to the supports
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(subsection 2.2), identification of rules bodies and heads (subsection 2.3). In
section 3 we present an example on the BMS-Webview-2 dataset.

2 Multidimensional data analysis (MDA) approach

The proposed strategy consists of two main phases and aims at generating a
reduced number of AR; in particular the phases are:

i) partitioning of the considered binary sequences (transactions) in homo-
geneous classes;

ii) selecting interesting items and visually representing the interesting rules
using MDA techniques.

In the case of huge data sets the applicability of the whole procedure
strongly depends on the the first phase of classification: this step is very
expensive in terms of time elapsed and memory required. Thus it is necessary
to choose an algorithm increasing speed and efficiency of the whole procedure.

Once the group are determined, the attention is focused on the supports
and confidences matrices of order p × p related to each group. In addic-
tion, our proposal is based on a suitable factorial analysis on these matrices
that requires short computing time and low memory usage: the most time
consuming phase consists in the singular value decomposition of symmetric
matrices. Moreover, partitioning the data in groups permits to perform the
analysis on parallel computing architectures. The aim is to select the most
occurring pairs of items in each group and to assign the role of antecedent or
consequent to the set of selected items.

2.1 Clustering transactions

The general aim of clustering techniques is to partition the statistical units
of a given data set in disjoint classes such that similar units are grouped
together. Dealing with large, high dimensional and sparse data sets, classic
clustering techniques like K-means algorithm [Hartigan, 1975] and agglom-
erative algorithm require very high computational costs and do not guaran-
tee reliable solutions. Thus, in the literature, there are many contributions
proposing algorithms optimized for massive amounts of binary data: the
ROCK algorithm proposed by [Guha et al., 2000], that is based on links
and represents an agglomerative hierarchical clustering; QROCK that is a
speeded up version of ROCK, while a density based algorithm considering
links is the SNN (shared nearest neighbors). Two of the non-hierarchical
clustering algorithms for binary data are LWC (light weight clustering) and
incremental K-means proposed by [Gaber et al., 2004] and [Ordonez, 2003],
respectively: the main aim of both these procedures is clustering of data
streams, which are flows of binary sequences. In this paper, however, the
procedure is applied on a finite set of binary sequences.
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The first step of the proposed strategy is then implemented exploiting the
features of one of the above procedures, incremental K-means that is a non-
hierarchical algorithm and it is characterized by doing a single iteration to
get the partition of the rows of the binary matrix Z in K disjoint classes. The
logical distance between the binary rows of Z is measured trough the Jaccard
coefficient. The incremental K-means takes as input the number of clusters
that is hence user-defined. The output provided by the procedure consists of:
the partition matrices Zk (nk × p), where k = 1, . . . ,K; the centroid matrix
C that is (K × p), with cluster centroids on rows; a K-elements vector w of
cluster weights such that wk=

nk

n ; a (K × p) matrix R of squared distances.
The initialization phase of Incremental K-means presents a difference with

Standard K-means: instead of using k random sequences as centers, this
algorithm exploits global statistics (mean and variance) of the input indicator
matrix to obtain the starting centers. Furthermore, the procedure does not
update the centroid matrix C and the cluster weights vector w at every binary
sequence but every (n/L) times, where n and L are the number of considered
sequences and an initialization parameter, respectively. The reader is referred
to [Ordonez, 2003] for further details about the procedure.

2.2 Selection of interesting items

The previous step defined a partition of Z in Zk, with k = 1, . . . ,K; for each of
the Zk matrices, supports (Sk) and confidences (Ck) are defined. AR mining
is hence referred to each group of homogeneous sequences. In particular,
through the analysis of each Sk, the most occurring pairs of items within the
k-th group are selected; while through the analysis of each Ck, the procedure
assigns the role of antecedent or consequent to each one of the selected items.
The selected pairs of items resulting by the analysis of Sk represent evident
relations characterizing groups of considered binary sequences: these hidden
patterns can be missed using general support thresholds. The pairs of items
characterized by a degree of co-occurrence that is high in one or more of
the K groups and low with respect to the whole data are then considered
non-trivial. The criteria used to define what is “high” or “low” are based
on the ratio between the most occurring supports inside the groups and the
total supports. Proper statistical tests can be adopted to exploit the task;
however, this paper does not focus on this aspect.

2.3 Items roles in the rules

The confidence table C is square and asymmetric, a characteristic that has
to be taken into account in analyzing the matrix. The features of C can be
extended to each Ck = ZT

kZkD
−1
k . In the context of multidimensional data

analysis, different proposals in the literature extend well-known methods like
correspondence analysis (CA) [Greenacre, 2000] and multidimensional scal-
ing (MDS) to square asymmetric tables [Bove, 1989]. A common aspect
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of these methods is in the decomposition of the asymmetric table into two
components: symmetric and skew-symmetric. Applying this decomposition
to a table C, it results: C = Cs + Csk, where Cs = 1

2

(
C + CT

)
repre-

sents the symmetric component of C, and Csk = 1
2

(
C−CT

)
represents the

skew-symmetric component of C. The separate analyses of the two compo-
nents lead to obtain a representation of the symmetric and skew-symmetric
characteristics of table C: the methodology applied on Cs and Csk, and
the corresponding representation display, characterize the different proposals
treating square asymmetric tables.

Taking into account the general pair of items j and j′, identified by the
analysis of S, the role of j and j′ depends on the values c(j,j′)sk and c(j,j′)s.
Remark that the diagonal elements of C are constant values equal to 1. These
trivial values are completely irrelevant to the analysis and their presence
introduces noise in the representations. In order to cut off noise from C
according to Greenacre [Greenacre, 1984], these values can be ignored and
replaced by an iterative alternating procedure.

The matrix C is decomposed in symmetric and skew-symmetric compo-
nents and then treated to replace the diagonal elements, by the following
procedure:

i) decomposition C in Cs and Csk;
ii) correspondence analysis of Cs and Csk;
iii) reconstruction of the main diagonal of Cs through the general recon-

struction formula:

npij = nrirj(1 +

F∑

f=1

λ−0.5
f ϕifϕjf ), (1)

with i, j = 1, . . . , p and f = 1, . . . , F . F is the number of considered fac-
tors, p is the number of considered items, ϕif is the principal coordinate
of the i-th item on the factor f ; ri and rj represent the row margins of
C;

iv) comparison of the reconstructed diagonal with the previous main di-
agonal for Cs: if there is no difference then the whole matrix C∗

s is
reconstructed using formula (1); else Cs is updated with the obtained
diagonal and repeat the previous steps;

v) rebuild the confidence C∗=C∗
s + Csk;

Each of the previously selected items is considered as an antecedent or con-
sequent part of interesting rule depending on its deviation from symmetry:
items having a positive deviation are considered interesting heads, the re-
maining items are then the bodies.

3 Example

In this section the procedure is applied to the BMS-Webview-2 data set: this
data set was used in KDD-cup 2000 competition and refers to the transactions
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associated to an e-commerce company. The whole data set is available at
KDD-cup 2000 home page (url: http://www.ecn.purdue.edu/KDDCUP).
This data set was already used in many applications of data mining proce-
dures proposals and it represents a qualifying benchmark. Being the pre-
sented approach complementary to the computer science based proposals, a
direct result comparison would not make any sense.

In the BMS-Webview-2 data set each statistical unit represents the click-
streams of a single session of a visitor in the e-commerce web-site; each item
corresponds to a single product. The raw data set is characterized by 77512
web click-streams and 3340 product-pages (items). After a pre-processing
phase the incremental K-means algorithm is applied with different numbers
of classes. As shown in figure 1, the best partition is obtained for K = 10,
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Fig. 1. Classification quality versus number of classes

since the quality level of the classification becomes stable. The quality level
measure for the classification is proportional to the reciprocal of the mean
distance between each unit and its related cluster centroid. Following the
procedure, once the partition of Z in K groups is determined, the items
that mostly characterize each group are then selected. Interesting items
selection and the consequent determination of the selected items roles can
be completely automated: however expert users can interact and iteratively
set up different parameters.

The lack of space does not allow us to represent the graphical displays
associated for all ten classes. We just shall give an interpretation key of the
whole procedure output.

The procedure output is mainly graphical and consists of various repre-
sentations of the reconstructed confidence matrix. The paper proposes two
of them. The first one (see figure 2) represents the items in the principal
factorial space of Ck and Csk according to Greenacre (2000). The other one,
which is more simple, represents the values of the reconstructed C∗. In the
symmetric display, the closeness of two points/items indicates a high degree
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Fig. 2. a) representation of the symmetric component of confidence matrix;
b)representation of the skew-symmetric component of the confidences.

of co-occurrence that is a support-like information; in the skew symmetric
display, points far from the center of the map are characterized by a high
deviation from symmetry. For each pair of items, the amount of the devia-
tion from symmetry is proportional to the area of the triangle formed by the
considered pair of points and the axis origin. The sign of the deviation from
symmetry depends on oriented triangles: positive deviations correspond to
clockwise oriented triangles. The latter display could be quite difficult for a
non-expert user to interpret.

The left part of figure 2 shows the item ’285525’ to be positioned far
from the others, that means a different degree of occurrence. The skew-
symmetric display confirm the different behavior of ’285525’. On the basis of
such considerations, a possible rule could be in this case ’285525’−→ ’55871’,
and it is highlighted in both the sides of figure 2.

Fig. 3. Confidences representation
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The second approach is much more understandable, it displays, by a bar-

chart, the n × (n − 1) quantities qj,j′ = 1 − c∗
(j,j′)

c∗
(j′,j)

(with j, j′ = 1, . . . , n and

j > j′). The consideration of confidence ratios qj,j′ lead to identify the pairs
of items j and j′ with differing c(j,j′) and c(j′,j).

Bars are sorted in decreasing order, according to the confidence ratios.
A bar represents an interesting rule j −→ j′ if it has an high value, being
c∗(j,j′) < c∗(j′,j), and the ordered pair (j, j′) has a positive deviation from
symmetry.

Figure 3 confirms the “importance” of the rule ’285525’−→ ’55871’ that
is associated to the first bar in the bar-graph. Furthermore, the different be-
havior of the item ’285525’ is evident: the first-ranked bars are all associated
to rules having ’285525’ as an antecedent part.

4 Conclusion and perspectives

Since the AR were introduced for the analysis of large (and huge) data bases,
most of the computational aspects, in term of speed and memory, have been
successfully solved. However, it is still an open problem how to interpret
the massive output. J. Edler and D. Pregibon in 1996 [Elder and Pregibon,
1996] foresaw that the KDD would have been a field for important challenges
for the statistical community. They wrote: “The statistician’s tendency to
avoid complete automation out of respect for the challenges of the data, and
the historical emphasis on models with interpretable structure, has led that
community to focus on problems with a more manageable number of variables
(a dozen, say) and cases (several hundred typically) than may be encountered
in KDD problems, which can be orders of magnitude larger at the outset.
With increasingly huge and amorphous databases, it is clear that methods
for automatically hunting down possible patterns worthy of fuller, interactive
attention, are required”. This paper, eight years later, goes in the direction
indicated by Edler and Pregibon. Nowadays, the more and more increased
power of modern computer makes easier to achieve this task.

Future enhancements of the proposed approach are into different direc-
tions. From a computational point of view, the aim is to improve the classi-
fication step in order to obtain higher quality solution in less time. Another
important aspect is the generalization of the selection criteria from pairs of
items to pairs of itemsets, or rather to generalize the procedure to complex
rules. Furthermore, according to the exploratory nature of the procedure,
it is necessary to improve the visualization tools and introduce interactive
capabilities.
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Abstract. We present a method for dimension reduction applied to visual data
mining in order to reduce the user cognitive load due to the density of data to be
visualized and mined. We use consensus theory to address this problem: the de-
cision of a committee of experts (in our case existing attribute selection methods)
is generally better than the decision of a single expert. We illustrate the choices
operated for our algorithm and we explain the results. We compare successfully
these results with those of two widely used methods in attribute selection, a filter
based method (LVF) and a wrapper based method (Stepclass).
Keywords: visual data mining, dimension reduction, feature selection, filter, wrap-
per, consensus.

1 Introduction

The quantity of stored data doubles every 9 months, these data are not use-
ful if at least a part of information they contain is not extracted. It is the
goal of knowledge discovery in the databases (KDD) which can be defined
as the non trivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data [Fayyad et al., 1996]. In most of
data mining (a step of KDD) approaches, the process of discovering correla-
tions in data sets is performed in an automatic way. For users, understanding
and explaining data with only automatic algorithms results can be difficult.
Visual data mining is a new data mining approach using visualization as a
communication channel for data mining. It lies in tightly coupling the visual-
izations and analytical process into one data mining tool that takes advantage
of the strengths of all worlds [Wong, 1999]. Visualization is the process of
transforming information into a graphical representation allowing the user to
perceive and interact with the information.

Visual representation allows understanding data, determining what
should be done about it. The human eye can capture complex patterns
and relationships. Compared to data mining, the advantages of visual data
mining are:

• the confidence in the results is improved, the KDD process is not just a
”black box” giving more or less comprehensible results,
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• the quality of the results is improved by the use of human pattern recog-
nition capabilities,
• if the user is the data specialist, we can use the domain knowledge during

the whole process (and not only for the interpretation of the results).

Computer devices can display vast amount of information with various
techniques. This information must be appropriately communicated to us in
order to make the best use of it. According to [Ware, 2000], in order to be
visualized, data are passed through four basic stages : independently of any
visualization technique, the first step of visualization is data collection and
storage. Secondly, there is a data pre-processing which goal is to transform
the data into a comprehensive form. At the third step, display hardware
and software are used to produce a visual representation of the data. Lastly,
the users perceive, interact with the visual representation and mine it. It is
necessary to address the limits of human perception. When the collected data
are multidimensional, there are some limits in the third and fourth steps.

For [Ferreira and Levkowitz, 2003], the conceptual boundary between low
and high-dimensional data is round three to four data attributes. Their
suggested guideline for characterizing dimensionality is the following: low:
up to four attributes, medium: five to nine attributes and high: 10 or more.
When the number of dimensions is over some dozen, the large number of axes
needed to create these displays tends to overcrowd the figure, limiting the
value of the plot for detecting patterns or other useful information.

We are interested in visual data mining methods performing supervised
classification. Our objective is to select some dimension of a data set in
order to create a visualization from which relevant information can be ex-
tracted. We want to identify attributes that are significant in order to reduce
dimensionality. Dimension reduction can be used to improve the efficiency of
visualization of large, multidimensional data sets and may be the accuracy
of algorithms used for classification in visual data mining.

Knowing that:
1. an optimal subset of attributes is not necessarily unique,
2. the visualization of more than a dozen attributes is unusable for visual

data mining,
3. without investigation, it is not possible to determine a dimension reduc-

tion method that can perfectly reduce the set of attributes (by taking
account of different trade-offs between performance and complexity (tol-
erate lower performance in a model that also require less features)),

4. the decision of a committee of experts is generally better than the decision
of a single expert,

we use a meta-analysis algorithm based on consensus theory for dimension
reduction in visual data mining. The proposed algorithm combines decisions
of several experts (in our case feature selection algorithms). More precisely,
it maps a given set of dimension subsets to a single dimension subset.

The rest of this paper is organized as followed: section 2 explains the con-
text of dimension reduction. In section 3, we present the visual data mining
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domain, the specificities related to this domain and the task analysis. Next,
there is an explanation of the specificities of dimension reduction applied to
visual data mining which allow us to design our dimension reduction method.
Section 4 introduces this method before experiments, conclusion and future
work.

2 Dimension reduction

Many techniques for the visualization of multidimensional data have been
developed: pixel oriented techniques, parallel coordinates, survey plot, etc.
With visualization techniques, large amount of data can be displayed on the
screen, colors allow the users to instantly recognize similarities or difference
of thousands of data items, the data items may be arranged to express some
relationship. We try to solve the following problem: how can we select from a
set of candidate dimensions, a subset that performs the best under visual tools
and visual data mining and discard the others? We use visual data mining
in order to find an accurate decision tree by using a visualization technique
with interaction capabilities. The decision tree is interactively constructed
by the user who uses his perception and data domain knowledge. This kind
of interactive decision tree construction algorithm can only be used if the
number of dimensions of the data is small enough (less than dozen).

Dimension reduction and attribute selection aim at choosing a small sub-
set of attributes that is sufficient to describe the data set. It is the process of
identifying and removing as much as possible the irrelevant and redundant in-
formation. Sophisticated attribute selection methods have been developed to
tackle three problems: reduce classifier cost and complexity, improve model
accuracy (attribute selection), improve the visualization and comprehensi-
bility of induced concepts. There are two major components in a attribute
selection/dimension reduction algorithm: the generation procedure and the
evaluation function [Dash and Liu, 1997].

2.1 Generation procedure

Let N denote the number of varia in the original data set, attribute selection
requires to test 2N different subsets to find the optimal one. A solution
in order to avoid this search is to proceed to random search or to use one
of the following search strategies: backward, forward or both. After the
generation of feature subsets, an evaluation function measures the goodness
of the subset and this value is compared with the previous best subset of
attributes [Dash and Liu, 1997]. The following section presents the available
evaluation functions.

2.2 Evaluation functions

Two types of evaluation functions are used in attribute selection: in the
first one, filter-based approach the dimensions are filtered independently of
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the induction algorithm. The relevance of each dimension is computed with
some statistical information calculated from the training data set. Examples
of statically measures used: information gain [Dumais et al., 1998], [Quinlan,
1993], correlation [Hall, 2000], etc.

The other type is the wrapper approach [Kohavi and John, 1997]: a
learning algorithm is used in order to select the subset of features, while
discarding the rest. For any iteration of the wrapper algorithm, the quality
of the feature subset is evaluated by an inductive learning algorithm.

Attribute wrappers often achieve better results than filters due to the fact
they are tuned to the specific interaction between an induction algorithm and
its training data. However, they tend to be much slower than attribute filters
because they must repeatedly call the induction algorithm and must be run
when a different induction algorithm is used [Kotsiantis and Pintelas, 2004].

2.3 Problems encountered in attribute selection

At the initialization step, the attribute selection algorithms require many
parameters. In order to lead to best results, it is necessary to choose the most
relevant parameters. Knowing that an attribute selection process may stop
under one of the following reasonable criteria: a defined set of dimensions are
selected, a defined number of iterations are reached, addition (or deletion) of
any dimension does not produce a better result, an optimal subset according
to the evaluation criteria is obtained.

3 Applying selection to visual data mining

As we said, if the data dimension is high (figure 1), the human cognitive task
for detecting correlations or discover hidden patterns in data is very hard.

The figure presents a sequence of n−1
2 two-dimensional matrices (like scat-

ter plot matrices [Chambers et al., 1983]) generated by CIAD [Poulet, 2002],
n represents the number of attributes. In order to deal with high dimensional
data, the above approach of data exploration has been proposed, CIAD sup-
ports the user in selecting one representation which matches the best with his
mining objective. The focus presents details of the most suitable view. Fig-
ure 1 does not allow distinguishing visually colors in order to mine the data
set. This is because the number of attributes and the number of instances
in the data set are too large. The following paragraph briefly presents the
visual data mining task analysis.

3.1 Visual data mining task analysis

In order to mine a data set, the user interacts with a graphical representation
(chart) of the data. The data model (knowledge) is built in an interactive
and iterative way.
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Fig. 1. Isolet data set visualization with CIAD

3.2 User categorization

A visual data mining environment can be used by several type of users:

• data domain specialist: according to his knowledge about data, this type
of user can select the best subset of attributes or request the support of
an automatic tool for attribute selection.
• data analysis specialist: in this category, the user can be a statistician or

a machine learning expert.

– the statistician expert can adequately use filter approach and deter-
mine the appropriate parameters for the initialization of attribute
selection algorithm.

– the machine learning expert can perfectly initialize supervised clas-
sification algorithms used by wrapper approach. This type of user
is able to choose a supervised classification algorithm to be used in
order to evaluate the selected attributes in the attribute selection
algorithm and to choose a best set of criteria for the evaluation of
selected attributes.

These users can also be interested in wrapper or filter based approach
advantages and need to be supported by an automatic tool.

The automatic dimension reduction framework in all these cases will re-
quire a great accuracy of the results.



Dimension Reduction for Visual Data Mining 271

4 New dimension reduction algorithm

To obtain the best accuracy in attribute selection, the best is to operate an
exhaustive search among the 2N possible combinations of attribute subsets
and to use a wrapper-based approach as evaluation function. For a large
value of N , this approach is computationaly prohibitive. We propose to use
random search and (backward, forward ((like sequential floating selection),
knowing that the function used is non monotonic [Pudil et al., 1994])). We
believe that this procedure will allow us to treat a large number of attribute
subsets.

The wrapper approach allows rising to interesting details for the data
analysis specialist (data mining domain). Knowing that the classifier error
rate capture two basic performance aspects: class separability ability and
any structural error imposed by the form of the classifier. Other types of
details, namely, properties that good dimension sets are presumed to have
(class separability or a high correlation between the attributes) are more
appropriate to statistician. These details could not be highlighted at all
by the wrapper methods. In order to take this fact into consideration, we
have added some filter-based criteria (consistency, entropy, distance) to our
attribute subset selection method.

In input, there is a data set and the output is a subset of attributes
of this data set. The generation procedure uses a combination of random
search and sequential floating selection. Concerning the evaluation functions,
we use a combination of filter (consistency, entropy, distance) and wrapper
((LDA, QDA, KNN) [Ripley, 1996]). LDA, QDA, KNN executions use ten
fold cross validation. At each step of the execution of these algorithms, the
following evaluation criteria are used: the correctness of the classification
rule, the accuracy, the ability to separate classes, and the confidence. Next,
we combine their selected attribute subset in order to derive a consensus of
the most suitable subset of attributes. For this purpose, a learning step, based
on the results of generation procedures evaluated by filter-based criteria and
wrapper based approaches enables us to lead to final results.

More precisely, the domain we consider consist of a set of N = 6 experts
(consistency, entropy, distance, LDA, QDA, KNN evaluation functions) E =
{e1, ..., eN}, a set of dimension subsets DS = {D1, ..., DK}, where K is not
a constant. Attribute subsets are available for expert/subset pairs {e,D},
where e ∈ E and D ∈ DS. We define preference of a dimension d as the
probability that the dimension appears in the experts feature subsets, p(d) =∑
pi(d). pi(d) represents the probability that expert i selects dimension d .
pi(d) = y

Z if expert i has selected featured, 0 otherwise. y is the number
of selected dimensions. Z represents the number of attributes in the original
data set. The preference value of features is used in order to pool together the
selected features and to rank them. Next, if the pool number of dimensions
is greater than twenty (number of attributes which can be correctly display
and visually mine), it is divided into relevant attributes (consensus) and less
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relevant attributes. At the cutting point, if some features have the same
preference value (we consider these attributes as conflicting attributes), we
use expert relevance score (ERS) in order to determine which features match
the best. For each feature in the conflicting part, the decision to add it in
consensus part of the pool or not is made according to the relevance score of
the experts who choose the feature. The selected features are those with great
expert relevance score computed as following: ERS = g

T , where g represents
the number of attributes in the consensus part which have been selected by
the expert and T the total number of features selected by that expert.

As we will see in the case study part of this paper, the main advantage
of this approach is the combination of feature subsets from various feature
selection algorithms.

5 Experiments

The purpose of this study was to see if the method would be able to effectively
reflect the performance differences among experts.

In order to test proposed approach, we compare its results with the results
of two widely used attribute selection methods. Namely, R language imple-
mentations of: Las Vegas Filter [Liu and Setiono, 1996] (package dprep) and
a wrapper based feature selection algorithm (Stepclass, package klaR). Our
consensus based algorithm is also implemented in R. We use a PC pentium
IV, 1,7 GHz, Windows to perform these tests. The data sets (from the UCI
[Blake and Merz, 1998] and the Kent Rigde Bio-Medical Data Set reposito-
ries [Jinyan and Huiqing, 2002] were chosen because of their large number of
attributes (table 1).

Name NbAt NbInst NbClass

Lung-Cancer 57 32 3

Promoter 59 106 2

Sonar 60 208 2

Arrhythmia 280 452 16

Isolet 618 1560 26

ColonTumor 2000 62 2

CentralNervSyst 7129 60 2

Table 1. Data set description

The final results of LVF, stepclass and consensus based algorithm were
evaluated by IBk, a K nearest neighbor algorithm (KNN) found in WEKA,
a free Java-based, open source, that provide a variety of machine learning
algorithms.

Table 2 shows the difference (attribute size and KNN accuracy) between
the original and the final data sets. The attribute subset selected by the
consensus based approach (less or equal to 20) allows visualizing and mining
the whole data sets. The changes in the accuracies of KNN classifier is
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minimal or there is no change. This is not the case of LVF or stepclass (table
3). The data set Arrhythmia for example has a subset with 109 attributes
(LVF results) and for the data set Promoter, stepclass does not reduce the
dimension.

Name Initial NbAt Final NbAt Acc before Acc after

Lung-Cancer 57 4 37.5% 75%

Promoter 59 9 85.84% 68.87%

Sonar 60 8 86.54% 71.15%

Arrhythmia 280 4 53.44% 59.96%

Isolet 618 14 85.57% 70.24%

ColonTumor 2000 19 77.42% 79.03%

CentralNervSyst 7129 20 56.67% 60%

Table 2. Comparison of number of attributes and accuracy with KNN algorithm
before and after reduction

Feature selection frameworks as we said aim at reducing classifier cost
and complexity, improving model accuracy. Our goal is firstly to reduce the
number of dimensions in order that the data set could be visualized. Table
3 shows that we attend our principal goal and we obtain results that are
comparable to those of the attribute selection algorithms which objective
is to improve classifiers accuracy. Indeed, the consensus based approach
allows obtaining the best result for data set Lung-Cancer and about the
same accuracy rate for the data sets Sonar, Arrhythmia and colonTumor. It
should be noted that two cases arise: either the attributes of the data set to be
treated are redundant or irrelevant and then the results are comparable with
those of filters or wrappers based approaches or it does not exist redundancy
in the attributes and dimension reduction implies a loss of accuracy. The data
sets in this category are: Isolet (best accuracy with LVF for 268 attributes)
and Promoter (best accuracy with Stepclass for 59 attributes). For these
data sets, the number of selected dimensions in spite of the best accuracy
remains unusable for visual data mining.

Name Final NbAt Lvf NbAt Wrap NbAt Final Acc Lvf Acc Wrap Acc

Lung-Cancer 4 17 4 75% 62.5% 71.87%

Promoter 9 16 59 68.87% 80.19% 85.85%

Sonar 8 18 4 71.15% 82.21% 71.63%

Arrhythmia 4 109 4 59.95% 54.65% 60.84%

Isolet 14 268 8 70.24% 83% 57.98%

ColonTumor 19 918 5 79.03% 77.42% 79.03%

CentralNervSyst 20 3431 8 60% 58.33% 71.67%

Table 3. Comparison of our method with LVF and stepclass
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6 Conclusion
The data visualization, the performance of classification algorithms are af-
fected by attributes. When a data set has a large number of attributes, it
is impossible to perform visual data mining. Irrelevant, redundant features
have a negative effect on the accuracy of a classifier and on visual repre-
sentations. We have defined a dimension reduction method for visual data
mining. Then we have compared successfully the results of this framework
to two widely used attribute selection algorithms. The data visualization
(figure 1) which represents a visualization in which the relationships within
the data are unclear is replaced by another visualization (figure 2) which is
more usable and much more appropriate to visual data mining.

Fig. 2. Isolet Reduced data set visualization with CIAD

Our dimension reduction framework reduces the number of attributes.
However, we remark that with a low number of attributes and a high number
of instances, it is not easy to represent and mine data perfectly. We plan to
develop some methods for reducing the number of instances in a data set to
be treated.
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Abstract. We can now access to information almost everywhere, at any time,
using mobile phone or PDA with connection to the Web. A good way to resume
data is visualization but the size of the screen and bad environment generate huge
constraints.

We first present some general recommandations for small screens. Then we
study the case of time series visualization for more particularly of stock values and
describe two solutions fot PDA and two solutions for mobile.
Keywords: Data Visualizations, Time series, PDA, Mobile Phones, Small screens,
Clustering.

1 Introduction

Access to information has been improved considerably the last years.
Through internet, we can connect to large data bases which are updated
continually, most often on the Web.

Moreover, with mobile technology, we can consult this information even if
we are not in our office or at home, in front of a standard PC. Indeed we can
get information when using a mobile phone or a PDA. But these tools are
much more limited in term of memory, power and screen resolution. If we can
expect that in the next years, memory, power and screen quality definition
will be improved, the size of the screen will not be enlarged because the
intrinsic characteristic of a mobile device is to be small, in order to carry it,
in the pocket or the handbag.

Whereas human computer interaction was concerned up to now on how
present information on screen which enlarged and improved, from year to
year, we discover now new (or old) problems due to the size and the bad
quality of the screens. The bad quality of the vision is also due to the fact
that with mobile devices, we can get information in areas not really well suited
for reading: bad lighting, bad posture, using sometimes only one hand.
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We have thus to be more innovative and find solutions which are usable,
with strong technological constraints.

Visualization of data is a very powerful tool for summarizing information
on input data or on results of analysis. It seems thus a good way to communi-
cate information on a small screen but limitation is so high that the solution
is not evident. Representations cannot just be adapted from standard PC to
mobile devices. We have to find new solutions.

We have also to point out guidelines in order to improve the usability of
information representation on mobile. The following paragraph will describe
such recommendations.

As a case study for data visualisation, we have developed systems of
time series visualization, because the problem is very common, met by many
persons in management and finance. Whereas we can assume that results
of data analysis like clustering, factorial analysis, regression analysis, can be
consulted at work office, time dependant data can be needed in more varied
environment. It is why we have oriented our study on this kind of data. As a
particular case, stock values are a good example of such series: they interest
a lot of people, need to be updated every day and are crucial in our economy.
Users will then be very motivated to use good visualization systems.

2 State of the art

Literature about visualization on mobile concerns mostly applications like
tourism application [Bornträger et al., 2003][Pospischil et al., 2002], nomadic
guide [Schmidt-Belz and Hermann, 2004] [Fithian et al., 2003] [Chinchille et
al., 2002], mobile gaming [Sanneblad and Holmquist, 2003], remote control
[Tarrini et al., 2002]

Some papers concern also guidelines for tasks on small screens. Many
general guidelines for HCI with mobile and PDA performed by mobile indus-
try concern the arrangement of keyboard or the shape and size of the mobile.
We will not consider this kind of problems here and will look only at the
screen usability.

Some guidelines for small screens have been verified by experimental stud-
ies. Most identify good procedures in searching tasks [Giller et al., 2003],
[Jones et al., 2002].

Few papers have been published in the field of data visualization on small
screen but some systems are available for dedicated data like stock informa-
tion.

In data visualization field, [Chittaro and Camaggio, 2002] presents so-
lutions for bar charts format representation on WAP phones. For stock
information, let us reference specialized sites (www.wap.boursorama.com,
www.cprbourse.tm.fr/wap, www.firstinvest.waptoo.com). They give general
information, with some visualization like tables and graphics. Those are usu-
ally standard time series representing the value of a stock or indices with time
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in the X-axis. Time vary in hours, days or years, with of course different level
of precision. On mobile phone, these graphics are generally badly readable,
due to the lack of definition of the screen.

In what follow, we summarize recommendations for small screens. They
are derived and updated from general usability principles [Scapin, 1986] and
from some dedicated papers [Jones et al., 2002], [Giller et al., 2003].

2.1 Conciseness, precision and consistency

In order to save space, give precise, concise information: use as few words as
possible but enough precise. Precision does not mean necessarily to use tech-
nical word. The vocabulary must be understood by the user. This recommen-
dations have been established for usability on standard PC but conciseness
has more importance in the context of small screens.

2.2 Navigation

As few information can be displayed on a screen, when information is volu-
minous, the solution is to split it on several screens. This gives problems of
navigation and orientation. Considering searching tasks, [Jones et al., 2002]
have shown that screen size has a major impact on user performance. They
propose following guidelines which can be interesting in our data visualization
context:

• reduce the amount of page-to-page navigation needed to view search.
They have observed that additional user effort when vertical scrolling
affects performance to a lesser extension that the page-to-page navigation.
[Giller et al., 2003] found the same result.
• adapt for vertical scrolling. Users tend to scroll vertically rather than

horizontally. [Giller et al., 2003] have shown that in a selection task in a
list of items when the users know the target item, 15 items still seems to
be OK, whereas for an unknown target, items should lie around 8.

3 Solutions for optimisation of screen use

Even if preceding recommendations are valid for small screen (pocket pc)
and very small screen (mobile phone), problems appear differently. They
are much more accurate on mobile phone and must be solved appropriately.
On PDA, we can try to summarize information on one screen, with opening
of windows for more details using at the best colour features and screen
definition quality. We have to be innovative in the visualization. We will
present some new time series visualization for PDA in paragraph 4.

On the contrary, on mobile phone, we are obliged to simplify the visualiza-
tion. When the quantity of information is large, we suggest to use analytical
method to reduce the amount of information before visualizing the data. In
paragraph 5, we present two examples of such reduction using clustering.
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4 Examples of visualization on PDA

Most of the solutions for time series representations developped for PDA are
a miniaturisation of the common visualizations used for PC. If an overview
of a time serie can be viewed by this method, it is not sufficient because the
elements displayed are too small and the visualization is not clear. Thus we
provide to find solutions to that problems. The two visualizations presented
here are very different. They don’t use the same scale, one is common and
the other uses colour. More, they don’t present the information in the same
way because the representation of the days is different.

4.1 Brick Wall Chart

The Brick Wall Chart is a very rich visualization, it can display the evolution
in one year of 4 different attributes (see fig.1). The Brick Wall Chart uses a
scale of colour to represent the data values. The scale goes from the white,
yellow, red and black. As recommended by [Spence, 2000] white color repre-
sents the minimum value, black represents the maximum value, and between
these two colors, we use the interpolation to find the color.

The screen is divided in 12 columns representing months from the left
to the right, and each column is vertically divided in rectangles representing
days (the number of days depends on the month) from the bottom to the top
of the screen. The rectangle is also horizontally divided in 4 small rectangles
to represent each attribute. The rectangles are filled with color to represent
the data values.

If the user want more precision, he can switch to the same visualization
but with only one attribute. The Brick Wall Chart is the same but the days
are not divided in small rectangles. Because the days are bigger, the color
can be seen with less difficulty, the visualization is then more precise and
clear.

The user can obtain the precise values of the attributes for one day, he
just has to tap on the sreen over the corresponding day. A box appears on
the screen providing the values of the 4 attributes.

4.2 Stacked Bar Chart

The Stacked Bar Chart uses the metaphore of the calendar because it divides
the screen in 12 parts representing the months (see fig.2). The scale is clas-
sical and use the height of the elements to reprensent their values. Stacked
Bar Chart provide showing two different attributes. It is less richer than the
previous visualization but is more common and usual. Actually, the visual-
ization is represented by 12 small graphics. Each graphic is a classical one
with the time on the X-Axis and the value on the Y-Axis. The first attribute
is display in blue, the second in orange. The smaller attribute appears in
front of the screen, and the second appears behind the smaller attribute.
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Fig. 1. Brick Wall Chart.

4.3 Evaluation

The evaluation had two goals: compare the efficiency of the visualizations
and the preferences of the users.

First, we tested the performance, the time to complete a task, the quality
of the representation of the days, the quality of the reprensentation of the
values. The results cannot affirm that one visualization is better than an-
other. So we can expect that the users wont prefer any visualization and in
this case, the preference would be homogeneous.

But 17 of the 20 users chose the Brick Wall Chart as their favourite
visualization and the appreciation for this visualization is better than the
one for the Stacked Bar Chart. So, the preferences of the users go mainly to
the Brick Wall Chart that use a color scale even if their are both efficient.
More information on that evaluation can be found in [Noirhomme-Fraiture
et al., 2005].
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Fig. 2. Stacked Bar Chart.

5 Examples of visualization on mobile phone

On very small screen, superposition of several windows is not advisable. Due
to lack of definition, too detailed graphics are not readable. We have to
avoid outlines and to privilege pictures with colored or greyed surfaces, be-
cause lines are not distinguished. Using Gestalt principles, [Easterby] has
shown that a contrast boundary is better than a line boundary for making a
shape stand out. We present here two visualization that we have designed to
represent stock values. The first one is dedicated to visualization of different
values at a given time, the second one is dedicated to visualization of the
evolution of such values with time. More visualization and details can be
found in [Custinne et al., 2004]. If the values are too numerous, we suggest
to summarize them by a clustering. For example, when representing values
of stock portfolio, stocks can be very numerous so that it is impossible to
represent all the stocks on the same graph. What stock sites do usually is to
represent stocks separately. This method is tiresome for the user, does not
allow comparing the stocks between them and does not allow having a global
view of the portfolio. Many stocks have common behaviour so it is possible
to assemble them in classes with homogneous behaviour. As example, we
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have operated a K-Means clustering to merge 40 stocks in 7 clusters. The
clustering was done on base of the mean value on one month or on variation
during one month (max-min).

We could also perform a clustering to reduce the number of days, when
we represent the variation of stocks on a long period. In this case, it seems
more appropriate to use clustering methods which try to agglomerate days
which are contiguous in order to obtain clusters of periods. In what follows,
we present the two visualization adapted to clusters (but they can also be
used for individual stocks).

5.1 Alternate Bar Chart

This visualization is closed to the kind of representation that workers in stock
exchange are used to. The height of the bars are proportional to the value
to be represented: maximum variation of stock value during a period. As
this variation can be positive or negative, we represent positive value from
bottom to top on the bottom line and negative value from top to bottom on
the upper line (see fig. 3). Each bar has a different color according to the
cluster of stocks. Rectangles are full colored. Details can be obtained when
pointing a particuliar bar. This kind of optimise the use of the screen space
and allows very quick visualization of the importance of positive/negative
variations.

Fig. 3. Alternate Bar Chart.

5.2 Pixel bar Chart

In this representation we visualize the evolution of values during a period for
different clusters (or stocks). Each column is dedicated to a cluster, its width
is proportional to the number of stocks in the cluster. Each daily value is
mapped on a color scale. The different days of the period are represented
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from bottom to top. We use the same convention of colour as the one used
in the Brick bar Chart on PDA (see fig.4).

Fig. 4. Pixel Bar Chart.

As in the preceding visualization, the representation uses maximum of the
available space on the screen. Whereas the alternate bar chart is commonly
appreciated and easy to use, people with weak sight have some difficulty with
Pixel Bar Char. We hope that improvement in screen quality will reduce this
problem.

5.3 Evaluation

We have evaluated the two types of representation with 20 subjects, computer
scientists or economists.

Performance were rather good with both visualization but on our test the
tasks to be performed were rather simple.

We have thus more analysed preferences and qualitive remarks done by
the subjects. Alternate Bar Chart is better perceived, because very close to
standard representation. Pixel Bar Chart needs some time for training.

Classification method need also training. Some persons in the sample did
not know about K-Means so that preliminary explanations were necessary.
Some experts in economy found the method interesting, for use on very small
screens.

6 Conclusion

We have presented solutions for time series visualization on PDA and on
mobile phone, and considered the particular application of stock market. In
our system we have applied the following principles:

• use of the maximum screen space
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• do not charge the display
• use contrast boundary instead of line boundary
• give information on demand, interactively.

A substantial improvement will be obtained in linking together the differ-
ent representations. We are working on such a global system. This system
should be tested with real users, in their working environment.

More generally many other applications need to find adapted visualiza-
tions on small screens. The research has only started to be explored.
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Abstract. In many research fields, where valuable information about a random
phenomenon may come from different, possibly heterogeneous sources of knowledge
(“experts”), the combining of the available information is a powerful uncertainty-
reducing process. As efficiency reasons often suggest to perform a sequential proce-
dure, in this paper some informativeness-founded selecting and stopping rules are
proposed; their performance is discussed in a case-study.
Keywords: sequential consulting, Kullback-Leibler divergence, curvature.

1 Introduction

In many research fields, particularly in decision making and risk analysis,
valuable information about a random phenomenon may come from different,
possibly heterogeneous, sources of knowledge: information systems (such as,
for example, sensor fusion systems), theoretical or empirical models, privi-
leged witnesses. In a single, conventional word: ‘experts’. So, the combining
of the available information — especially once they were modelled in form of
probability distributions — become a powerful uncertainty-reducing process:
for example, to assess the entity of an environmental risk or the probabil-
ity of a space probe malfunctioning, or forecast hurricane track, or classify
biological samples, such as fossils. The output of the process — a final prob-
ability distribution on the investigated random variable — can be viewed
as representing a synthesis of the current state of knowledge regarding the
uncertainty of interest: a ‘sufficient’ synthesis, which must not involve loss of
any relevant information.

Numerous algorithms for simultaneous combining have been proposed
in literature (for a critical review, [Genest and Zidek, 1986] and [Cooke,
1991]). It’s not so about sequential algorithms. And it is a fact that the
investigator often prefers to consult the experts in successive stages rather
than simultaneously. So, s/he avoids wasting time and money by consulting
a too large sample of experts: at each stage, depending on the amount of
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information reached, s/he can choose whether to stop or to continue the
process and, depending on the answers obtained from the experts already
contacted, s/he can select the ‘best’ expert to be consulted on the subsequent
stage.

The aim of this work is to propose some selecting and stopping rules which
can be suitable to be used in a sequential consulting process. The substance
of such rules is almost independent of the procedure chosen for combining
information from the experts; not so their mathematical form. The reference,
in the present work, is the Bayesian aggregation model suggested by Morris
(1977), reviewed in a recursive form.

The paper is organized as follows. Section 2, in writing Morris’ aggre-
gation algorithm in a recursive form, gives the notation for the successive
sections. In Section 3, some stopping and selecting criteria are suggested.
Their performance is discussed in a real data based case-study which, to-
gether with some concluding remarks, is presented in Section 4.

2 A recursive algorithm for the sequential knowledge
updating

In a context of uncertainty about the value of a random quantity θ ∈ Θ ⊂ <,
let’s denote with h0 (θ) the prior probability distribution which reflects the
initial state of information. With the aim to acquire knowledge (so reducing
the uncertainty) about θ, an investigator A performs a sequential consulting
of (at most n) experts Qj: at each stage k (k = 1, 2, . . . ,K; K ≤ n), the
selected expert Q∗

j;k (or, more briefly, Qk) answers by giving his/her/its own
density gk (θ). Treating each expert’s density as result of an experiment, the
investigator can revise the initial distribution h0 (θ) via Bayes’ theorem.

Assuming that [Morris, 1977]:

a) each gk (·) is parameterized with a location parameter mk and a shape
parameter vk;

b) for each k, the probability which A assigns to the event v(k) =
⋂
k
i=1vi —

that is, the event “the shape parameter values the experts will give are
[v1, ..., vi, ..., vk]

′
= v” — does not depend on θ: in symbols, `

(
v(k)|θ

)
=

`
(
v(k)

)
;

Morris shows that the posterior density can be written as1,

h
(
θ|m(k), v(k)

)
=

`
(
m(k)|v(k), θ

)
· h0 (θ)∫

Θ
`
(
m(k)|v(k), θ

)
· h0 (θ) dθ

(1)

where:

1 It can be shown that these assumptions can be relaxed without changing sub-
stantially the results [Morris, 1977].
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– `
(
m(k)|v(k), θ

)
, denoted in the following by `k (θ) for notational conve-

nience, indicates the conditioned likelihood function of θ for the data
m(k) =

⋂k
i=1mi, given v(k): it represents — for θ varying — A’s prob-

abilities that the location parameter values the experts will provide are
m = [mi]

′
i=1,...,k;

– the posterior h
(
θ|m(k), v(k)

)
or, more briefly, hk (θ), represents the syn-

thesis distribution at stage k.

If the following assumption holds too:

c) for each k, the conditional probability which A assigns to the event “gk (·)
shape parameter will be vk”, given m(k−1), v(k−1) and θ, does not depend
on θ — that is, `

(
vk|m(k−1), v(k−1), θ

)
= `

(
vk|m(k−1), v(k−1)

)
—;

then Morris’ (simultaneous) aggregation algorithm (1) can be written in a
recursive form as,

hk (θ) =
`
(
mk|vk,m(k−1), v(k−1), θ

)
· hk−1 (θ)∫

Θ `
(
mk|vk,m(k−1), v(k−1), θ

)
· hk−1 (θ) dθ

(2)

where `
(
mk|vk,m(k−1), v(k−1), θ

)
is the conditioned likelihood function of θ

for the only observation mk, given vk and also the location and shape values
provided by the k − 1 previously consulted experts.

As regards the arduous assessment of the function ` (·) in (2), the relation
`
(
mk|vk,m(k−1), v(k−1), θ

)
= `k (θ) /`k−1 (θ) allows to use Morris’ (simulta-

neous) result,

`k (θ) ∝ Ck (θ) ·
k∏

i=1

gi (θ) (3)

where the calibration function Ck (θ) encapsulates the state of knowledge
about each expert’s performance and the degree of dependence among the k
experts. Briefly [Morris, 1977], let τi denote the i-th performance indicator,
defined as Qi’s cumulative function Gi (·|mi, vi) evaluated at the true value of
θ: Ck (θ) expresses the admissibility degrees which the investigator assigns to
each possible θ value looked at as the realization of the k-dimensional quan-
tile vector τ = [τi]

′
i=1,...,k. Technically, Ck (·) is nothing but a subjectively

assessed density φk (·) of τ , conditioned on v and θ, looked at as a function of
θ (for fixed m): in symbols, the relation between the so-called performance
function φk (·) and the calibration function Ck (θ) is,

φk (τ |v, θ) = φk [G (θ|m,v) |v, θ] = Ck (θ) (4)

where G (θ|m,v) — briefly, G (θ) — denotes the vector [Gi (θ|mi, vi)]
′
i=1,...,k.

Whenever only some pieces of information about the experts are available
— an ‘information block’ which is not adequate to construct an empirically
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founded probability distribution of their performance indicators — the fidu-
cial argument [Fisher, 1956] can be used for inductively modelling the cali-
bration function, enabling it to be specified with a relatively small number
of assessments [Monari and Agati, 2001]. With the following notation:

– G̃ (θ) =
[
G̃i (θ)

]′
i=1,...,k

, with G̃i (θ) = ln [Gi (θ) / (1−Gi (θ))];
– t̃ =

[
t̃i
]′
i=1,...,k

, with t̃i = ln [ti/ (1− ti)];
– c as normalization constant;

the resulting fiducial calibration function can be written as,

Ck (θ) = Ck (θ; t,S) =

= c·
k∏

i=1

{Gi (θ) · [1−Gi (θ)]}−1 ·exp

{
−1

2

[
G̃ (θ)− t̃

]′
S−1

[
G̃ (θ)− t̃

]}
(5)

It’s worth noting that function (5) is univocally defined by the following
two quantities:

– A’s assessment t = [ti]
′
i=1,...,k of the performance indicator τ ;

– the subjective variance-covariance matrix S, reflecting A’s information
about the variability and the reciprocal dependence of the experts’ per-
formance indicators.

3 Selecting and stopping rules

The purpose of expert consulting is reducing the uncertainty about the un-
known quantity θ. So, in designing and performing the sequential process,
it is reasonable to found the selecting and stopping rules on some criterion
of informativeness. In particular, though no single number can convey the
amount of information encapsulated in a density function, a synthetic mea-
sure of the (expected) additional informative value of a not-yet-consulted
expert Qj;k is indispensable for selecting the one to be consulted at stage k,
especially when the investigator’s calibration assessments, together with the
shape parameters provided by the experts, lead to not-coinciding preference
orderings. And, analogously, as likelihood functions and posterior densities
can display a wide variety of form, a synthetic measure of the reached knowl-
edge degree about θ is needed for picking out the ‘optimal’ stage k∗ at which
data acquiring can be stopped.

Let’s suppose the investigator A is performing the process of revising
beliefs in light of new data according to the algorithm described in Section 2.
The prior h0 (θ) has already been specified; each of n contacted experts Qj
has revealed the variance vj — assumed as uninformative about θ: see b) in
Section 2) — of his/her/its own density gj (θ), and A has already consulted
k − 1 of them, so obtaining the locations of k − 1 expert densities: A is
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Fig. 1. Flow-chart of the sequential procedure.

now at stage k of the process (figure 1), and must select one among the
not-yet-consulted experts Qj;k (j = 1, 2, . . . , n− k + 1).

For each Qj;k, the investigator A assesses — conditionally on vj , on the
basis of the information at his disposal (including all the expert locations mi

revealed up to stage k− 1) — the parameters of the k-stage calibration func-
tion Cj;k (θ): that is, tj , sjj and the covariances sji (or the linear correlations
rji) between Qj;k and each already-consulted expert Qi, i = 1, 2, . . . , k − 1.
At this point of the procedure, no Qj;k has revealed the location value mj of
his own gj (θ): the several ‘answers’ mj which each can virtually give are not
all equally informative, so the (informative) value of each expert at the k-
stage — to be measured with regard to A’s current knowledge2 of θ reflected
in the posterior density hk−1 (θ) of the previous stage — is an expected value,

2 In fact, all the other elements being equal, the more A is uncertain about θ, the
more an answer mj is worthy.
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calculated by averaging a selected measure of relevant information about θ
in Qj;k’s answer over the space Mj of the virtually possible mj values.

By reasoning in a knowledge context — which is an inductive context,
where an expert opinion is more relevant the more it is able to modify the
posterior distribution on the unknown quantity — a suitable measure of
Qj;k’s informative value can be the expected Kullback-Leibler divergence of
the density hj;k (θ) with respect to the previous stage posterior hk−1 (θ),

E [KL (hj;k, hk−1)] :=

∫

Mj

f
(
mj;k|vj;k,m(k−1), v(k−1)

)
·KL (hj;k, hk−1) dmj

(6)
where the KL-divergence [Kullback, 1959],

KL (hj;k, hk−1) :=

∫

Θ

hj;k (θ) · ln [hj;k (θ) /hk−1 (θ)] dθ (7)

measures indirectly the information provided by an answer mj;k in terms of
the changes it yields on the density hk−1 (θ). The conditional density f (·)
in (6) is equal to the denominator of (2) read as a function of mj;k and
normalized; when assumptions a), b) and c) hold, it can be determined as

f
(
mj;k|vj;k,m(k−1), v(k−1)

)
= f

(
m(j;k)|, v(j;k)

)
/f
(
m(k−1)|v(k−1)

)
(8)

where the density f
(
m(j;k)|, v(j;k)

)
— and analogously f

(
m(k−1)|v(k−1)

)
—

is equal, up to the normalization term, to the denominator
∫
Θ `
(
m(k)|v(k), θ

)
·

h0 (θ) dθ of (1), read as a function of m(k).
The expert Q∗

j;k presenting the greatest expected KL-divergence is, at
stage k, the most informative: but is he/she/it an expert worth consulting?
The answer is yes, if the information he provides is, on average, enough
different from what A already knows about θ, i.e. if the expected divergence
of hj∗;k (θ) with respect to hk−1 (θ) is not less than a predetermined value δ
(0 ≤ δ < ∞). About the choose of the threshold δ, a very useful tool is the
scheme proposed by McCulloch for deciding whether a KL-divergence value
is a large or a small one [McCulloch, 1989].

So the selecting rule can be expressed as follows. Consult the expert Q∗
j;k

such that

E [KL (hj∗;k, hk−1)] ≥ E [KL (hj;k, hk−1)] j 6= j∗ (9)

on condition that
E [KL (hj∗;k, hk−1)] ≥ δ (10)

If Q∗
j;k does not satisfy (10), then proceed to a 2nd order analysis: that is,

consult the pair (Qj;k, Qu;k)
∗

presenting the greatest expected KL-divergence,
provided that it is E

[
KL

(
h(j,u)∗;k, hk−1

)]
≥ δ; otherwise contact a new set

of experts and perform a new process by using the posterior hk−1 (θ) as a
new prior h

′

0 (θ) .
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The expert Q∗
j;k satisfying (10) becomes just Qk, the “k-stage expert”.

By consulting him, A learns the location mk of the density gk (·): now, the
k-stage calibration function Ck (θ) is univocally defined, and consequently,
the likelihood function `k (θ) and the posterior density hk (θ) too.

In theory, the investigator should stop the process only when the knowl-
edge about θ, reflected in the posterior density, is ‘inertially stable’: i.e., only
when additional experts, even if jointly considered, are not able to modify
appreciably the synthesis distribution, on the contrary they contribute to its
inertness. But too many experts could be needed for realizing such a stop-
ping condition. It can be weakened by requiring just the knowledge about
θ deriving from expert answers to be enough for A’s purposes. A measure
encapsulating the strength of the experimental data in determining a pref-
erence ordering among ‘infinitesimally close’ values of θ is Fisher’s notion of
information. The value of the observed information I (·) at the maximum of
the log-likelihood function,

Ik (θmax) := −∂2/∂θ2 ln `k (θmax) (11)

is a second-order estimate of the spherical curvature of the function at its
maximum: within a second-order approximation, it corresponds to the KL-
divergence between two distributions that belong to the same parametric
family and differ infinitesimally over the parameter space.

So, the stopping rule may be defined as follows. Stop the consulting at
stage k* at which a pre-selected observed curvature λ of the log-likelihood
valued at θ := θmax has been reached,

Ik∗ (θmax) ≥ λ (12)

For deciding whether a curvature value I (θmax) = w is a large or a small
one, a device could be the following. Let’s think of a binomial experiment
where a number x = n/2 of successes is observed in n trials and find x
such that I (p̂ML = 0.5) = w, where p̂ML = 0.5 is the maximum likelihood
estimate of the binomial parameter p. Table 1 shows a range of x values with
the corresponding w curvature values. The simple relation x = w/8 holds:
so, for example, if w = 120, the width of the curve ln `k (θ) near θ := θmax is
the same as the curve ln ` (p) at p̂ML = 0.5 when x = 15 and n = 30.

x 1 2 5 10 15 20 25 30 40 50
w 8 16 40 80 120 160 200 240 320 400

Table 1. Large or small curvature values? Relation between x and w values.
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4 Case-study and concluding remarks

The behavior of the algorithms proposed in the previous section — and im-
plemented [Agati and Stracqualursi, 2001] in MATHEMATICA — has been
investigated in simulation and experimental studies. In this section, the re-
sults from medical data are synthetically presented to exemplify how the
selecting and stopping rules work. Particularly, data in table 2 regard a
sequential consulting process of n = 4 orthopaedists, performed by an Ital-
ian research laboratory about the long-term failure log-odds θ of a new hip
prosthesis. A fifth surgeon has assessed the calibration parameters, without
modifying them in proceeding from a stage to the successive one. He has also
(subjectively) chosen the following thresholds:

– δ = 0.02: by reading this value in McCulloch’s scale, at stage k the most
informative expert Q∗

j;k is consulted only if the expected KL-divergence
of hj∗;k (θ) with respect to hk−1 (θ) is not less than the KL-divergence of
a Bernoulli distribution B(p) with p = 0,5 from a Bernoulli distribution
with p = 0.65; or, in other words, only if stopping the process at stage
k−1 instead of proceeding to stage k involves, on average, an information
loss larger than that one yielded by using a B(0,65) instead of a B(0,5);

– λ = 120: by using the scale proposed in Section 3, the consulting process is
stopped at stage k* at which the observed curvature of the log-likelihood
function ln `(θ) valued at θ := θmax is the same as the function ln ` (p) at
p̂ML = 0.5 when, in a binomial experiment, n = 30 and x = 15.

Qj vj tj sjj rj1 rj2 rj3 rj4

Q1 0.150 0.45 1.20 1
Q2 0.145 0.65 1.50 +0.20 1
Q3 0.120 0.75 1.70 −0.05 +0.50 1
Q4 0.110 0.45 1.10 +0.10 +0.10 +0.10 1

Table 2. Input data for the sequential consulting of four orthopaedists about long-
term failure log-odds of a new hip prosthesis.

In this study, the conditions a), b) and c) mentioned in Section 2 can
be held to be satisfied. In fact: a) it rests on empirical evidence — and the
experts confirm it — that the failure log-odds θ can be supposed as Gaussian;
b) it is reasonable to think the probability the fifth orthopaedist assigns to
the event “the experts will give the variances [v1, ..., v4]

′ = v” is the same
for all θ values: so the surgeons’ stated variances alone give no information
able to change the investigator’s beliefs about θ; c) it is reasonable as well
to assume the conditional probability the investigator assigns to the event
“the expert Qj;k will give the variance vk”, given the shape and location
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values provided by the k− 1 previously consulted experts, is the same for all
θ values. So the combining algorithm outlined in Section 2 has been applied,
as well as the selecting and stopping rules suggested in Section 3.

Stage k = 1 Stage k = 2 Stage k = 3
Qj E [KL (hj;1, h0)] E [KL (hj;2, h1)] E [KL (hj;3, h2)]

Q1 1.41487 1.92935 —
Q2 1.35582 1.52293 1.42842
Q3 1.42427 1.72981 1.93624
Q4 1.60348 — —

↓ ↓ ↓
Q∗

j;k Q4 Q1 Q3

mk −1.208 −1.992 −2.752
Ik (θmax) 18.713 53.492 138.984 (> 120 = λ)

Table 3. Output of the proposed sequential procedure in the consulting of four
orthopaedists about long-term failure log-odds of a new hip prosthesis.

Table 3 summarizes the results of the sequential process, while figure 2
shows the posterior distributions hk (θ) at each stage.

For k = 1, the selecting rule proposed in Section 2 chooses the expert
Q4: really he offers the smallest variance (v4 = 0.110), and also the inves-
tigator’s uncertainty about his performance indicator is assessed to be the
smallest (s44 = 1.10). Q4’s answer (m4;1 = −1, 208) leads to a curvature
value I1 (θmax) = 18.713 < 120 = λ: so the process goes on.

At stage 2, the selecting rule shows its usefulness: in fact, the vj , tj and
sjj values 3 don’t lead to a unique preference ordering. The most informative
expert Q1 is selected by the algorithm4 and m1;2 is observed. The curvature
value is I2 (θmax) = 53.492 < 120 = λ: the consulting proceeds.

At stage 3, the preference for Q3 instead of Q2 is also (but not only)
motivated by the correlations with Q1: a negative correlation (r31 = −0.05)
is more informative than a weak positive one (r21 = 0.20). The observedm3,3

leads to I3 (θmax) = 138.984 > 120 = λ. The process is stopped: the expert
Q2 is left out of the consulting and stage-3 posterior h3 (θ) — whose location
and shape values are, respectively, −1.873 (the median, here coinciding with
the arithmetic mean and the mode) and 0.084 (the standard deviation) —
can be regarded as the synthesis expression of the expert knowledge about
the long-term failure log-odds θ of the new hip prostheses.

3 The correlations between Q4 and the other experts are all equals: so they don’t
come into play.

4 It’s worth noting that the value m4;1 observed at stage 1 has modified, at stage 2,
the previous-stage preference ordering: for this reason, the selecting at each stage
one only expert is to be preferred to selecting a set of experts (simultaneously.
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Fig. 2. Posterior distributions at stages 0 (i.e., the prior), 1, 2 and 3 of the sequen-
tial procedure.

By looking at this selecting and stopping output, the behavior of the in-
formativeness criteria appears to be coherent with the intuition, so giving an
empirical support about the soundness of the proposed selecting and stop-
ping algorithms in performing an efficient sequential consulting process. At
present, our research efforts are focused on the combining of information from
hurricane track prediction models: so, with the aim of assessing the calibra-
tion parameters for each model (an ‘expert’, in our framework), simulations
were performed on a training-set of North Atlantic historical hurricane data
regarding the location of specific storms at prefixed time intervals. Succes-
sively, separately for each time interval, each track prediction model with its
own parameters entered in the informativeness-founded sequential algorithm
and, on the basis of the selecting and stopping output, a Bayesian combined
track prediction model for each prefixed time interval was proposed: the
research — still in progress — promises interesting results.
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Abstract. Multinomial response data obtained from nominally and dichotomously
scored test items in knowledge space theory are explained by knowledge structures.
A central problem is the derivation of a ”realistic” explanation, i.e., knowledge
structure, representing the organization of ”knowledge” in a domain and popula-
tion of reference. In this regard, often, one is left with the problem of selecting
among candidate competing explanations for the data. In this paper, we propose
a measure for the selection among competing knowledge structures. The approach
is illustrated with simulated data.
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1 Knowledge space theory (KST)

This section reviews basic deterministic and probabilistic concepts of KST.
For details, refer to [Doignon and Falmagne, 1999].

Definition 1 A knowledge structure is a pair (Q,K), with Q a non-empty,
finite set, and K a family of subsets of Q containing at least the empty set
∅ and Q. The set Q is called the domain of the knowledge structure. The
elements q ∈ Q and K ∈ K are referred to as (test) items and (knowledge)
states, respectively. We also say that K is a knowledge structure on Q.

The general definition of a knowledge structure allows for infinite item
sets as well. However, throughout this work, we assume that Q is finite.

The set Q is supposed to be a set of dichotomous items. In this paper,
we interpret Q as a set of dichotomous questions/problems that can either
be solved (coded as 1) or not solved (coded as 0). Here, ”solved” and ”not
solved” stand for the observed responses of a subject (manifest level). This
has to be distinguished from a subject’s true, unobservable knowledge of the
solution to an item (latent level). In the latter case, we say that the subject
is capable of mastering (coded as 1) or not capable of mastering (coded as 0)
the item. For a set X , let 2X denote its power-set, i.e., the set of all subsets
of X . Let |X | stand for the cardinality (size) of X . The observed responses
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of a subject to the items in Q are represented by the subset R ⊂ Q containing
exactly the items that are solved by the subject. This subset R is called the
response pattern of the subject. Similarly, the true latent state of knowledge
of a subject with respect to the items in Q is represented by the subsetK ⊂ Q
containing exactly the items the subject is capable of mastering. This subset
K is called the knowledge state of the subject. Given a knowledge structure
K, we assume that the only states of knowledge possible are the ones in K.
In this sense, K captures the organization of knowledge in the domain and
population of reference. Idealized, if no response errors, i.e., careless errors
and lucky guesses, would be committed, the only response patterns possible
would be the knowledge states in K.

Let N stand for the set of natural numbers (without 0). We fix a popu-
lation of reference, and examinees are drawn from this population randomly.
Let the sample size be N ∈ N. The data is constituted by the observed
absolute counts N(R) ∈ N0 := N ∪ {0} of response patterns R ∈ 2Q. The
data, x = (N(R))R∈2Q , are assumed to the realization of a random vector
X = (XR)R∈2Q , which is distributed multinomially over 2Q. That is,

P(X = x) := P(X∅ = N(∅), . . . , XQ = N(Q))

=
N !∏

R∈2Q N(R)!

∏

R∈2Q

ρ(R)N(R).

Here, ρ(R) ∈ [0, 1] for any R ∈ 2Q,
∑

R∈2Q ρ(R) = 1, and N(R) ∈ N0 with
0 ≤ N(R) ≤ N for any R ∈ 2Q,

∑
R∈2Q N(R) = N .

Let the maximum probability of occurence be denoted by ρ(Rm), i.e.,

ρ(Rm) = max
R∈2Q

ρ(R),

for some appropriate response pattern Rm ∈ 2Q.
Maximum likelihood estimates (briefly, MLEs) for the population prob-

abilities ρ(R) (R ∈ 2Q) are ρ̂(R) = N(R)/N . The MLE for ρ(Rm) is

ρ̂(Rm) = N(R′
m)/N , where N(R′

m) denotes the maximum absolute count
N(R′

m) = maxR∈2Q N(R), for some appropriate response pattern R′
m ∈ 2Q.

We will simulate multinomial response data in accordance with a basic
local independence model.

Definition 2 A quadruple (Q,K, p, r) is called a basic local independence
model (BLIM) iff

1 (Q,K) is a knowledge structure;

2 p is a probability distribution on K, i.e., p : K → [0, 1],K 7→ p(K), with
p(K) ≥ 0 for any K ∈ K, and

∑
K∈K p(K) = 1;

3 r is a response function for (Q,K, p), i.e., r is a function r : 2Q × K →
[0, 1], (R,K) 7→ r(R,K), with r(R,K) ≥ 0 for any R ∈ 2Q and K ∈ K,
and

∑
R∈2Q r(R,K) = 1 for any K ∈ K;
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4 r satisfies local independence, i.e.,

r(R,K) =






 ∏

q∈K\R
βq


 ·


 ∏

q∈K∩R
(1 − βq)




·


 ∏

q∈R\K
ηq


 ·


 ∏

q∈Q\(R∪K)

(1− ηq)





 ,

with two constants βq, ηq ∈ [0, 1[ for each q ∈ Q, respectively called care-
less error probability and lucky guess probability at q.

A probability distribution p on K (point 2) is interpreted as follows. To
each knowledge state K ∈ K is attached a probability p(K) ∈ [0, 1] measuring
the likelihood that a randomly sampled subject is in state K. Further, any
randomly sampled subject is necessarily in exactly one of the states of K.
A response function r (point 3) is interpreted as follows. For R ∈ 2Q and
K ∈ K, r(R,K) ∈ [0, 1] specifies the conditional probability of response
pattern R for an examinee in state K. Given the probability distributions p
on K and r( . ,K) on 2Q (K ∈ K), a BLIM takes into account the two ways in
which probabilities must supplement deterministic knowledge structures. For
one, knowledge states will occur with different proportions in the population
of reference. For another, response errors (careless errors and lucky guesses)
will render impossible the a-priori specification of the observable responses of
a subject, given her/his knowledge state. The condition of local independence
(point 4) states that the item responses of an examinee are assumed to be
independent, given the knowledge state of the examinee, and the response
error probabilities βq, ηq ∈ [0, 1[ (q ∈ Q) are attached to the items and do
not vary with the knowledge states.

The BLIM is a multinomial probability model.

Corollary 1 Given a BLIM, the occurence probabilities of response patterns
are parameterized as

ρ(R) =
∑

K∈K






 ∏

q∈K\R
βq


 ·


 ∏

q∈K∩R
(1 − βq)




·


 ∏

q∈R\K
ηq


 ·


 ∏

q∈Q\(R∪K)

(1− ηq)





 p(K).

ut

2 Measure κ

In this section, we propose a measure, κ, for the selection among competing
explanations, i.e., knowledge structures, for the multinomial response data.
For details, refer to [Ünlü, 2004].
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2.1 Prediction paradigm

The derivation of κ heavily rests on the following prediction paradigm.
The prediction problem considered is this. An individual is chosen ran-

domly from the population of reference, and we are asked to guess his/her
response pattern, given, either

(no info). no further information (than the multinomial distribution), or

(info). the knowledge structure K assumed to underlie the responses of the
individual.

The prediction strategies in both cases are as follows. In the ”no info” case,
we optimally guess some response pattern Rm ∈ 2Q, which has the largest
probability of occurence ρ(Rm) = maxR∈2Q ρ(R). In the ”info” case, we pro-
portionally guess the knowledge states with their probabilities of occurence.
That is, if K =

{
K1,K2, . . . ,K|K|

}
, we guess K1 with probability ρ(K1), K2

with probability ρ(K2), . . ., K|K| with probability ρ(K|K|). Since these prob-
abilities may not add up to one, in general, there is a non-vanishing residual
probability

{
1−∑K∈K ρ(K)

}
> 0. Thus, in order to complete the predic-

tion strategy, we abstain from any guessing with probability 1−∑K∈K ρ(K),
and, in the sequel, view this as a prediction error.

The probabilities of a prediction error in both cases are as follows. In
the ”no info” case, the probability is 1 − ρ(Rm), and, in the ”info” case, it
is 1 −∑K∈K ρ(K)2. Of course, the probabilities of a prediction success are
ρ(Rm) and

∑
K∈K ρ(K)2, respectively.

2.2 First constituent of κ: measure of fit

The measure κ consists of two constituents. The first constituent of κ cap-
tures the (descriptive) fit of a knowledge structure K to the response data.
This constituent is derived based on the method of proportional reduction in
predictive error (PRPE)—the method of PRPE was introduced originally by
[Guttman, 1941], and it was applied systematically in the series of papers by
[Goodman and Kruskal, 1954, 1959, 1963, 1972]. The general probability
formula of the method of PRPE quantifies the predictive utility, PU(info), of
given information. Informally,

PU(info) :=
Prob. of error (no info)− Prob. of error (info)

Prob. of error (no info)
.

Inserting the previous prediction error probabilities into the PRPE for-
mula, we obtain the population analogue of the first constituent, m1, of κ.

Definition 3 Let ρ(Rm) 6= 1. The measure m1 is defined as

m1 :=

(
1− ρ(Rm)

)
−
(
1−∑K∈K ρ(K)2

)

1− ρ(Rm)

=

∑
K∈K ρ(K)2 − ρ(Rm)

1− ρ(Rm)
.
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In the sequel, we assume that ρ(Rm) 6= 1 ! Inserting MLEs, we obtain
the MLE, m̂1, for m1 (We assume that 1−N(R′

m)/N 6= 0 !):

m̂1 =

∑
K∈KN(K)2 −N ·N(R′

m)

N2 −N ·N(R′
m)

.

2.3 Second constituent of κ: measure of size

The second constituent of κ captures the size of a knowledge structure K.
For the definition of it, we need the concept of a truncation of K.

Definition 4 Let M ∈ N be a truncation constant. An M -truncation of K
is any subset, KM-trunc, of K which is derived in the following way.

1 Order the knowledge states K ∈ K according to their probabilities of
occurence ρ(K), say, from left to right, ascending with smaller ρ values
to larger ones. Knowledge states with equal probabilities of occurence are
ordered arbitrarily.

2 Starting with the foremost right knowledge state, i.e., a knowledge state
with largest probability of occurence, take the first min(|K|,M) knowledge
states, descending from right to left. The set of these knowledge states is
KM-trunc.

The definition of the second constituent, m2, of κ is this.

Definition 5 Let
∑

K∈K ρ(K) 6= 0. Let M ∈ N be a truncation constant,
and let KM-trunc denote an M -truncation. The measure m2 is defined as1

m2 :=

∑
K∈K ρ(K)2∑

K∈KM-trunc
ρ(K)2

.

In the sequel, we assume that
∑
K∈K ρ(K) 6= 0 for any knowledge struc-

ture K. Inserting MLEs, we obtain the MLE, m̂2, for m2 (We assume that∑
K∈KN(K) 6= 0 !):

m̂2 =

∑
K∈KN(K)2∑

K∈ ̂KM-trunc
N(K)2

,

where ̂KM-trunc is defined analogously as in Definition 4, where we have to
replace ρ(K) with its MLE N(K)/N for any K ∈ K.

1 m2 is invariant with respect to the choice of a particular M -truncation.
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2.4 κ: size trading-off fit measure

The measure κ is (more or less) the product of m1 and m2.

Definition 6 Let M ∈ N be a truncation constant, and let C ∈ [0, 0.01] be a
small, fixed non-negative correction constant.2 The measure κ is defined as

κ := m2 · (m1 − C).

The MLE for κ is κ̂ := m̂2 · (m̂1 − C).
The measure κ may be interpreted as a performance measure for the

evaluation of knowledge structures. The two (performance) criteria being
merged and traded-off are ”(descriptive) fit” and ”(structure) size”, respec-
tively measured by its constituents m1 and m2. The decision rule important
for applications of κ is this. The greater the value of κ is, the ”better” a
knowledge structure ”performs” with respect to a trade-off of the criteria.
The (unknown) ordering of the population κ values is ”estimated” by the
ordering of the corresponding MLEs.

2.5 Model selection and truncation constant

Finally, we describe a special choice for the truncation constant in the context
of model selection among competing knowledge structures K1,K2, . . . ,Kn
(n ∈ N, n ≥ 2) on (same) domain Q.

Definition 7 Let vi := |{K ∈ Ki : ρ(K) 6= 0}| be the match of candidate
model Ki (1 ≤ i ≤ n). Let v := (v1, v2, . . . , vn)

T ∈ Nn be the match vector.
The (empirical) median of the matches vi ∈ N (1 ≤ i ≤ n) is denoted by
median(v) and called the median match of the competing models. Formally,

median(v) :=

{
v( n+1

2 ) : odd n

v( n
2 ) : even n,

where v(1), v(2), . . . , v(n) with v(1) ≤ v(2) ≤ · · · ≤ v(n) is the ordered list of
matches vi (1 ≤ i ≤ n).

The special truncation constant, Ms, is this.

Definition 8 The special truncation constant Ms is defined as3

Ms := min

(
[2|Q|/2],median(v)

)
.

2 C is introduced to compensate for a zero value of m1.
3 The meaning of term 2|Q|/2 is clarified in the context of knowledge assessment

procedures (for details, see [Ünlü, 2004]). For any real x ≥ 0, [x] denotes the
entier of x, i.e., the integer I ∈ N ∪ {0} with I ≤ x < I + 1.
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3 Simulation example

In this section, we apply κ to data simulated in accordance with a specific
BLIM. For details (including software), refer to [Ünlü, 2004].

We consider the knowledge structure

H :=
{
∅, {a}, {b}, {a, b}, {a, b, c}, {a, b, d}, {a, b, c, d}, {a, b, c, e}, Q

}

on domain Q := {a, b, c, d, e}. We suppose that the knowledge states of H
occur in a population of reference with the probabilities

p(∅) := 0.04,

p({a}) := 0.10,

p({b}) := 0.06,

p({a, b}) := 0.12,

p({a, b, c}) := 0.11,

p({a, b, d}) := 0.07,

p({a, b, c, d}) := 0.13,

p({a, b, c, e}) := 0.18,

p(Q) := 0.19.

Let the careless error and lucky guess probabilities βq and ηq at items q ∈ Q,
respectively, be specified as

βa := 0.16, ηa := 0.04,

βb := 0.18, ηb := 0.10,

βc := 0.20, ηc := 0.01,

βd := 0.14, ηd := 0.02,

βe := 0.24, ηe := 0.05.

Based on this BLIM, we simulated a binary (of type 0/1) 1 200× 5 data
matrix representing the response patterns for 1 200 fictitious subjects. The
collection of competing models (knowledge structures) for model selection
was obtained from the multinomial response data data-analytically, based
on a modified version of the Item Tree Analysis (ITA; see [Leeuwe, 1974])
described in [Ünlü, 2004]. A modified ITA of the BLIM data resulted in a
collection of fifteen knowledge structures, which contained the true knowledge
structure H underlying the data.

From this collection, we selected an optimal model based on maximum
κ. Table 1 lists the values of κ (for M := Ms, and C := 0.01) for the fifteen
competing knowledge structures. In Table 1, models are labeled by their
respective tolerance levels 0 ≤ L ≤ 1200 of the modified ITA, and Lκ denotes
the optimal (maximum κ) solution. The true model is labeled by ”(true)”.
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L κ

0–58 −0.098487
59–62 −0.098591
63–71 −0.098672
72–77 −0.098807
78–88 −0.098880
89–95 −0.098931
96–100 −0.099029
101–150 (true) −0.099040
151–191 −0.098871

Lκ = 192–213 −0.097610

214–236 −0.098913
237–239 −0.102439
240–285 −0.108678
286–394 −0.118036
395–1 200 −0.133919

Table 1. κ (for M := Ms, and C := 0.01)

Measure κ assumed its maximum value at tolerance range Lκ = 192–213,
i.e., for the candidate knowledge structure K192–213,

K192–213 :=

{
∅, {a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, c, e}, Q

}
.

Compared to the true model K101–150 = H, this ”best” solution was
quite acceptable. In H, the subsets {b} and {a, b, d} were knowledge states,
whereas, in K192–213, they were not. In all other respects, both the models
were identical. We had |H| = 9 versus |K192–213| = 7 (K192–213 ⊂ H).
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Abstract. The feature selection allows to choose P features among M (P < M)
and thus to reduce the representation space. This process gets more and more use-
ful because of the databases size increases. Therefore we propose a method based
on preferences aggregation. It is an hybrid method that lies filter and wrapper
approaches.
Keywords: Feature selection, wrapper approach, filter approach, preferences ag-
gregation.

1 Introduction

Across a wide variety of fields, data are being collected and accumulated at
a dramatic pace. The Knowledge Discovery in Databases (KDD) process
can extract useful knowledge and patterns from the rapidly growing volumes
of data to improve the performance of various classifiers and to reduce the
running time. Feature selection is an essential step of the KDD process:
it eliminates irrelevant, noisy and redundant features, it selects the most
relevant features and it reduces the effective number of features under con-
sideration, the data mining step is then accelerated and the calculative cost
may be reduced (see [Sémani et al., 2005]).
This paper addresses feature selection for supervised learning. We propose a
new feature selection algorithm which is situated at the intersection of filter
and wrapper approaches. It uses preferences aggregation to determine an
ordered list of features subsets. The next section reviews existing feature
selection methods. The third section presents our starting point. Section
4 presents our feature selection method. Experimental evaluations are pre-
sented in section 5.

2 Existing feature selection methods

Feature selection methods are gathered in two approaches: wrapper ap-
proach, [John et al., 1994], and filter approach, [Kira and Rendell, 1992a].
Wrapper approach takes the influence of selected features subset on the per-
formances of the learning algorithm into account. The learning algorithm is
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used as an evaluation function to test different features subsets. However, its
computational cost is too important in most cases.

Filter approaches are grouped into 5 categories:
Complete methods test all possible features subsets. Their computational
cost is very high: MDLM [Sheinvald et al., 1990]...
Heuristic methods have many representatives like Relief, an iterative fea-
ture weight-based algorithm inspired by instance-based learning algorithms,
(see [Kira and Rendell, 1992b]). These methods require several accesses to
databases.
Random methods main representative is LVF, [Liu and Setiono, 1996].
Because of their probabilistic property, the number of selected features tends
towards the half of the initial features number. Like previous methods, these
methods require several accesses to databases.
Fast sequential selection method principle is an iterative feature selec-
tion with a single access to databases. In order to have a single data scan,
fast correlation measures must be used such as Kendall rank correlation co-
efficient. This kind of methods is represented by MIFS [Battiti, 1994], or the
method proposed by Lallich and Rakotomalala (see [Lallich and Rakotoma-
lala, 2000]). These methods are the fastest and quite efficient.
Step-by-step methods use short-sighted criteria to select features. This
type of methods is effective and very rapid particularly for problems with
many features and objects.
Each approach is characterized by a search procedure to generate the next
candidate subset (see [Langley, 1994]) and an evaluation criterion to evaluate
the subset under consideration. There are 4 categories of criteria which mea-
sure various feature specifications: Information measures: these measures
determine the information gain: Shannon entropy [Shannon, 1948], gain ratio
[Quinlan, 1986],...; Distance measures: they evaluate the separability of
classes: Gini coefficient [Breiman et al., 1984], Mantaras distance measure
[De Mantaras, 1991]...; Dependence measures are the whole correlation
or association measures: Tschuprow coefficient [Hart, 1984]...; Consistency
measures: These measures detect redundant features: τ of Zhou [Zhou and
Dillon, 1991].

3 Starting point

We start from the following observation: step by step methods using short-
sighted criteria are fast and have good results. However, the use of a step-
by-step method generates two problems: The choice of criterion is delicate,
which criterion is the most effective? and the form of result (a list of sorted
features) doesn’t provide us with the optimal features subset.

The method we propose solves these problems in the following way:

• There is no criterion better or more effective than others. Each criterion
emphasizes some specific feature qualities. It seems to be interesting to
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obtain a result which takes the opinion of different criteria into consid-
eration. So to obtain this type of results, we use a set of criteria and a
preferences aggregation method.
• Obtaining a sorted list of features limits the interest of feature selection :

we parameterize the aggregation method so that it doesn’t provide with
an ordering on the features but a preordering. Also, we don’t add features
one by one but features subset by features subset.

4 Presentation of our method

Our feature selection method is at the intersection of filter and wrapper
approaches which makes the features classification possible with the use of
short-sighted criteria. This method has 3 steps:

• Calculus and discretization of the different criteria for each feature (filter
approach),
• Application of a preferences aggregation method on the results obtained

at the previous stage (filter approach),
• Research of the optimal features subset (wrapper approach).

4.1 Calculus and discretization of criteria

We let users choose the short sighted criteria set. The only condition is that
there must be a representative of each criteria categories. For experiments
and tests, we choose a set of 10 short-sighted criteria: Shannon entropy,
gain ratio, normalized gain, Mantaras distance measure, Gini coefficient, chi-
squared, Tschuprow coefficient, Cramer coefficient, and τ of Zhou.

Each criterion for all features are calculated parallely. The result is a set
of 10 ordered lists (order descending) of feature relevance.

A feature can be as relevant as another one even if the two features don’t
bring the same information type. So, we introduce the concept of features
equivalence.

In order to define this concept, we consider a set of objects O = {o1, ..., on}
described by the initial features set X = {x1, ..., xi, ..., xp}, and a set of K
short-sighted criteria CR = {cr1, ..., crk, ..., crK} with crk = {crk1, ..., crkp},
the set of criterion values for each feature.

Values for each criterion are normalized with the following transformation:
crki,N = (crki −Min(crk)) \ (Max(crk) −Min(crk)) for a feature xi and a
criterion crk.

After their normalization, these values are discretized in deciles. The
discretization assigns to each feature a rank Rki for each criterion. This
rank is such that the most relevant feature has the smallest rank (For a
criterion which must be minimized: If crki,N ∈ [0; 0.1] then Rki = 1... If
crki,N ∈ [0.9; 1] then Rki = 10; For a criterion which must be maximized: If
crki,N ∈ [0; 0.1] then Rki = 10... If crki,N ∈ [0.9; 1] then Rki = 1).



308 Legrand and Nicoloyannis

Thus the equivalence concept is defined as follows: two features are equiv-
alent according to a criterion if and only if they have the same rank for this
criterion. We tested various combination of normalization and discretization
methods. The combination described here gave us the most interesting and
general results on the tested datasets. It could be interesting to modify this
combination according to data structure.

4.2 Aggregation of the results of criteria

For all aggregation methods (see [Vincke, 1982], [Tanguiane, 1991]), the set
of judges and the set of objects must be defined. In our case, the objects
correspond to features and the judges correspond to criteria.
We use the aggregation method developed in [Nicoloyannis et al., 1998] and
[Nicoloyannis et al., 1999] based on pairwise comparison concept developed
in [Marcotochino, 1984a] and [Marcotochino, 1984b]. We don’t describe in
details this method but we present its subjacent principle.

For each features pair (xi, xj), each judge (criterion) states its opin-
ion Ak(i, j). Ak, the opinion of a judge k is an application of X × X in
{Pref,NPref,EQ}. Thus,
Ak(i, j) = Pref : the judge k prefers xi to xj , Rki < Rkj
Ak(i, j) = NPref : the judge k prefers xj to xi, Rki > Rkj
Ak(i, j) = EQ: the judge k considers xj and xi as equivalent, Rki = Rkj .
The result we wish to obtain is an opinion OP called opinion of broad prefer-
ences and which generates a preordering relation on X . OP is an application
of X ×X in {Pref,NPref,EQ}.
Definition 1: The degree of agreement ρij(OP,Ak) between OP (i, j) and
Ak(i, j) is defined in Table 1.

OP/Ak Pref NPref EQ

Pref 1 0 1/2

NPref 0 1 1/2

EQ 1/2 1/2 1

Table 1. Degree of agreement

Definition 2: The degree of agreement DA(OP,Ak) is DA(OP,Ak) =∑
ρi,j(OP,Ak).
Definition 3: The degree of agreement between the opinion OP and the

opinion of all judges is DA(OP ) =
∑
DA(OP,Ak).

Their problem consists in building an opinion OP which generates a pre-
ordering on X and which maximizes DA(OP ). The corresponding optimiza-
tion problem is NP-hard, hence requires the use of a meta-heuristic. The
simulated annealing method [Kirkpatrick et al., 1983] is used for maximiza-
tion. The simulated annealing method is used because it’s a rapid and easy
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to use method by [Nicoloyannis et al., 1998]. But , they can use another
methods. The parameters are : the decay rate is set to 0.98, the halting con-
dition is a number of iterations which is set to 10× |X |. The neighbourhood
of the current solution is defined as follows: a preordering Ĺ belongs to the
neighbourhood of a preordering L = {l,, ..., lm, ..., lM} , (Ĺ ∈ V (L)), if and

only if Ĺ derives from L by the movement of only one object xi ∈ lm, lm ⊂ L
: xi is flipped into lm+1, (m < M) or into lm−1, (m = M); Or xi constitutes
a group by itself.

After the application of this aggregation method, we obtain an ordered
list of disjoint features subsets L = {l1, ..., lh, ..., lH}.

4.3 Optimal features subset

Until this step, our method belong to filter approach. From this step, our
method belong to wrapper approach. The advantage of using a wrapper
approach is to take into consideration the influence of the features subset on
the learning algorithm performances. The detection of the optimal subset
is carried out as follows: within the hth iteration, the features subset lh is
added to the optimal features subset. The optimal features subset is the one
having the smallest error rate on the learning set.

5 Experimentations

For our experiments we used 11 databases from the UCI repository (see
[Merz and Murphy, 1996]). Quantitative features are discretized with Fusin-
ter method developed in [Zighed et al., 1996]. The feature selection is carried
out on 30% of the initial set of objects keeping initial classes distribution.
The 70% remaining are used for the learning phase. For that, we use a 10-
fold-cross-validation and the learning algorithms are ID3 and Naive Bayesian.
The tests without selection are also carried out on these same 70% of stud-
ied base. After the application of our selection method, we can see some
improvements in error rate with ID3 and the Naive Bayesian (Tables 2 and
3). Our method is comparable with MIFS and ReliefF and sometimes bet-
ter. Tables 2 and 3 show the number of iteration carried out by our method.
The maximum number of iterations is about 9 (for Vehicle). The number of
learning algorithm runs in our method is then smaller than in pure wrapper
methods. For our method, the number of selected features depends on the
learning algorithm (Table 4). This number is often smaller than the number
of features selected by MIFS et ReliefF.

6 Conclusion

In this article, we present a feature selection method based on preferences
aggregation. It is a hybrid method between filter and wrapper approaches
having the advantages of each approach and reducing their disadvantages:
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Bases Our method MIFS ReliefF Without selection Number of iterations

Error (Sd) Error (Sd) Error (Sd) Error (Sd) with our method

Austra 15,29 (3,48) 17,17 (4,12) 15,31 (5,23) 16,6 (4,57) 2

Breast 4,27 (2,8) 5,9 (2,64) 5,29 (3,16) 5,95 (1,95) 3

Cleve 21,9 (8,67) 24,68 (10,27) 40,54 (7,77) 18,53 (8,68) 5

CRX 15,7 (3,1) 16,12 (6,7) 17,54 (5,88) 14,73 (5,68) 2

German 26,14 (4,87) 27,43 (5,06) 30,14 (6,01) 31,86 (7,53) 5

Heart 26,32 (11,04) 28,42 (9,76) 27,38 (9,06) 27,05 (10,29) 2

Iono 11,73 (5,59) 15,75 (8,71) 11,78 (3,94) 21,37 (8,39) 3

Iris 4,73 (4,74) 4,82 (6,58) 3,73 (4,57) 3,73 (4,57) 3

Monks-1 25,18 (7,56) 25,2 (7,71) 55,52 (3,34) 25,22 (8,3) 2

Monks-2 34,89 (6,71) 34,91 (6,7) 34,9 (8,63) 34,91 (6,79) 2

Monks-3 3,88 (2,69) 3,86 (2,86) 3,88 (3,34) 1,28 (1,28) 2

Pima 24,5 (5,15) 24,87 (4,83) 25,05 (7,69) 26,11 (5,43) 3

Tic Tac Toe 25,16 (6,31) 30,81 (7,11) 30,51 (5,9) 33,43 (5) 4

Vehicle 28,75 (5,44) 40,62 (7,39) 42,25 (6,52) 34,24 (4,96) 9

Table 2. Test with ID3

Bases Our method MIFS ReliefF Without Selection Number of iterations

Error (Sd) Error (Sd) Error (Sd) Error (Sd) with our method

Austra 15,27 (3,61) 14,28 (3,08) 15,28 (5,15) 16,6 (4,57) 3

Breast 2,65 (2,05) 2,86 (1,87) 3,45 (2,56) 5,95 (1,95) 5

Cleve 17,77 (6,14) 20,52 (11,34) 40,67 (4,33) 18,53 (8,68) 4

CRX 15,69 (3,99) 14,66 (5,7) 16,53 (2,8) 14,73 (5,68) 3

German 23,43 (4,62) 26,29 (3,63) 30,71 (4,96) 31,86 (7,53) 7

Heart 17,89 (7,14) 17,89 (10,04) 21,05 (10,53) 27,05 (10,29) 4

Iono 7,25 (5,88) 5,22 (4,4) 9,32 (6,22) 21,37 (8,39) 6

Iris 2,82 (4,31) 4,64 (6,17) 6,45 (7,14) 3,73 (4,57) 3

Monks-1 25,19 (4,68) 25,2 (7,18) 51,9 (8,2) 25,22 (8,3) 2

Monks-2 34,92 (5,11) 34,92 (6,24) 34,92 (6,65) 34,91 (6,79) 2

Monks-3 3,85 (3,67) 3,86 (2,87) 3,85 (3,85) 1,28 (1,28) 2

Pima 22,83 (5,73) 21,33 (4,3) 25,04 (3,41) 26,11 (5,43) 4

Tic Tac Toe 27,83 (3,92) 28,87 (5,42) 27,97 (4,19) 33,43 (5) 4

Vehicle 33,95 (4,18) 39,85 (8,01) 45,82 (8,78) 34,24 (4,96) 7

Table 3. Test with Naive Bayesian
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• The influence of the selected features on the learning algorithm is taken
into account. Thus, the selected features are different according to the
used algorithm.
• The computational cost is largely lower than the computational cost of

pure wrapper methods due to the use of a preordering.

We plan to improve our method according to two aspects. The discretization
method used for the criteria values must be better. Also we would like
the result of the preferences aggregation method to be the optimal features
subset.

Bases Without selection Our method with ID3 Our method with BN ReliefF MIFS

Austra 14 1 2 2 13

Breast 9 3 7 6 9

Cleve 13 7 5 6 8

CRX 15 3 5 2 7

German 20 5 9 14 3

Heart 13 2 8 2 13

Iono 34 2 26 25 8

Iris 4 3 2 4 3

Monks-1 6 1 1 2 1

Monks-2 6 1 1 2 2

Monks-3 6 2 2 2 3

Pima 8 2 5 7 4

Tic Tac Toe 9 7 7 5 3

Vehicle 18 14 12 18 6

Table 4. Number of selected features
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Abstract. Within the Semantic Web initiative, Topic Maps have enabled a com-
mon architecture for indexing applications. In this paper, we present shallow read-
ing methods aimed at semi automatic indexing through the integration of a finite
state technology in the framework of Topic Maps.
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Introduction

Anybody who has ever looked for precise information in a book knows how
valuable an index can be. Indexing is a very ancient activity: in the antique
Rome an index was a little slip attached to scrolls on which information
about the work was written in order to easily identify its content without
having to read it [Wellisch, 1991]. There are several types of indexes with
different levels of complexity in the way they are structured. Indexes can be
the mere positions of relevant words in a book (the good back of book index)
or terms structured in complex thesauri used to describe the subject matter
of documents in a library. The term ‘index’ spread over and may refer to
tree structures used to speed up retrieval of records in databases; it is very
often this accepted meaning which is used in the electronic document word1.
Conversely, traditional indexing is too often perceived as a dusty technique
because of its cost and slowness. Besides, it varies from an indexer to an-
other and therefore suffers from a reputation of subjectivity. However human
indexing is a mind production which, goes far beyond what a program in a
machine will ever able to do. Instead of running after hypothetical objectiv-
ity, it should be accepted that human indexing is a hermeneutical activity
[Mai, 2000]; it supposes an interpretation by a reader of what an author wrote
depending on both the specific cultural and social context.
The objective of this paper is to show a way to reconcile automatic and hu-
man indexing through the integration of Semantic Web technologies, robust
parsing techniques and a shallow reading method. A survey analysis appli-
cation will be used as reference example in the remaining chapters.
This paper is divided into four sections. The first section presents Topic
Maps, a Semantic Web technology used to organize information. The sec-
ond section presents shallow reading methods aimed at gathering relevant
vocabulary on particular semantic objects called isotopies. The third section
describes a finite state technology implementation allowing for automatically

1 Such an index is the list of positions in a document of each word occurring in it.
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proposing candidate occurrences of isotopies according to the context they
occur in. The fourth section deals with a real case application on survey
analysis.

Topic Maps

The Semantic Web initiative shows the growing interest in sharing infor-
mation between people which can be intelligible by computers. In this
framework, Topic Maps is the technology addressing document indexing.
Their core concepts are Topics, Associations, and Occurrences (TAO [Pep-
per, 2000]). Each of these objects can have a type; there are, hence, topic
types, association types, occurrence types, all of these types being themselves
topics. Topics represent subjects of anything one can imagine. The only con-
straint on topics is that one topic must refer to one and only one subject.
Topic refers to subject by the mean of Universal Resource Identifiers (URI).
In the survey analysis application we are interested in, the main topic types
are:
Survey, Interview, Section, Question, Comments, Score, Person, Company,
Term, Triggers, Contexts, . . .
The main association types are:
• Contains; a survey contains interviews, an interview contains sections,
a section contains questions.
• Respondent; persons are respondent of an interview.
• Interviewer; a person is the interviewer in an interview.
• Rated; a question is rated with a score,
• Belongs to; a person belongs to a company,
• Expressed; a comment is expressed about a question,
• Is indexed by; a comment is indexed by a term,
• Is triggered; a term is triggered by a trigger,
Once defined, the topic types and the association types can be used to de-
scribe surveys. Hence “Satisfaction Survey 2004” can be a topic of type
survey, “Interview IBM 1756” can be a topic of type interview and the as-
sociation “Satisfaction Survey 2004” contains “Interview IBM 1756” is an
instance of the association type contains. The mechanism that allows for
referring to real objects is called ‘occurrence.’ Similar to associations and
topics, occurrences can have type (these types being topics as well). In the
example considered here, topic occurrence types can be:
• Described by; the survey “Satisfaction Survey 2004” is described by:
“http://www.hermeneutician.com/#satisfaction%20survey%20guidelines”

• Transcript; the comment “Comment on Overall Section of Interview IBM
201756” has a transcript in:
“http://www.hermeneutician.com/Interview%20IBM%201756/#Overall”

• Value; the score “Score of Overall Section of Interview IBM 201756” has
value:
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“Satisfied”

• Email; the person “Christian Mauceri” has Email:
“mauceri@hermeneutician.com” .
The next question is why using topics to index documents? Saying they were
designed for this purpose is obviously not the right answer, but their authors
had in mind a number of common indexing issues:
• Flexibility; it is very easy to add new topics, associations and occurrences
to a Topic Map,
• Ease of use in querying and browsing; Topic Maps are well
suited to dynamically generate HTML pages allowing intuitive naviga-
tion in the map in order to rapidly find information (have a look at
http://www.ontopia.net/operamap/).
• Serialization; Topic Maps can be serialized via an XML format named
XTM,
• Standard; Topic Maps are a standard (see [ISO, 2000]),
• Collaboration; Topic Maps can quite easily be merged and exchanged.
What Topic Maps do not address is the way to define indexes and to how find
them in unrestricted text. We will focus on this in the remaining chapters.

Shallow Reading

The inherent defects of variation and slowness in human indexing can be
partially overcome by indexing a corpus rather than isolated documents.
The term corpus (see F. Rastier [Rastier, 2002]) is related to law, religion,
and linguistics; tt refers to a set of texts. In recent years, a regain of interest
for corpus linguistics has been at the origin of a number of papers. In
general, a corpus is merely seen as a set of texts or even sentences no matter
how they are related to each other.
Originally, however, this term was set up by disciplines like hermeneutic and
philology, where the relations between texts were taken into account. In
this tradition, the corpus is a structured set of texts sharing characteristics
of genre and discourse (legal discourse, medical discourse, etc.). Besides, a
corpus is built for a particular purpose, and corresponds to a need. It is this
definition of a corpus that will be used in the remaining paragraphs.
There is not isolated text, as a text respects a set of social norms shared by
other texts. From an indexing perspective, it is an important point to take
into account, because:
• It allows for a global view of text, and therefore reduces the indexing
variation by considering what texts share and what makes them different.
• It reduces semantic variation. Indeed, words and expressions tend to have
narrower meaning. Syntactic constructions are more regular and are very
often almost frozen.
However, it is very often impossible to read, in the traditional way, an entire
corpus or even a representative sample of it. (How does one read all of the



316 Mauceri

articles of the Wall Street Journal over the past 10 years or thousands of
commercial reports in a short period of time?). Nevertheless, the indexer has
an a priori knowledge of the content of the corpus that he/she is supposed to
process; its literary kind, the writing style, what the texts are talking about.
This knowledge is very important and is the basis of the reading method
proposed here.
Interpretative Semantics gives a theoretical framework of what reading is
and how indexing is connected to it. Interpretative Semantics takes its roots
in the Saussurian statement that human languages are made of oppositions.
People perceive similarities and differences between linguistic objects, A.J.
Greimas, in [Greimas, 1986] gives an example of such an opposition, ‘bet’
Vs ‘pet’, (he actually used ‘pas’ Vs ‘bas’ in French) in fact the fundamental
structure in this opposition is given by ‘b’ Vs ‘p’ or ‘voiced’ Vs ‘non-voiced’.
At the semantic level, these oppositions allow for defining semantic relations;
hence the opposition, ‘girl’ Vs ‘boy’, defines the semantic axis ‘sex’.
The minimal units of sense used to describe these structural relations within
a corpus are called semes (see for instance, [Pincemin, 1999]). Semes are not
used to describe isolated words but rather are defined as sets of words related
to them. For instance, instead of describing a priori ‘chair’ as {/furniture/,
/for sitting/,etc. . . }, /furniture/ is described by the set {‘chair’, ‘closet’,
‘table’, ‘sofa’}. Semes depend on context, are not universal truth; and are
defined by the corpus reading. Restricting semantic relations definition
at the corpus level avoids looking for an improbable universal ontology of
semes.
In Interpretative Semantics, reading is the result of an interpretation, an
operation specifying the meaning of a text. An interpretation can add
or remove semes to words, depending on the context. A.J. Greimas gives
the example of the sentence “The superintendent barks” to show how a
seme can be added by the interpretation process. In this sentence a seme
/animal/ is added to the word ‘superintendent’ because it is the subject of
the verb ‘bark’ obviously bearing the seme /animal/, giving the sentence
its pejorative interpretation. This example introduces a central concept in
Interpretative Semantic, the notion of isotopy (see for instance, [Sonesson,
2004]); an isotopy is the effect produced by a same seme recurrence in a
corpus2. An isotopy analysis produces a list of words having some contextual
semes in common.
Isotopies are useful for word sense disambiguation. For instance, let’s
consider the word ‘bugs’ in the two sentences:
• Bugs were crawling everywhere in the room.
• Bugs were found in the program.
In the first sentence there is an isotopy /animal/ between ‘bugs’ and
‘crawling’, in the second sentence there is an isotopy /computer/ between

2 On isotopy in a corpus A.J. Greimas give in [Greimas, 1986] an interesting ex-
ample of the isotopy /death/∼/life/ in Bernanos’ work
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‘bugs’ and ‘programs.’
Isotopies are given a priori and come before the semes definition; they are
expected by the reader/indexer, they ensure the corpus coherence.
As isotopies are given a priori and entail semes characterization it is much
more productive to gather the corpus vocabulary related to an isotopy rather
than to build an a priori hierarchy of semes to describe the entire corpus
vocabulary. Isotopy recognition is triggered by keywords depending on the
context they appear in. A person reading a list of words easily detects
potential triggers, so a very productive approach is to detect these triggers
in the corpus vocabulary without having to read the entire corpus, it is what
we call a shallow reading of the corpus; gathering isotopy trigger candidates
by reading the corpus vocabulary, looking at them in their contexts and
expressing rules inhibiting or refining them when they occur in particular
contexts.
But why read all the vocabulary? Indeed, as an isotopy is a seme recurrence
in the corpus it can be thought that only words occurring more than twice
are of interest; it is precisely because a seme occurring very often in the
corpus can be borne by words occurring only once it is important to look
at rare words which represent the major part of the vocabulary, in average
words occurring only once represents more than 50% of the vocabulary.
For instance, in an application aimed at detection of commercial reports
offending the European Privacy Regulation in a French bank the word
‘fingernails’ appeared only once in the context “her only project is to
paint her fingernails which is a clearly sexist statement. This example is
interesting because beyond the argument in favor of considering the scarce
words, it shows traditional lexicons cannot help in detecting such cases
heavily depending on contexts.
Once the candidates are gathered they must be allocated to the isotopies
they are supposed to trigger and checked in context in order to write rules
inhibiting or refining the triggers. A trivial example of such rules is given
by the occurrence of the trigger ‘cost’ of the isotopy ‘Pricing’ in the context:
“Mr. Redford was happy with fisher.com commitment to reach their

objectives at all cost”, obviously the indexer doesn’t want to trigger the
’Pricing’ isotopy in such a case and would like to write something like “I
don’t want the word ’cost’ to trigger the isotopy ‘Pricing’ when it is preceded
by ‘at all.”’ In summary, shallow reading consists in:
• Locating in the corpus vocabulary words triggering isotopies,
• Building a concordance of these words and their contexts in the corpus,
•Writing rules inhibiting or refining the triggers according to these contexts.
Many of these rules can be expressed by the means of regular expressions
and integrated in the Topic Maps frameworks; it is the subject of the next
chapters.
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Finite State Machines

A finite state machine consists of a set of states, a start state, a final state,
an input alphabet, and a transition function. A transition function maps an
element of the input alphabet and a current state to another state. At the
beginning of a computation the machine’s current state is the start state, and
changes of state depend on an input string and the transition function.

Fig. 1. An automaton example.

The figure above represents an automaton with state set {1, 2, 3}, an
input alphabet {a, b, c, d}, a start state 1, a finale state 3 and a function
transition mapping (1,a) to 1, (1, b) to 2, (2, c) to 1 and (2,d) to 3. This au-
tomaton recognizes the strings {“aaabcbd”, “abcbcbcbd”, “bcbd”, “bd”,

etc.}. Finite state machines can be described by regular expressions whose
principal operators are union, intersection, complementation, concatenation,
and Kleen star on the input alphabet. (See Aho, Sethi and Ullman [Alfred
V. Aho, 1986]). For instance, the automaton given in example is described
by the regular expression “a”* “b” “cb”* “d”; the Kleen star operator
means no or many occurrences of the expression it applies to, hence “a”*

means no or many occurrences of the character “a” and “cb”* no or many
occurrences of the character “c” followed by the character “b” so “a”*

“b” “cb”* “d” defines strings beginning by zero or many characters “a”

followed by the character “b” followed by zero or many substrings “cb” and
ended by the character “d”. In the same way the expression “ab” | “bc”

defines the strings “ab” or “bc” (| is the union operator). The expression
@* (“ab” | “bc”) @* defines all the strings containing the substrings “ab”

or “bc” (@ means any character). The expression ˆ (@* (“ab” | “bc”) @*)

defines the strings which do not contains the substrings “ab” or “bc” (ˆ is
the complementation operator). The expression ˆ(@* (“ab” | “bc”) @*) &

(“a” @* “b” |“b” @* “c”) defines the strings which do not contains the
substrings “ab” or “bc” starting by the character “a” and ending by the
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character “b” or starting by the character “b” and ending by the character
“c” (& is the intersection operator).
Transducers, which are finite state machines with output have been widely
used in Natural Language Processing (NLP) (see for instance [Abney, 1996],
[Grefenstette, 1996], [Hobbs, 1996] or [Roche and all, 1996]). In particular,
they have been used in shallow parsing and local grammar implementation.
A shallow parser aims to identify phrasal constituents, such as noun phrases,
and the functional role of some of the words, such as the main verb, and
its direct complements [Abney, 1996]. Local grammars are used to describe
local linguistic structures in the form of graphs (See [Silberztein, 1993],
[Masson, 1993]).
The rules discussed in the previous chapter are implemented by finite state
machines whose transitions are of two types; simple transitions and epsilon
transitions. Simple transition maps an element of the input alphabet and a
state to another state. Epsilon transitions maps the empty word (commonly
called epsilon) and a state to another state. In addition, they produce a
meta-character. These meta-characters are used to control further processing
on the recognized strings. Typically these machines are union of machines
which can be represented by regular expressions of the form:
<lpat1> 0:“(” <cpat1> 0:“)” <rpat1> . . .<lpati> 0:“(” <cpati> 0:“)”

<rpati> . . .<lpatn> 0:“(” <cpatn> 0:“)” <rpatn>

0:“command1” . . . 0:“commandi” . . . 0:“commandn”

where epsilon productions 0:“(” and 0:“)” are used to mark the beginning
and the end of the strings recognized by the surrounded regular expressions
<cpati>. The epsilon productions 0:“commandi” specify the processing on
the corresponding recognized strings. For instance the expression:
“at” <sep>+ “all” <sep>+

0:“(” “<Pricing>” 0:“)” “cost” 0:“(” “</Pricing>” 0:“)” <sep>+

0:“rep: $1” 0:“rep: $2”

recognizes the string, “at all <Pricing>cost</Pricing>” and produces the
string “at all cost”. In this expression; <sep>= “ ”|“\t”|“\n”|“\r”; It
means <sep> is a separator (a space, a tabulation, a new line, or a carriage
return), and therefore <sep>+ means one or many separators.
The command 0:“rep: $1”, means: replace the string matched by the
regular expression surrounded by 0:“(” and 0:“)” by nothing.
The machine evaluator rewrites all characters not recognized by a machine
and applies the specified processing to the recognized substrings. So these
machines are transducers; the output of a transducer can be used as input
to another one; such an operation is called a cascade. The evaluation is very
fast because they are almost deterministic: the only possible backtracks
occurring for the epsilon productions 0:“(”. Despite their simplicity they
can be used to capture many linguistic phenomena. It is important to have
in mind that other commands than ‘rep’ and ‘tag’ can be easily defined to
control their outputs and performing actions on the Topic Maps.



320 Mauceri

Let’s see how to implement the shallow reading method previously described
with this mechanism. We suppose the corpus analyzed is organized in a
Topic Map having topics of type chapter, section, sentence, or whatsoever
whose instances have textual occurrences. In the example of survey analysis
we are interested in, these topics are instance of comment type and their
occurrences are the transcripts of these comments.
Once the triggers have been collected we build a first automaton <T1>
which is the union of expressions of the form:
0:“(” “<trigger>” 0:“)” 0:“tag: $1 <isotopy>”

In these expressions <trigger> is the written form of a trigger and
<isotopy> the name of the isotopy it triggers, for instance:
0:“(” “cost” 0:“)” 0:“tag: $1 Pricing”

This first automaton is applied to the transcripts and produces new tran-
scripts adorned by XML tags corresponding to the argument labels of the
tag command. This same command adds dynamic associations of type ‘is
indexed by’ between the question topic the transcript is an occurrence of
and the corresponding isotopy topic. It also adds the position of the trigger
in the transcript as an occurrence of the triggering word. For instance, let’s
suppose the following transcript:
“Mr. Redford was happy with fisher.com commitment to reach their

objectives at all cost”

is an occurrence of the question topic ‘overall’ in the interview “Redford
Entertainments 20035,” then application of the first automaton will produce:
“<Hum>Mr. Redford</Hum> was <Euph>happy</Euph> with

<Comp>fisher.com<Comp> commitment to reach their objectives at

all <Pricing>cost</Pricing>”

and adds an association of type ‘is indexed by’ between ‘overall’ and
‘Euphoric’ just like an occurrence of ‘happy’ at the position 27 of the
transcript, provided that ‘happy’ has been declared as a trigger of the
isotopy ‘Euphoric’ in the automaton <T1>. It is now possible to access
through the Topic Maps the texts where the isotopy ‘Euphoric’ occurs, in
particular in the transcript given below.
“Mr. Charles is moderately happy with the service he received”

rewritten as
“<Hum>Mr. Charles</Hum> is moderately <Euph>happy</Euph>

with the service he received”.
The simplest way to inhibit the trigger ‘happy’ when it comes after ‘moder-
ately’ is to add the following rule to the first automaton <T1>.
<be> <sep>+ 0:“(” “moderately” <sep>+ “happy” 0:“)” <sep>+

0:“tag: $2 Dysph”.
A second automaton <T2> allows for the inhibition of certain triggers.
This automaton is made of rules like:
“at” <sep>+ “all” <sep>+ 0:“(” “<pricing>” 0:“)” “cost”

0:“(” “</pricing>” 0:“)” <sep>+ 0:“rep:” 0:“rep:”
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which recognizes the string “at all <pricing>cost</pricing>” produces
the string, “at all cost” and remove the association of type ‘is indexed
by’ between the isotopy topic ‘pricing’ and the corresponding comment.
This second automaton <T2> cascaded with the first one <T1> allows the
implementation of simple positive and negative rules, activating or inhibiting
triggers.
The contexts analysis often suggests taking into account recurring linguistics
constructions such as:
“Ms. Wilson [declares, pointed out, thinks . . . ] that . . . ”

which can be captured by expressions like:
<HumanChunk> <sep>+ <say> <sep>+ “that” 0:“(” ˆ(@* “.” @*)

0:“)” “.” 0:“mark: $1 Statement”,
where <HumanChunk> is a regular expression detecting a nominal chunk
containing the seme /Human/, <say> is a regular expression detecting a
verbal chunk containing verbs introducing a statement. Hence the mark
comment will surround the string recognized by ˆ(@* “.” @*) with the
tags <Statement> and </Statement>. Expressions like this, aimed at
detecting recurring discourse structures [Marcu, 1999], can be compiled in a
third automaton <T3> which, when cascaded with the previous automata,
allows for stressing on important contexts.

Experimentation

We have used this method to semi-automatically index the customer
satisfaction reports of a very big global company. Basically the two generic
isotopies we were interested in were:
• The pervasive issues clients were talking about; What were the topics
clients were praising or complaining about?
• The feelings of the interviewed customers; Were they happy or not? What
were they expecting?
The vocabulary of about 200 reports was read and categorized in relation to
the semes:
• /PI/ for pervasive issues (subdivided in more specific semes like /respon-
siveness/, /costing/, etc. . . ),
• /Euph/ for euphoric,
• /Dysph/ for dysphoric,
• /Exp/ for expectation,
• /H/ for human.
Around 600 words and expressions (out of 20000 words) were selected out
of the corpus. We used a <T0> automaton to mark grammatical words,
modal and auxiliary verbs. The <T1> automaton was slightly different
than the one we presented in the previous chapter because in a real case
application a same word potentially triggers multiple isotopies but overall
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the schema was the same as the one sketched in the previous chapter.
A post XSLT [W3C, 2005] processing colored in red chunks containing
dysphoric semes, in green those containing euphoric semes. Furthermore
this same post processing underscored typical expressions and colored in
blue pervasive issues and proper nouns.
The documents have then been indexed manually, focusing on the colored
and underlined parts (See B. [Pincemin, 2001]). All these results have been
combined in a web application based on XSLT applied to the XML format
of the resulting topic map (XTM). The main advantage, from a business
point of view, has been that for the first time transcripts of the interviews
have been really used by business analysts because of the easiness to access
them trough the web Topic Map interface and the pervasive issue indexing
sheds a different light on the survey results than the mere scores given by
the clients.
Gathering vocabulary and typical contexts took approximately three days
and indexing the final 200 reports took an additional day. The main problem
we faced was to translate the rules expressed by the business analyst indexer
in regular expressions; the regular expressions language being too complex
for non-knowledgeable people.

Concluding remarks

Our aim was to evaluate how the notion of isotopy is perceived by business
people and how cascades of automaton can be used by them in order to
automatically spot them. Even if the reading of a huge vocabulary is a te-
dious task, the proposed method and the isotopy notion has been quite well
accepted. However, the usage of regular expressions and cascades of automa-
ton is completely out of scope, requiring a lengthy learning phase .
The linguistic development environment Intex designed by Max Silberztein
[Silberztein, 1993] offers an example of user friendly interface for finite state
technology, it is however not designed for indexing purposes and not inte-
grated into a standard indexing framework like Topic Maps, representing
finite state machines by the mean of graphs is good and can be used for ap-
plications bound to a large public.
A very important issue not discussed in this paper deals with the global anal-
ysis of the resulting indexing. Indeed Topic Maps provides great browsing
capacity but cannot encompass the global corpus structure. A preliminary
work shows that demographic clustering [Johannes Grabmeier, 2002] tech-
niques can be integrated in the Topic Maps framework in order to check the
indexing consistency and discrimination power. This point is very important
because it extends the structural principle of opposition to the whole corpus;
what are the isotopies opposing or gathering texts in a corpus? This com-
plementary technique is the missing retroaction loop in the shallow reading
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process.
Future work will focus on graphical user interfaces (GUI) making finite state
machines easier to use in the presented framework, and integration of demo-
graphic clustering techniques in the shallow reading process.
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[Sonesson, 2004]Göran Sonesson. Isotopy. Internet Semiotics Encyclopedia, 2004.
[W3C, 2005]W3C. XSL Transformations (XSLT) Version 2.0. W3C, 2005.
[Wellisch, 1991]H. Wellisch. Indexing from A to Z. 1991.



Risk Management:

An International Regulatory Framework

Mourad Bara

IBM Business Consulting Services
Management Technologies Practice
2 av Gambetta
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Abstract. In order to limit the banks against engagements far too risky which
could, for some of them, to bring them to the bankruptcy, the Bank for Interna-
tional Settlements (BIS) proposed in 1988 the criteria on capital adequacy necessary
to cover market risks and credit risks. These recommendations constituted the reg-
ulation known as Basle I which gave rise to the Cooke ratio. The objective of this
paper is to review the bank regulatory framework and to explain how the Basle II
framework, proposed in 2003 with Mac Donough ratio, is different from the previous
one. We shall emphasize on the method of risk calculation and capital adequacy,
the supervisory process, the market discipline and communications. We shall talk
about their impacts on the banks, the product pricing, their profitability and on
the economic environment. We will conclude by giving a progress report on certain
solutions to improve the regulation. An outline on its later evolutions will also be
discussed.
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Ernst & Young (e-mail: beatriz.sanzsaiz@es.ey.com)

1 Position of the problem

The financial sector is under a complete process of transformation regarding
strategic and tactical customer management.

The main cause of this is the use of quantitative methods (data mining)
for data management. This is done in order to extrapolate behavior patterns
and to forecast possible conducts to define more effective business plans.

All of this is quite new when talking about marketing and business stra-
tegy, but it is not so if we focus on risks management, in which these methods
have been previously applied to forecast the ability of payment or default of
customers. Obviously, the existence of a regulator, like the Bank for Interna-
tional Settlements in Basel, and regulations, i.e. Basel I and II, has allowed
this development.

If we make a closer analysis, why do we think that the current application
of these techniques has been terribly underused in the business area? More-
over, why do we lately notice a significant change in trends? The following
reasons might answer the questions:

• Human factor: there used to be a way of thinking in commercial ar-
eas that business knowledge was enough to identify possible customers to
target for cards, funds, pension plans, etc. Strong investments in advertis-
ing and the idea that ‘the more customers we contact, the more successful
our campaigns will be’, is something that, until today, has been followed by
many organizations. These organizations continue to define their business
strategy as focused on a ‘product’ vision, without thinking about adapting
it to existing and potential customer segments.

Results are the best way to convince others of the previous statements.
Increases in the rates of sales obtained, thanks to the application of data
mining techniques, is the trigger of this trend change.

• Distrust in unknown techniques: when a commercial or marketing di-
rector hears about algorithms of segmentation, distances, neuronal networks,
etc., they may have two different reactions. On one hand, there is an admi-
ration for the unknown, but on the other hand, they may worry about not
being able to understand or explain WHY a customer has been proposed as
a target of a specific business action to the sales network
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The easy interpretation of results and the discovery of hidden behavior
patterns are some of the keys to present data mining as the differentiating
element when designing an advanced strategy in customer management.
• Department initiatives: the truth is that, currently, only a few companies
have a specific structure of analytic and commercial research from the or-
ganizational point of view. Up to now, several department initiatives have
been developed in order to detect ‘who are the potential purchasers of a prod-
uct?’ or ‘what customers will cancel our products in the future?’ However,
there are few companies that have redefined an advanced commercial stra-
tegy and created more proactive and dynamic commercial models based on
the systematization of the acquired knowledge to make it regularly available
for commercial networks.

• Technology as an easy creator: up to now, any project with data analysis
meant long processes of previous handling. Design and construction of ad-
vanced information data marts, with the added information of past behavior
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of customers, allows us to remarkably speed up these activities, reducing sig-
nificantly the amount of time and resources necessary to develop a predictive
model.

However, tools have been developed that significantly reduce the amount
of time to compute the mathematical algorithms needed for processing mil-
lions of records.

Next, we present the results of a survey performed over 120 Spanish com-
panies. The results are represented in a quantitative way and reflect the
current Status of Companies in Advanced Customer Management Field

Main Remarks

. . . There is a still long way to go . . .

Only 33% of the companies declare that they have a coordinated effort for
customer management.

The financial sector (banking) is the most evolved in ‘Advanced Customer
Management’. There are significant differences with other sectors, such as
assurance, which still stands out with a product/channel focus.

Currently, nearly 40% of the companies do have integrated customer in-
formation.

Not even 5% of the companies have calculated the following information
regarding their customers: attrition risk, potential value, tendency of pur-
chase, decision unit to which they belong, etc.

Only 13% of the surveyed companies declare to be applying business in-
telligence,
(data mining) as a method to define and apply strategies and specific com-
mercial actions. 95% of this 13 % belong to the banking sector.

The concept of commercial planning is mainly spread out, but the avail-
ability of management is still very limited on the companies’ side.
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Uniquely, 8% of the companies take less than a week to design and start
up a commercial campaign.

Only 34% of the surveyed companies have defined specific commercial
plans for client clusters.

61% of the companies currently do not send unique selling propositions
about a specific target to their commercial nets.

Their target selection systems are still based on products. Just the 3%
answered that they are customer focused.

Related to customer intelligence, the answers were:

In my point of view, the market conjuncture and the survey results prove
that this trend is unstoppable

Advanced customer management is turning itself into an essential element
in order to outline and receive continued growth in income.

Banking has historically been the industry that starts more impressive
transformations in the world of business than any other. It is not different
in this occasion. The banking sector is on a total revolution in reference to
its own redefinitions of the commercial strategies of approach and customer
management; and they have already been followed by other sectors such as
telecommunications, the hotel industry, utilities, etc.
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The advantages are obvious; the only requirement is an understanding of
the underlying analytical techniques, and the conviction and implication of
the whole company for change.

The first model to think about in order to define advanced customer
management is, from my point of view, a strategic customer segmentation
that allows the setting of commercial strategies attending to customer profiles
instead of the company products catalog.

It is an almost definite fact that all financial entities currently have cus-
tomer segmentation, but these are defined by traditional parameters such as
activity or type of client (individual or company). The information that is
currently known about customers allows inferring behaviors or values that
are important in defining an advanced customer management strategy. This
is the case in their income level or their potential value.

The next pages detail the methodology used to calculate the values and
the business applications underlying segmentation.

2 Practical Case: Strategic Customer Segmentation

The segmentation proposed is compounded for magnitudes such as age, rent
level, potential value, and customer connection.
These magnitudes clearly define the reasons for specialized commercial stra-
tegy.
• Age: there is no doubt that age conditions different behaviors or atti-

tudes in customers.
• Income level: the customer’s income level is, in banks, one of the main
parameters used to define a customer profile and what they are expecting to
receive from the entity.
• Customer value: understood that future expected fluxes of profitability,
incomes, etc., it fixes the investment for each type of customer.
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• Client connection: this links the customer relationship and loyalty level
with the entity.

We are now going to show in detail the methodological process to calculate
the income level and the potential value of the previous parameters.

Income Level

The procedure to calculate a customer’s income level has several steps:

a. - Direct Income Calculation:
There are a certain percentage of customers for whom the income cal-

culation is obtained directly from derived transformations of other variable
values. For example, payroll or pension, recurring incomes, etc. . . .
On average, in the Spanish Banking Sector is able to calculate income level
by this process for 40% of the population.

b. - Advance Income Estimation:
For the other 60% of the population, the income calculation is obtained by
statistical inference. They assign to each customer, whose rent is unknown,
the same rent interval of those others with which the distance in behavioral
terms is lowest.
This is calculated with the following:

b.1. - Behavioral clustering:
By vote algorithm (condorcet) or a distance-based algorithm (mainly k-
means), we are able to identify, through an iterative procedure defined in
five steps, customer segments with similar behavioral. This previous step
is essential in order to set a predictive algorithm to assign each customer a
winning probability of having a certain income level.
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b.2. - Forecasting classification

For each of the identified segments and desired levels of income forecast
(i.e. low, medium, high), a forecasting algorithm is created (i.e. Chaid,
RRNN) that will determine the probability that a customer belongs to each
of the categories.

Customer niches are identified with high probabilities of belonging to a
specific group.

b.3. - Distribution and transformation analysis

Once the probability of belonging to each level of income for each customer
is calculated, a comparison of the income distribution over the population will
be performed. This income will be calculated with direct methods, whose
final value has been forecasted by data mining.

Using classification and weighting criteria, we are finally able to assign to
each customer the ‘income band’ of major probability.
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Customer value calculation

The methodological procedure of the customer value calculation is developed
by taking into account the present positioning of each customer and the future
projections derived of the potential increase.

From a strategic point of view, the breakdown of the total customer value
into the present and potential value will allow the definition of differential
commercial strategies.

There are two variants in the potential value calculation: complete and
derived, understanding that derived is the value of the customer, also con-
sidering the possible risk of attrition.
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Each customer’s micro segment, the evolution of profitability curves,
should be evaluated in a quantitative way. They should be inferred based
on the evolution of a customer’s collective, which in the past had a similar
behavior to them in the present moment. In this sense it is necessary the use
of clustering algorithms as well as Markov streams, due to the probability
that each status is conditioned by the previous one.

Conclusions of the strategic segmentation

Strategic segmentation is, as we have seen, the starting point for the definition
of an advances customer management strategy.

We have proven with this example how data mining techniques allow for
the calculation of advanced customer information, which supports a more
specialized decision, and, therefore, more efficient business management. It
is considered as the most necessary driver to improve business efficiency and
obtaining a continuous income increase.
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Abstract. Finding interestingness measures to evaluate association rules has be-
come an important knowledge quality issue in KDD. Many interestingness measures
may be found in the literature, and many authors have discussed and compared
interestingness properties in order to help choose the best measures for a given
application. As interestingness depends both on the data structure and on the
decision-maker’s goals, some measures may be relevant in some context, but not
in others. Therefore, it is necessary to design new contextual approaches in order
to help the decision-maker to select the best interestingness measures. In this pa-
per, we present ARQAT a new tool to study the specific behavior of a set of 34
interestingness measures in the context of a specific dataset and in an exploratory
data analysis perspective. The tool implements 14 graphical and complementary
views structured on 5 levels of analysis: ruleset analysis, correlation and clustering
analysis, best rules analysis, sensitivity analysis, and comparative analysis. The
tool is described and illustrated on the mushroom dataset in order to show the
interest of both the exploratory approach and the use of complementary views.
Keywords: interestingness measure, ARQAT, exploratory analysis.

1 Introduction

In the last decade, the designing of Interestingness Measure (IM) to evaluate
association rules has become an important knowledge quality challenge in the
context of KDD. This is because association rule [Agrawal et al., 1993] is one
of the few models dedicated to unsupervised discovery of rule tendencies in
data. It is unfortunately confronted to a major difficulty: the user (a decision-
maker or a data-analyst) must cope with a large amount of extracted rules in
order to validate and select the best ones [Piatetsky-Shapiro, 1991]. One way
to reduce the cost of the user’s task is to help him/her with the measurement
of rule interestingness adapted to both his/her goals and the dataset studied.

In initial research works [Agrawal et al., 1993][Agrawal and Srikant, 1994]
on association rules, these precursors have introduced the first two statisti-
cal measures: support and confidence. These measures are well adapted to
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Apriori algorithm constraints, but are not sufficient to capture rule interest-
ingness. To improve this limit, many complementary IMs have been then
introduced in the research literature. As interestingness depends both on the
user’s goals and data characteristics, two kinds of IMs may be distinguished
[Freitas, 1999]: subjective and objective. First, subjective measures depend
on the user’s goals and his/her knowledge or beliefs, and are combined to
specific supervised algorithms in order to compare the extracted rules with
what the user knows or wants [Padmanabhan and Tuzhilin, 1998][Liu et al.,
1999]. Hence, subjective measures allow capturing rule novelty and unex-
pectedness in relation to the user’s knowledge or beliefs. Second, objective
measures are statistical indexes that only rely on data structure and more
precisely on itemset frequency. Many interesting surveys summarize their
definitions and properties (see [Bayardo and Agrawal, 1999], [Hilderman and
Hamilton, 2001],
[Tan et al., 2002], [Tan et al., 2004], [Piatetsky-Shapiro, 1991],
[Lenca et al., 2004], [Guillet, 2004]). These surveys address two joint research
issues, the definition of the set of principles or properties that lead to the de-
sign of a good IM, and their comparison from a data-analysis point of view
to study IM behavior in order to help the user to select the best ones. In
[Vaillant et al., 2003] a tool HERBS is also presented.

In this paper, we present a new approach and a dedicated tool ARQAT
(Association Rule Quality Analysis Tool) to study the specific behavior of a
set of IMs in the context of a specific dataset and in an exploratory analysis
perspective. More precisely, ARQAT is a toolbox designed to help a data-
analyst to capture the best measures and as a final purpose, the best rules
within a specific ruleset.

The paper is structured as follows. In section 2, we introduce the princi-
ples and the structure of ARQAT tool. In the three next sections, we describe
3 groups of ARQAT views: ruleset statistics, correlation analysis, and best
rules analysis. We illustrate each view on the mushroom dataset, in order to
show the interest of the exploratory approach for IM analysis.

2 Principles of ARQAT tool

ARQAT is an exploratory analysis tool that embeds 34 objective IMs studied
in surveys. We complete this list of IMs with three complementary measures:
Implication Intensity (II) introduced by Gras [Gras, 1996] [Guillaume et al.,
1998], Entropic Implication Intensity (EII) [Gras et al., 2001] [Blanchard
et al., 2003], and the informational ratio modulated by the contra-positive
(TIC)
[Blanchard et al., 2004] (See Appendix 1 for a complete list of selected mea-
sures).

ARQAT (Fig. 1) implements a set of 14 complementary and graphical
views structured in 5 task-oriented groups: ruleset analysis, correlation and



336 Huynh et al.

clustering analysis, best rules analysis, sensitivity analysis, and comparative
analysis.

Fig. 1. ARQAT structure.

For the input, ARQAT requires an association ruleset where each as-
sociation rule a ⇒ b must be associated to 4 cardinalities (n, na, nb, nab).
More precisely, n is the number of transactions, na (resp. nb) the number
of transactions satisfying the itemset a (resp. b), and nab is the number of

transactions satisfying a ∧ b (negative examples).

In a first stage, the input ruleset is preprocessed in order to compute the
IM values of each rule, and the correlations between all IM pairs. The results
are stored in two tables: an IM table (R×I) where rows are rules and columns
are IM values, and a correlation matrix (I×I) crossing IMs. At this stage, the
ruleset may also be sampled in order to focus the study on a more restricted
subset of rules.

In a second stage, the data-analyst can then drive the graphical explo-
ration of results through a classical web-browser. ARQAT is structured in 5
groups of task-oriented views. The first group (1 in Fig. 1) is dedicated to
ruleset and simple IM statistics to better understand the structure of the IM
table (R×I). The second group (2) is oriented to the study of IM correlation
in table (I×I) and IM clustering in order to select the best IMs. The third
one (3) focuses on rule ordering to select the best rules. The fourth group
(4) proposes to study the sensitivity of IMs. The last group (5) offers the
possibility to compare the results obtained from different rulesets.
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The next sections will focus on the description of the first three groups and
will illustrate it with the same ruleset: 120000 association rules extracted by
Apriori algorithm (support 10%) from mushroom dataset [Blake and Merz,
1998].

3 Ruleset statistics

This first group of ARQAT tools delivers 3 views summarizing some simple
statistics in the ruleset structure. The first one, ruleset characteristics , shows
the distributions underlying rule cardinalities, in order to detect borderline
cases.

The second view, IM distribution (Fig. 2), draws the histograms for each
IM. The distributions are also completed with minimum, maximum, average,
standard deviation, skewness and kurtosis values. In Fig. 2, one can see that
Confidence (line 5) has an irregular distribution and a great number of rules
with 100% confidence, it is very different from Causal Confirm (line 1).

The third view, joint-distribution analysis (Fig. 3), shows the scatter-
plot matrix of all IM pairs. This graphical matrix is very useful to see the
details of the relationships between IMs. For instance, Fig. 3 shows four
disagreement shapes: Rule Interest vs Yule’s Q (4), Sebag & Schoenauer vs
Yule’s Y (5), Similarity Index vs Support (6), and Yule’s Y vs Support (7)
(strongly uncorrelated). On the other hand, we can notice four agreement
shapes on Putative Causal Dependency vs Rule Interest (1), Putative Causal
Dependency vs Similarity Index (2), Rule Interest vs Similarity Index (3),
and Yule’s Q vs Yule’s Y (8) (strongly correlated).

Fig. 2. Distribution of some measures on mushroom dataset.
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Fig. 3. Scatterplot matrix of joint-distributions on mushroom dataset.

4 Correlation analysis

This second group is dedicated to IM correlation study in order to deliver
IM clustering and facilitate the choice of the subset of IMs that is the best-
adapted to describe the ruleset. The correlations between IM pairs were
computed in the preprocessing stage by using the Pearson’s correlation coef-
ficient and stored in the correlation matrix (I × I). The user has two visual
possibilities to explore the matrix. The first one is a simple summary matrix
in which each significant correlation value is visually associated to a differ-
ent color (a level of gray). For instance, the only one dark cell from Fig.
4 shows a low correlation value between Yule’s Y and Support. The other
seventy-four gray cells correspond to high correlation values.

The second one (Fig. 5) is a graph-based view of the correlation matrix.
As graphs are a good way to offer relevant graphical insights on data struc-
ture, we use the correlation matrix as the relation of an undirected and valued
graph, called correlation graph. In a correlation graph, a vertex represents an
IM and an edge value is the correlation value between 2 vertices/measures.
We also add the possibility to set a minimal threshold τ (resp. maximal
threshold θ) to retain only the edges associated to a high correlation (resp.
low correlation), that deliver a partial subgraph CG+ (resp. CG0).

These two partial subgraphs can then be processed in order to extract
clusters of measures. Each cluster is defined as a maximal connected sub-
graph. In CG+, each cluster will gather correlated or anti-correlated mea-
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Fig. 4. Summary matrix of correlation on mushroom dataset.

sures that may be interpreted similarly: they deliver a close point of view
on data. Moreover, in CG0 each cluster will contain uncorrelated measures:
measures that deliver a different point of view.

Hence, as each graph depends on a specific ruleset, the user will use the
graphs as data insight, which will graphically help him/her to select the
minimal set of the measures best adapted to his/her data. For instance in
Fig. 5, CG+ graph contains 11 clusters on 34 measures, the user can select in
each cluster the most representative measure, and then retain it to validate
the rules.

A close watch on the CG0 graph (Fig. 5) shows an uncorrelated cluster
formed by Support and Yule’s Y measures (also the dark cell in Fig. 4).
This observation is confirmed on Fig. 3 (7). CG+ graph shows a trivial
cluster where Yule’s Q and Yule’s Y are strongly correlated. This is also
confirmed on Fig. 3 (8) showing a functional dependency between the two
measures. These two examples show the interest to use the scatterplot matrix
complementarily (Fig. 3) with the correlation graphs CG0, CG+ (Fig. 5) in
order to evaluate the nature of the correlation links, and overcome the limits
of the correlation coefficient.

5 Best rule analysis

In order to help a user to select the best rules, we have implemented two
specific views. The first view (Fig. 6) collects a set of given number of best
rules for each measure in one cluster, in order to answer the question ”How
interesting are the rules of this cluster?”
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Fig. 5. CG0 and CG+ graphs on mushroom dataset (clusters are highlighted with
a gray background).

The selected rules can alternatively be visualized with parallel coordinates
drawing (Fig. 7). The main interest of such a drawing is to rapidly see the
IM rankings of the rules, and then to facilitate their interpretation.

These two views can be used with IM values of a rule or alternatively with
the rank of the value. For instance, Fig. 6 and Fig. 7 use the rank to evaluate
the union of the ten best rules for each of the nine IMs in the C1 cluster (see
Fig. 5). The Y-axis in Fig. 7 holds the rule rank for the corresponding mea-
sure. By observing the concentration lines on low rank values, we can obtain
3 measures: Confidence(5), Decsriptive Confirmed-Confidence(10), and Ex-
ample & Contra-Example(13) (on points 1, 2, 3 respectively) that are good
for a majority of best rules. This can also be retrieved from columns 5, 10,
13 of Fig. 6.

Fig. 6. Union of the ten best rules of the first cluster on mushroom dataset (ex-
tract).
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Fig. 7. Plot of the union of the ten best rules of the first cluster on mushroom
dataset.

6 Conclusion

We have designed and described some features of a new tool, ARQAT, im-
plementing an exploratory data-analysis approach for IM behavior analysis
on a specific dataset.

Technically, ARQAT is written in Java and embeds a set of 14 graphical
tools. For exchange facilities, three common file formats are used for im-
porting/exporting the rulesets: PMML (XML data-mining standard), CSV
(Excel and SAS) and ARFF (used by WEKA). ARQAT will be freely avail-
able at www.polytech.univ-nantes.fr/arqat.

In this paper, we have shown the interest of such an exploratory approach,
where the intensive use of graphical and complementary visualizations im-
proves and facilitates data insight for the user.

ARQAT is a first step toward a larger analysis platform in the domain
of knowledge quality research. Our future research will investigate the two
following directions. First, we will improve the correlation analysis by intro-
ducing a better measure than Pearson coefficient whose limits are stressed in
the literature. Second, we will also improve the IM clustering analysis with
IM aggregation techniques to facilitate the user’s decision making from the
best IMs.
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la qualité des règles et de leurs contraposés avec le taux informationnel tic.
In Revue des Nouvelles Technologies de l’Information (RNTI), pages 287–298,
2004.

[Freitas, 1999]A.A. Freitas. On rule interestingness measures. In Knowledge-Based
Systems, pages 309–315, 1999.

[Gras et al., 2001]R. Gras, P. Kuntz, R. Couturier, and F. Guillet. Une version en-
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Appendix 1: IM formulas
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Abstract. We propose to use kernel methods and visualization tool for mining
interval data. When large datasets are aggregated into smaller data sizes we need
more complex data tables e.g interval type instead of standard ones. Our investiga-
tion aims at extending kernel methods to interval data analysis and using graphical
tools to explain the obtained results. The user deeply understands the models’ be-
haviour towards data. The numerical test results are obtained on real and artificial
datasets.
Keywords: Kernel methods, Support vector machines, Visualization, Interval
data, Data mining, Visual data mining.

1 Introduction

In recent years, real-world databases have increased rapidly, so that the need
to extract knowledge from very large databases is increasing. Data mining
can be defined as the particular pattern recognition task in the knowledge
discovery in databases process. It uses different algorithms for classification,
regression, clustering or association. The SVM algorithms proposed by [Vap-
nik, 1995] are a well-known class of algorithms using the idea of kernel sub-
stitution. They have shown practical relevance for classification, regression
and novelty detection tasks. The successful applications of SVM and other
kernel-based methods [Cristianini and Shawe-Taylor, 2000], [Shawe-Taylor
and Cristianini, 2004] have been reported for various fields.

While SVM and kernel-based methods are a powerful paradigm, they are
not favourable to deal with the challenge of large datasets. The learning task
is accomplished through the quadratic program possessing a global solution.
Therefore, the computational cost of an kernel approach is at least square
of the number of training data points and the memory requirement makes
them intractable. We propose to scale up their training tasks based on the
interval data concept [Bock and Diday, 1999]. We summarize the massive
datasets into the interval data. We adapt the kernel algorithms to deal with
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this data. We construct a new RBF kernel of interval data used for classifi-
cation, regression and novelty detection tasks. The numerical test results are
obtained on real and artificial datasets.

Although SVM gives good results, the interpretation of these results is
not so easy. The support vectors found by the algorithms provide limited
information. Most of the time, the user only obtains information regarding
support vectors and accuracy. He can not explain or understand why a
model constructed by SVM makes a good prediction. Understanding the
model obtained by the algorithm is as important as the accuracy because
the user has a good comprehension of the knowledge discovered and more
confidence in this knowledge. Our investigation aims at using visualization
methods to try to explain the SVM results. We use interactive graphical
decision tree algorithms and visualization techniques to give an insight into
classification, regression and novelty detection tasks with SVM. We illustrate
how to combine some strengths of different visualization methods to help the
user to improve the comprehensibility of SVM results.

This paper is organized as follows. In section 2, we present a new Gaus-
sian kernel construction to deal with interval data. In section 3, we briefly
introduce classification, regression and novelty detection of interval data with
SVM algorithms and other kernel-based methods. Section 4 presents a way
to explain SVM results by using interactive decision tree algorithms. We
propose to use an approach based on different visualization methods to try
to interpret SVM results in section 5 before the conclusion and future works
in section 6.

2 Non linear kernel function for interval data

Assume we have two data points x and y ∈ Rn. Here, we are interested
in RBF kernel function because it is general and efficient. The RBF kernel
formula in (1) of two data vectors x and y of continuous type is based on the
Euclidean distance between these vectors, dE(x, y) =‖ x− y ‖.

K〈x, y〉 = exp (−‖ x− y ‖
2

γ
) (1)

For dealing with interval data, we only need to measure the distance between
two vectors of interval type, then we substitute this distance measure for the
Euclidean distance into RBF kernel formula. Thus the new RBF kernel can
deal with interval data. The dissimilarity measure between two data vectors
of interval type is the Hausdorff distance.
Suppose that we have two intervals represented by low and high values: I1 =
[low1, high1] and I2 = [low2, high2], the Hausdorff distance between two
intervals I1 and I2 is defined by (2):

dH(I1, I2) = max (|low1 − low2|, |high1 − high2|) (2)



Interval Data Mining with Kernel Methods and Visualization 347

Let us consider two data vectors u, v ∈ Ω having n dimensions of interval
type:

u = ([u1,low, u1,high], [u2,low, u2,high],. . ., [un,low, un,high])
v = ([v1,low, v1,high], [v2,low, v2,high],. . ., [vn,low, vn,high])

The Hausdorff distance between two vectors u and v is defined by (3):

dH(u, v) =

√√√√
n∑

i=1

max (|ui,low − vi,low |2, |ui,high − vi,high|2) (3)

By substituting the Hausdorff distance measure dH into RBF kernel formula,
we obtain a new RBF kernel for dealing with interval data. This modifica-
tion tremendously changes kernel algorithms for mining interval data. No
algorithmic changes are required from the habitual case of continuous data
other than the modification of the RBF kernel evaluation. All the benefits
of the original kernel methods are kept. The kernel-based learning algo-
rithms like Support Vector Machines (SVM [Vapnik, 1995]), Kernel Fisher’s
Discriminant Analysis (KFDA [Mika et al., 1999]), Kernel Principal Compo-
nent Analysis (KPCA [Schölkopf et al., 1998]), Kernel Partial Least Squares
(KPLS [Rosipal and Trejo, 2001]) can use the RBF function to build interval
data models in classification, regression and novelty detection.

3 Interval data analysis with kernel methods

3.1 Support vector machines

min (1/2)

m∑

i=1

m∑

j=1

yiyjαiαjK〈xi, xj〉 −
m∑

i=1

αi

s.t.

m∑

i=1

yiαi = 0 (4)

C ≥ αi ≥ 0

where C is a positive constant used to tune the margin and the error.

Let us consider a binary linear classification task with m data points in a n-
dimensional input x1, x2, . . . , xm having corresponding labels yi = ±1. SVM
classification algorithm aims to find the best separating surface as being
furthest from both classes. It is simultaneously to maximize the margin
between the support planes for each class and minimize the error. This can
be accomplished through the quadratic program (4).

From the αi obtained by the solution of (4), we can recover the separating
surface and the scalar b determined by the support vectors (for which αi > 0).
By changing the kernel function K as a linear inner product, a polynomial,
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a radial basis function or a sigmoid neural network, we can get different
classification model. The classification of a new data point x is based on:

sign(

]SV∑

i=1

yiαiK〈x, xi〉 − b)

For one-class (novelty detection), the SVM algorithm is to find a hyper-
sphere with a minimal radius R and center c which contains most of the data.
And then novel test points lie outside the boundary of the hypersphere.

SVM can also be applied to regression problem by the introduction of an
alternative loss function. By using an ε-insensitive loss function proposed by
Vapnik, Support vector regression (SVR) aims to find a predictive function
f(x) that has at most ε deviation from the actual value yi.

These tasks can be also accomplished through the quadratic program.
[Bennett and Campbell, 2000] and [Cristianini and Shawe-Taylor, 2000] pro-
vide more details about SVM and others kernel-based learning methods.

We have added a new construction kernel code to the publicly available
toolkit, LibSVM (ref. http://www.csie.ntu.edu.tw/∼cjlin/libsvm). Thus,
the software program is able to deal with interval data in classification, re-
gression and novelty detection tasks. To apply the SVM algorithms to the
multi-class classification problem (more than 2 classes), LibSVM uses one-
against-one strategy. Assume that we have k classes, LibSVM construct
k*(k-1)/2 models. A model separates ith class against jth class. Then to
predict the class for a new data point, LibSVM just predicts with each
model and finds out which one separates the furthest into the positive re-
gion. We have used datasets from Statlog, the UCI Machine Learning Reposi-
tory (ref. http://www.ics.uci.edu/∼mlearn/MLRepository.html), Regression
Datasets (ref. http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html)
and Delve (ref. http://www.cs.toronto.edu/∼delve). By using K-means al-
gorithm [MacQueen, 1967], the large datasets are aggregated into smaller
ones. A data point in interval datasets corresponds to a cluster, the low and
high values of an interval are computed by the cluster data points. Some
other methods for creating interval data can be found in [Bock and Diday,
1999]. The interval version of datasets is shown in table 1 and 2. We report
the cross validation accuracy on classification results and mean squared error
on regression results presented in table 1.

The results on novelty detection task are presented in table 2 with the
number of outliers and significant outliers (furthest from other data points in
the dataset). To the best of our knowledge, there is no other available algo-
rithm being able to deal with interval data in both non linear classification,
regression and novelty detection tasks. There is not experimental results on
interval data mining provided by the others algorithms. Therefore, we only
report results obtained by our approach. It is difficult to compare with the
others ones.
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Datasets Points Dims Protocol Accuracy Mean squared error

Wave(3 classes) 30 21 leave-1-out 80.00% 0.462389

Iris(3 classes) 30 4 leave-1-out 100.00% 0.078389

Wine(3 classes) 36 13 leave-1-out 97.22% 0.075182

Pima(2 classes) 77 8 leave-1-out 79.22% 0.212736

Segment(7 classes) 319 19 10-fold 91.22% 1.696050

Shuttle(7 classes) 594 9 10-fold 94.78% 1.096640

Table 1. SVM classification and regression results

Datasets Points Dims Nb. oulliers Significant outliers

Shuttle 594 9 31 9

Bank8FM 450 8 12 6

Table 2. One-class SVM results

3.2 Other kernel-based methods

Many multivariate statics algorithms based on generalized eigenproblems
can be also kernelized [Shawe-Taylor and Cristianini, 2004], e.g Kernel
Fisher’s Discriminant Analysis (KFDA), Kernel Principal Component Anal-
ysis (KPCA), Kernel Partial Least Squares (KPLS), etc. These kernel-based
methods can also use the RBF function to build interval data models. We use
KPCA and KFDA to visualize datasets in the embedding space where the
user can intuitively see the separating boundary between the classes based
on the human pattern recognition capabilities. The eigenvectors of the data

Fig. 1. Visualization of Kernel Principal Component Analysis (left) and Kernel
Fisher’s Discriminant Analysis (right) on the Segment dataset.

can be used to detect directions of maximum variance, and thus, linear PCA
is to project data onto principal components by solving a eigenproblem. By
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using a kernel function instead of the linear inner product in the formula,
we obtain non linear PCA (KPCA). An example of the visualization of the
Segment interval dataset (the class 7 against all) with KPCA using the RBF
kernel function is shown in figure 1 (left).

In linear FDA, we consider projecting all the multi-dimensional data onto
a generic direction w, and then separately observing the mean and the vari-
ance of the projections of the two classes. By substituting the kernel function
for a linear inner product into the linear FDA formula, we have non lin-
ear FDA (KFDA). An example of the visualization of the Segment interval
dataset (the class 7 against all) with KFDA using the RBF kernel function
is shown in figure 1 (right).

And thus, the separating boundary between two classes is clearly repre-
sented in the embedding space.

4 Inductive rules extraction for explaining SVM
results

Although SVM algorithms have shown to build accurate models, their results
are very difficult to understand. Most of the time, the user only obtains in-
formation regarding the support vectors being used as ”black box” to classify
the data with a good accuracy. The user does not know how SVM models
can work. For many data mining applications, understanding the model ob-
tained by the algorithm is as important as the accuracy.
We propose here to use interactive decision tree algorithms [Poulet, 2003]
to try to explain the SVM results. The SVM performance in classification
task is deeply understood in the way of IF-THEN rules extracted intuitively
from the graphical representation of the decision trees that can be easily
interpreted by humans.

Figure 2 is an example of the inductive rule extraction explaining support
vector classification results on the Segment interval dataset. The SVM algo-
rithm using the RBF kernel function classifies the class 7 (considered as +1
class) against all other classes (considered as -1 class) with 100.00 % accuracy.
CIAD uses 2D scatter plot matrices [Carr et al., 1987] for visualizing interval
data [Poulet, 2003]: the data points are displayed in all possible pair-wise
combinations of dimensions in 2D scatter plot matrices. For n-dimensional
data, this method visualizes n(n-1)/2 matrices. A data point in two inter-
val dimensions is represented by a two dimensions primitive cross and color
corresponds to the class. The user interactively chooses the best separating
split (parallel to an axis) to interactively construct the decision tree (based
on the human pattern recognition capabilities) or with the help of automatic
algorithms. The obtained decision tree having 4 leaves (corresponding to 4
rules) can explain the SVM model. One rule is created for each path from
the root to a leaf, each dimension value along a path forms a conjunction and
the leaf node holds the class prediction. And thus, the non linear SVM is
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Input: non label dataset SP et a SVM classification function f
Output: inductive rule set IND-RULE explaining the SVM model

1. Classify non label dataset SP using SVM classification function f, we obtain
label set L assigned to SP :

{SP, L} = SVM classify(SP, f )

2. Interactively constructing decision tree model DT on dataset {SP, L} using
visual data mining decision tree algorithms, e.g CIAD [Poulet, 2003].

3. User extracts inductive rules IND-RULE from graphical representation of de-
cision tree model DT :

IND-RULE = HumanExtract(graphical DT )

Table 3. Inductive rules extraction from SVM models

interpreted in the way of the 4 inductive rules (IF-THEN) that will be easy
to understand.

Fig. 2. Visualization of the decision tree explaining the SVM result on the Segment
dataset.
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5 Visualization tool for explaining SVM results

We have studied some ways to try to explain SVM results by using the
graphical representation of high dimensional data. The information visual-
ization methods guide the user towards the most appropriate visualizations
for viewing mining results (post-processing step). There are many possibil-
ities to visualize data by using different visualization methods, but all of
them have some strengths and some weaknesses. We use the linking tech-
nique to combine different visualization methods to overcome the single one.
The same information is displayed in different views with different visual-
ization techniques providing useful information to the user. The interactive
brushing technique allows the user to focus on a region (brush) in the data
displayed to highlight groups of data points. And thus, the linked multiple
views provide more information than the single one. We use the interactive
brushing and linking techniques and the different visualization methods to
try to explain SVM results. For classification tasks with SVM algorithms,

Fig. 3. Visualization of the classification result on the Segment dataset.

understanding the margin (furthest distance between +1 class and -1 class)
is one of the most important key of the support vector classification. For
this, it is necessary to see the points near the separating boundary between
the two classes.

For achieving this goal, we propose to use the data distribution accord-
ing to the distance to the separating surface. While the classification task is
processed (based on the support vectors), we also compute the data distri-
bution according to the distance to the separating surface. For each class,
the positive distribution is the set of correctly classified data points and the
negative distribution is the set of misclassified data points. The data points
being near the frontier correspond to the bar charts near the origin. When
the bar charts corresponding to the points near the frontier are selected, the
data points are also selected in the other views (visualization methods) by



Interval Data Mining with Kernel Methods and Visualization 353

using the brushing and linking technique. We use 2D scatter plot matrices
for visualizing interval data. The user can see approximately the boundary
between classes and the margin width. This helps the user to evaluate the ro-
bustness of the model obtained by support vector classification. He can also
know the interesting dimensions (corresponding to the projections providing
a clear boundary between the two classes) in the obtained model. Figure 3 is
an example of visualizing support vector classification results on the Segment
interval dataset (the class 7 against all). From data distribution according
to the distance to the separating surface, the 4 bar charts near the origin are
brushed, and then the corresponding points are linked and displayed in 2D
scatter plot matrices. The dimensions 2 and 16 corresponding to the projec-
tion provides a clear boundary between the two classes and are interesting in
the model obtained.

We have extended this idea for visualizing support vector regression re-
sults. We have also computed the data distribution according to the distance
to the regression function. After that, we combine the histogram with 2D
scatter plot matrices for visualization. When the user selects the data points
far from the regression function, he can know how the function fits data. If
the function well predicts the data points of high density region then the
model obtained is interesting.

For a novelty detection task, we visualize the outliers allowing the user to
valid them. The approach is based on the interactive linking and brushing
of the histogram and 2D scatter plot views. The histogram displays the data
distribution according to the distance to the hypersphere obtained by one
class SVM. The data points far from the hypersphere are brushed in the
histogram view, thus they are automatically selected in 2D scatter plot view.
The user can validate the outliers. And then, the dimensions corresponding to
the projection presents clearly the outliers and are interesting in the obtained
model.

6 Conclusion

We have presented in this paper the interval data mining approach using
kernel-based and visualization methods.

We have proposed to construct a new RBF kernel on interval data. This
modification tremendously changes kernel-based algorithms. No algorithmic
changes are required from the usual case of continuous data other than the
modification of the RBF kernel evaluation. Thus, kernel-based algorithms
can deal with interval data in classification, regression and novelty detection.
It is extremely rare algorithms being able to construct non linear models on
interval data for the three problems: classification, regression and novelty
detection.

We have also proposed two ways to try to explain SVM results that are
a well-known ”black box”. The first one is to use interactive decision tree
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algorithms for explaining the SVM results. The user can interpret the SVM
performance in the way of IF-THEN rules extracted intuitively from the
graphical representation of the decision trees that can be easily interpreted
by the user. The second one is based on a set of different visualization
techniques combined with linking and brushing techniques gives an insight
into classification, regression and novelty detection tasks with SVM. The
graphical representation shows the interesting dimensions in the obtained
model.

A forthcoming improvement will be to extend our approach to data of
taxonomic or mixture types.
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Abstract. Internal correspondence analysis (ICA) deals with frequency tables hav-
ing a double partition structure on the columns and rows, offering their representa-
tion on principal axes which reflects the inner structure of the subtables as defined
by the two partitions. We enrich this global representation by the superimposed
representation of the rows (respectively, the columns) as described separately by
every group of columns (respectively, by every group of rows). The new aids to
interpretation that we propose, give information about the common and specific
structures in the subtables.
Keywords: Correspondence analysis, Internal correspondence analysis, Multiple
factor analysis, Common dispersion directions, Multicanonical analysis.

1 Introduction

Some applications lead to build up contingency tables having a double par-
tition on the columns and rows. This characteristic induces objectives such
as giving an account of the global structure of the table that takes into
account its specificity as well as comparing all the partial row structures (re-
spectively, partial column structures) induced on the rows by each group of
columns (respectively, each group of rows). Concerning the first objective,
internal correspondence analysis (ICA) [Cazes et al., 1988] offers an inter-
esting approach. However, ICA does not provide any result relative to the
partial structures. In this work, in the framework of ICA, we propose several
tools in order to compare them, favoring their simultaneous visualization.
§2 introduces the notation. After reminding the basic principles of ICA

(§3), we propose a methodology to compare the global and partial points of
wiew in §4. The §5 shows the interest of these tools as applied to an example.
Finally, we conclude with some remarks.
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2 Notation

We consider a table F of proportions (the overall sum amounts to 1) divided
into L× J sub-tables (Fig. 1). The I rows are partitioned in L groups with,
respectively, I1, I2, . . . , IL rows. The K columns are structured in J groups
with, respectively, K1,K2, . . . ,KJ columns. The subtable (l, j) has Il rows
and Kj columns.
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Fig. 1. The global table F of proportions, as partitioned into rows and columns
groups
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3 Internal correspondence analysis (ICA)

3.1 Correspondence analysis with respect to a model

The classical CA refers to the independence model, as given by the products
of the margins. Other models can be considered. The CA of F with respect to
any model A having the same margins than F [Escofier, 1984], is equivalent

to PCA(X,M,D), X being the matrix with the general term xljik =
f lj

ik−a
lj
ik

f l·
i·f

·j
·k

,

using the metric M = diag(f ·j
·k) and the weights D = diag(f l·i· ) in the row

space (respectively, the metric D = diag(f l·i· ) and the weights M = diag(f ·j
·k)

in the column space).

3.2 Within and double within-tables correspondence analysis

A particular case arises when analyzing the row-wise juxtaposition of J tables
(respectively, the column-wise juxtaposition of L tables). The within-tables
CA [Benzécri, 1983], [Escofier and Drouet, 1983], [Escofier and Pagès, 1998,
p.229], takes as model the within-table independence in order to globally
study the deviations of every columns subcloud to their own centroid. For
example, if we only take into account the partition on the columns of F and
consider this table as the row-wise juxtaposition of J tables, the general term

of the within-table independence model is aljik =
f lj

i· f
·j
·k

f ·j
··

. This model has the

same margins as table F.
In order to take into account both partitions on the rows and columns,

[Cazes et al., 1988] propose the internal correspondence analysis (ICA) that
considers the model whose general term is given in (1):

aljik =
f lj·kf

l·
i·

f l···
+
f lji· f

·j
·k

f ·j
··
− f l·i·f

·j
·k

f l··· f
·j
·· /f

lj
··

(1)

This model has the same margins as table F. ICA can be seen as a double
within correspondence analysis. The matrix X analysed in the PCA(X,M,D)
corresponding to ICA inherits the double partition structure of F.

4 Comparison of the partial and global structures

ICA offers a representation of the global structure, of the rows and columns,
on principal planes in a CA-like way. This global representation can be en-
riched by looking for representing the rows (resp., the columns) as described
separately by every group of columns (resp., every group of rows). For that
goal, we adopt a MFA-like point of view [Escofier and Pagès, 1994] by look-
ing for a simultaneous visualization of the partial structures (of rows or of
columns) on the principal planes corresponding to the global analysis. We
enrich this simultaneous representation with a series of aids to interpretation.
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4.1 Superimposed representation of the partial and global rows
on a common referential

To each column-band matrix j of X (as defined in ICA applied to F), we
associate the cloud N j

I of the rows as described by only the columns of this
matrix. As this cloud lies in the subspace RKj of RK , we assimilate it to the
cloud of the rows of the matrix X̃j , having the same dimension as X and
derived from Xj in the following way:

X̃j = 0 0 Xj 0

The coordinates of the partial rows, belonging to the cloud N j
I , on the

s-axis issued from the global analysis, are F̃js = X̃jMus. To every row (l, i),
we associate the NJ

(l,i) cloud of its J partial points. In order to obtain a
superimposed representation in such a way that the global point corresponds
to the centroid of the subcloud NJ

(l,i), the coordinates F̃ js (l, i) are amplified
by J and then projected on the global representation.

4.2 Aids to interpretation of superimposed representation of the
partial and global rows

Quality of representation of the partial clouds: the quality of representation
of every cloud N j

I on the s-axis is measured, in a classical way, through the
ratio between the projected inertia and the total inertia.

Measure of the similarity between the partial clouds: the union of the
whole of the NJ

(l,i) clouds (i.e. the cloud of all the partial row-points noted

NJ
I ) contains I × J partial points. These I × J partial points can be di-

vided into I subclouds, with J points (l, i)j in every subcloud, corresponding
to the same row (l, i). So, the total inertia of NJ

I can be decomposed into
within-inertia (inertia within the NJ

(l,i) subclouds) and between-inertia (iner-

tia between the NJ
(l,i) subclouds). The ratio [between-inertia/total-inertia],

calculated axis by axis, measures the proximity of the partial points corre-
sponding to a same row and so, the global similarity between the J partial
clouds as projected on this axis. If this ratio is close to 1, the homologous
points (l, i)j are close to one another and the s-axis represents a structure
common to the different groups of columns.

Selection of rows and of partial rows with a high contribution to the within-
inertia: the within-inertia can be decomposed into the contributions of every
row, in order to detect those whose behavior varies from the different points
of view represented by the groups of columns. So, the more heterogeneous
(respectively, more homogeneous) rows on every axis can be identified in
order to interpret the global ratios.
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4.3 Superimposed representation of the partial and global
columns

The superimposed representation of the partial and global columns clouds
and its interpretation aids are obtained in a symmetric way.

5 Application

To illustrate the superimposed representation and their interpretation aids,
we utilize the example Ardèche [Cazes et al., 1988], a faunal table cross-
ing species (43 rows) and dates×sites (35 columns, corresponding to 35
dates×sites samplings). This data set is available in [Cazes et al., 1988].
The 43 species are distributed in 4 taxonomic groups (Ephemeroptera, Ple-
coptera, Coleoptera, Trichoptera) which induce the partition on the rows (4
groups). 6 sites (A, B, C, D, E, F ) are observed at 6 dates (jul82, aug82,
nov82, feb83, apr83, jul83 ) chosen in different seasons, but the observation
of the site F at date 1 is missing. We consider the partition on the columns
induced by the different dates (6 groups).

Global representation through ICA

By recentering the subclouds corresponding to a same date, ICA solves the
problem of eliminating the time-associated faunal structures and allows for
interpreting the spatial typology and for assessing the ability of the taxonomic
groups to be used as biological descriptors.

Figure 2 shows the dates×sites on the first principal plane issued from
ICA. As [Cazes et al., 1988] note, ICA puts to the fore the originality of
the site B, mainly contrasting with A and D. Site D presents a very specific
faunal composition in winter (D-feb83 and D-apr83 ). Mainly F, but also E
present outstanding differences between winter (at the left of the first axis:
F-feb83, E-feb83 , F-apr83, and E-apr83 ) and summer (at the right of the
first axis: F-aug82 and F-jul83 ). Finally, the rise of the water in November
standardizes the faunal distribution and, therefore, the subcloud Nov82×sites
is close to the centroid.

Concerning the species, the inertia on the first axis is mainly due to the
great dispersion of the trichopterans: in this group, the species with sheath
are attracted by the sites presenting sand or stones with vegetation, while
the free trichopterans prefer hard substratum soil (see Fig. 3). Coleoptera
dispersion strongly contributes to the inertia of the second axis, contrasting
the species depending on their preference for strong current or not.

[Cazes et al., 1988] conclude that there is a summer typology, mainly
defined by Coleoptera and a winter typology, due to Trichoptera and corre-
sponding to the originality of site D and the standardization of the fauna in
November.

Comparison of the partial structures
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Fig. 2. The column-points on the first principal plane issued from ICA

However, the specific structure of the table, leads to other kinds of ques-
tions. For example, D-feb83 and D-apr83 lie in close positions from a global
point of view (from the whole of the taxonomic groups), but are they also
close from the point of view of every taxonomic group? In the same way, it
is interesting to know, for example, if the species Nemoura spp. and Eleuc-
tra fusca, very different from a global point of view (from the whole of the
sites×dates) are alike at some date. The superimposed representations of the
global and partial row-points (respectively of the global and partial column-
points) will contribute to answer these questions.

5.1 Superimposed representation of the species

The global similarity between the six clouds of species, as induced by every
date (partial row clouds) and as projected on the first and second axes, is
measured by the ratio [between-inertia/total-inertia]. This ratio is equal to
31.9% and 38.8%, respectively. These relatively low values indicate that it
exists a notable difference between the inter-species distances from one date
to the other.
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Fig. 3. The species on the first principal plane issued from ICA

In order to identify the species whose behavior varies more depending on
the date, and to interpret these specific behaviors, we look for those which
present the largest within-inertia on the first axes. Then, we search the partial
point(s) responsible of the high dispersion of the concerned species, that are
not in accordance to the other homologous partial points. For example,
the species Nemoura spp. presents the second highest within-inertia on the
first axis (equal to 10.4% of the total within-inertia on this axis, as summed
up on all the rows). Furthermore, the partial point Nemoura spp.-feb83
brings 75.9% of the within-inertia due to this species on the first axis. So,
the position of this taxon (Fig. 4) suggests that it is a good indicator in
February and in April, but not in summer: in fact, this species was almost
never observed in summer (discarding one case). Moreover, discarding two
cases, this taxon is the only plecopteran observed in February, which explains
the more characteristic position of this partial point.

Regarding Leuctra fusca the most homogeneous of plecopteran (1.4% of
the total within-inertia of the first axis), its partial points are globally close
to the origin, except feb83 (65.0% of within-inertia of this specie on first
axis). In fact, this species was frequently observed, except in November and
February. As not any other plecopteran was observed in November, Leuctra
fusca is characteristic (by its absence) only in February. These examples
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show how the position of every partial point is issued from the corresponding
subtable (l, j).
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Fig. 4. Superimposed representation of two species belonging to Plecoptera on the
first principal plane issued from ICA

5.2 Superimposed representation of the columns

The ratios [between-inertia/total-inertia] corresponding to the column clouds
(the clouds of dates×sites as induced by each taxonomic group) as projected
on the first and second axes are equal to 49.5% and 50.1%, respectively.

Figure 5 presents an excerpt of the superimposed representation, on the
first principal plane, of the two dates×sites presenting the highest within-
inertia on the first axis (see Table 1): D-apr83 and D-feb83 (i.e. the same
site at different dates) and also of the dates×sites C-jul82 and D-jul82 to
illustrate the case of different sites at the same date. Table 1 completes this
representation with some information about dates×sites.

We can note that D-apr83 and D-feb83 are very similar as described
globally (i.e. from all the taxonomic groups) but also as described by any
taxonomic group: the partial points corresponding to the different taxonomic
groups are close in every case. According to the graph, these two couple (date,
site) are mainly characterized by Trichoptera. The two trichopterans having a
high positive coordinate along axis 1 are Caraclea dissimilis and Oecetis spp.
(Fig. 3). In fact, in February and April, these two taxa were observed quite
only on the site D. From another point of view, the usual correspondence
analysis applied only to the subtable (Trichoptera, Feb83 ) or the subtable
(Trichoptera, Apr83 ) provides a first plane clearly showing the association
between the site D and these two taxa. Concerning the sites C and D at
July 82, we can see that, they have quite similar profiles in Plecoptera but
different in Coleoptera.
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Fig. 5. Excerpt of the superimposed representation of the partial column points on
the first principal plane issued from ICA

Table 1. Some interpretation aids of columns represented in Fig. 5

Within Inertia Coordinates Contribution Weight
Column x100000 x1000 % %

Axis-1 Axis-2 Axis-1 Axis-2 Axis-1 Axis-2

D-apr83 309 55 720 227 28.6 30.8 3.8
D-feb83 268 88 619 190 23.7 24.2 4.2
C-jul82 19 117 -160 179 10.0 13.5 2.7
D-jul82 27 171 140 234 9.9 30.1 3.5

6 Conclusion

The comparison of the partial rows and columns structures enriches the re-
sults from ICA. This comparison induces a representation of the row-profiles
(respectively, the column-profiles) not only from the global but also the par-
tial points of view as induced by each group of columns (respectively, rows).
In the case of the Ardèche example, the superimposed representation of the
partial columns allows for better visualizing the taxonomic groups which are
responsible of the differences observed among the sites according to the date.

Software note

The calculations are performed with ADE4 [Thioulouse et al., 2004], in R
environment [R Development Core Team, 2004].
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IRISA
Campus Universitaire de Beaulieu
35042 Rennes Cedex, France
(e-mail: berti@irisa.fr)

Abstract. Quality in data mining critically depends on the preparation and on
the quality of processed data sets. Indeed data mining processes and applications
require various forms of data preparation (and repair) with several data format-
ting and cleaning techniques, because the data input to the mining algorithms is
assumed to conform to nice data distributions, containing no missing, inconsistent
or incorrect values. This leaves a large gap between the available dirty data and
the available machinery to process and analyze the data for discovering knowledge.
This paper presents a theoretical probabilistic framework for modeling the cost of
low-quality data on discovered association rules.
Keywords: Data Quality, Quality of Discovered Association Rules, Minimal Cost
Statistical Model.

1 Introduction

In an error-free database or datawarehouse system with perfectly clean data,
knowledge discovery techniques (such as clustering, mining association rules
or visualization) can be relevantly used from a decisional perspective to au-
tomatically derive new knowledge, new concepts, or knowledge patterns from
numerical data. Unfortunately, most of the time, these data are neither rigor-
ously chosen from different heterogeneous sources nor carefully controled for
quality. Under the general acronym ETL, the Extraction-Transformation-
Loading activities cover the most prominent tasks of data preparation be-
fore the warehousing and mining processes. They include [Vassiliadis et al.,
2003]: i) the identification of relevant information at the source side, ii) the
extraction of this information, iii) the transformation and integration of the
information coming from multiple sources into a common format and, iv)
the cleaning and correction of the integrated data set. Data preparation and
cleaning processes are complex, costly and critical despite the specialized
ETL tools mainly dedicated to relational data available in the market [ETI,
2005], [MS, 2005], [DataMirror, 2005], [ArdentSoftware, 2005]. And the area
raised lot of interest with research results [Dasu and Johnson, 2003], [Rahm
and Do, 2000], [Winkler, 2003], [Vassiliadis et al., 2003] and several academic
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tools (Telcordia [Caruso et al., 2000], AJAX [Galhardas et al., 2001], Pot-
ter’s Wheel [Raman and Hellerstein, 2001], Arktos [Vassiliadis et al., 2000],
IntelliClean [Low et al., 2001], Tailor [Elfeky et al., 2002]).

In the presence of inconsistencies, errors or missing values in the data,
it is nevertheless important to estimate the risk of discovering low-quality
knowledge by mining low-quality data.

In this paper, our contribution is to present a probabilistic decision model
that estimates the cost of discovering low-quality association rules by mining
potentially polluted data.

The rest of the paper is organized as follows. Section 2 briefly provides
some background information on association rules, data quality and other
decision models mainly used in record linkage and data cleaning. Section
3 introduces our decision model and the notation that is used throughout
this paper. Section 4 provides concluding remarks and guidelines for future
extensions of this work.

2 Background

Among traditional descriptive data mining techniques, association rules dis-
covery identifies intra-transaction patterns in a database and describes how
much the presence of a set of attributes in a database’s record (or transaction)
implicates the presence of other distinct set of attributes in the same record
(resp. transaction). The quality of association rules is commonly evaluated
by looking at their support and confidence. The support of a rule measures
the occurence frequency of the pattern in the rule while the confidence is the
measure of the strength of implication. Association rule mining is commonly
stated as follows: let I = {i1, . . . , in} be a set of items and T be a set of data
cases. Each data case consists of a subset of items in I. An association rule
is an implication of the form LHS −→ RHS, where LHS ⊂ I, RHS ⊂ I,
and LHS ∩RHS = ∅.

The support s of the rule LHS −→ RHS is measured by the fraction of
transactions that contain both LHS and RHS. More formally,

s =
number of transactions containing LHS ∪RHS

number of transactions
(1)

The confidence c of the rule LHS −→ RHS states that c% of transactions
that contain LHS also contain RHS and it’s the conditional probability of
seeing RHS, given that we have seen LHS. More formally,

c =
number of transactions containing LHS ∪RHS

number of transactions containing LHS
(2)

The problem of mining association rules is to generate all association rules
that have support and confidence greater than the user-specified minimum
support and confidence thresholds. Besides support and confidence, many
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other measures for knowledge evaluation have been proposed in the literature
with the purpose of supplying subsidies to the user in the understanding
and use of the acquired knowledge [Tan et al., 2002], [Lavrac et al., 1999].
Rules may have intrinsic properties (noise tolerance, asymetry, dataset size or
dimensionality sensitivity, etc.) or collective properties when considering a set
of rules (redundancy, transitivity, consistency, etc.). But, the main drawback
of the objective and subjective interestingness measures is to neglect the
initial quality of processed data. Data quality is a multidimensional, complex
and morphing concept [Dasu and Johnson, 2003]. Table 1 presents some of
the dimensions of data quality among more than 200 dimensions that have
been proposed in the literature [Wang et al., 1995], [Huang et al., 1999],
[Redman, 1996].

Dimension Definition

Availability Time the data is accessible based on technical equipment and statistics

Freshness How up-to-date the information is

Accessibility Estimation of waiting time for information retrieval processing

Security Estimation of the number of corrupted data

Coverage Estimation of the number of data for a specific information domain

Accuracy Estimation of the number of data free-of-error

Completeness Estimation of the number of missing data or null values

Credibility User grade based on the reputation of data sources

Table 1. Some Data Quality Dimensions proposed by [Naumann, 2002]

As an illustrative example, one might legitimately wonder whether a so-
called “interesting” rule LHS −→ RHS is meaningful when 30% of the data
describing the items of LHS are not up-to-date, 17% of RHS’s data are
not accurate, 14% of LHS’s data come from sources that have bad credi-
bility. In this paper, we consider that identifying interesting rules should
also take into account the quality of underlying data used by the rule min-
ing process: despite high interestingness measures, there are interesting rules
discovered from dirty data, others from clean data, but they don’t have the
same added-value. This can be seen as a classification problem where the
goal is to correctly assign cases (measurements, observations, etc.) to one
of a finite number of classes. Most of the currently available algorithms for
classification are designed to minimize error rate, i.e., the number of incor-
rect predictions made. This implicity assumes that all errors are equally
costly. In our context, there are many different types of cost involved on the
selection of discovered rules. For instance, discovering interesting rules from
inaccurate data may not have the same cost (or impact) than discovering
rules from out-of-date data. In this study, we consider only the cost of mis-
classification error which is related to assigning different weights to different
misclassification errors. Misclassification costs may be generally described by
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an arbitrary cost matrix C, with elements of the form cij , meaning the cost
of predicting that an example belongs to the class i when in fact it belongs
to j. The Bayesian decision approach is based on the assumption that the
decision problem is posed in probabilistic terms, and that all the relevant
probability values are known. In this paper, we propose a constant error
cost Bayesian model which means that the cost of a certain type of error
may be constant. In some cases, we are uncertain about the actual costs.
To account for this uncertainty, we can use a probability distribution over a
range of possible costs. To keep the presentation simple, we do not consider
probability distributions over costs in this study. Our work is correlated to
several works in data cleaning and Table 2 presents several decision models
proposed in the literature mainly for record linkage. Our model is similar to
the one proposed by Verykios et al. [Verykios et al., 2003] as it minimizes the
cost of making a decision rather than the probability of error in a decision of
record matching. Our contribution is to adapt this model for association rule
mining and for minimizing the cost of the rule selection in presence of low-
quality data and of a misclassification region that can occur when erroneous
data can be classified correct because they’re in the range of correct values
and correct data can be classified erroneous because they’re in the range of
erroneous values or outliers.

Model (Tool) Authors Type of Model

Error-based Model [Fellegi and Sunter, 1969] Probabilistic

EM-based Method [Dempster et al., 1977] Probabilistic

Bayesian Cost-based Model [Verykios et al., 2003] Probabilistic

Induction [Bilenko and Mooney, 2003] Probabilistic

Clustering for Record Linkage (Tailor) [Elfeky et al., 2002] Probabilistic

1-1 matching [Winkler, 2004] Probabilistic

Bridging File [Winkler, 2003] Probabilistic

sorted-NN method [Hernandez and Stolfo, 1995] Empirical

XML Object Matching [Weis and Naumann, 2004] Empirical

Hierarchical Structure (Delphi) [Ananthakrishna et al., 2002] Empirical

Matching Prediction based on clues [Buechi et al., 2003] Knowledge-based

Functional Dependencies Inference [Lim et al., 1993] Knowledge-based

Transformation functions (Active Atlas) [Tejadaa et al., 2001] Knowledge-based

Rules and sorted-NN (Intelliclean) [Low et al., 2001] Knowledge-based

Table 2. Decision Models for Record Linkage and Duplicate Identification

3 Cost-based Probabilistic Model

Let j (j = 1, 2, . . . , k) be the dimensions of data quality (e.g., data freshness,
credibility, accuracy, completeness, etc.). Let xij ∈ [minij,maxij ] be a scor-
ing value for the quality dimension j. The vector, that keeps the values of all
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quality dimensions for each data item (normalized in [0, 1], is called quality
vector q. The set of all possible vectors, is called quality space Q. Despite
good confidence, support or other interestingness measures, selecting an as-
sociation rule is a decision that designates the rule as legitimately interesting
(noted D1), potentially interesting (D2), or not interesting (D3) based on the
information contained in the quality vectors of the data item sets composing
the LHS and RHS parts of the rule.

3.1 Definition and Notations

Consider the item x ∈ LHS ∪ RHS of a given rule, we use PCE(x) to de-
note the probability that the item x will be classified as “erroneous” (or
“polluted”) wrt to one or more quality dimensions relevant to the applica-
tion, and PCC(x) denotes the probability that the item x will be classified as
“correct” (i.e., in the range of acceptable values for each pre-selected qual-
ity dimensions). Also, PAE(x) represents the probability that the item x is
actually erroneous (AE), and PAC(x) represents the probability that it is ac-
tually correct (AC). Intuitively, the item x can be an attribute whose quality
dimensions are measured and aggregated from all the existing values of the
attribute domain.

For an arbitrary average quality vector q̄ ∈ Q on all data items in LHS∪
RHS of the rule, we denote by P (q̄ ∈ Q|CC) or fCC(q̄) the conditional
probability of the pattern q̄ that corresponds to the average of quality vectors
of the items that are classified as correct (CC). Similarly, we denote by P (q̄ ∈
Q|CE) or fCE(q̄) the conditional probability of the pattern q̄ corresponds to
the average of quality vectors of the items that are classified erroneous (CE).
We denote by d the decision of the predicted class of the rule (i.e., legitimately
interesting D1, potentially interesting D2, or not interesting D3), and by s
the actual status of quality of the item sets upon which the rule has been
computed. Let us also denote by P (d = Di, s = j) and P (d = Di|s = j)
correspondingly, the joint and the conditional probability that the decision
Di is taken, when the actual status of data quality (CC, CE, AE, AC) is j.
We also denote by cij the cost of making a decision Di for classifying a rule
with actual data quality status j of the items sets composing the parts of the
rule.

3.2 Cost-based Bayesian Decision Model

Based on the example in Table 3 where we can see how the cost of different
decisions could affect the result of selection among interesting rules, we need
to minimize the mean cost c̄ that results from making such a decision.
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Cost Decision for Rule Selection Actual Data Quality Status

c10 D1 CC

c11 D1 CE

c12 D1 AE

c13 D1 AC

c20 D2 CC

c21 D2 CE

c22 D2 AE

c23 D2 AC

c30 D3 CC

c31 D3 CE

c32 D3 AE

c33 D3 AC

Table 3. Costs of various decisions for classifying interesting rules

The mean cost is written as follows:

c̄ = c10.P (d = D1, s = CC) + c20.P (d = D2, s = CC) + c30.P (d = D3, s = CC)

(3)

+ c11.P (d = D1, s = CE) + c21.P (d = D2, s = CE) + c31.P (d = D3, s = CE)
(4)

+ c12.P (d = D1, s = AE) + c22.P (d = D2, s = AE) + c32.P (d = D3, s = AE)
(5)

+ c13.P (d = D1, s = AC) + c23.P (d = D2, s = AC) + c33.P (d = D3, s = AC)
(6)

From the Bayes theorem, the following is true:

P (d = Di, s = j) = P (d = Di|s = j).P (s = j) (7)

where i = 1, 2, 3 and j = CC,CE,AE,AC. Let us also assume that q̄ is the
average quality vector drawn randomly from the space of all quality vectors
of items sets of the rule. The following equality holds for the conditional
probability P (d = Di|s = j):

P (d = Di|s = j) =
∑

q̄∈Di

fj(q̄) (8)

where i = 1, 2, 3 and j = CC,CE,AE,AC. fj is the probability density of
the quality vectors when the actual quality status is j. We also denote the
a priori probability of CC or else P (s = CC) as π0, the a priori probability
of P (s = AC) = π0

AC , the a priori probability of P (s = AE) = π0
AE and

the a priori probability of P (s = CE) = 1 − π0 + π0
AE − π0

AC . Without
misclassification region P (s = CE) could be simplified as 1− π0.
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The mean cost c̄ in Eq. 3 based on Eq. 7 is written as follows:

c̄ = c10.P (d = D1|s = CC).P (s = CC)
(9)

+ c20.P (d = D2|s = CC).P (s = CC) + c30.P (d = D3|s = CC).P (s = CC)
(10)

+ c11.P (d = D1|s = CE).P (s = CE)
(11)

+ c21.P (d = D2|s = CE).P (s = CE) + c31.P (d = D3|s = CE).P (s = CE)
(12)

+ c12.P (d = D1|s = AE).P (s = AE)
(13)

+ c22.P (d = D2|s = AE).P (s = AE) + c32.P (d = D3|s = AE).P (s = AE)
(14)

+ c13.P (d = D1|s = AC).P (s = AC)
(15)

+ c23.P (d = D2|s = AC).P (s = AC) + c33.P (d = D3|s = AC).P (s = AC)
(16)

(17)

and by using Eq. 8 and by dropping the dependent vector variable q̄, Eq. 9
becomes:

c̄ =
∑

q̄∈D1

[fCC .c10.π
0 + fCE.c11.(1− π0 − π0

AC + π0
AE) (18)

+ fAE .c12.π
0
AE + fAC .c13.π

0
AC ] (19)

+
∑

q̄∈D2

[fCC .c20.π
0 + fCE.c21.(1− π0 − π0

AC + π0
AE) (20)

+ fAE .c22.π
0
AE + fAC .c23.π

0
AC ] (21)

+
∑

q̄∈D3

[fCC .c30.π
0 + fCE.c31.(1− π0 − π0

AC + π0
AE) (22)

+ fAE .c32.π
0
AE + fAC .c33.π

0
AC ] (23)

(24)

Every point q̄ in the decision space D, belongs either in partition D1, or in
D2 or D3 in such a way that its contribution to the mean cost is minimum.
This will lead to the optimal selection for the three sets of rules which we
denote by D0

1 , D
0
2, and D0

3. Based on this observation, a point q̄ is assigned
to the three optimal areas as follows:
To D0

1 if:
fCC .c10.π

0 + fCE.c11.(1 − π0 − π0
AC + π0

AE) + fAE .c12.π
0
AE + fAC .c13.π

0
AC

≤ fCC .c30.π0 + fCE.c31.(1− π0 − π0
AC + π0

AE) + fAE .c32.π
0
AE + fAC .c33.π

0
AC

and,



372 Berti-Équille

fCC .c10.π
0 + fCE.c11.(1 − π0 − π0

AC + π0
AE) + fAE .c12.π

0
AE + fAC .c13.π

0
AC

≤ fCC .c20.π0 + fCE .c21.(1− π0− π0
AC + π0

AE)+ fAE .c22.π
0
AE + fAC .c23.π

0
AC .

To D0
2 if:

fCC .c20.π
0 + fCE.c21.(1 − π0 − π0

AC + π0
AE) + fAE .c22.π

0
AE + fAC .c23.π

0
AC

≤ fCC .c30.π0 + fCE.c31.(1− π0 − π0
AC + π0

AE) + fAE .c32.π
0
AE + fAC .c33.π

0
AC

and,
fCC .c20.π

0 + fCE.c21.(1 − π0 − π0
AC + π0

AE) + fAE .c22.π
0
AE + fAC .c23.π

0
AC

≤ fCC .c10.π0 + fCE .c11.(1− π0− π0
AC + π0

AE)+ fAE .c11.π
0
AE + fAC .c13.π

0
AC .

To D0
3 if:

fCC .c30.π
0 + fCE.c31.(1 − π0 − π0

AC + π0
AE) + fAE .c32.π

0
AE + fAC .c33.π

0
AC

≤ fCC .c10.π0 + fCE.c11.(1− π0 − π0
AC + π0

AE) + fAE .c12.π
0
AE + fAC .c13.π

0
AC

and,
fCC .c30.π

0 + fCE.c31.(1 − π0 − π0
AC + π0

AE) + fAE .c32.π
0
AE + fAC .c33.π

0
AC

≤ fCC .c20.π0 + fCE .c21.(1− π0− π0
AC + π0

AE)+ fAE .c22.π
0
AE + fAC .c23.π

0
AC .

For the sake of simplicity, let’s now consider the case of the absence of the
misclassification region (i.e., fAC , fAE are null and π0

AE = π0
AC = 0, we thus

can simplify the inequalities above:

D0
1 =

{
q̄ :

fCE
fCC

≤ π0

1− π0
.
c30 − c10
c11 − c31

and,
fCE
fCC

≤ π0

1− π0
.
c20 − c10
c11 − c21

}
(25)

D0
2 =

{
q̄ :

fCE
fCC

≥ π0

1− π0
.
c20 − c10
c11 − c21

and,
fCE
fCC

≤ π0

1− π0
.
c30 − c20
c21 − c31

}
(26)

D0
3 =

{
q̄ :

fCE
fCC

≥ π0

1− π0
.
c30 − c10
c11 − c31

and,
fCE
fCC

≥ π0

1− π0
.
c30 − c20
c21 − c31

}
(27)

These inequalities give rise to three different threshold values L, P and N
(respectively for legitimately, potentially and not interesting rules) in the de-
cision space that define concretely the decision regions based on the cost of
rule selection decision such as:

L =
π0

1− π0
.
c30 − c10
c11 − c31

(28)

P =
π0

1− π0
.
c20 − c10
c11 − c21

(29)

N =
π0

1− π0
.
c30 − c10
c11 − c31

(30)
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3.3 Minimal and Maximal Quality of Association Rules for
Correctly Classified Data

For categorical quality dimensions, errors or pollutions (non-quality) in the
data sets (e.g., in LHS and RHS parts of the rules) might be measured using
contingency table approach where the item subsets with actual and estimated
quality for a selected sample of items. It is then possible to calculate the
proportion of data items that are correctly classified and estimated the quality
of the entire set based on inferential statistics. Another more sophisticated
approach can utilizes a random-stratified sampling method in which the same
number of samples is chosen from each item subsets. This has the advantage
that minor item subsets are not under-represented in the sample, which makes
it possible to calculate the average quality of individual item sets.

We present now a model in which the quality of a given rule r, PCC [Q̄r] is
defined as the probability of data items in the left and right-hand sides data
sets of the rule that are correctly classified. Given two data sets with average
qualities of PCC [Q̄LHS ] and PCC [Q̄RHS ], the quality of the rule PCC [Q̄r], is
given by:

PCC [Q̄r] = PCC [Q̄LHS ].PCC [Q̄RHS |Q̄LHS ] (31)

The conditional probability PCC [Q̄RHS |Q̄LHS ] is the probability of correctly
classified data items in LHS that are also correclty classified in RHS. The
equation can be expanded for situations involving more than two item sets
composing the rule.

From the preceding equations, the maximum and minimum quality of a
given association rule can be determined based on the average quality of the
several item sets Ii composing the rule.
Maximum quality is given by:

PCC [Q̄maxr ] = min
{
P [Q̄Ii ]} with i = 1, 2, . . . , n (32)

Minimum quality is given by:

PCC [Q̄minr ] = max
{
0,
(
1−

n∑

i=1

PCE [Q̄Ii ]
)}

(33)

where PCE [Q̄Ii ] is the average quality probability of the items in the data
set Ii that are classified erroneous. These formulae lead to several general
conclusions about composite rule quality. Composite rule quality will at
the best be equal to the quality of the least quality data set. At worst
composite rule quality will be equal to one minus the sum of the probability
of misclassified items on each data set (or to zero if this value is negative).

4 Conclusion

This paper presents a prospective work on a theoretical probabilistic frame-
work for estimating the cost of low-quality data on discovered association
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rules. Our future plans regarding this work, are to study the optimality of
our decision model, to propose error estimation and to validate the model
with experiments on large data sets and discovered rules with several multi-
dimensional quality metrics.
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Abstract. One important topic in unsupervised classification is the objective as-
sessment of the validity of the clusters found by a clustering algorithm. The deter-
mination of the ”best” number of ”natural” clusters has often been presented as
the central problem of cluster validation. In this paper we investigate the problem
of the determination of the number of clusters for symbolic objects described by
interval, multi-valued and modal variables. We consider five classical methods for
the determination of the number of clusters and two hypothesis tests based on the
Poisson point process, and we show how these methods can be extended to symbolic
data. We present applications of these symbolic methods to real data sets.
Keywords: Validation, Number of clusters, Poisson process, Symbolic data.

1 Introduction

The aim of cluster analysis is to identify a structure within a data set. When
hierarchical algorithms are used, an important problem is then to choose one
solution in the nested sequence of partitions of the hierarchy. On the other
hand, optimization methods for cluster analysis usually require the a priori
specification of the number of classes. So most clustering procedures demand
the user to fix the number of clusters, or to determine it in the final solution.

Some studies have been proposed to compare procedures for the determi-
nation of the number of clusters. For example, Milligan and Cooper [Milligan
and Cooper, 1985] conducted a Monte Carlo evaluation of thirty indices for
determining the number of clusters. [Hardy, 1996] compared three meth-
ods based on the Hypervolumes clustering criterion with four other methods
available in the Clustan software. [Gordon, 1996] modified the five stopping
rules whose performance was best in the Milligan and Cooper study in order
to detect when several different, widely-separated values of c, the number
of clusters, would be appropriate, that is, when a structure is detectable at
several different scales.

In this paper we consider two hypothesis tests for the number of clusters
based on the Hypervolumes clustering criterion: the Hypervolumes test and
the Gap test. These statistical methods are based on the assumption that
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the points we observe are generated by a homogeneous Poisson process [Karr,
1991] in k disjoint convex sets. We consider also the five best stopping rules
for the number of clusters analysed by [Milligan and Cooper, 1985]. We
show how these methods can be extended in order to be applied to symbolic
objects described by interval, multi-valued and modal variables [Bock and
Diday, 2000].

2 The clustering problem

The clustering problem we are interested in is the following.
E = {x1, x2, ..., xn} is a set of objects. On each of the n objects we measure
the value of p variables Y1, Y2, ..., Yp. The objective is to find a ”natural”
partition P = {C1, C2, ..., Ck} of the set E into k clusters.

3 Statistical models based on the Poisson process

3.1 The Hypervolumes clustering method

The Hypervolumes clustering method [Hardy and Rasson, 1982] assumes that
the n p-dimensional observation points x1, x2, ..., xn are generated by a
homogeneous Poisson process in a set D included in the Euclidean space
Rp. The set D is supposed to be the union of k disjoint convex domains
D1, D2, ..., Dk. We denote by Ci ⊂ {x1, x2, .., xn} the subset of the
points belonging to Di (1 ≤ i ≤ k). The Hypervolumes clustering criterion
is deduced from that statistical model, using maximum likelihood estimation.
It is defined by

W (P, k) :=

k∑

i = 1

m(H(Ci))

where H(Ci) is the convex hull of the points belonging to Ci and m(H(Ci)) is
the multidimensional Lebesgue measure of that convex hull. That clustering
criterion has to be minimised over the set of all the partitions of the observed
sample into k clusters.

3.2 The generalised Hypervolumes clustering method

The generalised Hypervolumes clustering method [Rasson and Granville,
1996] assumes that the n p-dimensional points x1, x2, ..., xn are gener-
ated by a nonhomogeneous Poisson process in a set D. D is the union of
k disjoint convex domains D1, D2, ..., Dk. The generalised Hypervolumes
clustering criterion is deduced from that statistical model, using maximum
likelihood estimation. It is defined by
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W (P, k) :=

k∑

i = 1

∫

H(Ci)

q(x)m(dx)

where q(x) is the intensity of the nonhomogeneous Poisson process.

4 Statistical tests for the number of clusters based on
the Poisson point process

4.1 The Hypervolumes test

The statistical model based on the Poisson process allows us to define a
likelihood ratio test for the number of clusters [Hardy, 1996]. Let us denote
by C = {C1, C2, ..., C`} the optimal partition of the sample into ` clusters
and B = {B1, B2, ..., B`−1} the optimal partition into `− 1 clusters. We test
the hypothesis H0: t = ` against the alternative HA: t = ` − 1, where t
represents the number of ”natural” clusters (` ≥ 2). The test statistics is
defined by

S(x) :=
W (P, `)

W (P, `− 1)
.

Unfortunately the sampling distribution of the statistics S is not known.
But S(x) belongs to [0, 1[. Consequently, for practical purposes, we can use
the following decision rule: reject H0 if S is close to 1. We apply the test in
a sequential way: if `0 is the smallest value of ` ≥ 2 for which we reject H0,
we choose `0 − 1 as the best number of ”natural” clusters.

4.2 The Gap test

The Gap test [Kubushishi, 1996] [Rasson and Kubushishi, 1994] is based on
the same statistical model (homogeneous Poisson process). We test H0 :
the n = n1 + n2 observed points are a realisation of a Poisson process in D
against HA: n1 points are a realisation of a homogeneous Poisson process in
D1 and n2 points in D2 where D1∩D2 = ∅. The sets D,D1, D2 are unknown.
Let us denote by C (respectively C1 , C2) the set of points belonging to D
(respectively D1, D2). The test statistics is given by

Q(x) =

(
1− m(4)

m(H(C))

)n

where 4 = H(C)\ (H(C1)∪H(C2)) is the ”gap space” between the clusters.
The test statistics is the Lebesgue measure of the gap space between the
clusters.

The decision rule is the following [Kubushishi, 1996]. We reject H0, at
level α, if (asymptotic distribution)
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nm(4)

m(H(C))
− logn− (p− 1) log logn ≥ − log(− log(1− α)).

5 Other methods for the determination of the number
of clusters

We consider the best methods from the [Milligan and Cooper, 1985] study:
the Calinski and Harabasz index [Calinski and Harabasz, 1974], the Duda
and Hart rule [Duda and Hart, 1973], the C index [Hubert and Levin, 1976],
the γ index [Baker and Hubert, 1975] and the Beale test [Beale, 1969]. The
Calinski and Harabasz, Duda and Hart, and Beale indices use various forms
of sum of squares within and between clusters. The Duda and Hart rule and
the Beale test are statistical hypothesis tests on the number of clusters.

6 Symbolic data analysis

Symbolic data analysis [Bock and Diday, 2000] is concerned with the ex-
tension of classical data analysis and statistical methods to complex data
called symbolic data. We will consider sets of objects described by interval,
multi-valued and modal variables.

6.1 Interval, multi-valued and modal variables

This paper is based on the following definitions [Bock and Diday, 2000].
A variable Y is termed set-valued with the domain Y, if for all xk ∈ E,

Y : E → B
xk 7−→ Y (xk)

where B = P(Y) = {U 6= ∅ | U ⊆ Y}.
A set-valued variable is called multi-valued if its values Y (xk) are all finite

subsets of the underlying domain Y; so |Y (xk)| <∞, for all elements xk ∈ E.
A set-valued variable Y is called categorical multi-valued if it has a

finite range Y of categories and quantitative multi-valued if the values
Y (xk) are finite sets of real numbers.

A modal variable Y on a set E = {x1, ..., xn} with domain Y is a mapping

Y (xk) = (U(xk), πk), for all xk ∈ E

where πk is, for example, a frequency distribution on the domain Y of possible
observation values and U(xk) ⊆ Y is the support of πk in the domain Y.

Y is an interval variable if for all xk ∈ E,

Y : E → B : xk 7→ Y (xk) = [αk, βk] ⊂ R
where B is the set of all closed bounded interval of R.
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7 Symbolic clustering procedures

In order to generate partitions, we consider several symbolic clustering meth-
ods. SHICLUST [Hardy, 2004] is a module containing the symbolic extensions
of four well-known hierarchical clustering methods: the single link, complete
link, centroid and Ward methods. SCLUST [Verde et al., 2000] is a partition-
ing clustering method; it is a symbolic extension of the well-known Dynamic
clouds clustering method [Celeux et al., 1989]. DIV [Chavent, 1997] is a sym-
bolic hierarchic monothetic divisive clustering procedure based on the exten-
sion of the within class sum-of-squares criterion. SCLASS [Pirçon, 2004] is
a symbolic hierarchic monothetic divisive method based on the generalised
Hypervolumes clustering criterion. The first part of HIPYR [Brito, 2000] is
also a module including four hierarchical symbolic clustering methods.

8 Determination of the number of clusters

8.1 Methods based on a dissimilarity matrix

In order to apply the five best methods for the determination of the number
of clusters from the Milligan and Cooper [Milligan and Cooper, 1985] study,
it is necessary to define a dissimilarity matrix for symbolic objects described
by interval, multi-valued and modal variables.

Let us consider the case of n objects described by p interval variables

Yj : E → Bj : xi 7→ Yj(xi) = xij = [αij , βij ].

We first define p dissimilarity indices δ1, ..., δp on the sets Bj . Let
xuj = [αuj , βuj ] and xvj = [αvj , βvj ]. We consider three distances for in-
terval variables

The Haussdorff distance:

δj (xuj , xvj) = max{ | αuj − αvj |, | βuj − βvj | }
The L1 distance:

δj (xuj , xvj) = | αuj − αvj |+ | βuj − βvj |
The L2 distance:

δj (xuj , xvj) = (αuj − αvj)2 + (βuj − βvj)2.

We combine the p dissimilarity indices δ1, ..., δp in order to obtain a global
dissimilarity measure on E.

d : E × E −→ R+ : (xu, xv) 7−→ d(xu, xv) =

( p∑

j=1

δ2j (xuj , xvj)

)1/2

.
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For multi-valued and modal variables, we define suitable L1 and L2 dis-
tances and we use also the de Carvalho distance [Hardy, 2004].

Concerning the four hierarchical procedures included in SHICLUST, the
five indices for the determination of the number of clusters are computed
at each level of the hierarchies. For SCLUST, we select the best partition
into ` clusters, for each value of ` (` = 1, · · · ,K) (K is a reasonably large
integer fixed by the user) and we compute the indices available for nonhierar-
chical classification. The analysis of theses indices should provide the ”best”
number of clusters.

8.2 Tests based on the Poisson point processes

The Hypervolumes test and the Gap test are now available only for classical
quantitative and for interval data. These tests are not based on the existence
of a dissimilarity matrix, but only on the positions of the points. For interval
data, we use the following modelisation. We represent an interval by two
numbers: its middle and its lenght. So each interval can be represented
by a point in a two-dimensional space, and an object by a point in a 2p-
dimensional space. We first determine the best number of clusters for each
interval variable. A synthesis is then made in order to precise the actual
structure of the set of symbolic data.

9 Examples

9.1 Merovingian buckles - VI-VIII a.c. Century

The set of symbolic data is constituted by 58 buckles described by six sym-
bolic multi-valued variables. These variables and the corresponding cat-
egories are presented in Table 1. The complete data set is available at
http://www-rocq.inria.fr/sodas/WP6/data/data.html.

Variables Categories

Fixation iron nail; bronze bump; none

Damascening bichromate; predominant veneer; dominant inlaid; silver monochrome

Contours undulations; repeating motives; geometric frieze

Background silver plate, hatching; geometric frame

Inlaying filiform; hatching banner; dotted banner; wide ribbon

Plate arabesque; large size; squared back; animal pictures; plait; circular

Table 1. Merovingian buckles: six categorical multi-valued variables

The 58 buckles have been examined by archeologists. They identified
two natural clusters. SCLUST and the four hierarchical clustering methods
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included in SHICLUST have been applied to that data set in order to generate
partitions. The true structure has been detected by most of the stopping
rules.

9.2 e-Fashion stores

That data set describes the sales in a group of stores (items of clothing and
accessories), belonging to six different countries. These sales concern the
years 1999, 2000 and 2001. The 13 objects are the stores (Paris 6th, Lyon,
Rome, Barcelona, Toulouse, Aix-Marseille, Madrid, Berlin, Milan, Brussels,
Paris 15th, Paris 8th, London). Eight modal variables are recorded on each
of the 13 objects, describing the items sold in these stores. For example,
the variable ”family product” has 13 categories (dress, sweater, T-shirt, ...).
The proportion of sales in each store is associated with all these categories.
The variable ”month” describes the proportion of sales for each month of the
year.

9.3 Fats and oils

The data set contains eight fats and oils described by four quantitative fea-
tures of interval type: specific gravity, freezing point, iodine value and saponi-
fication [Ichino and Yaguchi, 1994] [Gowda and Diday, 1994].
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Abstract. We present a new method to select an attribute subset (with few or no
loss of information) for high dimensional data clustering. Most of existing clustering
algorithms loose some of their efficiency in high dimensional data sets. One possible
solution is to use only a subset of the whole set of dimensions. But the number
of possible dimension subsets is too large to be fully parsed. We use a heuristic
search for optimal attribute subset selection. For this purpose we use the best
cluster validity index to first select the most appropriate cluster number and then
to evaluate the clustering performed on the attribute subset. The performances of
our new approach of attribute selection are evaluated on several high dimensional
data sets. Furthermore, as the number of dimensions used is low, it is possible
to display the data sets in order to visually evaluate and interpret the obtained
results.
Keywords: Attribute Selection, Clustering, Genetic Algorithm, Visualization.

1 Introduction

Data collected in the world are so large that it becomes more and more diffi-
cult for the user to access them. Knowledge Discovery in Databases (KDD)
is the non-trivial process of identifying valid, novel, potentially useful and
ultimately understandable patterns in data [Fayyad et al., 1996]. The KDD
process is interactive and iterative, involving numerous steps. Data min-
ing is one step of the Knowledge Discovery in Databases (KDD) process.
This paper focus on clustering in high dimensional data sets, which is one
of the most useful tasks in data mining for discovering groups and identi-
fying interesting distributions and patterns in the underlying data. Thus,
the goal of clustering is to partition a data set into subgroups such that
objects in each particular group are similar and objects in different groups
are dissimilar [Berkhin, 2002]. In real world clustering situations, with most
of algorithms the user has first to choose the number of clusters. Once the
algorithm has performed its computation the clustering method must be val-
idated. To validate the clustering algorithm results we usually compare them
with the results of other clustering algorithms or with the results obtained
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by the same algorithm while varying its own parameters. We can also val-
idate the obtained clustering algorithms results using some validity indexes
described in [Milligan and Cooper, 1985]. Some of these indexes are based on
the maximization of the sum of squared distances between the clusters and
the minimization of the sum of squared distances within the clusters. The
objective of all clustering algorithms is to maximize the distances between
the clusters and minimize the distances between every object in the group,
in other words, to determine the optimal distribution of the data set. The
idea treated in this paper is to use the best index (according to Milligan and
Cooper, it is the Calinski index), to first select the most appropriate num-
ber of clusters and then to validate the clustering performed on a subset of
attributes. For this purpose we use attribute selection methods successfully
used to improve cluster quality. These algorithms find a subset of dimen-
sions to perform clustering by removing irrelevant or redundant dimensions.
In section 2, we start with a brief description of the different attribute subsets
search techniques and the clustering algorithm we have chosen (without for-
getting that our objective is not to obtain a better clustering algorithm but
to select a pertinent attribute subset with few or no loss of information for
clustering). In section 3, we describe the methodology used to find the opti-
mal number of clusters then we describe our search strategy and the method
to qualify and select the subset of attributes. In section 5, we comment the
obtained results and visualize the results to try to interpret them before the
conclusion.

2 Attribute subset search and clustering

Attribute subset selection problem is mainly an optimization problem which
involves searching the space of possible attribute subsets to identify one that
is optimal or nearly optimal with respect to f (where f(S) is a performance
measure used to evaluate a subset S of attributes with respect to criteria of
interest) [Yang and Honavar, 1998]. Several approaches of attribute selec-
tion have been proposed [Dash and Liu, 1997], [John et al., 1994], [Liu and
Motoda, 1998]. Most of these methods focus on supervised classification and
evaluate potential solutions in terms of predictive accuracy. Few works [Dash
and Liu, 2000], [Kim et al., 2002] deal with unsupervised classification (clus-
tering) where we do not have prior information to evaluate potential solution.
Attribute selection algorithms can broadly be classified into categories based
on whether or not attribute selection is done independently of the learning
algorithm used to construct the classifier: filter and wrapper approaches.
They can also be classified into three categories according to the search stra-
tegy used: exhaustive search, heuristic search, randomized search. Genetic
algorithms [Goldberg, 1989] include a class-related randomized, population-
based heuristics search techniques. They are inspired by biological evolution
processes. Central to such evolutionary systems is the idea of a population
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of potential solutions that are members of a high dimensional search space.
We have seen this decade, an increasing use of this kind of methods. Related
works can be found in [Yang and Honavar, 1998]. However, all tests of the
different authors are performed on data sets having less than one hundred
attributes. The large number of dimensions of the data set is one of the major
difficulties encountered in data mining. We are interested in high dimensional
data sets, our objective is to determine pertinent attribute subsets in clus-
tering, for this purpose we use genetic algorithm population-based heuristics
search techniques using validity index as fitness function to validate optimal
attribute subsets. furthermore, a problem we face in clustering is to decide
the optimal number of clusters that fits a data set, that is why we first use
the same validity index to choose the optimal number of clusters. We ap-
ply the wrapper approach to k-means clustering [McQueen, 1967], even if the
framework presented in this paper can be applied to any clustering algorithm.

3 Finding the number of clusters

When we are searching for the best attribute subset, we must choose the
same number of clusters than the one used when we run clustering in the
whole data set, because we want to obtain a subset of attributes having same
information (ideally) on the one obtained in the whole data set. [Milligan
and Cooper, 1985] have compared thirty methods for estimating the num-
ber of clusters using four hierarchical clustering methods. The criteria that
performed best in these simulation studies with a high degree of error in the
data is a pseudo F-statistic developed by [Calinski and Harabasz, 1974]: it
is a measure of the separation between clusters and is calculated by the for-

mula: Sb/(k−1)
Sw/(n−k) , where Sb is the sum of squares between the clusters, Sw the

sum of squares within the clusters, k is the number of clusters and n is the
number of observations. The higher the value of this statistic, the greater
the separation between groups. We first use the described statistic (Calin-
ski index) to find the best number of clusters for the whole data set. The
method is to study the maximum value maxk of ik (where k is the number
of clusters and ik the Calinski index value for k clusters). For this purpose,
we use the k-means algorithm [McQueen, 1967] on the Colon Tumor data
set (2000 attributes, 62 points) from the Kent Ridge Biomedical Data set
Repository [Jinyan and Huiqing, 2002], Segmentation (19 attributes, 2310
points) and Shuttle (9 attributes, 42500 points) data sets from the UCI Ma-
chine Learning Repository [Blake and Merz, 1998]. We compute all Calinski
index values where k takes values in the set (2, 3,. . . , a maximum value fixed
by the user) and select the maximum value maxk of the Calinski index and
the corresponding value of k. The index evolution according to the different
values of k for the Shuttle data set is shown in the figure 1 (we search the
maximal value of the curve). We notice that the optimal value of Calinski
index is obtained effectively for k=7. We obtain k=7 for Segmentation and
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Shuttle data sets and k=2 for Colon Tumor data set. The optimal values
found are similar to the original number of classes. Of course, these data sets
are supervised classification data sets we have removed the class information.
Now we try to find an optimal combination of attribute subset with a genetic
algorithm having the Calinski index as fitness function. Our objective is to
find a subset of attributes that best represent the configuration of the data
set and discover the same configuration of the clustering (number, contained
data, . . . ) for each cluster. The number of cluster is the value obtained
for the whole data set and we search the attribute subset that has optimal
value of Calinski index. The validity indexes give a measure of the quality of
the resulting partition and thus usually can be considered as a tool for the
experts in order to evaluate the clustering results. Using this approach of
cluster validity our goal is to evaluate the clustering results in the attribute
subset selected by the genetic algorithm.

4 Genetic algorithm for attribute search

Genetic algorithms (GAs) [Goldberg, 1989] are stochastic search techniques
based on the mechanism of natural selection and reproduction. We use stan-
dard genetic algorithm with usual parameters (population, mutation prob-
ability), variation of these parameters have no effect for the convergence of
our genetic algorithm. Our genetic algorithm starts with a population of 60
individuals (chromosomes) and a chromosome represents a combination (sub-
set) of dimensions. The visualization of the data set is a crucial verification
of the clustering results. With large multidimensional data sets (more than
some hundred dimensions) effective visualization of the data set is difficult
as shown in the figure 2.

0
2
4

6
8

10
12

14
16
18

2 3 4 5 6 7 8 9 10

in
de

x 
va

lu
e

k

calinski E+03

Fig. 1. Calinski index evolution for the Shuttle data set.
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Fig. 2. Visualization of one hundred dimensions of Lung cancer data set.
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Fig. 3. Calinski index evolution for the Segmentation data set along genetic algo-
rithm generations.

This is why the individuals (chromosomes) use only a small subset of
the data set dimensions (3 or 4 attributes), we have used the same principle
for outlier detection in [Boudjeloud and Poulet, 2004]. We evaluate each
chromosome of the population with the Calinski index value. This procedure
finds the combination of dimensions that best represents the data set with
the same k as obtained for the whole data set and search attribute subset
that have optimal Calinski index value. Once the whole population has been
evaluated and sorted, we operate a crossover on two parents chosen randomly.
Then, one of the children is muted with a probability of 0.1 and is substituted
randomly for an individual of the second part of the population, under the
median. The genetic algorithm ends after a maximum number of iterations.
The best element will be considered as the best subset to describe the whole
data, we will visualize the data set according to this most pertinent attribute
subset.
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5 Tests and results

We have tested GA with size 4 for the subset of attributes for the Segmen-
tation and the Colon tumor data sets and size 3 for the Segmentation data
set. Figure 3 shows the evolution of the Calinski index for all generations
of the genetic algorithm for the Segmentation data set. We can see a large
gap between the indexes computed with the whole data set and the indexes
calculated with a subset of attributes. Our objective was to try to find the
same index value for a subset of attributes as the one obtained with the whole
data set. The obtained results show that the values of the indexes with the
subset of attributes are better than those obtained with the whole data set.
One can explain this by the fact that the data set can be noisy according
to some attributes and when we select some other attributes we can get rid
of the noise and therefore we obtain better results. To confirm the obtained
results, we have performed tests to verify the clustering result in the different
subsets of attributes that are supposed to be optimal and compared these
results with the clustering obtained in the whole data set. We have used
the Calinski index as reference because it is classified as the best index by
Milligan and Cooper. The results with the colon Tumor data set are shown
in table 1. This table describes different values obtained when we change

Whole Whole Data set Data set Data set Data set
data set data set 20 att. 20 att. 4 att. 4 att.
2000 att. 2000 att. GA opt. GA opt.

Nbr. clusters (k) 2 3 2 2 2 2
Nbr. elemt./Cluster 18/44 10/30/22 11/51 48/14 11/51 18/44

Calinski 28.91 21.88 41.66 56.06 79.84 88.50

Table 1. GA optimization results.

the value of k (cluster number), we illustrate the obtained index values when
k=2 and k=3, the optimal value is obtained for k=2 with 18 objects in the
cluster number 1 and 44 objects in the cluster number 2. We have tested
the program for a subset of 20 attributes, we describe in the third column
the results obtained when we compute different index values for a subset of
20 randomly chosen attributes, after this we apply the GA to optimize the
result of the index. We obtain a better Calinski index with object affectation
not very different from the whole data set. We also tested our program for
a subset of 4 attributes and we have obtained the optimal values described
in the table (last 2 columns) for the subset of attributes: 1089, 890, 1506,
1989. We note that the cluster content for this optimal subset is similar to
the cluster content in the whole data set. We presented the optimal solution
of GA i.e. the subset of attributes, which has obtained the optimal values of
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all indexes. Then we visualize these results using both parallel-coordinates
[Inselberg, 1985] and 2D scatter-plot matrices [Carr et al., 1987], to try to
explain why these attribute subsets are different from the other ones. These
kinds of visualization tools allow the user to see how the data are presented
in this projection. For example, figure 4 shows the visualization of clustering,
with the optimal subset of attributes obtained by the GA and we can see a
separation between the two clusters.

 

Fig. 4. Optimal subset visualization for the Colon data set.

6 Conclusion and future work

We have presented a way to select the cluster number and to evaluate a rel-
evant subset of attributes in clustering. We used validity index of clustering
algorithm not to compare clustering algorithms, but to evaluate a subset of
attributes as a representative one or pertinent one for clustering results. We
have used the k-means clustering algorithm, the best validity index (Calin-
ski index) described by [Milligan and Cooper, 1985] and a genetic algorithm
for the attribute selection, having the value of the validity index as fitness
function. We introduced a new representation of genetic algorithm individ-
ual, our choice is fixed on small sizes of attribute subsets to facilitate visual
interpretation of the results and then show the relevance of the attributes
for clustering application. Nevertheless, the user is free to set up the size
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of the attribute subset and there is no complexity problem with the size of
the population of genetic algorithm. Our first objective is to obtain subsets
of attributes that best represent the configuration of the data set (number,
contained data). When we tested our method by verifying clustering results
we notice that the optimal subset obtained has optimal value for the index
with a number of elements in the clusters similar to the ones in the whole
data set and they have the same elements. Furthermore, as the number of
dimensions is low, it is possible to visually evaluate and interpret the ob-
tained results using scatter-plot matrices or/and parallel coordinates. We
must keep in mind that we work with high dimensional data sets. This step
is only possible because we use a subset of dimensions of the original data.
This interpretation of the results would be absolutely impossible if consider-
ing all the set of dimensions (figure 2). We think to follow our objective that
is to find the best attribute combination to reduce the research space without
any loss in result quality. We must find a factor or a fitness function for the
genetic algorithm qualifying attribute combination to optimize the algorithm
and improve execution time. We think also to involve more intensively the
user in the process of cluster search in data subspace [Boudjeloud and Poulet,
2005].
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Abstract. This paper presents a validation methodology in ascending hierarchical
clustering. The objects in validation are clustering hierarchies, and simulation is
used. Under certain conditions, this methodology allows us to evaluate the quality
of hierarchical structures, its robustness and fiability, according to the data struc-
ture. The effect of the application of a given criterion on some kind of structures
is also analyzed.
Keywords: Cluster Analysis, Hierarchical Clustering, Robustness, Validation.

1 Introduction

The use of clustering methods has progressively increased. On one hand,
there are several computer programs which include these methodologies; on
the other, there are big data sets which need to be studied (and summarised).
Since nowadays it is quite easy and not very expensive to have big databases,
it is essential to find tools in order to extract relevant information.

Generally speaking, the main goal of clustering is to define partitions or
hierarchies of partitions, over a set of two-by-two comparable elements, that
respect the resemblence between them in a predefined optimal manner. The
elements to classify may be objects or variables of a data set.

This work belongs to the ascending hierarchical clustering (A.H.C.) field,
whose usual output is a succession of partitions whose classes are partially or-
dered by inclusion. This methodology begins with the most refined partition
(with singleton classes); in each stage the most resembled classes are gathered
together according to a predefined criterion. The most common graphical re-
sult drawn out is named a classification tree or dendrogram. Choosing an
element of the succession of partitions we get a division of the elements in
clusters, as well as the history of the formation of each class.

Although clustering is a powerful tool in analysing data, we need to assure
that the division into several clusters suggested by the algorithm does not
distort the structure of the initial data. In other words, the relations between
the elements to classify cannot lead to artificial clusters without real meaning.
The need and importance of a next stage for the attainment of results in a
clustering method is unquestionable. This stage, here named as validation,
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consists of questioning over the (preliminary) results obtained, in order to
the achieve final results or conclusions.

Section two of this paper is dedicated to clustering validation. In section
three we present a methodology based on Monte Carlo simulation which al-
lows us to evaluate the quality and robustness of a hierarchic structure, and
to give us information on the quality of adjustment to data structure. This
methodology also allows us to analyse the effect that the use of a given clus-
tering criterion can have when applied to a specific kind of structure. Section
four presents an application of the proposed methodology. Finally, in section
five we lay out conclusions, as well as some perspectives of developments.

2 Validation in clustering

The application of a clustering algorithm to a data set leads to a partition or
a hierarchy of partitions over the set of elements in classification. After an
accurate interpretation, this result will give us information on the relations
between the elements in classification.

A clustering method requires choices, and it is well known that these
choices affect the result of the process of clustering. In other words, different
choices may lead to different classifications. This fact creates a new problem:
whether to decide which choice is to result into the best clustering. We
admit that each method has its own underlying structure model, which can
be optimized in each situation. Also, a clustering method always produces
a partition or a hierarchy of partitions, inducing a structure on the data. It
seems reasonable to question the existence of structure on the initial data
and, if that is the case, if there’s a close relation between the initial and
final structures. These and other questions really do justify the existence of
a stage of validation in clustering results before its interpretation.

Several authors have studied different approaches to clustering validation.
We can mention (among others) Bock’s investigations [Bock, 1985], [Bock,
1996], which insert clustering models into a probabilistic context, assuming
that the observed data is a sample of a structured multivariate population.
[Gordon, 1994], [Gordon, 1996] and [Milligan, 1996] (and other references
indicated in these works) appeal to empirical, descriptive or exploratory tools
in analysing the quality of the clusters obtained.

It is usual to apply several clustering methods to a data set with the goal
of choosing one of them or a new one determined from the data set. This issue
includes the comparison of clustering trees or dendrograms
([Lapointe and Legendre, 1990], [Lapointe and Legendre, 1995]) and
the consensus theory [Barthélemy et al., 1986] and other references in [Gor-
don, 1999]. Another kind of issue is trying to understand the quality and
stability of the results obtained from a clustering process. Here validation
may also be considered under different perspectives: we may wish to validate
a single cluster, a partition, or a hierarchy. The validation of a single cluster
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was studied (among others) by [Gordon, 1994] and [Bel Mufti, 1998]. For
references about research on validation of partitions see [Hubert, 1987] and
[Gordon, 1999]. Due to its complexity, hierarchies validation research has
less references. Note that validation of hierarchies often appears connected
to validation of partitions, since hierarchies are successions of partitions.

3 Validation methodology in A.H.C.

An A.H.C. algorithm has underlying two important choices: an index, com-
parison function between pairs of elements of the set to classify, and the
comparison function between clusters associated to the aggregation crite-
rion. It is assumed that the result of an A.H.C. depends on the data set as
well as on these choices. Each method tends to adjust its structure model in
each situation; effectiveness depends on the type and structure intensity of
the data. When analysing a structure obtained by a clustering method, it is
important to evaluate which part of it is due to the criterion used.

In this section we present a validation proceeding in A.H.C., whose main
purpose is to help to understand some of the following questions:

• Does the data really have a clustering structure? In the affirmative case,
does the hierarchy obtained reveal that structure?
• How can we choose the level of a hierarchy which gives the best partition?
• After applying several aggregation criteria or indexes to a data set, how

can we decide which one is the best? Does it even exist?

The methodology here presented allows us to provide information about the
problems in comparing indexes, hierarchies, indexes and hierarchies, and the
effects that random perturbations have on them. This procedure intents to
evaluate the quality of the final result using effectiveness and stability of a
given A.H.C. method, supporting the results interpretation and helping the
choices to be made. The methodology developed uses two main tools: the
comparison of clustering structures and random generation of dendrograms.

3.1 Comparison of clustering structures

Let E be a set of m elements to classify, and F the set of the subsets of E
with two distinct elements (card(F ) =

(
m
2

)
:= M):

F =
{
{x, y} : x, y ∈ E, x 6= y

}
.

Consider γ : E × E −→ R+
0 , the comparison function between pairs of ele-

ments of E, and the function h : E × E −→ R+
0 which associates to each

element (x, y) ∈ E × E the index of aggregation of the smaller cluster that
contains simultaneously x and y. A function γ can be associated to a vector
of dimension M that contains information about the structure of the data,
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and a hierarchy H can also be associated to a vector of dimension M that
contains information about the clustering structure. Our goal is to compare
those kind of structures. In this work we adopted an ordinal approach to
do this comparison, associating preordenations to the various structures. We
can define a (total) preordenation over E defining a (total) preorder over F .

The choice of a comparison function of the elements of E, γ, defines a
total preorder over F ; in fact, if γ is a dissimilarity we just consider

∀ ({x, y}, {z, t}) ∈ F × F : {x, y} 6 {z, t} ⇐⇒
def.

γ(x, y) 6 γ(z, t). (1)

This total preorder over F is the total preordenation over E associated to γ.
If γ is injective (which happens often in practice), this preorder is, in fact,
an order.

A hierarchyH over the elements of E always defines a total preordenation
over F ; in fact, we have the following relation:

∀ ({x, y}, {z, t}) ∈ F × F : {x, y} 6 {z, t} ⇐⇒
def.

h(x, y) 6 h(z, t). (2)

This total preorder over F is the total preordenation over E associated to H .
Given a partition π of E consisting of k classes E1, E2, . . . , Ek, we can

define a partition ξ of F in two classes:

• R(π) =
{
{x, y} ∈ F : x, y ∈ Ei for some i = 1, 2, . . . , k

}
;

• S(π) =
{
{x, y} ∈ F : x ∈ Ei, y ∈ Ej , i 6= j

}
.

It is easy to verify that [Lerman, 1981] ξ defines a (non total) preordenation
over E. Alternatively, we can specify a total preorder over F associated to ξ
as follows:

∀ ({x, y}, {z, t}) ∈ F × F : {x, y} 6 {z, t} ⇐⇒
def.





{x, y}, {z, t} ∈ R(π)
or

{x, y}, {z, t} ∈ S(π)
or

({x, y}, {z, t}) ∈ R(π)× S(π)

(3)

So, due to the relations (1), (2) and (3) we conclude that instead of
comparing comparison functions, partitions or hierarchies of partitions we
can compare the corresponding preordenations (with the same length).

There are several coefficients which allow us to compare two preordena-
tions. The results included in this paper were obtained using the Goodman-
Kruskal coefficient:

TGK =
C −D
C +D

, (4)

where C and D are, respectively, the number of positive and negative agree-
ments between both preordenations. All the methodology that is going to be
described can easily be applied to another coefficient.
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Assintotic results on the distributions of these coefficients are not ade-
quate in this context. The main problem is that the deduction of such distri-
butions is based on independence between preordenations, which cannot be
verified here in practice. In fact, preordenations that result from relations (1),
(2) and (3) may not be independent if, for example, they come out of the
application of different clustering processes over a common data set. In these
situations, independence is many times what the researcher does not want,
because the goal is to prove that there is information shared by the outcoming
of several results. Moreover, preordenations related to clustering processes
have restrictions imposed by the ultrametric property: property that verify
ultrametric matrices associated to clustering structures. By this we mean
that not all preordenations can be the outcome of a clustering process.

For the described reasons, it becomes necessary to deduce proper dis-
tributions for the comparison coefficients. It is not feasible to deduce the
exact distribution, because the number of distinct dendrograms of order m

increases very rapidly (d(m) = m!(m−1)!
2m−1 ).

Simulation is the alternative solution, since assintotic distributions do not
fit our purposes. To generate empirical distributions we need to be able to
generate random clustering structures. At this stage, methods of random
generation of dendrograms are extremely useful.

3.2 Random generation of dendrograms or ultrametric matrices

There are some algorithms that allow the random generation of dendro-
grams (or equivalent structures). Note that the point here is to generate
random topologies, labels and aggregation levels; few methods attend at
these three features simultaneously. We mention four methods: Double
Permutation method [Lapointe and Legendre, 1990]; Uniform generation
method [Sousa, 2000]; RA method [Podani, 2000]; Shape Parameter method
[Sousa, 2000]. The first three methods are random sensu Furnas [Furnas,
1984], in other words, they can generate (for a given order) each possible
dendrogram in an equiprobable manner (with probability 1

d(m)). The Shape

Parameter method introduces a coefficient (shape parameter) that, once set-
tled, allows to predict (with some probability) the final shape of the generated
dendrogram. This method is a very useful tool for validation in A.H.C., for
it is well known that some clustering methods tend to generate particular
kinds of trees.

Using one of the methods of random generation of dendrograms we can
randomly generate a pair of dendrograms for a given order. By this way, it
is simple to deduce empirical distributions for a chosen ordinal comparison
coefficient of structures, allowing to give statistical significance to its values.

There is an alternative way in approaching the problem of random gene-
ration of clustering structures that is based on the notion of combinatorial
structure ([Flajolet et al., 1994] and [Van Cutsem, 1996]).
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3.3 Algorithm

We now present a methodologic sequence using Monte Carlo simulation. Our
goal is to supply a method that can help us answer some of the questions
previously stated.

For a given topologic type of structure of data and for a fixed number of
elements to classify, consider the following steps given:

1. Generate a random dendrogram; the associated ultrametric matrix, M0,
will be taken as the (initial) dissimilarity matrix.

2. For each A.H.C. criterion to study: obtain a hierarchy H0, and com-
pare M0 with H0 (comparison C1).

3. Disturb matrix M0 by settling a disturbance coefficient; this creates the
dissimilarity matrix Mi. Compare M0 with Mi (comparison C2).

4. For each A.H.C. criterion to study: obtain a hierarchy Hi, compare Mi

with Hi (comparison C3) and compare H0 with Hi (comparison C4).
5. Repeat the steps 3. and 4. a great number of times for the same distur-

bance coefficient.
6. Repeat the steps 3. to 5. for different values of the disturbance coefficient.

The several comparisons, considered according to section 3.1, try to:

• C1: Analyse a criterion behaviour when applied to ultrametric data.
• C2: Control the impact of the disturbance over the associated preorde-

nations.
• C3: Analyse the ability of a criterion to recover a structure after distur-

bance.
• C4: Evaluate if the hierarchical structure maintained, and try to under-

stand what disturbance value is implied in the damaging of the structure.

4 An application

The presented methodology comprehends a diversity of choices to be made
in each simulation. We now refer the several options we made in this spe-
cific application. The number of elements to classify equal 10. There were
considered three types of data structures to generate: predominantly chain
type trees, predominantly balanced trees (obtained with the Shape Parame-
ter method), and also trees obtained with Uniform method. Note that both
chain and balanced types are very important in classification, either for their
association with well known classical methods as for their extreme characte-
ristics. Concerning the A.H.C. methods, we tried to evaluate the performance
of a set of methods belonging to classical and probabilistic approaches (the
latter is known as VL approach– Validity of the Link due to I.C. Lerman)
in which the aggregation criterion of clusters is based on a statistic of cen-
tral tendency [Sousa, 2000]. The criteria here considered are: Single Linkage
(SL), Complete Linkage (CL), Mean Linkage (HMEAN) and Median Linkage
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(HMED) (classical approach), Validity of the Mean (AVM [Nicolau, 1980]),
Validity of the Median (HVMED) and a method of the VL parametric fami-
ly AVB proposed by [Bacelar-Nicolau, 1985] (VL approach). The disturbance
was carried out adding to each element of M0 a quantity δ(2x− 1), where x
comes from a uniform random variable over ]0, 1[ and δ is the disturbance fac-
tor. Values for δ were considered between 0.05 and 0.5. For the comparison
of structures it was used the TGK coefficient given by (4).

We now present some conclusions that illustrate how this methodology
can give us information.

From C1 comparison we can say that classical methods recover completely
the structure of an ultrametric matrix, while VL methods produce hierarchies
that can be slightly different. When the dissimilarity matrix differs from the
ultrametric structure (C3 comparison), the methods that give higher values
for TGK are HMEAN and HMED, followed by SL. The CL behaviour is
similar to SL’s for δ 6 0.25, but is different for greater values of δ. In
general, HVMED is the VL criterion that works better, but when the data
structure approaches chain type we see that AVM and HVMED are equally
effective. For balanced structures, AVB seems to be the best method. C4

comparison allows us to conclude that the stability of the structures produced
by some methods strongly depends on the type of data structure. Usually
the most stable methods are HMEAN, SL and HMED, and the less stable
is CL, followed by AVM. AVM is very stable when trees of chain type are
considered, and for balanced trees AVB method has better TGK values. The
VL method less influenced by structure is HVMED.

The results obtained let us quantify some known characteristics related
to the application of these criteria to real data. In fact, AVM and HVMED
methods tend to produce trees of chain type, while AVB tends to produce
trees with clusters of similar number of elements (balanced).

5 Conclusion and perspectives

The methodology here presented claims out to be a contribution for the
A.H.C. validation subject, and it can be quite general. What was done for
hierarchic clustering can easily be adjusted for partitions, too. During expe-
riences, it was necessary to make some choices in specifing some parameters’
values. This feature is considered very important. The number of possible
combinations of choices is enormous, and the timing of simulation and anal-
yse of results increases dramatically. However, a few new wise options should
be tried out, particularly the application to real data.

The validity methodology here presented allows us to say that the beha-
viour of a clustering method strongly depends on the kind and intensity of
the data structure.

The methods of central tendency of classical approach seem to have some
common properties that lead to good results. The VL methods, on account
of its own approach, can lead to a good performance in particular cases.
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Abstract. An important line of inquiry in cluster validation involves measuring the
stability of a partition with respect to perturbations of the data set. Several authors
have recently suggested that the ‘correct’ number of clusters in a partition can be
determined simply by examining the partition stability measures for different values
of numbers of clusters. In this paper, we consider the clustering stability measures
that were recently proposed in [Bertrand and Bel Mufti, 2005], and we present
experiments that compare the method for predicting the number of clusters that
is derived from these stability measures with two of the most successful methods
reported in recent surveys.
Keywords: Cluster Stability, Monte Carlo Test, Cluster Isolation and Cluster
Cohesion, Loevinger’s measure, Number of clusters of a partition.

1 Introduction

A major challenge in cluster analysis is the validation of clusters resulting
from cluster analysis algorithms. One relevant approach involves defining
an index measuring the adequacy of a cluster structure to the data set and
establishing how likely a given value of the index is under some null model
formalizing ‘no cluster structure’, e.g., [Bailey and Dubes, 1982], [Jain and
Dubes, 1988], [Gordon, 1994], [Milligan, 1996] and [Gordon, 1999]. Another
type of approach is concerned with the estimation of the stability of clustering
results. Informally speaking, cluster stability holds when membership of
the clusters is not affected by small changes in the data set [Cheng and
Milligan, 1996]. Several recent approaches, see for example [Tibshirani et al.,
2001], [Levine and Domany, 2001], [Ben-Hur et al., 2002] and [Bertrand and
Bel Mufti, 2005], suggest that cluster stability is a valuable way to determine
the number of clusters of any partitioning of the data. Such a stability based
approach aims to identify those values of the number of clusters (or any other
parameter of the clustering method) for which local maxima of stability are
reached.

The main contribution of this paper is to compare this stability based
approach with two of the most (classical) successful methods of predicting
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the number of clusters. In what follows, we restrict our attention to the
measures of cluster stability that were introduced by Bertrand and Bel Mufti
[Bertrand and Bel Mufti, 2005]. In section 2, a summarized description of the
cluster validation method introduced by Bertrand and Bel Mufti [Bertrand
and Bel Mufti, 2005] is presented. This method involves the definition of
stability measures both of the partition and of its clusters. Each stability
measure is defined as Loevinger’s measure of a rule quality, that is assessed
by a probability significance which is approximated by comparing the value
of the measure with values that would be obtained under a null model that
specifies the absence of cluster stability. In section 3, we compare three
methods for determining the number of clusters of any partitioning of a data
set, on the basis of their experimental results obtained for the partitioning
of two data sets. The first method is the stability based approach that is
briefly mentioned here above and that is specified by the stability measures
of Bertrand and Bel Mufti [Bertrand and Bel Mufti, 2005]. The other two
methods are classical methods performing the best for estimating the number
of clusters, according to the survey of Milligan and Cooper [Milligan and
Cooper, 1985].

2 The cluster stability measures proposed by Bertrand
and Bel Mufti (2005)

In this section, we briefly describe the stability based method of cluster vali-
dation that was recently introduced by Bertrand and Bel Mufti, and we refer
the reader to [Bertrand and Bel Mufti, 2005] for more details.

We will denote as X an arbitrary data set of n objects to be clustered,
and as Pk any generic k-way partitioning algorithm. The partition obtained
by running Pk on the data set X will be denoted by P , in other words
P = Pk(X ). The validation method proposed in [Bertrand and Bel Mufti,
2005] is designed to estimate the stability of both the partition P and its
clusters, with regards to both cluster isolation and cluster cohesion criteria.
The perturbed data sets are (random) samples of the population X . If all
partitions into k clusters obtained from running algorithm Pk on different
samples of X are close in structure to partition P , then P can be deemed to
be stable. In order to guarantee that each cluster of P is still represented in
each random sample of X , we use a sampling procedure, called proportionate
stratified sampling. More precisely, given any cluster A of P and denoting
by nA the size of A, and by f some sampling ratio, this sampling procedure
involves selecting randomly and without replacement n′

A elements in each
cluster of P , where n′

A is the integer value obtained by rounding down fnA
to the nearest integer. On the basis of experimental results presented in
[Bertrand and Bel Mufti, 2005] and recommendations given in [Levine and
Domany, 2001] and [Ben-Hur et al., 2002], the value of f has to be chosen in
the interval [0.7, 0.9].
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Let us focus on the single criterion of cluster isolation. Informally speak-
ing, there is much evidence that any cluster of P , say A, is isolated whenever
the following rule holds for any sample X ′ of X :

(R) Isolation rule of A. If two objects of X ′ are not clustered together
by partition {A,X \A}, then they are not in the same cluster of Pk(X ′).

Any measure of rule quality can assess the rule (R). However, due to its spe-
cific properties and its simplicity of interpretation (see [Lenca et al., 2003]),
Loevinger’s measure ([Loevinger, 1947]) is preferred to other measures of
rule quality. Loevinger’s measure of rule E ⇒ F , is defined as the expression
1 − P (E ∩ ¬F )/P (E)P (¬F ). Denoting by t(A, X ′) Loevinger’s measure of
the quality of rule (R), we obtain:

t(A, X ′) = 1−
n′(n′ − 1)m(X ′;A,A)

2n′
A(n′ − n′

A) m(X ′)
, (1)

where m(X ′) is the number of pairs of objects that are clustered together by
Pk(X ′), and where m(X ′;A,A) is the number of pairs of sampled objects that

are in the same cluster of Pk(X ′) and for which exactly one of the two objects
belongs to A. Taking into account only the criterion of cluster isolation, the
stability measure of cluster A is defined simply as the average, denoted here
by tN (A), of the values t(A, X ′

i ) obtained for a large number N of samples
X ′
i (i = 1, . . . , N):

tN (A) =
1

N

N∑

i=1

t(A, X ′
i ). (2)

It should be noted that tN (A) is an (unbiaised) estimation of the expected
value of the random variable t(A,X ′), when X ′ is considered as a random
sample. This leads us to select a value of N large enough so that both
the central limit theorem holds and the length of the approximate standard
95%-confidence interval is less than some maximal desired length l.

Several other stability measures were similarly defined in order to assess
other characteristics of any cluster, i.e., its isolation with respect to another
cluster, its cohesion and its validity. In addition, the same three characteris-
tics (isolation, cohesion and validity) of any partition were defined. Further-
more, it was proved that each stability measure of any partition that concerns
isolation (resp. cohesion) is a weighted mean of the stability measures of all
its clusters with respect to the criterion of isolation (resp. cohesion).

One important issue concerns the interpretation of the order of magnitude
of the observed values of stability measures. This is a general problem in
cluster validation: Jain and Dubes ([Jain and Dubes, 1988] p.144) noted that
it is easy to propose indices of cluster validity, but that it is very difficult to
fix thresholds on such indices that define when the index is large or small
enough to be ‘unusual’. The difficulty is solved by following the general
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procedure presented by Jain and Dubes [Jain and Dubes, 1988] (see also
[Gordon, 1994]), since it seems reasonable to specify the absence of cluster
stability by the absence of clustering structure:

Step 1. Define a null model M0 that specifies the null hypothesis H0

of absence of cluster stability for the data set under investigation; in the
case of a data set that can be represented by n points of an euclidean
space, an example of such a null model is the uniform distribution of n
points in the convex hull of the data set.

Step 2. Estimate the probability significance of the observed value of
the stability measure under the null hypothesis H0. Since the analytic
expression of the distribution of the stability measure under the null
model M0 is usually unknown, this step generally involves performing
a Monte Carlo test: a large number, say M , of data sets are simulated
according to the model M0, and each of them is partitioned and the
corresponding value of stability measure is computed. The probability
significance is then estimated on the basis of these M values of the
stability measure.

For example, the value tN (A) = 0.899 is an indication of high stability if and
only if its estimated probability significance value under H0 is less than 5%.

3 Experimental comparison with two methods for
determining the number of clusters

As previously mentioned in section 1, a method for determining the ‘optimal’
number of clusters in a partitioning of a data set can easily be derived from the
stability measure of a partition introduced in [Bertrand and Bel Mufti, 2005]:
a k-clusters partition is considered as meaningful if the value of the partitional
stability measure is a local maximum when k varies. In what follows, this
partitional stability measure will be denoted as BB(k), when k is the number
of clusters of the partition. The information provided by the stability index
BB(k) can be refined by considering its probability significance under the
null hypothesis H0, and also by taking into account the stability measures
(concerning isolation and cohesion) of each cluster in the partition together,
with their probability significances.

Otherwise, many indices that measure the adequation between the par-
tition and the data set were proposed to determine the number of clusters.
According to the survey of Milligan and Cooper [Milligan and Cooper, 1985],
the index of Calinski and Harabasz [Calinski and Harabasz, 1974] and the
index of Krzanowski and Lai [Krzanowski and Lai, 1985] are among the in-
dices that perform the best (see also Tibshirani et al [Tibshirani et al., 2001]
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for another experimental comparison). The index of Calinski and Harabasz
is defined by:

CH(k) =
B(k)/(k − 1)

W (k)/(n− k) (3)

where k denotes the number of clusters, and B(k) and W (k) denote the
between and within cluster sums of squares of the partition, respectively. An
optimal number of clusters is then defined as a value of k that maximizes
CH(k). The index of Krzanowski and Lai is defined by:

KL(k) = | DIFF (k)

DIFF (k + 1)
|, (4)

where:
DIFF (k) = (k − 1)2/pW (k − 1)− (k)2/pW (k), (5)

and p denotes the number of features in the data set. A value of k is optimal
if it maximizes KL(k).

The rest of the section is devoted to the comparison of the performance
of the three indices BB, CH and KL on the basis of results obtained for two
data sets: an artificial data set and the well known Iris data set.

3.1 An artificial data set

We consider the artificial data set that is represented in Figure 1. This data
set is a 200 point sample of a mixture of four normal distributions.

cluster 1
cluster 2
cluster 3
cluster 4

Fig. 1. Artificial data set structured into four clusters.
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Each cluster is indeed a 50 point sample of one of the four normal distri-
butions, and except for one point, the four clusters are easily identified by
looking at Figure 1. The four normal distributions are centered respectively
at µ1 = (−1.5,−.5), µ2 = (3, 2), µ3 = (0, 4) and µ4 = (4.5, 0) and have
the same variance-covariance matrix V = .5I, where I denotes the identity
matrix.

This data set was partitioned using the batch K-means method and the
stability measures were computed with the ratio sampling f = 0.8. The
values of the three indices are given in Table 1 for k ∈ {2, 3, 4, 5, 6}. The
probability significances under (H0) (p-values) suggest that the 4-partition is
the most significant.

Number of clusters (k)

Index 2 3 4 5 6

CH(k) 145 414 580 ∗ 494 446

KL(k) .26 3.36 3.89 1.39 5.95 ∗

BB(k) .779 .958 .992 ∗ .914 .816

Prob. sign. of BB(k) (%) 48− 61 2.4− 6.8 0− 1 0− 4.5 2.5 − 9.2

Table 1. Values of the three indices for partitions of the artificial data. According
to each index (row), a symbol (∗) indicates the optimal numbers of clusters.

Table 2 contains all the cluster stability measures concerning the 4-
partition. These values indicate that the four clusters are stable: all the
stability measures are high and assessed as being significant under H0 by low
p-values.

Each stability measure in Table 3 was computed with a precision of at
least 0.01, which required running the batch K-means method on N = 140
samples of the artificial data set. The slight lack of isolation of cluster 2
(.984), just like the slight lack of cohesion of cluster 1 (.980), suggests the
presence of an outlier between these two clusters (see Fig.1). The partition
into 4 clusters is also identified as optimal by the index CH , but the index
KL suggests that k = 6 is the optimal number of clusters.

Table 3 presents the stability measures of the 5-partition. Note that with
a p-value that is less than 4.5% at a 97.5%-approximate coverage probability,
the global validity of the partition into 5 clusters can be deemed as significant.
Each of these stability measures were computed with a precision of at least
0.02, and N = 1500 samples were necessary in order to obtain this precision.
It turns out that the clusters 1, 2 and 3 (which coincide with clusters 3, 4
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Isolation Cohesion Validity

% % %

Cluster 1 .990 0− 1 .980 0− 5 .986 0− 1

2 .984 0− 1 .992 0− 2 .987 0− 1

3 1. 0− 1 1. 0− 1 1. 0− 1

4 .994 0− 1 .996 0− 2 .995 0− 1

Partition .992 0− 1 .992 0− 1 .992 0− 1

Table 2. Stability measures for the 4-partition (prec. 0.01), and their p-values (%).

and 2 respectively in Figure 1) are clearly stable, for all cluster characteristics
except the cohesion of cluster 3. Clusters 4 and 5 (obtained by splitting the
cluster 1 of Figure 1 into two clusters) are assessed by low stability values
(i.e., .716 and .777) and by high p-values (i.e., in the intervals 34− 50% and
22 − 39%). Therefore, their existence is clearly dubious. Stability measures
for partial isolation between clusters were also computed: the extremely weak
stability measure for partial isolation between cluster 4 and cluster 5 (i.e.,
-.999) suggests that the split represents more a dissection than a real cluster
structure involving separate and homogeneous clusters.

Isolation Cohesion Validity

% % %

Cluster 1 .993 0− 1 .939 0− 1 .973 0− 1

2 .993 0− 1 .936 0− 1 .972 0− 1

3 .989 0− 5 .873 1− 13 .945 0− 8

4 .696 32− 49 .798 48− 65 .716 34− 50

5 .727 29− 47 .980 1− 9 .777 22− 39

Partition .915 0− 4.5 .913 0− 1 .914 0− 4.5

Table 3. Stability measures (prec. 0.01) of the 5-partition, and their p-values (%).
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3.2 Iris data

The famous Iris data set reports four characteristics of 3 species namely the
iris setosa, versicolor and virginica. Each class contains 50 instances. One
class (namely, the virginica) is linearly separable from the others, but the
latter are not linearly separable from each other. Iris data were partitioned
using the batch K-means method, taking into account only the two variables
petal length and width. As in the previous subsection, we have set the value
of the ratio sampling f to 0.8.

Number of clusters (k)

Index 2 3 4 5

CH(k) 756 1211 1266 1358∗

KL(k) 4.83 6.01∗ 1.3 1.12

BB(k) .992∗ .959 .881 .900

Prob. signif. of BB(k) (%) .3− 3.4 6.7 − 11.9 > 34 5.2 − 9.4

Table 4. Values of the indices on Iris data partitions. According to each index
(row), a symbol (∗) indicates an optimal number of clusters.

Table 4 shows the values of the three indices used for choosing the optimal
number of clusters on Iris data. The 2-partition with a p-value between .3
and 3.4% is the most stable partition according to the index BB, followed by
the 5-partition and the 3-partition with p-values in the intervals 5.2 − 9.4%
and 6.7− 11.9%, respectively. Even if the p-values of the last two partitions
do not differ significantly, the large p-values of the stability measures of two
clusters of the 5-partition (i.e., in the intervals 39− 53% and 52− 65%) raise
doubts about the validity of this partition (see also [Bertrand and Bel Mufti,
2005]). The stability measure BB is the only one to identify the trivial
partition in two clusters, and the KL index identifies the 3-partition as the
optimal one. Choosing the 5-partition, the index CH is the worst performer
on the Iris data set.

4 Conclusion

The results presented in this paper confirm that measuring cluster stability
can be a valuable approach to determine the ‘correct’ number of clusters of
any partition. A real advantage of this general approach is that it does not
require selecting or using any measure of adequation between the data set
and the partition examined.
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It can be noticed that the p-values for assessing the measures of clus-
ter stability may be decisive when estimating the stability of clusters. For
example, the p-values of Table 1 show that the stability value .915, which
assesses the stability of the 5-partition, is statistically more significant un-
der the null hypothesis of absence of structure, than the stability value .958
which assesses the stability of the 3-partition. In addition, an advantage of
the stability based approach that is proposed in [Bertrand and Bel Mufti,
2005] is that a careful interpretation of the p-values of the stability measures
enables one to identify not only a pertinent partition but also several sources
of variation in the partitional stability, such as individual cluster isolation
and cohesion.
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Abstract. The automatic seabed characterization is a difficult problem. Most
automatic characterization approaches are based on texture analysis. Indeed, the
sonar seabed images present many homogeneous areas of sediment that can be
interpretated as a sonar texture.

Here, we optimize the agglomerative hierarchical clustering algorithm to pro-
duce homogenous clusters of sediments images, combining known and unknow
data.
Keywords: Classification, Sonar, Seabed Characterization.

1 Introduction

The problem of automatic seabed characterization is very important and
difficult. The seabed characterization is important in order to make seabed
maps for sedimentologists, for autonomous underwater vehicle navigation or
pollution. One approach in order to characterize the seabed is the use of a
sonar. The main issues with sonar images is those are particularly difficult
to characterize by automatic process. The expert has never the certainty to
differentiate well the sand from the silt for example: the difference between
these sediments comes only from the granulometry that varies continuously.

We first expose the principle of agglomerative hierarchical classification.
In section 2 we present the sonar images data and the considered texture
analysis. We study the usual clustering methods applied on sonar small-
images. Then in section 5 we define a hierarchy quality in order to choose
better agregation functions for hierarchical classification. In section 6, we
present results of the combination of known and unknow data in order to
characterize the sediment of the sonar images.

2 Agglomerative Hierarchical Classification

Agglomerative hierarchical classification (AHC) is a common approach to
build a clustering system from a dataset. The algorithm considers the objects
of the dataset as trivial clusters of size 1: d({x}, {y}) = d(x, y). Then, at
each step, the algorithm merges the two nearest clusters into a new cluster,
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and computes the distance between the new cluster and the other ones. The
index associated to the cluster C = A ∪B is the dissimilarity d(A,B).

The dissimilarity induced by an indexed hierarchy (i.e. dissimilarity be-
tween x and y is the smallest index of a cluster containing x and y) is an
ultrametric.

The natural clustering system of a dissimilarity, in the way of Jardine and
Sibson [Jardine and Sibson, 1971], is composed of the maximal cliques of its
threshold graphs, indexed by the diameter of the clusters. So a set A is a
cluster for the dissimilarity d with an index λ if:

(i) there exists x and y in A such that d(x, y) = λ,
(ii) u and v in A brings d(u, v) 6 λ,
(iii) for any z not in A there exists t in A such that d(z, t) > λ.

The indexed clustering system induced by an ultrametric is an indexed
hierarchy. It is well-known that ultrametrics and indexed hierarchies are in
bijection.

Let d be a dissimilarity on X and used as a dissimilarity on the singletons
of X . An agglomerative hierarchical clustering (AHC) can be summarized in
three steps:

1. find A and B such that d(A,B) is minimal.
2. merge A and B in a cluster C.
3. for each remaining cluster D, compute d(C,D).
4. go back to step 1 unless C = X .

Differences between algorithms are mainly the way d(C,D) is computed,
but steps 1 and 2 can have more than one interpretation. When more than
one pair {A,B} realize the minimum of d, the choice can be random or
lexicographic, or d can be transformed such that the choice has no further
consequence [Barthelémy and Guénoche, 1991]. This usually leads to clusters
C larger than A ∪ B. Due to the origin of our data, minimum of d can be
considered as unique, and therefore the possible strategies for steps 1 and 2
are equivalent.

Many strategies for computing the distance between the new cluster
C = A∪B and the other clusters have been explored by Lance and Williams
[Lance and Williams, 1967], and formalized under the formula:

dp(C,D) = αAd
p(A,D) + αBd

p(B,D) + βdp(A,B) + γ|dp(A,D)− dp(B,D)|

Chen [Chen, 1996] restricts the form of α, β and γ in order to explicit
the properties of the indexed hierarchy produced by the algorithm. They are
functions of three parameters:

rA = |A|
|A∪B| rB = |B|

|A∪B| rD = |D|
|A∪B|
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The parameter p is a nonzero real number.

dp(C,D) = α(rA, rD)dp(A,D) + α(rB , rC)dp(B,D) +

β(rA, rB, rC)dp(A,B) + γ(rC)|dp(A,D)− dp(B,D)|

Most usual agglomerative hierarchical classification algorithm can be written
under this formalism:

Algorithm α(u,w) β(u, v, w) γ(w) p
single linkage 1/2 0 −1/2 1
complete linkage 1/2 0 1/2 1
Ward’s method u+w

1+w − w
1+w 0 2

Such an algorithm is called LW (α, β, γ, p). One should notice that the
value of p for single linkage and complete linkage, which is usually 1, can be
any nonzero real number. An LW algorithm is said space-conserving if

min{d(A,D), d(B,D)} 6 d(A ∪B,D) 6 max{d(A,D), d(B,D)}

Single linkage and complete linkage are space conserving. So ultrametrics
are fixed points for these algorithms. Ward method is not space-conserving,
but it is space-dilatating: the dissimilarity produced by the algorithm is
greater than the input, and can be different even if the input dissimilarity is
an ultramtetric.

To produce an admissible hierarchy indexed by f , the condition
A ⊆ B =⇒ f(A) 6 f(B) must be respected. To achieve this goal on
any dissimilarity, the LW algorithm must be monotonic [Dragut, 2001]:

(i) α(u,w) + α(1− u,w) + β(u, 1− u,w) > 1
(ii) α(u,w) > 1
(iii) γ(w) > max{−α(u,w),−α(1 − u,w)}

Many aggregation functions cannot be written as LW functions, but can
be used to produce an indexed hierarchy. It is the case for any internal
aggregation function. A family of AHC algorithms based on median functions
have been studied in [Osswald, 2003].

3 Data

The database contains 26 sonar images provided by the GESMA (Groupe
d’Études Sous-Marine de l’Atlantique). Theses images were obtained with a
Klein 5400 sonar with a resolution of 20 until 30 cm in azimuth and 3 cm in
range. The sea-bottom deep was between 15 m and 40 m.

These 26 sonar images of different sizes (about 92 m width and 92 m to
322 m length) have been segmented in small-images with a size of 64x384
pixels (i.e. of approximately 1152 cm × 1152 cm). We have obtained 4003
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Cobble Ripple

Rock Sand and Rock

Fig. 1. Sonar image example (provided by the GESMA) and extracted and seg-
mented small-images examples.

small-images. On table 1 we show a sonar image and a sample of these
small-images represented in order to obtain a size of 64x64 pixels.

Each small-image is characterized manually by the type of sediment (rock,
cobbles, sand, ripple, silt) or shadow when the information is unknown (see
Table 1). Moreover the existence of more than one kind of sediment on the
small-image is indicated. In this case the type of sediment affected to the
small-image is the most present.

Sediment % code % patchworked

Sand 56.06 s 32.00

Rock 19.91 r 43.29

Ripple 9.34 p 61.50

Shadow 8.02 o 47.66

Silt 5.85 i 35.04

Cobble 0.82 c 84.85

Table 1. Percentage and code of type of sediment

From Table 1 we note that the sand sediment is the most represented one.
The cobbles sediment is particularly few represented. One of the difficulties
of classification step comes from this difference.

There is 38.87% of small-image with more than one kind of sediment
(named patch-worked images).
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Note that such database is quite difficult to realize. Indeed, the expert
has a subjective experience, and can make a mistake for some small-images.

From these small-images, we have extracted texture features. Different
texture extraction methods are presented in [Martin et al., 2004]. Each
method allow to extract some features that can be redundant, but calcu-
lated differently. We choose here to use a wavelet transform.

Indeed, this approach can consider the translation invariance in the direc-
tions. The discrete translation invariant wavelet transform is based on the
choice of the optimal translation for each decomposition level. Each decom-
position level gives four new images on which three features are calculated:
the energy, the entropy and a mean. We keep a decomposition level of 3
giving 63 parameters.

So, each small-image is represented in a 63-space. We have calculated the
euclidean distance between each small-image: it is the initial dissimilarity
used by the AHC algorithms.

4 Usual clustering methods applied on small sonar
images

4.1 Some general properties of AHC algorithms

Dissimilarity induced by the single linkage algorithm has the property of be-
ing subdominant: it is the greatest ultrametric smaller than the original dis-
similarity. This constraint often leads to more efficient algorithms [Brucker,
2001]. In the case of ultrametrics, it leads to an algorithm in O(n2) operations
instead of O(n3) for the other LW algorithms.

The single linkage hierarchy is also known to have an unbalancing effect:
paths from leaves to root have often very different lengths. When A and B
are two non-trivial clusters, we also often have A ⊂ B or B ⊂ A. So it is hard
to separate objects into classes: partitions obtained from such a hierarchy are
composed of one huge class, and many very small ones.

Other AHC algorithm are not well-defined: applying twice the complete
linkage on a dataset may produce two distinct hierarchies, when the dis-
similarity d between clusters admits two minimums, and choosing a random
one can modify the hierarchy obtained. As our data is composed of floating
numbers calculated from real sonar data, the probability of having two min-
imum in our dissimilarity matrix is nearly 0, so the LW algorithm we use is
univocal, and produce binary hierarchies.

4.2 Exemples

Applied to our data, single linkage, complete linkage and Ward algorithm
give the trees of figure 2. Index used for the representation is cluster size,
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for the real index does not allow us to distinguish all the clusters, and the
following treatments will only use the clustering structure, not the indices.

We proceed by taking k small-images of each class (k is 4 for examples of
figure 2, 12 or 15 for figure 3 data). The proportion of patchworked images,
when allowed, is the same than in the original data. As there are only 5 not
patchworked cobble images, we consider classes of different size when dealing
with larger sets of not patchworked images.

patchworked images not patchworked images
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Fig. 2. Usual AHC algorithms applied on some small-images

5 Hierarchy quality

We consider that a hierarchy is efficient for seabed characterization if it con-
tains clusters that are representative of each sediment. An expert has defined
six classes M1, . . . , M6 of small-images, partitionning our data into six sedi-
ment classes. We search in the hierarchy H for clusters A that maximize the
quality of an association pattern A↔Mi, for i between 1 and 6.

Our concern is how the clusters of the hierarchy can be used as natural
clusters for the data. We limit our qualiy measures to the shape of the hierar-
chy, not its index. A standard (quadratic) distance between the ultrametric
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induced by the AHC algorithm and the original distance would not help us
to reach this goal. As we will see later, Ward’s method leads to the most effi-
cient hierarchies, but is space-dilatating. Such a measure would have favored
a AHC algorithm between single linkage and complete linkage.

5.1 Measure of hierarchy quality

Tan et al. [Tan et al., 2002] have made an exhaustive study of the measures
used to measure the quality of association patterns. To obtain a simple
measure, depending as little as possible on the size of the dataset, and possible
to combine by multiplication, we choose the Jaccard measure, where P (A) is
the proportion of elements of A in the dataset:

ζ(A↔Mi) =
P (A ∩Mi)

P (A) + P (Mi)− P (A ∩Mi)

Combined on a hierarchy, we obtain the quality measure q(H). Bold
clusters on figure 2 are the clusters maximizing the ζ measure for at least one
type of sediment.

q(H) =

6∏

i=1

max
A∈H

ζ(A↔Mi)

What is used in the characterization step is not usually a pattern
A ↔ Mi but a rule A → Mi. As we do not need (and often not want to
have) a symmetrical measure for A and Mi, we should use an association
rule measure instead of an association pattern measure.

As we want to avoid too small rules, i.e. A → Mi with |A| � |Mi|, our
measure must take into account the unexplained examples, i.e. elements of

Mi which are not in A. The Confidence measure (c((A↔Mi) = 1− P (A∩Mi)
P (A) )

and all the other similar measures are not accurate to achieve this duty (see
Vaillant et al., [Vaillant et al., 2004]). The Piatetsky-Shapiro measure, a non-
symmetrical extension of the support measure, seem to be the most accurate:
PS(A → Mi) = P (A)P (Mi) − P (A,Mi) where Mi is the complementary of
Mi.

5.2 Parameters for Lance-Williams algorithms

Lance and Williams functions associated to single linkage, complete linkage
and Ward’s method are given section 2.

We build a continuous family of LW algorithms containing those three
usual methods. In order to guarantee that α(u,w) + α(1 − u,w) + β(u, 1 −
u,w) > 1 and therefore that the AHC algorithm obtained is monotonic, we
use an intermediary link:
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αi(u,w) =
u+ w/2

1 + w
βi(u, 1− u,w) = 0 γi(w) = 0 pi = 2

We use three segments of the space of admissible monotonic LW algo-
rithms. The parameter x varies in [0, 1].

α(u,w) β(u, v, w) γ(w) p

Single to
Complete

1/2 0 x− 1/2 1

Complete to
Intermediary

(1− x)/2+
x(u+ w/2)/(1 + w)

0 (x − 1)/2 2

Intermediary
to Ward

(u+ (1 + x)w/2)/(1 + w) −xw/(1 + w) 0 2

We apply this family to random restrictions of our set of small-images,
composed of pure small-images or a combination of pure and patchworked
small-images. We estimate the efficiency of the LW functions on these re-
strictions.

The quality measure relies on the form of the hierarchy: presence or
absence of a cluster. LetH(x) be the hierarchy produced by the LW algorithm
of parameter x. There exists reals x1 and x2 such that x1 < x < x2 and for
each t ∈]x1, x2[ we haveH(t) = H(x). Therefore the quality measure q(H(x))
is locally constant.

On figure 3 we can note the Ward’s method is the best LW algorithm of
the family considered to classify our data. It is not possible to extend the
β function joining the intermediary linkage to Ward to x greater than 1, for
a value of β lesser than −w/(1 + w) would not respect the (i) condition of
monotonicity.

5.3 Use of optimized AHC algorithm for texture identification

To use the hierarchy as a characterization tool, we first optimize the LW
functions on a learning set. We merge this set with small-images whose class
is unknown, and we build a hierarchy on this new set, with the same LW
functions. Then we classify the unknown elements belonging to an optimal
class of a sediment type.

We use a set of 72 elements for learning purpose (12 of each sediment
type), allowing patchworked small-images, and we add 228 untagged ele-
ments. The procedure give us good results for silt and shadow. 100% of
small-images tagged by silt are effectivly silt, and 68% for shadow. Among
the 228 small-images to classify, 41 received a correct tag, 101 received one
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90 patchworked small-images, Jaccard measure

90 patchworked small-images, P.-S. measure

72 patchworked small-images, P.-S. measure

65 not patchworked small-images, Jaccard measure

single linkage complete linkage intermediary Ward

Fig. 3. Hierarchy quality

correct tag and one other tag, 75 received no correct tag and 11 received no
tag at all.

Most unclassified small-images are silt (but most silt is well-classified);
most ripples small-images are not correctly classified, but Martin et al.
showed that the wavelets are not an efficient features set to discriminate
ripples, as it is not rotation invariant.

6 Conclusion

This approach mixes non-supervised classification methods and supervised
classification goals. The supervised context allows us to optimize the AHC
parameters, and the tagging method used allow an image to receive one,
zero or more than one tag. In a system were several classifiers collaborate,
powerful fusion algorithms may use this information.

Here, Ward’s method is the most accurate. This may be because of the
way dissimilarity is calculated: inertia is closely related to euclidean model.
Maybe the fact our classes are of similar size is the origin: Ward’s criteria is
space-dilating, so it tends to build balanced hierarchies.
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On the Fitting and Consensus

of Classification Systems
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Abstract. Classification systems are families of subsets (classes) of a fixed set S
that are closed for intersection and contain S and every single element subset of S.
The main problem conidered here is that of the consensus of such systems. We first
briefly mention results issued from lattice theory. Then, we consider the Adams
approach for the consensus of hierarchies and point out its relation with closures,
implications (as they appear in relational databases) and nestings. We show that
Adams consensus correspond to the research of a particular subdominant nesting
(or overhanging) relation, and generalize the corresponding fitting problem.
Keywords: Closure system, Classification system, Implication, Overhanging or-
der, Lattice, Hierarchy.

1 Introduction

Let S be a finite set. We consider here the aggregation of a profile
F∗ = (F1,F2, ...,Fk) of classifications on S into a consensus classification
F = c(F∗). A classification will be here a family of subsets (classes)
containing the whole set S and every one-element subset of S (singleton),
and closed under intersection. Equivalently, classification systems are the
closure systems of the literature that include all the singletons.

There are two main purposes for the research of such a consensus. First,
the classification of a set S described by variables of different types. Each
qualitative or quantitative variable v induces a partition or a quasi-order
on S, which in turn induces a classification system. With such a common
formalization for various structures, a set of k variables leads to a profile F∗

of k such systems. The idea is to aggregate the elements of F∗ into a unique
system c(F∗) that summarize the profile in some useful sense (see [Domenach
and Leclerc, 2004b] for more details).

The other reason is that several consensus problems already studied in the
literature are particular cases of the consensus of closure systems. The basic
example is provided by hierarchies, where, frequently in a purpose of phylo-
genetic reconstruction, many works have followed those of [Adams III, 1972]
and [Margush and McMorris, 1981] (see the survey [Leclerc, 1998]). Other
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usual classification models correspond, directly or after straightforward com-
pletions, to closure systems. Thus, several other classical consensus problems
are also particular cases, with restricted domains or codomains (or both), of
the consensus of classification systems. An example is the aggregation of
partitions [Régnier, 1965], [Régnier, 1983], [Mirkin, 1975], [Barthélemy and
Leclerc, 1995].

2 Classifications and closure systems

Given a finite set S, and its power set P(S), a classification system on S
is a family F ⊆ P(S) of classes (subsets) of S. A class C ∈ F may be a
set of elements sharing some common properties, or close to each other in
some sense. Then the following conditions, although not always required,
may appear as natural ones :

(C1) S ∈ F ;

(C2) C,C′ ∈ F ⇒ C ∩ C′ ∈ F ;

(C3) for all s ∈ S, {s} ∈ C.

Then, from (C2) and (C3), we have the empty class in F . This property,
although not usual, is appropriate to obtain structural coherence. A family
F which satisfies only (C1) and (C2) is a so-called closure system (or Moore
family).

The most usual classification models correspond to such classification
systems, sometimes with the addition of some trivial classes. For instance,
the addition of the empty class to a hierarchy H, or the addition of S, the
empty set and the lacking singletons to a partition provide classification
systems. Pyramids (or quasi-hierarchies) and weak hierarchies, in their
intersection-closed variants, are further examples.

We find in the literature three notions (among many others) which all
are in one-to-one correspondence with closure systems (cf. [Caspard and
Monjardet, 2003]).

A closure operator ϕ on S is a mapping on P(S) satisfying the three
properties of isotony (for all A,B ⊆ S, A ⊆ B implies ϕ(A) ⊆ ϕ(B)),
extensivity (for all A ⊆ S, A ⊆ ϕ(A)) and idempotence (for all A ⊆ S,
ϕ(ϕ(A)) = ϕ(A)). The elements of the image Fϕ = ϕ(P(S)) of P(S) by
ϕ are the closed (by ϕ) subsets of S, and Fϕ is a closure system on S.
Conversely, a closure operator ϕF on S is associated to any closure system F
on S by ϕF (A) =

⋂{F ∈ F : A ⊆ F} (i.e., from (C1) and (C2), the smallest
class of F containing A exists and is ϕF (A).

A complete implication system on S, denoted by I, →I or simply →, is a
binary relation on P(S) satisfying, for all A,B,C,D ⊆ S:
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(I1) B ⊆ A implies A→ B;
(I2) A→ B and B → C imply A→ C;
(I3) A→ B and C → D imply A ∪ C → B ∪D.

An overhanging order (nesting order in some contexts) on S is a binary
relation on P(S) too, denoted as Œ and satisfying, for all A,B,C ⊆ S:

(O1) A Œ B implies A ⊂ B;
(O2) A ⊂ B ⊂ C implies A Œ C ⇐⇒ [A Œ B or B Œ C];
(O3) A Œ A ∪B implies A ∩B Œ B.

It is not difficult to see that Œ is then a (partial) order on P(S). The sets
of all closure systems, closure operators, complete implication systems and
overhanging orders on S are respectively denoted as M, C, I and O. They
are in one-to-one correspondence to each other. Besides the correspondence
recalled above, we give hereunder two further correspondences, the first one
due to [Armstrong, 1974], and the second pointed out in [Domenach and
Leclerc, 2004]: for all A,B ⊆ S,

A→ B ⇐⇒ B ⊆ ϕ(A)
A Œ B ⇐⇒ A ⊂ B and ϕ(A) ⊂ ϕ(B)

So, in a classification system, A → B means that every class including
the subset A of S also includes B, while A Œ B means that B properly in-
cludes A and, moreover, there exists at least one classs including A and not B.

Further conditions correspond to particular classes of systems. For in-
stance, an overhanging order corresponds to a classification system if and
only if it satisfies the following condition (OS) below, and to a hierarchy
if, moreover, the following condition (OT) replaces (O3) [Adams III, 1986],
[Domenach and Leclerc, 2004]: for all A,B,C ⊆ S, s ∈ S,

(OS) s /∈ A implies ∅ Œ {s} Œ A ∪ {s};
(OT) A Œ C and B Œ C imply A ∪B Œ C or A ∩B = ∅.

3 Consensus in the lattice of closure systems

The sets M, C, I and O are naturally ordered: M by set inclusion on
P(P(S)), I and O by set inclusion on P(P(S)× P(S)) = P((P(S))2), C by
the poinwise order on mappings: ϕ ≤ ϕ′ if ϕ(A) ⊆ ϕ′(A) for all A ⊆ S. The
resulting orderings are either isomorphic or dually isomorphic: if ϕ, I and Œ
(respectively ϕ′, I ′ and Œ’) are, respectively, the closure operator, complete
implication system and overhanging order associated to a given closure sys-
tem F (respectively to F ′), one has F ⊆ F ′ ⇐⇒ ϕ′ ≤ ϕ ⇐⇒ I ′ ⊆ I ⇐⇒
Œ ⊆ Œ′ (cf. [Caspard and Monjardet, 2003] and [Domenach and Leclerc,
2004b] for the case of overhangings).

The sets M and I are closed under set intersection in, respectively,
P(P(S)) and P((P(S))2), and the set O is closed under set union in
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P((P(S))2). The greatest elements of M, I and O are, respectively, P(S),
P(S))2 and {(A,B) : A,B ⊆ S,A ⊂ B}, whereas their lowest elements are,
respectively, {S}, {(A,B) : A,B ⊆ S,B ⊆ A} and the empty relation on
P(S). So, M and I are themselves closure systems on, respectively, P(S)
and P(S))2).

Ordered by inclusion, any closure system F is a lattice (F ,∨,∩), with
(F ∨ F ′ = ϕ(F ∪ F ′) for all closed subsets F, F ′ ∈ F . The existence of such
a lattice structure has important consequences for the consensus problem as
described above, that is the aggregation of any profile F∗ = (F1,F2, ...,Fk)
of closure systems into a closure system F = c(F∗). Previous results on the
consensus in lattice structures may be found, among others, in [Monjardet,
1990], [Barthélemy and M.F., 1991] and [Leclerc, 1994], with significant
issues in particular cases like those of hierarchies ([Barthélemy et al., 1986]),
partitions ([Barthélemy and Leclerc, 1995]) or orders ([Leclerc, 2003]).
Results for the particular case of closure systems are given in [Raderanirina,
2001] and [Monjardet and Raderanirina, 2004].

A federation on K is a family K of subsets of K = {1, ..., k} satisfying
[L ∈ K, L′ ⊇ L]⇒ [L′ ∈ K]. We then define a federation consensus function
cK associated to the federation K by cK(F∗) =

∨
L∈K(

⋂
i∈L Fi). Especially,

K is an oligarchic consensus function if K = {L ⊆ K : L ⊇ L0} for a fixed
subset L0 of K.

Another class of consensus functions consists of the so-called quota rules
cq = cK, where K = {L ∈ K : |L| ≥ q} for a given number q (0 ≤ q ≤ k).
Equivalently, cq(F∗) =

∨{A ⊆ S : |{i ∈ K : A ∈ Fi}| ≥ q} is the closure
system generated by those classes that are present in at least q of the Fi’s.
Especially, for q = k, the quota rule is the same as the oligarchie rule obtained
with L0 = K.

The above definition of federation consensus functions needs the set K
(and, so, the integer k) to be fixed. Such a constraint is easily removed for
quota rules by replacing the number q with a proportion (see [Barthélemy and
M.F., 1991]). Note also that, if all the closure systems in F∗ are classification
systems, then the federation consensus system cK(F∗) is is still a classi-
fication system, for any federation K. The same remark holds for quota rules.

An axiomatic approach (cf. [Day and McMorris, 2003]) of the consensus
problem on M allowed to characterize oligarchic rules ([Raderanirina, 2001]),
whereas a metric approach, based on the symmetric difference metric ∂ on
M defined by ∂(F ,F ′) = |F4F ′| leads to the following result [Leclerc,
1994], where a median of F∗ is a closure system M ∈ M minimizing
ρ(M,F∗) =

∑
1≤i≤k ∂(M,Fi).
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Theorem. For any profile F∗of M, and any median Mof F∗, the
inclusion M⊆ ck/2(F∗)holds.

In other terms, any class of a median closure system belongs to at least
half of the closure systems of the profile. It is not difficult to see that this
result remains valid when considering classification systems.

4 A fitting result based on implications and
overhangings

Federation consensus functions cK take only in account the presence or
absence of classes in a qualified part of the elements of a profile. But it has
been observed, in the case of hierarchies, that we have there a limitation
which can prevent us to recognize common features in the elements of the
profile, even evident ones. Moreover, there is a risk that a consensus based
on presence of entire classes lacks of interest. For instance, if no untrivial
class (other than the empty class, the singletons, and S), appears in at
least half of the elements of a profile, the approaches evoked in the previous
section lead to a consensus classification system with only the trivial classes,
that is providing no information. For reasons of this type, [Adams III,
1986] developed a consensus method on hierarchies based on intersection of
classes, and caracterized it in terms of the overhanging orders (called there
nestings) associated to the involved hierarchies. The following result is a
generalization of an Adams one. It concerns the more general problem of
the fitting of an overhanging order to a given binary relation Ξ on P(S).
The only condition on Ξ is: (A,B) ∈ Ξ implies A ⊂ B.

For the proof of the next results, we need some further definitions on
lattices, especially those of closed sets. First, given two closed sets C,C′

in a closure system F , C is covered by C′ (denoted by C ≺ C′) if, for any
C′′ ∈ F , C ⊆ C′′ ⊆ C′ implies C′′ = C or C′′ = C′. A closed set C is
meet irreducible if it is covered by a unique closed set C+ in F . These meet-
irreducibles generate the whole closure system F , in the sense that every
C ∈ F is obtained as an intersection of such elements. Now, the covering
relation of the closure system M is characterized as follows: for F ,F ′ ∈ M,
F ≺ F ′ if and only if F = F ′ − {C} for some meet-irreducible C of F ′ (cf.
[Caspard and Monjardet, 2003]).

Consider the following two properties of a closure system F and its over-
hanging order Œ:

(AΞ1) Ξ ⊆ Œ, (preservation of Ξ)

(AΞ2) for any meet-irreducible C of F , (C,C+) ∈ Ξ. (qualified overhangings)

Theorem. Let F ,F ′ ∈M. If both Fand F ′satisfy Conditions (AΞ1)and
(AΞ2), then F = F ′.
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Proof. Observe first that the set S is in both F and F ′. If F 6= F ′,
the symmetric difference F4F ′ is not empty. Let C be a maximal class in
F4F ′. Then, C 6= S and it may be assumed without loss of generality that
C belongs to F (and, so, C does not belong to F ′). If C was not a meet-
irreducible element of F , it would be an intersection of meet-irreducibles, all
belonging to both F and F ′ and, so, C would belong to F ′.

Thus, C is a meet-irreducible, covered by a unique element C+ of F ,
with C+ ∈ F ′. By (AΞ2), (C,C+) ∈ Ξ and, by (AΞ1), C Œ′ C+ (where
Œ′ is the overhanging order associated to F ′). Set C′ = ϕ′(C) (where ϕ′ is
the closure operator associated to F ′). We have C ⊂ C′, since C ∈ F ′, and
C′ Œ′C+, since C′ = ϕ′(C) = ϕ′(C′) ⊂ ϕ′(C+) = C+. But, according to
the hypotheses, C ⊂ C′ implies C′ ∈ F , with C ⊂ C′ ⊂ C+, a contradiction
with the hypothesis that C+ covers C in F .

In the particular case where F1,F2, ...,Fk are hierarchies on S, and Ξ =⋂
1≤i≤k Œi (where, for all i = 1, ..., k, Œi is the overhanging/nesting order

associated with Fi), we find a result implying the caracterization by Adams
of his consensus method:

Corollary 1. With the relation Ξ defined above, the Adams consensus
hierarchy is the only closure system satisfying conditions (AΞ1)and (AΞ2).

It is worth noticing that Adams results point out a case where it
actually exists an overhanging order Œ satisfying conditions (AΞ1) and
(AΞ2). Another case appears in [Semple and Steel, 2000] in the reseach of
a ”supertree”. We exhibit other such cases in a work in preparation (for
instance when Ξ is a relation satisfying conditions (O1) and (O2)). We
end by the following result, where the solution to (AΞ1) and (AΞ2) ap-
pears, when it exists, to be actually an approximation of the given relation Ξ.

Corollary 2. Let Ξ be a binary relation on P(S) and Œ an overhanging
order satisfying conditions (AΞ1) and (AΞ2). Then, for any overhanging
order Œ′, the inclusions Ξ ⊆ Œ′ ⊆ Œ imply Œ′ = Œ.

Proof. Assume Ξ ⊆ Œ′ ⊂ Œ. Equivalently, if F ′ and F are the closure
systems associated, respectively, to Œ′ and to Œ, there exists a meet
irreducible C of F such that F ′ ⊆ F − {C}. It follows that (C,C+) /∈ Œ′,
whereas, according to (AΞ2), (C,C+) ∈ Ξ. This is a contradiction with the
hypothesis Ξ ⊆ Œ′.

In the talk, we present examples where the data consist of a profile F∗

of classification systems. In particular, profiles of hierarchies or phylogenies
are considered. Now the above results prompt us to start from a relation Ξ
obtained as another function of the Œi’s than intersection. We are then able
to obtain a consensus classification system which preserve more information
from the profile than the Adams one, but is no longer a hierarchy.
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Abstract. In this paper, we compare several distance indices between partitions
on the same set. First, we build a set Pk(P ) of partitions close to each others
by applying to an initial partition P , k transfers of one element from its class to
another. Then we compare the distributions of several indices of distance between
partitions of Pk(P ).
Keywords: distance index, partition.

1 Introduction

The comparison of partitions is a central topic in clustering, as well for com-
paring partitioning algorithms as for classifying nominal variables. The litera-
ture abounds in indices defined by multiple authors to compare two partitions
P and Q on the same set X . The most used are: the Rand index [Rand,
1971], the Jaccard index and the Rand index corrected for chance by Hubert
and Arabie [Hubert and Arabie, 1985]. We also wanted to study the Wallace
index [Wallace, 1983] and the normalized index of Lerman [Lerman, 1981].
The comparison of these indices is only interesting (in a practical point of
view) if we consider close partitions, which differ randomly one from each
others as it is mentioned by Youness and Saporta [Youness and Saporta,
2004]. They generate such partitions according to the latent class model
[Bartholomew and Knott, 1999] adapted to an euclidian representation of
the elements of X . We develop here a more general approach, independent
of the representation space of X .

In 1964, Régnier proposed a distance between partitions which fits this
type of study [Régnier, 1964]. It is the minimum number of transfers of one
element from its class to another (eventually empty) to turn P into Q. We
have recently studied this measure [Charon et al., 2005] and called it the
transfer distance. We compare the distributions of the distance indices above
on partitions at k transfers from P . If k is small enough, these partitions are
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close to P since they represent only a small percentage α of all the partitions
ofX . This permits to define the value kα of the maximum number of transfers
allowed, and to build the set Pkα(P ) of random partitions obtained by at most
kα transfers from P .

2 The transfer distance

Let P and Q be two partitions on the set X of n elements with respectively
p and q classes ; we will admit that p ≤ q.

P = {C1, .., Cp} and Q = {C′
1, .., C

′
q}.

The minimum number of transfers to turn P into Q, denoted θ(P,Q), is
obtained by establishing a bijection between the classes of P and those of
Q keeping a maximum number of elements in matching classes, those that
don’t need to be moved. Consequently, we begin to add q − p empty classes
to P , so that P is considered as a partition with q classes.

Let Υ be the mapping from P × Q −→ N which associates to one pair
of classes the cardinal of their intersection. Classically, ni,j = |Ci ∩ C′

j | and
ni = |Ci| and n′

j = |C′
j | denote the cardinals of the classes. Let ∆ be the

mapping which associates to each pair of classes (Ci, C
′
j) the cardinal of their

symmetrical difference, noted δi,j . We have δ(i, j) = ni + n′
j − 2 × ni,j . So

we consider the complete bipartite graph Kq,q whose vertices are the classes
of P and Q, with edges weighted either by Υ or by ∆.

Proposition 1 ([Day, 1981]) The bijection minimizing the number of
transfers between two partitions with q classes P and Q corresponds to a
matching of maximum weight w1 in Kq,q weighted by Υ or, equivalently,
to a matching of minimum weight w2 in Kq,q weighted by ∆; moreover,
θ(P,Q) = n− w1 = w2

2 .

Establishing the bipartite graph is inO(n2). The weighted matching prob-
lem in a complete bipartite graph can be solved by an assignment method well
known in operational research [Kuhn, 1955], [Kuhn, 1956]. The algorithm has
a polynomial complexity in O(q3). We won’t go into further details, given for
instance in [Faure et al., 2000]. A computer program (in C) can be requested
to the authors. We just develop an example of computation of the transfer
distance.

Example 1 We consider the two partitions P = (1, 2, 3|4, 5, 6|7, 8) and Q =
(1, 3, 5, 6|2, 7|4|8). The two following tables correspond to the intersections
and to the symmetrical differences of the classes of P and Q. Two extreme
matchings are edited in bold. Each one gives θ(P,Q) = 4.
To the maximum weighted matching in the table Υ corresponds the series of

4 transfers: (1, 2, 3|4, 5, 6|7, 8) → (1, 3|4, 5, 6|2, 7, 8) → (1, 3, 5|4, 6|2, 7, 8) →
(1, 3, 5, 6|4|2, 7, 8) → (1, 3, 5, 6|4|2, 7|8).
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Υ 1,3,5,6 2,7 4 8 ∆ 1,3,5,6 2,7 4 8

1,2,3 2 1 0 0 3 3 4 4

4,5,6 2 0 1 0 3 5 2 4

7,8 0 1 0 1 6 2 3 1

∅ 0 0 0 0 4 2 1 1

To the minimum weighted matching in the table Delta corresponds another
optimal series: (1, 2, 3|4, 5, 6|7, 8) → (1, 2, 3, 7|4, 5, 6|8) → (2, 3, 7|1, 4, 5, 6|8)
→ (2, 7|1, 3, 4, 5, 6|8) → (2, 7|1, 3, 5, 6|8|4).

3 Close partitions in terms of transfers

We note Pn the set of partitions on a set of n elements and Pk(P ) the set of
partitions at k transfers from P and P≤k(P ) the set of partitions at at most
k transfers from P .

Pk(P ) = {Q ∈ Pn such that θ(P,Q) = k}

P≤k(P ) = {Q ∈ Pn such that θ(P,Q) ≤ k} =
⋃

0≤i≤k
Pi(P )

Statistically, we consider that a partition Q is close to P at threshold α if the
probability of observing a partition closer to P than θ(P,Q) is lower than or
equal to α. The matter is then to know how many partitions are within a k
radius from P . For k = 0, there is just one partition, P itself, otherwise θ
would’nt be a distance. We can easily enumerate P1(P ), but for larger k it
becomes difficult. We call critical value of the partition P , at threshold α,
the greatest number of transfers kα such as

|P≤kα(P )|
|Pn|

≤ α.

While n ≤ 12, we can enumerate all the partitions in Pn and we com-
pute |Pk(P )|. For that, we use the procedure NexEqu in [Nijenhuis and
Wilf, 1978]. Each partition is coded by the vector of the class number to
which each element belongs. The algorithm builds the next partition for the
lexicographic order on this code, starting from the partition with a single
class.

For n > 12, there are too many partitions to realize an exhaustive enu-
meration. Then we select at random a large number of partitions, to be
compared to P to estimate |P≤k(P )|/|Pn|. To obtain a correct result, the
partitions must be equiprobable; the book of Nijenhuis and Wilf provides
also such a procedure (RandEqu).

Thus we measure a frequency f in order to estimate a proportion p. We
want to approximate p = 0.1 for a risk ρ fixed (ρ = 5%) and a gap δ between
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f and p judged as acceptable (δ = 0.01). For these values, we can establish
the size of the sample E by the classical formula:

t(ρ)

√
f(1− f)

|E| ≤ δ

in which t(ρ) is given by the normal distribution of Gauss [Brown et al., 2002].
We obtain that 3600 trials should be carried out, which are quite feasible.
We can notice that this number decreases with p (when p < 0.5) and it is
independent of n.

Example 2 For n = 12, there are |P12| = 4213597 partitions that can be
compared to P in order to establish the distribution of |Pk(P )| according
to k. For P = {1, 2, 3, 4|5, 6, 7|8, 9|10, 11|12}, as for all the partitions with
classes having the same cardinality, the number of partitions at 0, . . . , 8 trans-
fers from P are respectively 1, 57, 1429, 20275, 171736, 825558, 1871661,
1262358, 60522 and 0 beyond. The cumulated proportions in % are re-
spectively 0.0, 0.0, 0.0, 0.5, 4.6, 24.2, 68.6, 99.6,and 100. For α = .1 the
critical value is 4; indeed there are just 4.6% of the partitions that are at
most at 4 transfers from P , while for 5 transfers, there are 24.2%. The
cumulated frequencies computed from P and 5000 random partitions are:
0.0, 0.0, 0.1, 0.5, 4.4, 23.9, 68.7, 98.3 and 100. Thus the critical value computed
by sampling is also equal to 4.

4 Indices of proximity between partitions

The comparison of partitions is based on the pairs of elements of X . Two
elements x and y can be joined together or separated in P and Q. The
two partitions agree on (x, y) if these elements are simultaneously joined or
separated in P and Q. On the other hand there is a disagreement if x and y
are joined in one of them and separated in the other. Let r be the number of
pairs simultaneously joined together, s the number of pairs simultaneously
separated, an u (resp. v) the number of pairs joined (resp. separated) in P
and separated (resp. joined) in Q.

According to the previous notations, we have r =
∑

i,j
ni,j(ni,j−1)

2 . Equiv-
alent formulas for s, u and v appear in several papers. We will note π(P ) the

set of joined pairs in P , that is to say |π(P )| = ∑i=1,p
ni(ni−1)

2 .

4.1 The Rand index

The Rand index [Rand, 1971], noted R, is simply the percentage of pairs
for which there is an agreement. It belongs to [0, 1] and 1 − R(P,Q) is the
symmetrical difference distance between π(P ) and π(Q).

R(P,Q) =
r + s

n(n− 1)/2
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4.2 The Jaccard index

In the Rand index, the pairs simultaneously joined or separated are counted
in the same way. However, partitions are often interpreted as classes of joined
elements, the separations being the consequences of this clustering. We use
then the Jaccard index (1908), noted J , which does not take into account the
s simultaneous separations:

J(P,Q) =
r

r + u+ v

4.3 The corrected Rand index

In their paper of 1985 [Hubert and Arabie, 1985], they noticed that the
Rand index is not corrected for chance that is equal to zero for random
partitions having the same number of objects in each class. They introduced
the corrected Rand index, whose expectation is equal to zero, noted here HA,
in homage to the authors.

The corrected Rand index is based on three values: the number r of com-
mon joined pairs in P and Q, the expected value Exp(r) and the maximum
value Max(r) of this index, among the partitions of the same type as P and
Q. It leads to the formula

HA(P,Q) =
r − Exp(r)

Max(r) − Exp(r)

with Exp(r) = |π(P )|×|π(Q)|
n(n−1)/2 and Max(r) = 1

2 (|π(P )| + |π(Q)|). This maxi-

mum value is questionable since the number of common joined pairs is neces-
sarily bounded by inf{|π(P )|, |π(Q)|}, but Max(r) insures that the maximum
value of HA is 1 when the two partitions are identical. On the other hand
this index can take negative values.

4.4 The Wallace index

This index is very natural, it’s the number of joined pairs common to P and
Q divided by the number of possible pairs [Wallace, 1983]. This last quantity
depends on the partition of reference and, if we don’t want to favour neither
P nor Q, the geometrical average is used.

W (P,Q) =
r

sqrt(|π(P )| × |π(Q)|)
.
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4.5 The normalized Lerman index

The Lerman index(denoted ICL) is the difference between the number of
simultaneously joined pairs and its expectation, divided by its standard de-
viation [Lerman, 1988].

ICL(P,Q) =
r − Exp(r)√

V ar(r)

These two values are computed on the set of pairs of partitions having the
same types as P and Q; they are defined according to the cardinals of the
classes. The expected value of r already appears in the formula given by
Hubert and Arabie and its variance V ar(r) is given by:

V1(P )V1(Q)

2n(n− 1)
+

V2(P )V2(Q)

n(n− 1)(n− 2)
+

V3(P )V3(Q)

4n(n− 1)(n− 2)(n− 3)
− [

V1(P )V1(Q)

2n(n− 1)
]2

where V1(P ) =
∑

i=1,p ni(ni − 1), V2(P ) =
∑

i=1,p ni(ni − 1)(ni − 2) and

V3(P ) = [
∑

i=1,p

ni(ni − 1)]2 − 2
∑

i=1,p

ni(ni − 1)(2ni − 3)],

with similar expressions for V1(Q), V2(Q) and V3(Q), in which the sums are
computed on q classes and the ni are replaced by n′

i.
The index value is not defined when V ar(r) = 0, that is when one of

the partitions has a single class or n singletons. As for the HA index, it
can be negative, but it is not upper bounded. Finally, Lerman proposes a
normalized index defined as a correlation coefficient given by the formula:

ILN(P,Q) =
ICL(P,Q)√

ICL(P, P )× ICL(Q,Q)

5 Comparison of indices

Let P be a partition on X with p classes, defined by its type, that is to say
by the cardinal of its classes. When n = |X | ≤ 12, we enumerate the sets
Pk(P ), then we evaluate the minimum and maximum values of each index
above between P and any Q belonging to Pk(P ). The table 1 contains the
results for P = (1, 2, 3, 4, 5|6, 7, 8, 9, 10). The partitions being at at most 3
transfers represent 1.7% of the 115975 partitions on 10 elements.

One can observe that, for each index, the maximum value obtained for
partitions at 5 transfers are greater than the minimum value obtained for
2 transfers. Moreover the minimum values at 3 transfers are very small
and don’t reflect the closeness of these partitions and P . Finally, for the
normalized Lerman index, the maximum values do not decrease with k and
the closest partition from P is at 4 transfers.
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Nb. of transfers 1 2 3 4 5 6 7 8

Nb. of partitions 20 225 1720 9112 31361 54490 17500 1546

J min .64 .43 .32 .22 .15 .08 .04 0.0

J max .80 .70 .60 .50 .44 .21 .10 0.0

R min .80 .64 .53 .47 .44 .44 .44 .44

R max .91 .87 .82 .78 .69 .64 .60 .56

HA min .60 .28 .06 -.08 -.12 -.17 -.19 -.22

HA max .82 .72 .63 .53 .32 .22 .11 0.0

W min .78 .60 .49 .37 .28 .16 .09 0.0

W max .89 .84 .77 .71 .67 .45 .32 0.0

ILN min .61 .28 .06 -.08 -.20 -.20 -.23 -.32

ILN max .86 .84 .95 1.15 .67 .39 .25 -.14

Table 1. Distribution of the number of partitions at k transfers from P and extreme
values of the distance indices

.

In the case n > 12, we cannot enumerate Pn anymore. Then, in order to
compare very close partitions in the neighborhood of a given partition P ,

• we compute by sampling the critical number of transfers k5%;
• we build a set Qk(P ) of 100 partitions Q randomly selected such as
θ(P,Q) ≤ k, with k ≤ k5%;
• we compare all the partitions of Qk(P ) two by two and measure the

average value and the standard deviation of each studied index.

The partitions close to P are obtained by selecting recursively at random
one element; if this element is not alone in its class, its new class number is
selected between 1 and p+1, and the number of classes is updated. Here, we
restrict our study at the single partition of 100 elements spread in 5 balanced
classes of 20 elements each. The critical value at 5% is 83, that is to say that
only 5% of the partitions with 100 elements are at less at 83 transfers from
the balanced partition with 5 classes.

The figure 1 represents the computed averages and standard deviations
of each index for k ∈ [5; kα], with a step of 5.

We can see that the indices decrease when k increases since the partitions
are less close to each other. The indices of Jaccard, corrected Rand , Wallace,
and Lerman have approximately the same behavior: they are high when k is
small and decrease near to 0 when k = kα. But they reflect the closeness of
partitions only when k is very small. Among these indices the Jaccard index
seems to be the most accurate since it has the lowest standard deviation.
The Rand index has a different behavior: its values stays above 0,8 whatever
is k. Two pairs of partitions at 40 and 90 transfers from each others can have
the same value.
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Fig. 1. Average and standard deviation of the distance indices between partitions
of Q

We have obtained the same kind of results for other initial partitions,
balanced or not. Our conclusion is that the Rand index isn’t very satisfying
for the comparison of close partitions. Among the others, the Jaccard index
seems the best, followed by the Wallace index, because they have the lowest
standard deviation. The corrected Rand index and the normalized Lerman
index share similar average values but the extreme values of the normalized
Lerman index make it less satisfying.
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Abstract. “Kernel Logistic PLS” (KL-PLS), a new tool for classification with
performances similar to the most powerful statistical methods is described in this
paper. KL-PLS is based on the principles of PLS generalized regression and learning
via kernel. The successions of simple regressions, simple logistic regression and
multiple logistic regressions on a small number of uncorrelated variables that are
computed within KL-PLS algorithm are convenient for the management of very
high dimensional data. The algorithm was applied to a variety of benchmark data
sets for classification and in all cases, KL-PLS demonstrates its competitiveness
with other state-of-art classification method. Furthermore, leaning on statistical
tests related to the logistic regression, KL-PLS allows the systematic detection of
data points close to “support vectors” of SVM and thus reduces the computational
charges of the SVM training algorithm without significant loss of accuracy.
Keywords: Classification, Kernel, PLS Generalized Regression.

1 Introduction

Given a set of labeled experiments
{
(xi, yi)

}
i=1,...,n

, xi ∈ Rp×1 and yi ∈
{−1, 1}, we would like to build a prediction rule which, based on the observa-
tions, allows a prediction of the label ynew of a new point xnew. The following
notation is used throughout this paper: each data point xi (respectively each
response yi) represents the ith row of the data matrix X (respectively the
ith row of the column vector Y ). In order to handle the “generally” high
dimensionality of the input space, we propose to exploit principles of the
Partial Least Square regression (PLS) [Wold et al., 1982, Tenenhaus, 1998].
PLS regression creates a set of orthogonal latent variables (PLS component)
t1, t2, . . . , tm, linear combinations of the original variables but, contrary to
principal component analysis (PCA), use the target Y for their determina-
tion. The PLS components th is obtained from the following constraints
(Tucker criteria):

max
th

cov2(th, Y ) = max
wh

cov2(Xh−1wh, Y )
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such that ‖wh‖ = 1 and th is orthogonal to t1, . . . , th−1,

where X0 = X and Xh−1 is the residual of the regression of X on t1, . . . , th−1.
A least square regression is then performed to relate Y to the PLS com-

ponents.
But PLS was not originally designed as a tool for classification. Thus,

based on the algorithmic structure of PLS regression, the PLS logistic re-
gression was proposed for classification task [Tenenhaus, 2002, Bastien et al.,
2004].

PLS regression is designed to operate with input data that are high-
dimensional and highly correlated (PLS is very popular in the chemometrics
field), such a situation encountered by the use of kernel function [Schölkopf
and Smola, 2002]. Based on kernel techniques, Rosipal and Trejo have pro-
posed a nonlinear extension of PLS regression, the Kernel PLS regression
(KPLS regression) [Rosipal and Trejo, 2001]. The approach was subsequently
extended to the kernel orthonormalized PLS for classification problems [Rosi-
pal et al., 2003] using Barker and Rayens approach [Barker and Rayens, 2003].

In this paper we present a non linear extension via kernel of the PLS
logistic regression: Kernel Logistic PLS (KL-PLS). Following Bennet and
Embrechts who demonstrated interest of directly exploit kernel within the
framework of PLS regression [Bennett and Embrechts, 2003] and noting the
close connection between KPLS and PLS regression of Y on the kernel K,
[Appendix 1], we propose an algorithm directly based on the factorization of
the kernel matrix.

Furthermore, thanks to the statistical tests related to logistic regression,
KL-PLS allows detecting points close to “support vectors” (points used by
the Support Vector Machines (SVM) to compute the decision boundary). It
is therefore possible to select a subset of the training set that is sufficient to
derive the SVM decision boundary.

2 Kernel Logistic PLS (KL-PLS)

2.1 Algorithm

Principle of KL-PLS is to compute orthogonal latent variables in the space
induced by the kernel matrix before performing logistic regression in the
derived feature space. Therefore, KL-PLS is a 3-step algorithm:

1. Computation of the kernel matrix
Let X be the matrix comprising the p explanatory variables xk, k =
1, . . . , p and Y a binary variable (the target) observed on n samples. Let
K be the kernel matrix associated to X . A usual kernel is given below:

Gaussian kernel: K(xi, xj) = exp

(
− ‖xi−xj‖2

2σ2

)
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The dimension of the kernel matrix is n × n. Each cell kij is a measure
of similarity between the individuals i and j.

2. Computation of the KL-PLS components

2.1 Computation of the first KL-PLS component t1

Step 1: Compute the regression coefficient a1j of kj in the lo-
gistic regression of Y on kj , j = 1, . . . , n
Step 2: Normalize the column vector a1 made by a1j ’s: w1 =
a1/‖a1‖
Step 3: Compute the first KL-PLS component as t1 = Kw1

2.2 Computation of the hth KL-PLS component th

Let assume that in the previous steps, the KL-PLS components
t1, . . . , th−1 have been yielded. This block is designed to get variables
which, in addition to - and orthogonally to - t1, . . . , th−1, hold resid-
ual information on Y . The hth KL-PLS component is subsequently
computed from the residual of the regression of kj , j = 1, . . . , n on
t1, . . . , th−1.

Step 1: Compute the residual eh1, . . . , ehn from the multiple
regression of kj , j = 1, . . . , n on t1, . . . , th−1. Let Kh−1 be the
matrix comprising εh1, . . . , εhn.
Step 2: Compute the coefficients ahj of ehj in the logistic re-
gression of Y on t1, . . . , th−1 and ehj .
Step 3: Normalize the column vector ah made by ahj ’s: wh =
ah/‖ah‖.
Step 4: Compute the hth PLS component: th = Kh−1wh.
Step 5: Express the component th in terms of K as th = Kw∗

h.

3. Logistic regression of Y on the m retained KL-PLS components

P (Y = 1|K = k) =
eα0+

Pm
h=1 αhth

1 + eα0+
Pm

h=1 αhth
.

2.2 Remarks

2.3 Selection of the number of useful KL-PLS components

Computation of the KL-PLS component th may be simplified by setting non-
significant regression coefficients ahj to 0. Only variables that are significantly
related to Y contribute to the computation of th. The number m of KL-PLS
components to be retained may be chosen by cross-validation or by observing
that the component tm+1 is not significant because none of the coefficients
a(m+1)j is significantly different from 0.
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2.4 Expression of KL-PLS component in term of original
variables

Expression of PLS components in terms of original variables is a fundamental
step to analyze new data. Indeed, let Ktest be the new dataset. The matrix
product T test = Ktest ×W ∗ allows to compute the values of the KL-PLS
components for the new dataset.

2.4.1 Computation of w∗

h

a. The first KL-PLS component is already expressed in terms of original
variables : t1 = Kw1 and w∗

1 = w1.
b. The second KL-PLS component is expressed in terms of the residuals in

the regression of the original variables on t1. From K = t1p
′
1 +K1 and

t2 = K1w2 we get:

t2 = K1w2 = (K − t1p′1) = (K −Kw1p
′
1)w2 = K(I − w1p

′
1)w2︸ ︷︷ ︸

w∗
2

= Kw∗
2 .

c. In a similar way, it can be shown that th is expressed in terms of the
original variables as:

th = Kh−1wh =

(
K −

h−1∑

i=1

tipi

)
· wh =

(
K −

h−1∑

i=1

Kw∗
i p

′
i

)
· wh

= K

(
I −

h−1∑

i=1

w∗
i p

′
i

)
· wh

︸ ︷︷ ︸
w∗

h

= Kw∗
h.

3 Kernel Logistic PLS and detection of support vectors

3.1 Preliminary considerations

SVM was designed to find the “optimal separating hyperplane” i.e. the hyper-
plane whose minimal distance to the training examples is maximum (fig. 1)
[Vapnik, 1998]. The optimal hyperplane is defined by a vector β and a scalar
β0 through the equation:

arg max
β,β0

min
{
‖x− xi‖ : x ∈ Rn, (xtβ + β0) = 0, i = 1, . . . , n

}
.

Points which “support” hyperplanes H1 and H2 are the “support vec-
tors”. Only support vectors take part in the construction of the SVM deci-
sion boundary. We propose an approach which is able to detect points, called
“ambiguous points” thereafter, close to support vectors. This procedure is
achieved by removing a subset of training examples with minimal impact on
the SVM decision boundary position.
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H2 = {x | f (x) = xtb + b0=-1}

Fig. 1. Optimal separating hyperplane.

3.2 Detection of ambiguous points

During the construction of the first KL-PLS component, coefficients a1j of
kj in the logistic regression of Y on each kj , j = 1, . . . , n are computed.
If a point j is, on the average, closer to the points belonging to its own
group than to the points belonging to the other group, then kj has, on the
average, a larger value (in the case of Gaussian kernel) for the individuals
belonging to the group containing j than for the other individuals. We can
expect the regression coefficient a1j to be highly significant in this situation.
Consequently, it is proposed to label points associated to non-significant a1j

to the risk α (Wald test) as ambiguous.

The number of ambiguous points can, subsequently be controlled by in-
creasing the risk α.

4 Results

4.1 Banana data projection onto the two first components found
by KL-PLS

Banana data is a 2D dataset (two classes). 400× 2 training set is associated
to a 4,600× 2 testing set. Figure 2 depicts projection of the original training
and testing data onto the two first components found by KL-PLS (training
data). A nice linear separation of the two classes can be seen in the feature
space and logistic regression is adequate to achieve an efficient classification.
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Fig. 2. Banana data depict onto the two first components found by kernel logistic
PLS.

4.2 Benchmarks

The usefulness of KL-PLS was tested on several benchmark
data sets (two-class classification) used in [Mika et al., 1999]
and [Rätsch et al., 2001]. These datasets are available at
http://ida.first.gmd.de/̃raetsch/data/benchmarks.htm. Each dataset
consists of 100 different training and testing partitions. Several methods
(KFD, SVM, KPLS-SVC) have already been used and results are presented
in table 1. Baudat and Anouar have proposed a nonlinear extension of
the Fisher Discriminant Analysis via “Kernel Trick”: the Kernel Fisher
Discriminant analysis (KFD) [Baudat and Anouar, 2000]. The kernel
orthonormalized PLS + SVC (KPLS-SVC) is based on the kernel orthonor-
malized PLS method for dimensionality reduction followed by SVM on
retained PLS components for classification [Rosipal et al., 2003]. In all cases
the Gaussian kernel was used. KL-PLS efficiency relies on the value of width
of the Gaussian and the number of retained KL-PLS components Those
values are selected based on the minimum classification error observed after
five-fold cross validation on the first five training sets. Results of logistic
regression (LR) are also presented. Results achieved for the 11 benchmarks
demonstrate the efficiency of KL-PLS and its competitiveness with other
state-of-the-art classification methods.

4.3 Ambigous points and support vectors

4.3.1 Simulated checkerboard A 4 × 4 checkerboard is represented in
fig 3. Twenty-five uniformly points labeled according to checkerboard pattern
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Table 1. Comparison of the mean and standard deviation classification errors
(test set) for KFD [Mika et al., 1999], SVM [Rätsch et al., 2001], Kernel PLS-
SVC [Rosipal et al., 2003], Logistic Regression (LR) and KL-PLS. The last column
provides the width of the Gaussian kernel and the number of retained KL-PLS
components.

KL-PLS
Data set KFD SVM KPLS-SVC LR KL-PLS parameters

Banana 10.8± 0.5 11.5± 0.5 10.5± 0.4 47.0 ± 4.48 10.7 ± 0.5 (0.9, 10)
B. Cancer 25.8± 4.6 26.0± 4.7 25.1± 4.5 27.5 ± 4.7 25.8 ± 4.4 (50, 7)
Diabetis 23.2± 1.6 23.5± 1.7 23.0± 1.7 23.3 ± 1.8 23.0 ± 1.7 (60, 4)
German 23.7± 2.2 23.6± 2.1 23.5± 1.6 24.0 ± 2.1 23.2 ± 2.1 (20, 2)
Heart 16.1± 3.4 16.0± 3.3 16.5± 3.6 16.9 ± 2.9 16.0 ± 3.2 (20, 3)
Ringnorm 1.49± 0.12 1.66± 0.12 1.43± 0.10 25.3 ± 0.8 1.44 ± 0.09 (200, 2)
F. Solar 33.2± 1.7 32.4± 1.8 32.4± 1.8 34.6 ± 3.7 32.7 ± 1.8 (12, 1)
Thyroid 4.20± 2.07 4.80± 2.19 4.39± 2.1 10.3 ± 2.7 4.35 ± 1.99 (15, 6)
Titanic 23.2± 2.06 22.4± 1.0 22.4± 1.1 22.7 ± 1.1 22.4 ± 0.04 (300, 2)
Twonorm 2.61± 0.15 2.96± 0.23 2.34± 0.11 3.81 ± 0.53 2.37 ± 0.10 (40, 1)
Waveform 9.86± 0.44 9.88± 0.43 9.58± 0.36 13.48 ± 0.7 9.74 ± 0.46 (15, 4)

was generated within each square. Fig. 3 depicts the projection of the 4× 4
checkerboard from both classes onto the two first components found by KL-
PLS. A nice separation of the two classes can be seen. Note that support
vectors and ambiguous (blue circles) are pretty close.

- 1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

P
L
S
2

-0,6 -0,4 -0,2 0 0,1 0,3 0,5 0,7 0,9

PLS1

0

1

2

3

4

X
2

0,0 1,0 2,0 3,0 4,0

X1

- 1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

P
L
S
2

-0,6 -0,4 -0,2 0 0,1 0,3 0,5 0,7 0,9

PLS1

- 1

-0,9

-0,8

-0,7

-0,6

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

P
L
S
2

-0,6 -0,4 -0,2 0 0,1 0,3 0,5 0,7 0,9

PLS1

0

1

2

3

4

X
2

0,0 1,0 2,0 3,0 4,0

X1

0

1

2

3

4

X
2

0,0 1,0 2,0 3,0 4,0

X1

Original Checkerboard

Transformed checkerboard Support Vector Ambiguous points

Fig. 3. Comparison between Support Vectors and Ambiguous Points (blue circles).

4.3.2 Selection of ambiguous points (banana data) The SVM de-
cision boundary only depends on the support vectors. In order to evaluate
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Table 2. Confusion matrix between Support Vectors and ambiguous points.

Ambiguous Non ambiguous
points points Total

Support vector 112 36 148
Non support vector 23 229 252
Total 135 265 400

proximity between ambiguous points and support vectors, SVM was trained
on “α-selected” ambiguous points. Results were compared to those obtain
by SVM (full training set).
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Fig. 4. Efficiency of SVM classification as function of the size of the training set.
o - randomly selected points for the training set. + - points selected with respect
to their significant level (p).

The following operations were carried out:

i. We compute the mean test set classification error based on SVM trained
on full training set on the 100 partitions of banana data.

ii. For each α = {0.01, 0.02, . . . , 0.2}, KL-PLS was trained on the 100 par-
titions of banana data. It allows detection of ambiguous points for each
partition. Then, SVM is trained on ambiguous points for each partition.
We compute the mean test set classification error.

iii. For each α = {0.01, 0.02, . . . , 0.2}, SVM was trained on randomly se-
lected points in the same proportion as the ambiguous points related to
this value of α for each partition. We compute the mean test set classi-
fication error.
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SVM train on ambiguous point gives performances similar to SVM train
on full training set when the number of ambiguous points is close to the
number of support vectors. Syed et al. have shown that the discarding of even
a small proportion of the support vectors can lead to a severe reduction in
generalization performance [Syed et al., 1999]. They stated that this implies
that the support vector set chosen by SVM is a minimal set; this can explain
the behavior of the (blue - cross) curve (fig. 4) when considering low numbers
of ambiguous points.

5 Discussion and conclusion

Performances of KL-PLS are equivalent to the most powerful classification
methods such as SVM, KPLS-SVC or KFD. This algorithm is very simple
to implement since it is solely composed of ordinary least square and logistic
regressions. Furthermore, it is possible to compute KL-PLS components
only by considering individual column vectors of the kernel matrix. These
properties make possible to highlight 3 interests of KL-PLS:

a. KL-PLS does not require the full kernel matrix in memory but the
columns of the kernel individually.

b. Inversions of small dimension matrices (number of KL-PLS components
+1) take place in the algorithm.

c. The introduction of intercept when constructing the latent variables,
avoid the kernel centering method proposed by Wu et al. [Wu et al.,
1997].

⇒ KL-PLS allows management of very high dimensional data.
Furthermore, direct factorization of the kernel matrix offers 2 advantages:

a. K does not need to be square
b. K does not need defining a dot product in the feature space induced

by the “kernel trick”. The Mercer’s conditions (positive definite) are
subsequently not required.

⇒ K just need to contain similarity measures.
Moreover, Kernel-PCA is often used as a preliminary step for dimensional

reduction prior classification [Schölkopf et al., 1998]. A more powerful goal-
driven preprocessing is built in KL-PLS.

Lastly, leaning on Wald tests related to the logistic regression, it is pos-
sible to detect “ambiguous points” close to support vectors. This approach
specifically selects examples from the training set close to support vectors.
SVM computational charges are consequently reduced without jeopardizing
classification.

Works in progress comprise the extension of KL-PLS approach to the
multi-class classification problems, the study of the relationship between “am-
biguous points” and “Support Vectors” and the extension of Kernel Logistic
PLS to the kernel generalized PLS via generalized linear model.
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6 Appendix: KPLS and PLS regression of Y on K

6.1 Kernel PLS (KPLS)

Höskuldsson shows that the weights vector wPLS1 corresponds to the eigenvec-
tor associated to the greatest eigenvalue of the matrixX ′Y Y ′X [Höskuldsson,
1988]. The first PLS component is then tPLS1 = XwPLS1 .
⇒ X ′Y Y ′XwPLS1 = λwPLS1

⇔ XX ′Y Y ′XwPLS1︸ ︷︷ ︸
tP LS
1

= λXwPLS1︸ ︷︷ ︸
tP LS
1

The first PLS component is the eigenvector associated to the greatest
eigenvalue of XX ′Y Y ′.

Within the framework of PLS 1: Y ∈ Rn.
⇒ Y ′XwPLS1 is a scalar
⇒ tPLS1 is proportional to XX ′Y and thus, we can rigorously be reduced

to the framework of the kernel trick, giving arise to Kernel PLS; and write
that tKPLS1 = KY .

6.2 PLS regression of Y on K (DK-PLS)

In a similar way, the weight vector wDK−PLS
1 corresponds to the eigenvector

associated to the greatest eigenvalue of the matrix K ′Y Y ′K. The first DK-
PLS component is then tDK−PLS

1 = KwDK−PLS
1 .

⇒ K ′Y Y ′KwDK−PLS
1 = λwDK−PLS

1

⇔ KK ′Y Y ′KwDK−PLS
1︸ ︷︷ ︸

tDK−P LS
1

= λKwDK−PLS
1︸ ︷︷ ︸

tDK−P LS
1

.

The first DK-PLS component is the eigenvector associated to the greatest
eigenvalue of KK ′Y Y ′.

Within the framework of PLS 1: Y ∈ Rn.
⇒ Y ′KwDK−PLS

1 is a scalar
⇒ tDK−PLS

1 is proportional to KK ′Y being, by construction, symmetric
⇒ tDK−PLS

1 is proportional to K2Y .
In a similar way, tK−PLS

h = Kh−1Y and tDK−PLS
h = K2

h−1Y =

Kh−1w
DK−PLS
h where wDK−PLS

h = Kh−1Y and Kh−1 is the matrix com-
prising the p residual vector eh1, . . . , ehp of the ordinary least square of
kj , j = 1, . . . , p on t1, . . . , th−1. Let us notice that tK−PLS

h = wDK−PLS
h .
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Abstract. We present a finite time local search (1 + δ)-approximation method
finding the optimal solution with probability almost one with respect to a gen-
eral measure of within group-dissimilarity. The algorithm is based on a finite-time
Markov model of the simulated annealing. A dynamic cooling schedule, allows the
control of the convergence. The algorithm uses as measure of within group dissimi-
larity a new generalized Ward index based on a set of well-scattered representative
points, which deals with the major weaknesses of partitioning algorithms regarding
the hyperspherical shaped clusters and the noise. We compare it with other clus-
tering algorithms, such as CLIQUE and DBSCAN.
Keywords: Clustering, Finite-time Simulated Annealing, Approximation Scheme,
Generalized Ward Index.

1 Introduction

It is generally acknowledged that there are two main families of clustering
(unsupervised classification) methods: hierarchical and partitioning. The for-
mer ones create a tree structure splitting (reuniting) the initial set of objects
in smaller and smaller subsets, all the way to singletons (and reverse), while
the latter ones construct a partition of the initial set of objects into a certain
number of classes, with the target number usually part of the input, along
with the objects themselves. Most partitioning methods proposed for data
mining [Jain et al., 1999], [Gosh, 2003] can be divided into: discriminative
(or similarity-based) approaches and generative (or model-based) approaches.
In similarity-based approaches, one optimizes an objective function involv-
ing the pairwise data similarities, aiming to maximize the average similarities
within clusters and minimize the average similarities between clusters. A fun-
damentally different approach is the model based approach which attempts to
optimize the fit (global likelihood optimization) between the data and some
mathematical model, and most researchers do not consider them as clustering
methods. Similarity-based partitioning clustering is also closely related to a
number of operations research problems such as facility location problems,
which minimize some empirical loss function (performance measure). There
are no efficient exact solutions known to any of these problems for general
number of clusters m, and some formulations are NP-hard. Given the diffi-
culty of exact solving, it is natural to consider approximation, either through
polynomial-time approximation algorithms, which provide guarantees on the
quality of their results, or heuristics, which make no guarantees. One of



A finite time stochastic clustering algorithm 453

the most popular heuristics for the similarity-based partitioning problem is
Lloyd’s algorithm, often called the m-means algorithm. Define the neigh-
borhood of a center point to be the set of data points for which this center
is the closest. Thus, one can easily see that any locally minimal solution
must be centroidal (i.e. each center lies at the centroid of its neighborhood).
Unfortunately, m-means algorithm may converges to a local minimum that
is arbitrarily bad compared to the optimal solution. Other heuristics with
no proven approximation bounds are based on branch-and-bound searching,
gradient descent, simulated annealing, nested partitioning, ant colony opti-
mization, and genetic algorithms.

It is desirable to have some bounds on the quality of a heuristic. Given
a constant δ ≥ 0, a (1 + δ)-approximation algorithm (for a minimization
problem) produces a solution that is at most a factor (1 + δ) larger than the
optimal solution. With a tradeoff between approximation factors and run-
ning times, some clustering algorithms are able to produce solutions that are
arbitrarily close to optimal. This includes (1 + δ)-approximation algorithms
for the Euclidean m-median problem by [Kolliopoulos and Rao, 1999] with
a running time of O(21/δs

n logn logm), assuming that the dimension s is
fixed. Another one is the (1 + δ)-approximation algorithm for the Euclidean
m-center problem given by [Agarwal and Procopiuc, 1998], which runs in

O(n logm) + (m/δ)O(m1−1/s).

Another common approach in approximation algorithms is to develop
much more practical, efficient algorithms having weaker, but still constant,
approximation factors. These algorithms are based on local search, that is,
by incrementally improving a feasible solution by swapping a small number
of points in and out of the solution set. This includes the work of [Mettu
and Plaxton, 2002] on the use of successive swapping for the metric m-means
problem.

Unfortunately it is well known that m-means/medians/centers partition-
ing clustering algorithms have a tendency to partition the data into hyper-
spherical shaped clusters and do not adequately deal with outliers and noise.

The algorithm presented here is a local search (1 + δ)-approximation
method finding the optimal solution with probability almost one with re-
spect to any general measure of within group-dissimilarity. It is actually a
cooling schedule, obtained by stopping a simulated annealing algorithm in
finite time, and it belongs to a family of approximation clustering algorithms
of type m-median and m-means,

The algorithm addresses the weaknesses of partitioning algorithms in the
way in which it constructs what we shall define as “critical” clusters, that
are to be further expanded by the cooling schedule. As a measure of within
group dissimilarity we introduce a new generalized Ward index based not on
a single cluster representative i.e. centroid or median, but on a set of well-
scattered representative points, which are shrunk toward the centroid. The
idea of joining together points close to a set of representatives was introduced
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by [Guha et al., 1998] to obtain a measure of inter-group dissimilarity in
hierarchical clustering. Moreover, due to the particular choices of generation
probabilities for the system of neighborhoods, the more dense a cluster is,
the smaller the probability to have its elements reassigned to other clusters
will be while trying to transform the current classification.

The rest of the paper is organized as follows. In Sections 2. and 3. we
present the clustering problem as a combinatorial optimization problem and
the general asymptotic convergence conditions for it Sections 4 and 5 de-
scribe and compare our algorithm with other clustering algorithms. Finally in
Section 6. we present the conclusions and give directions for future research.

2 Setting

The general form of clustering problems considered is ”given a set X =
{1, 2, .., n} of n entities, to classify these entities means to partition the linear
subspace X into a number m ≤ n of clusters such that the m−partitioning is
optimal according to a certain chosen criterion function defined on the setΠm

of allm−partitions of the setX”. Each element i from the set X has an input
information vector Y (i). There exists also a distance d as a dissimilarity
measure for every pairwise combination of entities to be clustered, and a
function τ : P (X) → R+ as a measure of within-group dissimilarities with
the property that τ (A) = 0 ←→ |A| = 1. Let us consider the function

f : Πm → R, f (πm) =
m∑
i=1

τ (Ai), where πm = (A1, A2, ..., Am) ∈ Πm.

The class of clustering problems considered is (PC) min
πm∈Πm.

f (πm). (PC)

is a combinatorial optimization problem (see [Aarts et al., 1997]) with a very
large state space since the |P (X) | given by the Bell number grows extremely
rapidly with n; e.g., B40 = 1.6× 1035 and B100 = 4.8× 10115.

A first contribution of this work is the development of a stochastic search
algorithm for finding (1 + δ)-optimal partitions with a probability close to
one. The basic idea is to construct a Metropolis-Hastings Markov chain via
the simulated annealing algorithm.

A neighborhood function is a mapping N : Πm → 2Πm , which, for each
classification i ∈ Πm, defines a set N (i) ⊆ Πm of classifications that can
be reached from i by a single perturbation. At the beginning, an initial
classification is given. The simulated annealing algorithm starts with it,
and continuously tries to transform the current classification into one of its
neighbors by applying the generation mechanism and an acceptance criterion.
Better-cost neighbors are always accepted. To avoid being trapped in a local
minimum, worst-cost neighbors are also accepted, but with a probability that
is gradually decreased in the course of the algorithm execution. The lowering
of the acceptance probability is controlled by a set of parameters whose values
are determined by a cooling schedule.
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As we mentioned in the introduction, the algorithm solves the (PC) prob-
lem for a general measure of within-group dissimilarities τ : P (X) → R+

such that τ (A) = 0 ←→ |A| = 1. However to the best of our bibliograph-
ical knowledge, the already existent measures of within group dissimilar-
ity constructed by the extension of a distance do not deal with arbitrarily
shaped clusters, and are very sensitive to outliers. Among those indices, the
most known are: Wilks index: τ (A) = 1

2|A|
∑

x,y∈A
d2(x, y), and Ward index

τ (A) =
∑

x,y∈A
d2(x, xA), where xA is the centroid of A. The first index does

not require X to be a linear space and treats any point of the cluster as
a cluster representative, which gives too much unfiltered information about
the shape of the set to the clustering algorithm. Also, the (PC) optimization
problem with this index leads to long shaped clusters. The second index
treats the centroid as the unique cluster representative. This choice gives
no information about the shape of the cluster and leads to the well known
squared sum of errors criterion with his already discussed problems.

The new index we propose generalizes the Ward one considering multi-
ple representatives for a cluster. We define the representatives index to be
τ (A) =

∑
x∈A

min
xr∈R

d2(x, xr), where R is the set of representatives. The idea of

multiple representatives was introduced in hierarchical clustering by [Guha
et al., 1998]. They must be well spread across the whole cluster, and are thus
obtained through an iterative selection: initially the farthest point from the
centroid is picked, and then, up to |R| (fixed in advance), the farthest point
from the ones already picked is added. The distance from a candidate point
to the set of already picked is the min of the pointwise distances from that
point to each already picked. These representatives capture the geometry of
the cluster, and upon a shrinking towards the centroid by a fixed factor, done
after building R, the outliers get much closer to the centroid (moving more
than average representatives within the bulk of the cluster).

3 The asymptotic convergence for the (PC) problem

Notation 1. S : the set of solutions for the considered combinatorial opti-
mization problem (here S = Πm), and S∗ : the set of optimal solutions.

The simulated annealing can be mathematically modeled as a sequence
of Markov chains. Each Markov chain has transition probabilities defined as

∀ i, j ∈ S : Pij (k) =

{
Gij (ck)Aij (ck)

1− ∑
l∈S, l 6=i

Gil (ck)Ail (ck)
if i 6= j
if i = j

(1)

where Gij (ck) denotes the probability of generating a solution j from a solu-
tion i, and Aij (ck) the probability of accepting a solution j that is generated
from a solution i.
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The matrix P of equation (1) is stochastic and Gij (ck) and Aij (ck) are
conditional probabilities. In the original version of simulated annealing, the
acceptance probability is defined by:

∀ i, j ∈ S : Aij (ck) = exp
(
− (f(j)− f(i))

+
/ck

)
(2)

Theorem 1 ([Aarts et al., 1988]) Let (S, f) be an instance of a combina-
torial optimization problem, N a neighborhood function, and P (k) the tran-
sition matrix defined by (1), with ck = c, ∀ k = 0, 1, .... If we have (G1)
∀c > 0, ∀i, j ∈ S, ∃p ≥ 1, ∃l0, l1, ..., lp ∈ S with l0 = i, lp = j and
Glk lk+1

(c) > 0, k = 0, 1, ..., p−1; (G2) ∀c > 0, ∀i, j ∈ S : Gij (c) = Gji (c) ;
(A1) ∀c > 0, ∀i, j ∈ S : Aij (c) = 1 if f(i) ≥ f(j), and Aij (c) ∈ (0, 1)
if f(i) < f(j); (A2) ∀c > 0, ∀i, j, k ∈ S : Aij (c)Ajk (c)Aki (c) =
Aik (c)Akj (c)Aji (c) ; (A3) ∀i, j ∈ S with f(i) < f(j) limc→0Aij (c) = 0.
then the Markov chain has a unique stationary distribution q(c), with

qi(c) = 1/
∑

j∈S
(Aij (c) /Aji (c)) , ∀i ∈ S, (3)

Remark 1 For the following choice of the generation probabilities

Gij = χ(N(i)) (j) / |N (i)| , ∀i, j ∈ S, (4)

condition (G2) is no longer needed to guarantee asymptotic convergence, and
the components of the stationary distribution are given by

qi(c) = |N (i)| /
∑

j∈S
[(|N (j)|Aij (c)) /Aji (c)] for all ∀i ∈ S, (5)

We will consider this choice for the generation probability in order to solve
the (PC) problem.

Definition 1 A cluster A from ω ∈ Πm is called critical for ω if

τ (A) = max
Ai cluster of ω

τ (Ai) .

Notation 2. N ′ (π) = {ω = (A′
1, ..., A

′
m) ∈ Πm| A′

i are obtained from Ai by a
reassignment of up to k elements from a critical cluster A, where k = |A|},
for π ∈ Πm. We say that (N ′ (π))π∈Πm

is the set of critical neighborhoods.

Proposition 1 For the (PC) problem, the set of neighborhoods defined by
N ′ (π) satisfies the (G1) condition.

Proof. It is a fact that ∀i, j ∈ S, ∃ p ≥ 1, and l0, l1, ..., lp ∈ S with l0 = i,
lp = j such that for any k ,lk and lk+1 are neighbors through a n-reassign
system of neighborhoods. We shall prove that there also exists a path from
i ∈ S to j ∈ S through a critical system of neighborhoods. Suppose that
u = 0, ..., p− 1 is the first step at which lu ∈ S and lu+1 /∈ N ′ (lu). Let Au be



A finite time stochastic clustering algorithm 457

a cluster in lu which has a maximal value for the within-group dissimilarity
function τ . Let Bu be the cluster in lu from which t elements are reassigned
to some other clusters for obtaining lu+1. Since lu+1 /∈ N ′ (lu) then τ (Au) >
τ (Bu). To get a path from i ∈ S to j ∈ S through a critical system of

neighborhoods we will add a finite number of elements l
\
u ∈ N ′ (lu) to the

initial path. The procedure is the following: (1) We assign k − 1 elements

from Au to Bu, where k = |Au|. The new classification l
\
u has only two

modified clusters A
\
u, B

\
u, and τ

(
A

\
u

)
= 0 since

∣∣∣A\
u

∣∣∣ = 1. (2) If τ
(
B

\
u

)
has

not the maximal value then ∃A1u such that τ (A1u) is maximal, and we will

proceed as in the case of Au starting the construction of some l
\\
u ∈ N ′

(
l
\
u

)
.

Since 1...n is a finite set after repeating for a finite number of times the

procedure τ
(
B

\
u

)
will be maximal. Now we construct a new classification

l
\
u+1 ∈ N ′

(
l
\
u

)
in the following way: from B

\
u the t elements to other clusters

as in the construction step from lu to lu+1, and the elements belonging to
the clusters Au, A1u, ... are reassigned back to their clusters. We proceed in
a similar way for all the steps q at which lq ∈ S and lq+1 /∈ N ′ (lq) preserving
the other steps.

4 Finite-time model of simulated annealing

In practical applications, asymptoticity is never attained and thus conver-
gence to an optimal solution is no longer guaranteed. Then we shall use the
simulated annealing as an approximation algorithm, implementing a cooling
schedule. The general idea of a cooling schedule is the following: start with
an initial value c0 for the control parameter and repeatedly generate a finite
Markov chain for a finite number of decreasing values of c until c w 0. The
parameters determining the cooling schedule are: the start value c0 of the
control parameter; the decreasing rule of the control parameter; the length
Lk of the individual Markov chains; the stop criterion of the algorithm. We
will discuss the choice of those parameters for our problem such that the con-
vergence towards near-optimal solutions will be ensured. Our cooling sched-
ule follows the general ideas of the statistical cooling algorithm developed
in [Aarts et al., 1988] and designed for symmetric generation probabilities
which lead to less complicate formulas for the stationary distributions.

4.1 The start value of the control parameter

This value should be large enough to ensure that initially all configurations
occur with rather equal probabilities since limc→∞ qi (c) = |N ′

i | /
∑
j∈S

∣∣N ′
j

∣∣.
We distinguish two cases. In the first one, in which the set of system con-

figurations corresponds to values of the cost function distributed over a num-
ber of distinct intervals whose mutual distances are large compared to their
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size, c0 will be computed in the classical way as θ · maxi, j∈S [f (j)− f (i)],
where θ � 1. In the second case, the values for the cost function are suf-
ficiently uniformly distributed. Thus, we can observe the behavior of the
system before the actual optimization process takes place, and adjust the
value of the control parameter such that the ratio χ of the system perturba-
tions accepted over the total number of perturbations generated is kept close
to the one given by limc→∞ qi (c). The initial value c0 will be the final value
of c updated m1 +m2 times according to the relation:

c = Average
∆Ci j >0

∆fij/ ln [m2/ (m2χ− (1− χ)m1)], where ∆fij = f (j) −

f (i), and m2, m1 the numbers of rearrangements with ∆fij ≤ 0, > 0.

4.2 The decreasing rule of the control parameter

In the frame of the homogeneous Markov model for simulated annealing al-
gorithm, the decreasing rule of the control parameter, as well as the lengths
Lk of the Markov chains are constructed in order to satisfy the following
quasi-equilibrium condition: ”a (Lk, ck) is close to q (ck)”, where a (l, ck)
denotes the probability distribution of the classifications after l transitions
of the k-th Markov chain. The time behavior of the cooling schedule usu-
ally depends on the mathematical formulation of this condition. It is clear
from an intuitive point of view that we will have larger differences be-
tween q (ck) and q (ck+1) if the decreasing rule of the control parameter
allows large decrements of ck, where we suppose we have reached the quasi-
equilibrium. In this case it will be necessary to attempt more transitions
at the new value ck+1, for restoring the quasi-equilibrium. Thus, there is
a trade-off between fast decrement of ck and small values for Lk. We will
proceed as in [Aarts et al., 1988] using small decrements in ck in order to
avoid extremely long chains, and imposing for ε, δ small positive numbers:
‖q (ck)− q (ck+1)‖ < ε ≈ ∀i ∈ S 1/ (1 + δ) < qi (ck) /qi (ck+1) < (1 + δ)

Remark 2 For the components of the stationary distribution function
from (5) we get qi (c) = |N ′

i | · q0 (c) · Ai0i (c), where q0 (c) =[∑
j∈S

∣∣N ′
j

∣∣ ·Ai0j (c)
]−1

, and i0 ∈ S∗.

Proof. Let i0 ∈ S∗ =⇒ f (j) , f (i) ≥ f (i0). For f (j) > f (i) we have
Aji = 1, and Aij (c) = exp (−∆fij/c) = exp (−∆fi0 j/c) · exp (−∆fi i0/c) =
Ai0 j (c) ·exp (−∆fi i0/c). For f(j)< f(i) we have Aij (c) = 1. From the (A2)
property of Theorem 1 we have Ai0 j(c)·Aji(c) = Ai0i (c) = exp (−∆fi0 i/c)⇒
Aji (c)=exp (−∆fi0 i/c) /Ai0 j (c). So we get Aij (c)/Aji (c)=Ai0 j(c)/Ai0 i(c).

Then we have that qi (c)
def
= |N ′

i | /
[∑

j∈S
∣∣N ′

j

∣∣ ·Aij (c) /Aji (c)
]

= |N ′
i | ·

Ai0 i (c) /
[∑

j∈S
∣∣N ′

j

∣∣ ·Ai0 j (c)
]
.
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Proposition 2 If ∀i ∈ S, ∀k ∈ N∗ ck < ck+1, and Ai0 i (ck) /Ai0 i (ck+1) <
1+ δ, where i0 ∈ S∗ then the following inequalities are satisfied: 1/ (1 + δ) <
qi (ck) /qi (ck+1) < (1 + δ).

Proof. Obviously
∑
j∈S

Ai0j (ck+1) <
∑
j∈S

Ai0j (ck) < (1 + δ)
∑
j∈S

Ai0j (ck+1).

Then we derive that q0 (ck+1) / (1 + δ) < q0 (ck) < q0 (ck+1), relation from
which using the form of qi (c)’s given by the previous remark we can obtain
the desired inequality. Thus, using the hypothesis the second part of the
desired inequality follows directly. The first part of the desired inequality is
a result of introducing in the first part of the q0 (c) ’s inequality, the qi (c) ’s
expression, and the obvious relation: Ai0 i (ck) > Ai0 i (ck+1).

Remark 3 The relation given in the hypothesis of the previous proposition
can be reformulated as: ∀i ∈ S, ∀k ∈ N∗ck+1 > ck/ [1 + ck · ln (1 + δ) /∆fi0 i]
which is in fact a decreasing rule of the control parameter.

To simplify the decreasing rule, we shall make an assumption often
made in the literature, and supported by computational evidence (see
[Aarts et al., 1988] and [White, 1984]). What we really do is to restrict the
decreasing rule to a set Sck

of configurations that occur with a greater proba-
bility during the generation of the k-th Markov chain. We will record the cost
values of the classificationsX (1) , ..., X (Lk) ∈ S = Πm that occur during the
generation of the k-th Markov chain, and we will assume that they are nor-

mally distributed with mean µk = µ (ck) =

[
Lk∑
j=1

f (X (j))

]
/Lk, and variance

σ2
k=σ

2 (ck)=

[
Lk∑
j=1

f 2 (X (j))

]
/Lk − µ2

k. Thus, Pr {∆fi0 i ≤ µk − f∗ + 3σk}w

0.99, where f∗ is the optimal value of the problem. Finally, we define
Sck

= {i∈S|∆fi0 i≤µk−f∗+3σk}. Then Pr {i ∈ Sck
} w 0.99, and we can

replace the previous decreasing rule with a simpler one: ∀i ∈ Sck
, ∀k ∈

N∗ ck+1 > ck/ [1 + ck · ln (1 + δ) /µk − f∗ + 3σk]. For us f∗ is not known
but µk − f∗ ≥ 0. Thus, the final decreasing rule of the control parameter is:

∀i ∈ Sck
, ∀k ∈ N∗ck+1 > ck/ [1 + ck · ln (1 + δ) /3σk] (6).

4.3 The length Lkof the individual Markov chains

The length of a Markov chain is usually determined such that at each value ck
a minimum number of transitions is accepted. Since transitions are accepted
with decreasing probability, one would obtain Lk →∞ for ck ↓ 0. Therefore,
Lk is usually bounded by some constant Lmax to avoid extremely long chains
for small values of ck. We take Lmax = |X | −m ≥ maxi∈S |N ′ (i)|.
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4.4 The final value of the control parameter

This choice determines in fact the stopping criterion. We will follow the
general idea of most of the dynamic cooling schedules (see [Aarts et al.,
1997]). Thus, the algorithm will stop at the ck value for which the cost
function of the classification obtained in the last trial of a Markov chain
remains unchanged for a number of ρ consecutive chains. Schematically we
have:

Compute(Lmax, c0) ; c := c0; f [k] = MaxInt ∀k ∈ 0, ..., ρ

repeat

for i := 1 to Lmax do

Generate( j ∈ N ′ (i))
if ∆fi j ≤ 0 then Accept( j) =true

else if exp (−∆fij/c) >randomize[0, 1) then Accept( j) =true;

if Accept( j) =true then i := j;

Compute
(
σ2 (c)

)
; Update

(
f [0, ..., ρ]

)
; c :=

dc/ [1 + c · ln (1 + δ) /3σ (c)]e ;
until f [k1] = f [k2] ∀k1, k2 ∈ 0, ..., ρ

5 Comparison with other algorithms

The study is done comparing the speed and also the quality of the output
classification, and using synthetic data generated in a setting constructed
and acknowledged by several researchers, such as [Agrawal et al., 1998] and
[Zait and Messatfa, 1997]. In generating the data several parameters have
been varied, such as size of the classes, their mutual distances, overlap factor,
and also their local dimension, smaller than the one of the whole space where
points where selected.

Our algorithm was compared to CLIQUE [Agrawal et al., 1998] and DB-
SCAN, the latter being much less performant. For the algorithm presented
here, we have noted a behavior of similar quality to the one of CLIQUE.
However, CLIQUE reports overlapping classes in many cases (it has an ap-
proach based on density, varying the local dimensions in which it performs
the search), and lower density zones in clusters are discarded as being out-
liers. Finally, CLIQUE requests the user to find appropriate values for some
mandatory parameters controlling its behavior, which is a very difficult task
in general. Finally, while both CLIQUE and our algorithm can end up mak-
ing quite a number of passes over the data, the time required by our algorithm
also depends on how fast the within-group dissimilarity τ can be computed,
linear ones leading to faster algorithms. The building of the representative
set R takes O(n|R|2): |R| steps, when each point of the current cluster is
considered, and for each one, the minimum of the pointwise distance to each
member of the increasing R, so another factor of |R|.
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6 Conclusion

We have presented a finite time stochastic approximation clustering algo-
rithm, which finds optimal solutions with probability almost one, and per-
forms as well as good heuristic clustering algorithms, with a mathematical
assessment of its properties, within the framework of the Markov chain analy-
sis of simulated annealing. We have also introduced a new measure of within
cluster dissimilarity improving the recognition of arbitrary shaped clusters
and reducing the outliers effects.

Concerning outliers, CURE random sampling can filter out a majority of
them. Chernoff bounds [Motwani and Raghavan, 1995] provide equations to
analytically derive the random sample size required to have a low probability
of missing clusters. Also for large databases making several passes over the
whole database is undesirable, and clustering the random sample dramati-
cally improves time complexity. Afterwards, the initial non-selected points
are each assigned to the cluster of the closest among a fraction of randomly
selected representatives for each cluster.
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Abstract. When the data consists of a set of objects described by a set of vari-
ables, we have recently proposed a new mixture model which takes into account
the block clustering problem on the both sets. In considering this problem under
the maximum likelihood and classification maximum likelihood approaches, one
can wonder about the performances of the algorithm obtained by block EM, block
CEM or by simple uses of the EM and CEM algorithms applied on the both sets
separately. The main objective of this paper is to compare these algorithms.
Keywords: Block clustering, Mixture model, EM and CEM algorithms.

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas such as
pattern recognition, information retrieval, microarray, data mining, and so
forth. Although many clustering procedures such as hierarchical clustering,
k-means or self-organizing maps, aim to construct an optimal partition of
objects or, sometimes, of variables, there are other methods, called block
clustering methods, which consider simultaneously the two sets and organize
the data into homogeneous blocks. If x denotes a n×r data matrix defined by
x = {(xji ); i ∈ I and j ∈ J}, where I is a set of n objects (rows, observations,
cases) and J is a set of r variables (columns, attributes), the basic idea of
these methods consists in making permutations of objects and variables in
order to draw a correspondence structure on I × J . These last years, block
clustering (also called biclustering) has become an important challenge in
data mining context. In the text mining field, [Dhillon, 2001] has proposed
a spectral block clustering method by exploiting the clear duality between
rows (documents) and columns (words). In the analysis of microarray data
where data are often presented as matrices of expression levels of genes under
different conditions, block clustering of genes and conditions has permitted
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to overcome the problem of the choice of similarity on the both sets found in
conventional clustering methods [Cheng and Church, 2000].

The mixture model is undoubtedly one of the greatest contributions to
clustering. It offers a great flexibility and solutions to the problem of the
number of clusters. To take into account the block clustering situation, we
have defined in [Govaert and Nadif, 2003] a block mixture model and, set-
ting the clustering problem in the classification maximum likelihood (CML)
approach [Symons, 1981], we have developed an algorithm called block CEM
which is based on the alternated application of classical CEM on interme-
diate data matrices. More recently, setting the clustering problem in the
maximum likelihood (ML) approach, we have proposed [Govaert and Nadif,
2005] a generalized EM algorithm (GEM) [Dempster et al., 1977] which max-
imizes a variational approximation of the likelihood using an iterative algo-
rithm whose steps are carried out by the application of the EM algorithm
on intermediate mixture models. In estimation context, we have shown that
this approach gives good results on simulated data.

This paper focuses on the clustering context. It deals to compare five
algorithms: block CEM, block EM with two variants, two-way EM and two-
way CEM, i.e. EM and CEM applied separately on I and J . Results on
simulated data are given, confirming that block EM gives much better per-
formance than the other algorithms.

In the following, for convenience, we represent a partition z into g clus-
ters of the sample I by the vector (z1, . . . , zn), where zi ∈ {1, . . . , g} in-
dicates the component of the observation i or by the classification matrix
(zik, i = 1, . . . , n, k = 1, . . . , g) where zik = 1 if i belongs to cluster k and
0 otherwise. We will use similar notation for a partition w into m clusters
of the set J . Moreover, to simplify the notation, the sums and the products
relating to categories, row clusters will be subscripted respectively by letters
i, j and k without indicating the limits of variation which will be thus im-
plicit. Thus, for example, the sum

∑
i stands for

∑n
i=1 or

∑
i,j,k,` stands for∑n

i=1

∑r
j=1

∑g
k=1

∑m
`=1.

2 Block Mixture Model

For the classical mixture model, the probability density function of a mixture
sample x is defined by f(x; θ) =

∏
i

∑
k pkϕ(xi; αk) where the pk’s are the

mixing proportions, the ϕ(xi; αk)’s are the densities of each component k,
and θ = (p1, . . . , pg,α1, . . . ,αg). We have shown [Govaert and Nadif, 2003]
that f(x; θ) can be written as

f(x; θ) =
∑

z∈Z
p(z; θ)f(x|z; θ), (1)

where Z denotes the set of all possible partitions of I in g clusters, p(z; θ) =∏
i pzi and f(x|z; θ) =

∏
i ϕ(xi; αzi). With this formulation, the data matrix

x is assumed to be a sample of size 1 from a random (n, r) matrix.
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To study the block clustering problem, we have extended the formulation
(1) to propose a block mixture model defined by the following probability
density function f(x; θ) =

∑
u∈U p(u; θ)f(x|u; θ) where U denotes the set of

all possible partitions of I × J and θ is the parameter of this mixture model.
In restricting this model to a set of partitions of I×J defined by a product of
partitions of I and J , which will be supposed to be independent, we obtain
the following decomposition

f(x; θ) =
∑

(z,w)∈Z×W
p(z; θ)p(w; θ)f(x|z,w; θ)

where Z and W denote the sets of all possible partitions z of I and w of J .
Now, extending the latent class principle of local independence to our

block model, the xji will be supposed to be independent once zi and wj

are fixed; then, we have f(x|z,w; θ) =
∏
i,j ϕ(xji ; αziwj ) where ϕ(x,αk`)

is a probability density function defined on the real set R. Denoting θ =
(p,q,α11, . . . ,αgm) where p = (p1, . . . , pg) and q = (q1, . . . , qm) are the
vectors of probabilities pk and q` that a row and a column belong to the kth
component and to the `th component respectively, we obtain a block mixture
model with the following probability density function

f(x; θ) =
∑

(z,w)∈Z×W

∏

i

pzi

∏

j

qwj

∏

i,j

ϕ(xji ; αziwj ).

3 Various approaches

To tackle the block clustering problem, we have used the block mixture model
and have considered the ML and CML approaches.

3.1 ML approach and block EM algorithm

For the ML approach, to estimate the parameters of the block mixture
model, we proposed to maximize the log-likelihood L(θ;x) = log(f(x; θ))
by using the EM algorithm. To describe this algorithm, we must define the
complete log-likelihood, also called classification log-likelihood LC(z,w; θ) =
L(θ;x, z,w) = log f(x, z,w; θ) which can be written

LC(z,w; θ) =
∑

i,k

zik log pk +
∑

j,`

wj` log q` +
∑

i,j,k,`

zikwj` logϕ(xji ; αk`).

The EM algorithm maximizes L(θ;x) iteratively by maximizing the condi-
tional expectation of the complete log-likelihood given a previous current
estimate θ(c) and x:

Q(θ,θ(c)) =
∑

i,k

P (zik = 1|x,θ(c)) log pk +
∑

j,`

P (wj` = 1|x,θ(c)) log q`

+
∑

i,j,k,`

P (zikwj` = 1|x,θ(c)) logϕ(xji ; αk`).
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Unfortunately, difficulties arise due to the dependence structure in the model,
and more precisely, to the determination of P (zikwj` = 1|x,θ(c)) and approx-
imations are required to make the algorithm tractable. Using a variational
approximation

P (zikwj` = 1|x,θ(c)) ≈ P (zik = 1|x,θ(c))P (wj` = 1|x,θ(c)),

we proposed [Govaert and Nadif, 2005] to maximize alternatively two con-

ditional expectations of the complete-data log-likelihood Q′(θ,θ(c)|d) and

Q′(θ,θ(c)|c) where c and d are the matrices defined by the cik’s and the
dj`’s. We shown that these conditional expectations are associated respec-
tively to classical mixture models

∑

k

pkψk(ui; θ,d) and
∑

`

q`ψ`(v
j ; θ, c)

where ui = (u1
i , . . . , u

m
i ) and vj = (vj1, . . . , v

j
g) are vectors of sufficient statis-

tics and ψk and ψ` are the probability density functions of the sufficient statis-
tics. So, these maximizations can be carried out by the EM algorithm and
we obtain the two following versions, called block EM(1) and block EM(2).
The different steps of the first one are

1. Start from c(0), d(0) and θ(0).
2. Compute (c(c+1),d(c+1),θ(c+1)) starting from (c(c),d(c),θ(c)):

(a) Compute c(c+1),p(c+1), α(c+ 1
2 ) by using on the data (u1, . . . ,un) the

EM algorithm starting from c(c),p(c), α(c).
(b) Compute d(c+1),q(c+1), α(c+1) by using on the data (v1, . . . ,vr) the

EM algorithm starting from d(c),q(c), α(c+ 1
2 ).

3. Iterate the steps 2 until convergence.

The different steps of the second version are

1. Start from c(0), d(0) and θ(0), initial values of c, d and θ.
2. Compute (c(c+1),d(c+1)) starting from θ(c) by iterating the following two

steps (a) and (b) until convergence:
(a) Compute c(c+1) by using on the data (u1, . . . ,un) the E-step starting

from d(c),p(c), α(c).
(b) Compute d(c+1) by using on the data (v1, . . . ,vr) the E-step starting

from c(c),q(c), α(c).
3. Compute θ(c+1) = (p(c+1),q(c+1), α(c+1))
4. Repeat the steps (2) and (3) until convergence.

After we fit the mixture model to estimate θ, we can give an outright or
hard clustering of this data by assigning each observation to the component of
the mixture to which it has the highest posterior of probability of belonging.
As the calculus of posterior probabilities starting form the parameter is not
tractable, a simple solution is to use the probabilities cik and dj` obtained at
the end of the block EM algorithm. This procedure, which assigns a partition
to a value of the parameter θ, will be named “ C-step ” in the following.
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3.2 CML approach and block CEM algorithm

With the CML approach, the partition is added to the parameters to be
estimated. In [Govaert and Nadif, 2003], we have proposed the block CEM
algorithm that is a variant of block EM. In each of the phases 2(a) and 2(b),
it is sufficient to add a C-step which converts the cik’s and dj`’s to a discrete
classification before performing the M-step by assigning each object and each
variable to cluster which has the highest posterior probability of belonging.

3.3 2EM and 2CEM algorithms

Obviously, we can also use the both classical versions EM and CEM on I and
J separately (noted 2EM and 2CEM) but unfortunately it is unaware of the
correspondence between I and J . It will be seen later that this process is
ineffective to detect homogeneous blocs. In addition, the use of two models
on the both sets is not parsimonious. Indeed, our proposed block mixture
model has fewer parameters than a standard ”one-dimensional” clustering:
for example, with n = 1000 and r = 500 and equal proportions of mixture
components, if we need to cluster binary data matrix into 4 clusters of rows
and 3 clusters of columns, this leads to estimate 12 parameters with Bernoulli
block mixture model instead of 5000 = 4× 500 + 3 × 1000 parameters with
two Bernoulli mixture models, i.e., applied on I and J separately.

4 Numerical experiments

In this section, to illustrate the behaviors of our algorithms (2EM, 2CEM,
block EM(1), block EM(2), block CEM) and to compare them, we studied
their performances for the Bernoulli block mixture model where

ϕ(x;αk`) = (αk`)
x(1− αk`)1−x with αk` ∈]0, 1[.

With block EM(1) and block EM(2), we have two levels of convergence.
The first is local; see the phases 2a) and 2b) for block EM(1) and the phase
2) for block EM(2) and the second convergence is global; see the phase (3)
for block EM(1) and the phase (4) for block EM(2). In order to accelerate
both algorithms, we decided to carry out less iterations locally and more at
the global level. After intensive simulations, we chose to carry out only one
iteration locally and considered that the global convergence is reached when
|1 − L(c)/L(c−1)| < ε where L(c) denotes the observed log-likelihood at c-th
iteration and ε represents a threshold value which chosen on a pragmatic
ground, here we took ε = 10−7. This strategy, kept in the following, is fast
and gives better results that when one chooses to carry out less iterations
globally (ε = 10−6) and more locally (This comparison is not reported here).

In our experiments, we selected twelve kinds of data arising from 3 × 2-
component mixture model corresponding to three degrees of overlap (well
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separated (+), moderately separated (++) or ill-separated (+++)) of the
clusters and four sizes of the data (n× r = 50× 30, 100× 60, 200×120, 300×
180). The concept of cluster separation is difficult to visualize for Bernoulli-
mixture models, but the degree of overlap can be measured by the Bayes
error corresponding to the block mixture model. As its computation is being
theoretically difficult, we used Monte Carlo simulations and evaluated the
error rate by comparing the partitions simulated and those we obtained by
applying a C-step. But, this step is not direct as in classical situation of
mixture model and, in these simulations, we used a modified version of the
block Classification EM algorithm in which the parameter θ is fixed to the
true value θ∗. Parameters have been chosen to obtain error rates respectively
in [0.01, 0.05] for the well-separated, in [0.12, 0.17] for the moderately and in
[0.20, 0.24] for the ill-separated situations. For each of these twelve data
structures, we generated 30 samples and for each sample, we have run five
algorithms 20 times starting from the same random situations and selected
the best solution for each method. We compared 2EM, 2CEM, block CEM,
block EM(1) and block EM(2) with (g,m) = (3, 2).

Firstly, we focused on the comparison between block EM(1) and block
EM(2). To summarize the behavior of these algorithms, we computed the
mean error rate and the mean running time for each simulation. From our
results of experiments (Table 1), incontestably the both versions of block EM
almost always give the same results and their performance increases with the
size of data and especially for block EM(1) (with 300×180 and the situation
+++ the error rate is equal to 0.22 for block EM(1) versus 0.28 for block
EM(2)). We can also note that block EM(1) is faster and therefore a regular
update of θ is more advantageous. For the continuation, we kept only block
EM(1).

The comparisons between 2EM, 2CEM, block CEM and block EM(1) are
summarized in Table 2. The first one displays the mean error rate for each
situation and in Table 3, the mean running time. From these experiments,
the main point arising are the following.

• The versions 2EM and 2CEM working on the two sets separately are
suitably effective only when the clusters are well separated. This shows
the risk of the use of such methods to obtain homogeneous blocks.
• The block CEM algorithm, even if it is faster and better than 2CEM

and 2EM does not give encouraging results when the clusters are not
well separated. Moreover, when the size of data increases, it has some
difficulties to detect the pattern into 3× 2 blocks.
• Not surprisingly, the versions 2CEM and 2EM are slower than block CEM

and block EM(1).

In our comparisons we chose to use the percentage of misclassified like an ap-
proximation of the Bayes error. This choice is justified because the number
of obtained clusters and simulated ones were the same ones. Furthermore, we
have extended these comparisons to the cases where the numbers of clusters
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Size Degree of Error rates Times
overlap

block EM(1) block EM(2) block EM(1) block EM(2)

+ .02(.02) .02(.02) 0.11(0.07) 0.33(0.15)
(50,30) ++ .24(.08) .23(.09) 0.53(0.36) 1.71(1.26)

+++ .31(.14) .31(.13) 0.48(0.32) 2.04(1.53)

+ .02(.02) .02(.02) 0.23(0.16) 0.77(0.70)
(100,60) ++ .14(.03) .14(.03) 0.28(0.13) 0.93(0.24)

+++ .28(.11) .28(.10) 0.69(0.51) 2.13(0.95)

+ .02(.01) .02(.01) 0.42(0.08) 1.26(0.17)
(200,120) ++ .14(.02) .14(.02) 1.03(0.36) 3.72(0.89)

+++ .28(.09) .28(.09) 2.54(1.56) 9.86(4.09)

+ .03(.01) .03(.01) 0.98(0.15) 3.43(0.30)
(300,180) ++ .15(.02) .15(.02) 3.11(2.66) 10.38(2.98)

+++ .22(.06) .28(.06) 3.90(1.72) 14.77(4.41)

Table 1. Means and standard errors (in parentheses) of error rates and times
recorded from the 20 same random situations by block EM(1) and EM(2).

are different from (3, 2) and used the Rand index in comparing the agree-
ment between the both partitions (simulated and obtained). Note that this
measure is not restricted to comparing partitions with the same number of
clusters. The results of experiments have confirmed the performance of block
EM(1).

Size Degree of Error rates
overlap

2CEM(1) 2EM(2) block CEM block EM(1)

+ .09(.09) .04(.06) .02(.02) .02(.02)
(50,30) ++ .38(.08) .31(.11) .29(.11) .24(.08)

+++ .51(.13) .46(.13) .35(.12) .31(.14)

+ .08(.06) .07(.04) .03(.02) .02(.02)
(100,60) ++ .31(.08) .24(.09) .16(.08) .14(.03)

+++ .53(.07) .49(.10) .35(.11) .28(.11)

+ .03(.02) .02(.01) .02(.01) .02(.01)
(200,120) ++ .41(.10) .29(.09) .16(.08) .14(.02)

+++ .61(.07) .50(.08) .46(.10) .28(.09)

+ .06(.02) .05(.01) .03(.01) .03(.01)
(300,180) ++ .50(.06) .31(.06) .15(.03) .15(.02)

+++ .58(.07) .39(.08) .37(.09) .22(.06)

Table 2. Comparison between 2CEM, 2EM, block CEM, block EM(1): means and
standard errors (in parentheses) of error rates.
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Size Degree of Times
overlap

2CEM 2EM block CEM block EM(1)

+ 2.29(2.61) 0.53(0.12) 0.03(0.01) 0.11(0.07)
(50,30) ++ 0.23(0.02) 0.87(0.12) 0.10(0.21) 0.53(0.36)

+++ 0.37(0.83) 0.91(0.12) 0.07(0.12) 0.48(0.32)

+ 2.19(0.48) 5.29(1.38) 0.39(0.25) 0.23(0.16)
(100,60) ++ 1.60(0.45) 6.97(0.99) 0.15(0.24) 0.28(0.13)

+++ 1.16(0.09) 7.71(1.09) 0.07(0.03) 0.69(0.51)

+ 10.21(1.08) 26.49(9.14) 0.08(0.05) 0.42(0.08)
(200,120) ++ 10.12(0.73) 73.03(8.40) 0.19(0.10) 1.03(0.36)

+++ 8.97(0.80) 89.79(12.12) 0.21(0.12) 2.54(1.56)

+ 37.31(2.77) 111.64(30.26) 0.27(0.27) 0.98(0.15)
(300,180) ++ 33.76(2.21) 291.01(31.84) 0.13(0.09) 3.11(2.66)

+++ 35.90(6.78) 449.28(407.16) 0.23(0.17) 3.90(1.72)

Table 3. Comparison between 2CEM, 2EM, block CEM, block EM(1): means
and standard errors (in parentheses) of times recorded from the 20 same random
situations.

5 Conclusion

Setting the problem of block clustering under the ML and CML approaches,
we have compared three block clustering algorithms (block EM(1), block
EM(2), block CEM) and two classical methods applied separately on the
sets of rows and columns (2EM and 2CEM). Even if the both versions of
block EM do not maximize exactly the likelihood, as in the classical mixture
model situation but only an approximation of the likelihood of the block
mixture model, they give encouraging results on simulated binary data and
are better than the other methods. Furthermore, we note, that the first
version block EM(1) appears slightly better than EM(2) when the clusters
are ill-separated and it is faster. It would be now necessary to apply this
algorithm to real situations and to extend this approach to other types of
data, such as continuous data by using Gaussian densities for example.
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Abstract. Dans le cas où la structure des données à étudier est fortement non-
linéaire les méthodes de normalisation ”classiques” sont inefficaces pour rendre
compte de l’organisation des données. Pour pallier ce problème on propose un
algorithme de normalisation des données reposant sur le choix d’un graphe et visant
à rendre les voisinages des points sphériques. La version ”exhaustive” d’un tel
algorithme étant coûteuse en temps de calcul, on en présentera, aussi, sa version
stochastique.

En illustration de cette méthode de normalisation, nous proposerons un indica-
teur permettant de choisir le nombre de lignes et de colonnes à demander en entrée
d’une carte de Kohonen.
Keywords: Normalisation, Graphes, Distance Curviligne, Cartes de Kohonen.

1 Normalisation et Analyse des données non linéaire

1.1 La distance curviligne

Dans le cas de l’analyse des données linéaire, l’hypothèse topologique sous-
jacente est la convexité des données qui permet de lier les points par des
segments en restant dans l’ensemble considéré. En revanche, dans le cas
de l’analyse des données non-linéaire, la seule hypothèse topologique est la
connexité, qui ne garantit que l’existence d’un chemin continu liant les points
deux à deux.

Ainsi dans le cas où la structure des données serait non linéaire, la mesure
de distance entre les points représentant le mieux l’organisation des données
est la distance curviligne (ou géodésique) qui, en résumé, représente la
longueur minimum d’un chemin continu, liant les points, au sein de l’ensemble
considéré.

Cette distance (curviligne) est utilisée dans de nouvelles méthodes
d’analyse des données non linéaires telles qu’ ”ISOMAP” ou ”curvilinear
distance analysis” et, on verra, dans la dernière partie, en quoi son étude
peut aider au paramétrage des cartes de Kohonen.
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Fig. 1. distance curviligne vs distance euclidienne dans le cas d’un ensemble non
convexe.

1.2 Impact de la normalisation sur la distance curviligne

Dans la pratique on approche la distance curviligne en deux étapes : dans
un premier temps on détermine un graphe sur les points (k− plus proches
voisins, ε− voisins, MST ...) qui lie les points si on peut considérer qu’ils
sont ”suffisamment proches”. Puis l’algorithme de Disjkstra permet de
rechercher le plus court chemin liant les points et d’en donner sa longueur et
d’obtenir ainsi une approximation de la distance curviligne).

Le problème est que les le graphe des liaisons est très sensible aux change-
ments d’échelles. En illustration le graphique si dessous montre le Minimum
spanning tree d’un même tirage sinusöıdal pour différentes échelles sur l’axe
horizontal.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2. MST pour différentes échelles horizontales (de 1 à 7) d’un même tirage
sinusöıdal.

Le chapitre suivant présente un algorithme qui recherche les transforma-
tions à effectuer sur les données pour construire un graphe ”correct” c’est a
dire résumant l’information topologique des données.

2 Algorithme de normalisation proposé

2.1 Principe

Travailler sur des données fortement non linéaire implique de s’intéresser
localement aux données. Les méthodes ”classiques” reposant sur la dispersion
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générale autour d’un indicateur central seront ici inefficaces. Pour illustrer ce
propos, dans tous les exemples proposés le point de départ des algorithmes
suivant sera le résultat des données centrées réduites de manière classique
(division par l’écart type).

La méthode de normalisation proposée a pour principe de rendre, en
moyenne, les voisinages de forme sphérique et de rayon moyen égal à 1.
Autrement dit, on veut rendre les voisinages isotropes en moyenne.

2.2 Version exhaustive

On se fixe un type de graphe (k−plus proches voisins, Minimum spanning
tree...) qui sert à construire les voisinages que l’on veut rendre isotropes.
Puis on itère l’algorithme suivant qui effectue à chaque étape :

• (1) Calcul du graphe G
• (2) Stockage de Y matrice de toutes les vecteurs liaisons
• (3) Effectue une ACP sur Y (les résultat sont une isométrie P et Y :=
Y P )
• (4) Application de l’isométrie à X : X := XP (comme P est une isométrie

le graphe ne change pas G(X) = G(XP ))
• (5) Effectue Z = |Y | vecteur constitué des valeurs absolu des liaisons

dans toutes les (nouvelles) directions.
• (6) pds = mean(Y ) longueur moyenne des liaisons dans toutes les direc-

tions.
• (7) Pour tout j tel que pds(j) 6= 0 on effectue X(:, j) = X(:, j)/pds(j)

Les points (2) à (4) visent essentiellement à faire tourner les axes de
manière à rendre toutes les directions de liaisons possibles. Les points (5)
à (7) visent à rendre les liaisons de tailles équivalentes sur tous les axes
significatifs.

Remarque : S’il existe un système de d′ < d axes linéaires permettant
résumant complètement l’information celui ci est obtenu par l’algorithme.
On obtient dans ce cas là les même résultats qu’ISOMAP mais avec un temps
de calcul largement plus court car seul les graphes sont calculés et non toutes
les distances curvilignes.

2.3 Version Stochastique

La version stochastique a, uniquement, comme but d’accélérer le temps de
calcul du au calcul du graphe (en O(N2) pour les k−plus proches voisins et en
O(N2log(N)) pour le MST ) pour cela, à chaque étape on tire (sans remise)
N ′ < N points sur lesquels on calcul le graphe, la rotation et la pondération
des axes qu’on applique sur toutes les données.
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2.4 Quelques résultats

Les exemples suivants présentent tous les résultats de l’algorithme exposé
ci-dessus pour des données sinusöıdales en dimension 2. Le graphe de
référence le MST . Les graphiques résultats se lisent verticalement :

• (1) Graphe et données dans le cas de la normalisation standard.
• (2) Pourcentage d’inertie expliquée (cumulée) par axe.
• (3) Angle de la plus grande rotation de l’isométrie.
• (4) Poids de chaque axe.
• (5) Graphe pour les données après normalisation.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

1 2 3 4 5 6 7 8 9 10
0

1

2

−250 −200 −150 −100 −50 0 50 100 150 200 250
−20

0

20

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−20

0

20

−300−200−1000100200300

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

0

2

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

0 2 4 6 8 10 12 14 16 18 20
0

1

2

−40 −30 −20 −10 0 10 20 30 40
−50

0

50

Fig. 3. 500 points avec X(:, 1) = unifrnd(0, 1) et X(:, 2) = sin(ωX(:, 1)) avec
ω ∈ {50, 80, 100}

On voit que l’algorithme donne de relativement bons résultats jusqu’à ce
qu’il y ait un effet ”saturation” pour des fréquences trop élevées.

Les données suivantes ont été tiré de la manière suivante : X(:, 1) suit
une loi uniforme sur [0, 1] et X(:, 2) = sin(ωX(i, 1)) + σε avec ε suivant une
loi normale centrée réduite. Puis on a appliqué une rotation d’angle pi/4 aux
données. On observe dans ce cas que la saturation est plus rapide.

2.5 Conclusion et perspective

Les résultats sont encourageants mais nous ne sommes pas encore parvenus à
quantifier la performance de l’algorithme. On sait aujourd’hui qu’il n’existe
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Fig. 4. exemples avec rotation : (1) ω = 50, σ = 0,(2) ω = 50, σ = 0.1, (3)
ω = 50, σ = 0.2,(4) ω = 70, σ = 0

pas forcément une unique solution au problème de l’existence d’une trans-
formation rendant les voisinages (exactement) isotropes en moyenne (mais la
probabilité d’existence tend vers 1 lorsque le nombre d’individus augmente).
On aimerait surtout quantifier le fait que la distance curviligne estimée à
l’issue de la normalisation corresponde ”au mieux” à la ”vraie” distance
curviligne par une vraie démonstration et, non, uniquement par des simu-
lations.

3 Paramétrage d’une carte de Kohonen

3.1 Les cartes de Kohonen

L’algorithme des cartes de Kohonen vise à projeter les données sur une
”carte” i.e. une structure de voisinage fixé a l’avance. Plusieurs types
d’utilisations en sont faite. Essentiellement en représentation des données
en plus petite dimension (pendant non linéaire à l’ACP ) et en classification.
Nous nous intéresserons ici plus particulièrement à l’aspect ”projection” et
représentation des données et non a l’aspect ”classification”.

Brièvement, pour projeter des données sur une carte de Kohonen, on
se fixe une topologie c’est a dire un nombre de cellules et leurs voisinages
associés.

A chaque case (i, j) dans la carte correspond donc un vecteur code Ci,j

dans l’espace des données. L’algorithme de Kohonen repose sur une conser-
vation de la topologie c’est a dire sur le fait que la topologie induite par une
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Fig. 5. cartes de Kohonen

distance sur Z2 (distance entre les cases) respecte la topologie induite par
une distance sur <d (distance entre les vecteurs codes).

3.2 Un indicateur de respect de la topologie

Le propos précédent nous permet de définir un indicateur de respect de
la topologie. On choisit comme distance sur Z2 la distance euclidienne :
d1((i, j), (i

′, j′)) =
√

(i− i′)2 + (j − j′)2. Le choix et la construction d’une
distance sur les vecteurs codes est légèrement plus délicat. Etant donné que
les données peuvent être dans un espace non linéaire on va choisir la distance
curviligne mais, comme le nombre de vecteurs codes est relativement faible
la détermination de la distance curviligne se fait en s’autorisant des chemins
qui passent par des points de la base de donnée.

Fig. 6. Distance sur la grille et distance entre les vecteurs codes

Les données sont, en préliminaire, normées par l’algorithme décrit dans
la section précédente.

Les résultats seront alors présentés de la manière suivante : Pour une
base de donnée, et pour une carte de Kohonen (ici un nombre de ligne et un
nombre de colonne), on va tracer les nuages de points liant la distance entre
les cases et distances entre les vecteurs codes, et indiquer leur corrélation.
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3.3 Résultats

Un premier exemple est constitué d’un tirage uniforme de 200 points sur
[0, 1]2. On note alors que, comme escompté ce sont les cartes ”carrées” (i.e.
comportant autant de lignes que de colonnes) qui reconstituent au mieux la
topologie de l’espace.

Le premier graphique donne les nuages de points entre les deux distances
: première lignes pour des cartes (1, 3) jusqu’à (1, 10) deuxième lignes pour
des cartes (2, 2) jusqu’à (2, 10)... Le second graphique présente les coefficients
de corrélation entre les distances pour toutes ces des cartes
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Fig. 7. Distance sur la grille et distance entre les vecteurs codes et correlation entre
ces dernières dans le cas d’un tirage uniforme

Un deuxième exemple est constitué d’un tirage de 200 points avec X(:, 1)
suivant une loi uniforme [0, 1] et X(:, 2) = sin(15X(:, 1)). Là aussi, comme
prévu, on observe les meilleurs résultats pour une carte de Kohonen de largeur
1, c’est a dire pour une ”ficelle”, ce qui correspond au fait que la dimension
intrinsèque des données est 1 (voir figure 8).

Pour finir, on s’est placé en dimension 3 avec [X(:, 1)X(:, 2)] uniformément
tirés dans [0, 1]2 et X(:, 3) = sin(15X(:, 1)). Le résultat obtenu qui sem-
blait étonnant a première vue (préconisation d’une ficelle) est confirmé par
la représentation du nuage de point et des vecteurs codes associés a une ficelle
(15 cellules) voir figure 9.
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Fig. 8. Distance sur la grille et distance entre les vecteurs codes et correlation entre
ces dernières dans le cas d’un tirage sinusöıdal
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Fig. 9. Distance sur la grille et distance entre les vecteurs codes et correlation entre
ces dernières dans le cas d’un tirage sinusöıdal en dimension 3
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performances européennes en matière d’emploi

Catherine Aaron, Corinne Perraudin, and Joseph Rynkiewicz

SAMOS - MATISSE
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Abstract. Cet article étudie l’évolution des performances européennes en matière
d’emploi depuis le début des années quatre vingt dix, en utilisant l’algorithme
SOM adapté au traitement de données qui sont à la fois temporelles et spatiales.
La carte de Kohonen ainsi obtenue permet d’établir une classification des pays de
l’Union Européenne qui tient compte simultanément de l’ordonnancement temporel
et spatial des données, et permet alors de comparer les trajectoires des différents
pays dans le temps. Nous comparons les résultats obtenus par cette méthode à
ceux reposant sur une carte de Kohonen traditionnelle.
Keywords: Classification, Algorithme SOM, Emploi, Union Européenne.

1 Introduction

Malgré les modestes performances européennes en matière d’emploi très sou-
vent dénoncées, la question de l’emploi n’a véritablement été abordée au
niveau européen qu’en 1993 avec le fameux “Livre blanc Delors” sur la crois-
sance, la compétitivité et l’emploi. Inspirés de ce document, les Conseils
européens qui suivent vont intégrer progressivement l’objectif d’atteindre un
niveau élevé d’emploi parmi les objectifs clés de l’Union Européenne (UE en-
suite), conduisant à lui donner le même niveau d’importance que les objectifs
macroéconomiques de croissance et de stabilité. Lors du sommet sur l’emploi
de 1997 à Luxembourg, la Stratégie Européenne pour l’Emploi (SEE) est
lancée. Elle est conçue comme un instrument de coordination et d’orientation
des priorités de la politique de l’emploi des Etats membres de l’UE. Le Conseil
européen de Lisbonne, en mars 2000, lui donne une impulsion supplémentaire
en insérant la stratégie dans l’agenda global de l’UE en matière économique
et sociale. Il vise à faire de l’UE l’économie “la plus compétitive et la plus
dynamique du monde” et établit des cibles à atteindre à un horizon de dix
ans.
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A mi-chemin de la date butoir, il importe d’étudier la situation en matière
d’emploi des pays de l’UE, et de regarder plus particulièrement si le fait
d’avoir mis l’emploi au cœur des préoccupations européennes a permis une
amélioration des performances en matière d’emploi. Cet article étudie l’évolu-
tion des performances des pays de l’UE en matière d’emploi depuis le début
des années quatre vingt dix. Il s’agit de tenir compte de l’évolution tem-
porelle de différents indicateurs relatifs au marché du travail afin d’étudier
les trajectoires suivies par les pays de l’UE.

Nous étudions la situation des 25 pays actuellement dans l’UE, ainsi que
celles de la Roumanie et de la Bulgarie, qui vont rejoindre l’Union Européenne
en 2007, de la Turquie, dont les négociations devraient débuter fin 2005 et de
la Croatie, candidate à l’adhésion. Nous retenons, dans une première analyse,
les trois indicateurs définissant les objectifs d’emploi fixés par la Stratégie de
Lisbonne à atteindre pour 2010, à savoir un taux d’emploi total de 70%, un
taux d’emploi des femmes de 60% et un taux d’emploi des travailleurs âgés
(55-64 ans) de 50%. Nous étendons ensuite cette analyse à un ensemble plus
large d’indicateurs relatifs à l’emploi et au chômage, afin de caractériser de
manière plus fine les performances des marchés du travail européens.

Pour mener à bien cette comparaison des trajectoires des pays européens
selon leurs performances, nous proposons d’utiliser une adaptation de l’algori-
thme SOM, permettant de traiter des données qui sont la fois temporelles et
spatiales. La section suivante présente l’adaptation de l’algorithme SOM. La
troisième section présente les résultats de l’analyse des taux d’emploi. La
quatrième section étend cette analyse à une gamme plus large d’indicateurs
du marché du travail. La dernière section conclut.

2 Carte de Kohonen adaptée à l’analyse de données
temporelles

L’algorithme SOM (Self-Organizing Map), encore appelé algorithme de Koho-
nen, est un algorithme stochastique de classement des données, qui respecte
la topologie de l’espace des observations en intégrant une notion de voisinage
entre les classes (voir [Kohonen, 1995])1.

Afin de classifier les données européennes étudiées dans cet article, qui
sont temporelles (t = 1, . . . , T ) et spatiales (j = 1, . . . , N), on peut considérer
qu’un pays j pour une année t est une observation et on peut alors classer les
T ×N observations sur une carte de Kohonen2. Cependant, cette manière de
faire ne permet pas d’observer les trajectoires des individus et de les comparer
facilement.

1 Une présentation des méthodes de classification et de diverses applications con-
struites à partir de cet algorithme est fournie par [Cottrell et al., 2003].

2 Voir par exemple [Akarçay-Gürbüz and Perraudin, 2004] pour une classification
des pays européens selon leurs performances économiques dans le temps
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Afin de réellement prendre en compte la dimension temporelle des
données, on pourrait alors construire T cartes de Kohonen et classifier les
N observations selon les variables retenues par année. Le problème avec ce
type de méthode est que la classification ainsi obtenue année par année est
très instable.

Ainsi, nous proposons une méthode qui permet de tenir compte de l’aspect
temporel des données3. Plus précisément, nous adaptons l’algorithme SOM
afin qu’il tienne compte de l’ordonnancement temporel en plus de l’ordonnan-
cement spatial des données. Pour cela, nous construisons une carte dont la
longueur est égale au nombre d’années T de la période d’observations, et de
largeur égale au nombre de représentants par année choisi a priori (noté k).
Le calcul des vecteurs codes de cette carte de Kohonen, dite généralisée dans
la suite, s’effectue selon l’algorithme suivant :

• L’initialisation de l’algorithme SOM correspond à un tirage aléatoire de
k pays dans l’ensemble des données. A l’unité (i, t) de la carte, on affecte
les valeurs des variables4 du pays i pour l’année t.
• A chaque itération, un pays i0 et une année t0 sont tirés aléatoirement

dans l’ensemble de données. Ensuite, pour tout i ∈ [1, k], on cherche
l’unité (i, t0) qui est la plus proche de l’observation sélectionnée.
• On met à jour l’unité gagnante et les unités voisines. Le voisinage décrôıt

dans la dimension ligne durant les itérations de r à 0. Pour forcer
l’organisation temporelle, pour un voisinage ligne donné r, la taille du
voisinage temporel décrôıt de r à 0 (voir figure 1).
• Finalement, afin de garantir la convergence, on finit à 0 voisin sur les

deux derniers tiers des itérations.

Une fois que l’algorithme a convergé, on positionne les pays sur la carte
afin d’identifier leur position.

Un premier avantage de cette carte de Kohonen généralisée au classement
de données temporelles est qu’elle permet d’observer une continuité à la fois
dans la dimension temporelle et dans la dimension ligne.

Le nombre de colonnes de cette carte étant choisi a priori (arbitraire-
ment grand), nous mettons ensuite en œuvre une classification ascendante
hiérarchique à l’ensemble des vecteurs codes de la carte afin de réduire le
nombre de classes. Ainsi, le nombre de super-classes par année n’est pas
contraint à être le même au cours du temps. Cela nous permet d’étudier si
les super-classes homogènes se forment, dans le temps ou alors pour une date
donnée, et si le nombre de super-classes par année se réduit, indiquant alors
une convergence des pays.

3 Voir [Aaron et al., 2003], qui proposent deux adaptations de l’algorithme de
Kohonen afin de classifier les trajectoires des 15 pays de l’UE dans le temps, vers
les normes fixées par les critères de Maastricht. La première méthode proposée
est reprise dans cet article.

4 Les données sont centrées et réduites par variable sur la période entière.
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Fig. 1. Evolution du rayon dans l’algorithme généralisé.

Un deuxième avantage de cette carte est de permettre de visualiser très
facilement les trajectoires des pays à travers les différentes super-classes.

3 L’évolution des taux d’emploi

Nous étudions tout d’abord les performances des pays européens sur la base
du taux d’emploi total (TxEmp), du taux d’emploi des femmes (TxEmpF)
et du taux d’emploi des travailleurs âgés (TxEmpTA)5.

Le taux d’emploi total moyen sur tous les pays disponibles et sur la période
1992-2003 s’élève à 62% (respectivement 53% pour les femmes et 37,5% pour
les travailleurs âgés). Il passe de 62,4% en 1992 (respectivement 52% et 39%)
à 62% en 2003 (respectivement 54,3% et 39,9%)6. Cependant, cette apparente
constance des taux d’emploi cache des disparités importantes entre les pays,
que ce soit en termes de niveaux ou de trajectoires, comme nous allons le
voir.

Nous avons fixé à 12 le nombre de classes par année. La carte de Koho-
nen obtenue (voir figure 2) comprend alors 12 lignes (correspondant aux 12

5 Le taux d’emploi est égal au nombre de personnes en emploi rapporté à la pop-
ulation concernée en âge de travailler. Les données sont issues de [Commission,
2004] et du site http://europa.eu.int. Les variables sont disponibles de 1992 à
2003 pour l’Allemagne (DE), la Belgique (BE), le Danemark (DK), l’Espagne
(ES), la Finlande (FI), la France (FR), la Grèce (EL), l’Irlande (IE), le Lux-
embourg (LU), les Pays-Bas (NL), le Portugal (PT), le Royaume-Uni (UK), la
Suède (SE). Les données ne sont disponibles qu’à partir de 1993 pour l’Italie (IT);
de 1994 pour l’Autriche (AT); de 1996 pour la Hongrie (HU), la Slovénie (SI);
de 1997 pour la Pologne (PL), la Roumanie (RO); de 1998 pour la République
tchèque (CZ), l’Estonie (EE), la Lettonie (LV), la Lituanie (LT), la Slovaquie
(SK); de 2000 pour la Bulgarie (BG), Chypre (CY), Malte (MT), la Turquie
(TR); et seulement pour 2003 pour la Croatie (CR).

6 La moyenne étant effectuée sur 13 pays en 1992 et sur 29 en 2003.
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années de la période 1992-2003) et 12 colonnes. On observe une continuité
dans la répartition des trois indicateurs à la fois dans la dimension ligne et
dans la dimension colonne. Chaque année, les pays sont classés selon leurs
performances en matière de taux d’emploi. On constate que la carte oppose
les pays ayant les meilleures performances en termes de taux d’emploi, que
ce soit total, des femmes ou des travailleurs âgés (le coté gauche de la carte)
et les pays ayant de moins bonnes performances (coté droit de la carte). On
remarque que le coin supérieur droit de la carte correspond aux taux d’emploi
total et féminin les plus faibles, mais à des taux d’emploi moyens pour les tra-
vailleurs âgés. On note que les différences de performances se sont estompées
dans le temps, essentiellement parce que les moins bonnes performances en
matière de taux d’emploi se sont améliorées.

Fig. 2. Carte de Kohonen généralisée.
Note : La première ligne correspond à 1992 et la dernière à 2003. Dans chaque case
de la carte sont représentées de gauche à droite les répartitions de TxEmp, Tx-
EmpF, TxEmpTA. La ligne en pointillés (respectivement discontinue et alternée)
représente la trajectoire de la Roumanie (respectivement de la Finlande et de
l’Irlande.
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La classification ascendante hiérarchique menée sur l’ensemble des
vecteurs codes de la carte conduit à retenir 5 super-classes. Elles correspon-
dent à des performances de moins en moins bonnes en allant de la gauche vers
la droite. On remarque que les 5 super-classes coexistent sur l’ensemble de la
période étudiée (sauf celle regroupant les pays aux performances médiocres
qui disparâıt la dernière année). La super-classe qui se trouve sur le coté
gauche de la carte est la seule à enregistrer des taux d’emploi supérieurs
aux cibles fixées pour 2010. Il s’agit des pays nordiques (Suède, Danemark,
ainsi que Pays-Bas depuis 2000) ainsi que le Royaume-Uni. La super-classe
à droite de la carte correspond aux moins bonnes performances, et on y
retrouve les pays du Sud (Espagne, Grèce, Italie, ainsi que Malte, Turquie,
Bulgarie, Croatie). La super-classe du milieu correspond à des performances
moyennes et regroupe la France, l’Allemagne, l’Autriche, ainsi que les autres
pays récemment entrés dans l’UE.

On peut très facilement observer la trajectoire suivie par chaque pays
à travers la carte, et donc à travers les super-classes décrivant des perfor-
mances différentes, et cela grâce à l’ordonnancement temporel imposé dans
cette carte. Certains pays restent tout au long de la période dans la même
super-classe. C’est le cas de la Suède et du Danemark, qui enregistrent les
meilleures performances, ou de l’Espagne, l’Italie et la Grèce qui restent dans
la super-classes des moins bonnes performances. Quelques pays suivent des
trajectoires qui traversent différentes super-classes, indiquant une évolution,
soit vers de meilleures performances (Irlande ou Finlande, dont les trajec-
toires sont dessinées sur la carte) soit vers des performances en déclin (cas
de la Roumanie, dont la trajectoire est aussi représentée sur la carte).

Afin de souligner l’avantage de cette carte relativement à une carte de
Kohonen non contrainte par l’ordonnancement temporel (dite traditionnelle
dans la suite)7, nous comparons ces résultats avec ceux obtenus en con-
sidérant un pays pour une année comme une observation.

Dans ce cas, nous obtenons une classification (voir carte figure 3) qui
associe essentiellement un même pays pour différentes années. Comme dans
les résultats précédents, cette carte permet de séparer très clairement les pays
qui enregistrent de bonnes performances en matière de taux d’emploi (en haut
à droite de la carte figure 4) aux pays ayant les moins bonnes performances
(à gauche de la carte). Parmi ces derniers, on retrouve la distinction entre
ceux qui ont des taux d’emploi des travailleurs âgés les plus faibles et ceux
qui ont des taux moyens.

Le positionnement des pays, ainsi que les super-classes obtenues par une
classification hiérarchique ascendante (en 5 super-classes), gardent le même
type d’interprétation que dans les résultats précédents, mais il est moins aisé
d’observer le suivi des trajectoires et de les comparer entre elles (voir carte fig-
ure 3). A titre d’illustration, nous avons reproduit sur la carte 3 la trajectoire
des trois pays (Roumanie, Finlande, Irlande) mentionnés précédemment.

7 Voir [Letrémy, 2000] pour une présentation des programmes en SAS-IML.
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Fig. 3. Carte de Kohonen traditionnelle : répartition des pays.

Fig. 4. Carte de Kohonen traditionnelle : répartition des variables.
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4 L’évolution des taux d’emploi et d’autres indicateurs

Nous étendons dans cette section l’analyse menée sur les taux d’emploi à
un ensemble plus large d’indicateurs relatifs à l’emploi et au chômage, afin
de caractériser de manière plus fine les performances des marchés du travail
européens. Nous considérons en plus des taux d’emploi total, des femmes
et des travailleurs âgés, le taux d’emploi des jeunes (15-24 ans), le taux de
croissance de l’emploi, le taux de chômage, le taux de chômage de longue
durée (plus de 12 mois) et le taux de contrats à durée déterminée (CDD). La
carte obtenue (figure 5) indique que la méthode proposée dans cet article est
robuste à un ensemble plus important de variables.

Fig. 5. Carte de Kohonen généralisée.
Note : La première ligne correspond à 1992 et la dernière à 2003. Dans chaque
case de la carte sont représentées de gauche à droite les répartitions de TxEmp,
TxEmpF, TxEmpTA, TxEmpJ, CroissEmp, Cho, ChoLD, CDD.
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La classification hiérarchique ascendante conduit à retenir 7 super-classes.
La super-classe se trouvant à gauche de la carte correspond encore aux pays
enregistrant les meilleures performances en matière de taux d’emploi, de
croissance de l’emploi et les plus faibles taux de chômage, combinés avec des
taux moyens de CDD. On retrouve les pays nordiques (Suède, Danemark,
Pays-Bas ainsi que Royaume-Uni). Les deux super-classes à coté correspon-
dent à des performances moyennes : on trouve l’Allemagne, l’Autriche, la
Finlande à la fin de la période. La super-classe en haut à droite de la carte,
correspondant à des taux d’emploi très faibles et des taux de chômage très
élevés (Espagne), disparâıt en 1998. La classe en bas à droite est princi-
palement caractérisée par des taux de chômage total et de longue durée très
élevés, on y trouve des pays entrés récemment dans l’UE (Pologne, Slovaquie,
Lituanie, ainsi que la Bulgarie). La super-classe aux performances médiocres
où se trouve l’Espagne comprend aussi la Turquie dans les années 2000. On
note les meilleures performances de l’Estonie, de la République tchèque ou
même de la Hongrie.

5 Conclusion

A travers l’étude des performances en matière d’emploi des pays européens
et des pays candidats à l’adhésion, cet article a illustré les avantages d’une
carte de Kohonen adaptée afin de prendre en compte la dimension temporelle
de données. Cette méthode permet notamment de suivre très facilement les
trajectoires suivies par les pays.
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Abstract. We show how it is possible to use the Kohonen self-organizing algorithm
to deal with data with missing values and estimate them. After a methodological
reminder, we illustrate our purpose with three applications to real-world data.

Nous montrons comment il est possible d’utiliser l’algorithme d’auto-
organisation de Kohonen pour traiter des données avec valeurs manquantes et es-
timer ces dernières. Après un rappel méthodologique, nous illustrons notre propos
à partir de trois applications à des données réelles.
Keywords: Data Analysis, Kohonen maps, Missing Values.

1 Introduction

The processing of data which contain missing values is a complicated and
always awkward problem, when the data come from real-world contexts. In
applications, we are very often in front of observations for which all the values
are not available, and this can occur for many reasons: typing errors, fields
left unanswered in surveys, etc.

Most of the statistical software (as SAS for example) simply suppresses
incomplete observations. It has no practical consequence when the data are
very numerous. But if the number of remaining data is too small, it can
remove all significance to the results.

To avoid suppressing data in that way, it is possible to replace a missing
value with the mean value of the corresponding variable, but this approxi-
mation can be very bad when the variable has a large variance.

So it is very worthwhile seeing that the Kohonen algorithm (as well as
the Forgy algorithm) perfectly deals with data with missing values, without
having to estimate them beforehand. We are particularly interested in the
Kohonen algorithm for its visualization properties.

In Smäıl Ibbou’s PHD thesis, one can find a chapter about this question,
but it has not been published yet. The examples are run with the software
written by Patrick Letrémy in IML-SAS and available on the SAMOS WEB
page (http://samos.univ-paris1.fr).
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2 Adaptation of the Kohonen algorithm to data with
missing values

We do not remind of the definition of the Kohonen algorithm here, see for
example Kohonen [Kohonen, 1995], or [Cottrell et al., 2003].

Let us assume that the observations are real-valued p-dimensional vectors,
that we intend to cluster into n classes.

When the input is an incomplete vector x, we first define the set Mx of
the numbers of the missing components. Mx is a sub-set of {1, 2, . . . , p}.
If C = (C1, C2, ..., Cn) is the set of code-vectors at this stage, the winning
code-vector Ci0(x,C) related to x is computed as by setting

i0(x,C) = argmin
i
‖x− Ci‖,

where the distance ‖x−Ci‖2 =
∑
k 6∈Mx

(xk −Ci,k)2 is computed with the
components present in vector x.

One can use incomplete data in two ways:

a) If we want to use them during the construction of the code-vectors, at
each stage, the update of the code-vectors (the winning one and its neighbors)
only concerns the components present in the observation. Let us denote
Ct = (Ct1, C

t
2, ..., C

t
n) the code-vectors at time t and if a randomly chosen

observation xt+1 is drawn, the code-vectors are updated by setting:

Ct+1
i,k = Cti,k + ε(t)(xt+1

k − Cti,k)

for k /∈Mx and j neighbor of i0(x
t+1, Ct). Otherwise,

Ct+1
i,k = Cti,k.

The sequence ε(t) is [0,1]-valued with ε(0) ' 0.5 and converges to 0 as 1/t.
After convergence, the classes are defined by the nearest neighbor method.

b) If the data are numerous enough to avoid using the incomplete vectors
to build the map, one can content oneself with classifying them after the
map is built, as supplementary data, by allocating them to the class with the
code-vector which is the nearest for the distance restricted to non-missing
components.

This method yields excellent results, provided a variable is not totally or
almost totally missing, and also provided the variables are correlated enough,
which is the case for most real data bases. Several examples can be encoun-
tered in Smäıl Ibbou’s PHD thesis [Ibbou, 1998] and also in Gaubert, Ibbou
and Tutin [Gaubert et al., 1996].
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3 Estimation of missing values, computation of
membership probabilities

Whatever the method used to deal with missing values, one of the most inter-
esting properties of the algorithm is that it allows an a posteriori estimation
of these missing values.

Let us denote by C = (C1, C2, . . . , Cn) the code-vectors after building
the Kohonen map. If Mx is the set of missing component numbers for the
observation x, and if x is classified in class i, for each index k in Mx, one
estimates xk by:

x̂k = Ci,k.

Because in the end of the learning the Kohonen algorithm uses no more
neighbor (0 neighbor algorithm), we know that the code-vectors are asymp-
totically near the mean values of their classes. This estimation method there-
fore consists in estimating the missing values of a variable by the mean value
of its class.

It is clear that this estimation is all the more precise as the classes built by
the algorithm are homogeneous and well separated. Numerous simulations
have shown as well for artificial data as for real ones, that when the variables
are sufficiently correlated, the precision of these estimations is remarkable,
[Ibbou, 1998].

It is also possible to use a probabilistic classification rule, by computing
the membership probabilities for the supplementary observations (be they
complete or incomplete), by putting:

Prob(x ∈ Class i) =
exp(−‖x− Ci‖2)∑n
k=1 exp(−‖x− Ck‖2)

.

These probabilities also give confirmation of the quality of the organiza-
tion in the Kohonen map, since significant probabilities have to correspond
to neighboring classes.

Moreover, to estimate the missing values, one can compute the weighted
mean value of the corresponding components. The weights are the member-
ship probabilities. If x is an incomplete observation, and for each index k in
Mx, one estimates xk by:

x̂k =
∑

Prob(x ∈ Class i) Ci,k.

These probabilities also provide confidence intervals, etc. In the following
sections, we present three examples extracted from real data.

4 Socio-economic data

The first example is classical. The database contains seven ratios measured
in 1996 on the macroeconomic situation of 182 countries. This data set was
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first used by F. Blayo and P. Demartines [Blayo and Demartines, 1991] in
the context of data analysis by SOMs.

The measured variables are: annual population growth (ANCRX), mor-
tality rate (TXMORT), illiteracy rate (TXANAL), population proportion
in high school (SCOL2), GDP per head (PNBH), unemployment rate
(CHOMAG), inflation rate (INFLAT).

Among the set of 182 countries, only 115 have no missing values, 51 have
only one missing value, while 16 have 2 or more than 2 missing values.

Therefore we use the 115 + 51 = 166 complete or almost complete coun-
tries to build the Kohonen map, and we then classify the 16 remaining coun-
tries. The data are centered and reduced as classically. We take a Kohonen
map with 7 by 7 units, that is 49 classes. Figure 1 shows the contents of the
classes. The 166 countries that were used for computing the code-vectors are
in normal font, the 16 others in underlined italics.

Fig. 1. The 182 countries (166 + 16) on a 7 by 7 map, 1500 iterations
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We can see that rich countries are in the top left hand corner, very poor
ones are displayed in the top right hand corner. Ex-socialist countries are
not very far from the richest, etc. As for the 16 countries which are classified
after the learning as supplementary observations, we observe that the logic is
respected. Monaco and Vatican are displayed with rich countries, and Guinea
with very poor countries, etc.

From these computations, it is possible to calculate the membership prob-
abilities of each supplementary observation of each of the 49 classes.

For example, the probabilities that Cuba be-
longs to class i are greater than 0.03 for classes
i = (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (1, 2), (2, 2),
(3, 2), (4, 2), (5, 2), (6, 2), (7, 2), (3, 3), (4, 3), (6, 3), (7, 3), the maximum
(0.06) being reached for class (5, 2). We can notice (figure 1) that they are
neighboring classes. From these probabilities, it is possible to estimate the
distribution of the estimators of the missing values. For Cuba, the variables
in question are GDP, Unemployment and Inflation.

From these results, it is possible (as it will be shown in the talk) to
build super-classes by using an ascending hierarchical classification of the
code-vectors and then to cross this classification with other exogenous clas-
sifications, etc.

5 Study of the property market in Ile-de-France

The second example is extracted from a study commissioned by the direc-
tion of Housing in the Regional Direction of Equipment in Ile-de-France
(DHV/DREIF). This was achieved in 1993 by Paris 1 METIS and SAMOS
laboratories, by Gaubert, Tutin and Ibbou, [Gaubert et al., 1996].

For 205 towns in Ile-de-France considered in 1988, we have property data
(housing rents and prices, old and new, collective or individual, standard or
luxurious, office rents and prices, old and new). Structurally, some of the
data are missing, for example the office market can be nonexistent in some
towns.

This is a case where some data are structurally missing, and where the
number of towns is dramatically reduced if one suppresses those which are
incomplete: only 5 out of 205 would be kept! So for the learning, we use
150 towns which have less than 12 missing values out of 15. After that, the
55 towns which have more than 12 missing values out of 15 are classified as
supplementary observations.

Figure 2 displays the 205 towns (with and without missing values) clas-
sified on a 7 by 7 Kohonen map. Note that there are about 63% of missing
values on the data set.

In this example which is practically impossible to deal with using classical
software, we see that the Kohonen algorithm nevertheless allows to classify
extremely sparse data, without introducing any rough error. The results
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Fig. 2. The 205 towns in Ile-de-France, in underlined italics the 55 towns which
have more than 12 missing values out of 15 variables

are perfectly coherent, even though the data are seriously incomplete. The
districts of Paris, Boulogne and Neuilly sur Seine are in the bottom left hand
corner. On a diagonal stripe, one finds the towns of the inner suburbs (petite
couronne), further right there are the towns of the outer suburbs (grande
couronne). Arcueil is classified together with l’Haÿ-les-Roses (class (2,3)),
Villejuif with Kremlin Bicêtre (4,6), etc.

Of course, these good results can be explained by the fact that the 15
measured variables are well correlated and that the present values contain
information about missing values. The examination of the correlation matrix
(that SAS computes even in case of missing values) shows that 76 coefficients
out of 105 are greater than 0.8, none of them being less than 0.65.
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6 Structures of Government Spending from 1872 to
1971

The third example is a very classical one in data analysis, taken from the
book “Que-sais-je ?” by Bouroche and Saporta , “L’analyse des données”
[Saporta, 1981]. The problem is to study the government spending, measured
over 24 years between 1872 and 1971, by a 11-dimensional vector: Public Au-
thorities (Pouvoirs publics), Agriculture (Agriculture), Trade and Industry
(Commerce et industrie), Transports (Transports), Housing and Regional De-
velopment (Logement et aménagement du territoire), Education and Culture
(Education et culture), Social Welfare (Action sociale), Veterans (Anciens
combattants), Defense (Défense), Debt (Dette), Miscellaneous (Divers). It
is a very small example, with 24 observations of dimension 11, without any
missing values.

A Principal Component Analysis provides an excellent representation in
two dimensions with 64% of explained variance. See figure 3.

Fig. 3. On the left, the projections on the first two principal axes; on the right, the
Kohonen map with 9 classes and 3 super-classes
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On this projection, the years split up into three groups, which correspond
to three clearly identified periods (before the First World War, between the
two World Wars, after the Second World War). Only the year 1920, the
first year when an expenditure item for Veterans appears, is set inside the
first group, while it belongs to the second one. On the Kohonen map, the
three super-classes (identical to the ones just defined) are identified by an
ascending hierarchical classification of the code-vectors.

In this example, we have artificially suppressed randomly chosen values
which were present in the original data, from 1 value out of 11 to 8 values
out of 11, in order to study the clustering stability and compute the accuracy
of the estimations that we get by taking the corresponding values of the
code-vectors.
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One can observe that the three super-classes remain perfectly stable as
long as one does not suppress more than 3 values a year, that is 27% of the
values.

Then we estimate the suppressed values in each case. The next table
shows the evolution of the mean quadratic error according to the number of
suppressed values.

Number of missing values 1 2 3 4 5 6 7 8

Percentage of missing values 9% 18% 27% 36% 45% 55% 64% 73%

0.39 0.54 0.73 1.11 1.31 1.30 1.27 1.39

Table 1. Mean Quadratic Error according to the number of suppressed values

We notice that the error remains small as long as we do not suppress more
than 3 values a year.

7 Conclusion

Through these three examples, we have thus shown how it is possible and
desirable to use Kohonen maps when the available observations have missing
values. Of course, the estimations and the classes that we get are all the
more relevant since the variables are well correlated.

Example 2 shows that it can be the only possible method when the data
are extremely sparse. Example 3 shows how this method allows to estimate
the absent values with good accuracy. The completed data can then be dealt
with using any classical treatment.
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Abstract. We propose a nonparametric discrimination method based on a non-
parametric Nadaray-Watson kernel regression type-estimator of the posterior prob-
ability that an incoming observed vector is a given class. To overcome the curse of
dimensionality of the multivariate kernel density estimate, we introduce a variance
stabilizing approach which constructs independent predictor variables. Then, the
multivariate kernel estimator is replaced by the univariate kernel product estima-
tors. The new procedure is illustrated in simulated data sets and real example,
confirming the usefulness of our approach.
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1 Introduction

The basic problem in classification is to assign an unknown subject to
one of K groups G1, . . . , GK on the basis of a multivariate observation
x = (x1, . . . , xp)

t, where p represents the number of variables and t denotes
the transpose operation. However, in practice, the form of class-conditional
densities is seldom known. To overcome this problem, one can consider a
nonparametric classification method, which uses a nonparametric multivari-
ate kernel density estimates instead of the parametric densities.
Indeed, recently much attention has been given to the application of non-
parametric procedures in the classification problem, which have been shown
to exhibit superior performance over standard parametric methods such as
linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA)
in a wide variety of problems. The recent book of [Hastie et al., 2001] presents
an excellent overview of nonparametric classification methods. A disadvan-
tage of such models may be a lack of parsimony in the final model and a
sensitivity to the “curse of dimensionality” when the dimension p is large
and the sample sizes are moderate.

? The third author is supported by TWAS Research grant 01-159
RG/MATHS/AF/AC.
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Two semiparametric alternative models for classification, which are a gener-
alization of the model assumed by LDA and QDA, are recently proposed by
[Cooley and MacEachern, 1998] and [Amato et al., 2003]. This generaliza-
tion relies upon a transformation of the data based on pseudo-independent
variables. Then, the multivariate kernel density estimates are replaced by
the univariate product kernel estimators. [Cooley and MacEachern, 1998]
used principal component analysis (PCA) to obtain a transformation matrix,
while [Amato et al., 2003] considered independent component analysis (ICA)
(cf. [Comon, 1994]).
In this paper, we propose a nonparametric discrimination method based on a
nonparametric Nadaray-Watson kernel regression type-estimator of the pos-
terior probability that an incoming observed vector is a given class. To over-
come the curse of dimensionality we introduce a Cooley and MacEachern’s
variance stabilizing approach which constructs independent predictor vari-
ables. Then, the multivariate kernel density estimates is replaced by product
of univariate kernel estimators. Some theoretical result on Bayes risk consis-
tence is discussed.
This article is organized as follows. In Section 2, we briefly review the non-
parametric classification rules which product indirect estimation of the con-
ditional group probability (or a posteriori probability). We also recall the
classification approach based on univariate product density estimators which
is an alternative interpretation of LDA and QDA. Section 3 is devoted to
our new variance stabilizing kernel regression classification approach. Some
theoretical asymptotic result on Bayes consistency is discussed in the same
section. In Section 4, we apply our new classification rule to some simula-
tions data sets and a real example, confirming the usefulness of our approach.
Section 5 ends with some conclusions.

2 Nonparametric classification rules

The multiple classification problem is well studied in statistics. Typically,
there is a qualitative random variable Y that takes on a finite number K of
values which we refer to as groups: G1, . . . , GK . To assign an individual to
one of K distinct groups, we must build an allocation rule from the training
sample (x1, y1), . . . , (xn, yn), where xi ∈ IRp is the observation vector and
yi ∈ {1, . . . ,K} indicates the a priori group membership of xi.
As is well known, the optimal classification rule d(x) allocates an observed
p-variate vector x via

d(x) = argmaxj=1,...,KIP (Y = yj|x), (1)

where

IP (Y = yj |x) =
πjfj(x)

∑K
i=1 πifi(x)

(2)
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is the a posteriori probability of group j (or the conditional group probabil-
ity), with πj and fj(.) the a priori probability and group-conditional density
of group j, respectively. In practice classification rules are constructed either
by combining (1) with (2) and estimating the group densities fj or by esti-
mating directly the a posteriori probability P (Y = yj |x) from the given data.
The first approach is called generative method, while the latter approach is
called discriminative method.

2.1 Generative nonparametric rules

Most important parametric and nonparametric generative classification rules
based on the direct estimation of group densities are Gaussian discriminant
analysis (GDA) and kernel density classification, respectively. In kernel den-
sity classification the group-conditional densities are estimated with multi-
variate kernel density estimators which have the form

f̂j(x) =
1

nj

nj∑

`=1

K(x− xj`, Hj),

where nj = #{i : yi = j}, {xj1, . . . ,xjnj} is the training sample of group
j, K(., Hj) denotes a multivariate kernel function from IRp to IR, and Hj is
a usually a p-dimensional vector of smoothing parameters that governs the
degree of smoothness of the estimate (cf. [Scott, 1992]). The recent book
of [Hastie et al., 2001] presents an excellent overview of new nonparametric
classification methods. A disadvantage of such models may be a lack of
parsimony in the final model and a sensitivity to the “curse of dimensionality”
when the dimension p is large and the sample sizes are moderate.

2.2 Kernel univariate product estimators

In order to avoid the biased tail estimation and the curse of dimensionality
common to multivariate kernel density estimation, [Cooley and MacEachern,
1998] (see also [Amato et al., 2003]) present an alternative view of QDA and
LDA which allows them to extend the nonparametric classification problem.
In this alternative rotations of the coordinate axes are employed to obtain an
assumed mutual independence among the components of the rotated data.
Then, the conditional density of the kth sample group can be written as the
product of univariate Gaussian density on the transformed sample, i. e.

fk(x) = f(Hkx) =

p∏

j=1

1

σjk
φ

(
(Hkx)j − (Hkµk)j

σjk

)
, (3)

where φ(.) denotes the density of a standard normal variable and Hk is the
transform matrix obtained from the spectral decomposition of the covariance
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matrix Σk. Then, a natural generalization of LDA and QDA is to replace the
univariate Gaussian densities with univariate kernel density, we called kernel
product estimator (KPE) the resulting estimator. From the latter algorithm,
QDA and LDA are therefore just affected by the way the Hk are estimated.
[Cooley and MacEachern, 1998] consider the principal component analysis
(PCA) to estimate Hk, while [Amato et al., 2003] propose to use independent
component analysis (ICA).

3 Classification via kernel regression estimator

There are several compelling reasons for using discriminative rather than
generative classifiers. The first one is that in real world problems the assumed
generative model is rarely exact, and asymptotically a discriminative model
should typically be preferred (cf. [Vapnick, 1998]). Moreover, there are many
problems in which direct classification does not suffice, and where the precise
estimation of the conditional group probabilities is most important. Multiple
logistic regression (polychotomous regression) has been used for a long time
(cf. [Hosmer and Lemeshow, 1989]) to obtain a direct estimate of all the
conditional group probabilities.
On the other hand, little is known about nonparametric kernel discriminative
method. One early direct kernel approach was proposed by [Lauder, 1983],
which is analogue to kernel density estimation. [Hoti and Holmström, 1999]
proposed an analogue Nadaray-Watson type-estimator defined by

r̂(k)n (x) =

∑n
i=1 T

(k)
i K((x− xi)/hn)∑n

i=1K((x− xi)/hn)
(4)

where T
(k)
i = 1 if Yi = k and 0 elsewhere, K() is a multivariate kernel

and k = 1, . . . ,K. They further improve the flexibility of the estimator by
replacing the constants Y ji with locally fitted polynomial functions.

3.1 Regression kernel classification method (RKCM)

We attack the problem of curse of dimensionality of the kernel regression
classification method, defined via the Nadaray-Watson type-estimator (4),
by adapting the Cooley and MacEachern’s variance stabilizing approach to
KRCM. It consists to replace in (4) the multivariate kernel density estimator
by the product of univariate kernel density estimators, which leads to the
new estimator

r̃(k)n (x) =

∑n
i=1 T

(k)
i

∏p
j=1 f̂

∗
kj{(Ĥkx)j − (Ĥkxi)j}

∑n
i=1

∏p
j=1 f̂

∗
kj{(Ĥkx)j − (Ĥkxi)j}

, (5)

where f̂∗
kj(z) =

∑n
`:y`=k

K{(z − (ĤkXk`)j)/hkj}/hkjnk is the univariate ker-
nel density estimate in the jth dimension of the transformed space for group
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k. We allow the pooling of sample covariance information across K groups
to obtain Ĥ1 = . . . = ĤK = Ĥ . Then the common transformation matrix
Ĥ is estimated via the application of PCA on the pooling sample covariance
matrix.
Since many kernel functions are highly efficient, we adopt the Gaussian ker-
nels which are widely used (cf. [Farhmeir and Tutz, 1994], pp. 156-157). For
simplicity, we can assume that the smoothing parameter in direction j for
group k is constant and equal h. Then, the classical cross-validation of the
average squared error criterion is often used for the selection of the smoothing
parameter h. But, the cross-validation of the misclassification error rate is
more convenient in our context, since it is related to discriminant problem.
However, in our experimental study, we fix hkj = 0.9σkjn

−1/(p+4) as in [Coo-
ley and MacEachern, 1998] (k = 1, . . . ,K; j = 1, . . . , p). A robust estimation
of σkj can be taken equal to the smaller of the sample standard deviation
and (1/1.34) x sample interquartile range. This choice is mainly related to
density estimation, but it is simple to compute and seems to work well in our
numerical study.

3.2 Consistence and convergence rate

[Cooley and MacEachern, 1998] showed that the rule based on KPE of the
density of the kth group is consistent on the set IRp −Nk, where Nk is a set
of Lebesgue measure 0 (k = 1, . . . ,K). Moreover, they established that the
rate of convergence of the mean integrated squared error to 0 is O(n−4/5),
regardless of the dimensionality p.
For our KRCM, we have established that the rule based on the regres-
sion kernel product estimator gn(.) is Bayes risk universally consistent, i.e.
limn−→∞IP{gn(X|Dn)} − L∗ = 0 for any distribution of the pair (X, Y ),
where L∗ is the optimal Bayes error probability and Dn denote the training
sample of size n. The proof is based on the verification of the three condi-
tions of the general Stone’s theorem (cf. [Devroye et al., 1996], Theorem 6.3
in page 98). For saving space, this proof is not included in this note.

4 Numerical experiments

In this section, we report on some case studies for analyzing the practical
behavior of KRCM relative to LDA, QDA and KPE on the basis of training
and test error rate, respectively. For purposes of comparison, the smoothing
parameter in direction j and group k is fixed equal to hkj = 0.9σkjn

−1/(4+p)

for KRCM and KPE, and a priori probabilities were taken to be equal. As
indicated in Section 3, σkj is estimated by the smaller of the sample standard
deviation and (1/1.34) x sample interquartile range. We first present some
Monte Carlo numerical experiments on simulated data sets, then we present
numerical experiment on real data set.
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4.1 Monte Carlo numerical experiments

The first simulated example was also considered by [Cooley and MacEach-
ern, 1998], and has two groups and two predictors. The final predictors are
combination of two initial predictors, generated from the normal mixture for
the first initial predictor and the standard normal for the second one. The
difference between the groups lies in the means of the normals in the mixture
distribution of the first predictor (cf.[Cooley and MacEachern, 1998]).
Two hundred and fifty sets for the training and test samples consisted of 100
and 900 observations, respectively, were run from an equal mixture of the
two distributions. Table 1 shows the averaged success rates for the training
data set and the test data set over 200 simulations, with the standard error
of the average in the parentheses. It appears that KRCM performs well than
KPE, QDA and LDA, in both training and test sample respectively.
In the second example the optimal boundaries separating the group are non-
additive functions of the predictors. The observations of the two groups are
described by 6 predictors, the last four of which are random N (0, 1) noise
variables for both groups. The first two predictors of group 1 are independent
Uniform[−5, 5] random variables, whereas the first two variables of group 2
form bivariate normal vectors with means 0, variance 1 and correlation coeffi-
cient 1/2. Similar example appears in [Cooley and MacEachern, 1998], where
all relevant discriminatory information is contained in a relatively small di-
mension.
We select a training sample of size 500 and a test sample of size 3000, both
from an equal mixture of the two populations. For both the training data set
and the test data set, the averaged success rates and their standard errors
over 75 replicates are summarized in Table 1. The behavior of KRCM is
similar to that in the first example, where the difference with KPE is more
important (15% on test data).
The third example is a well-known waveform problem composed of three
groups with 21 predictors. The predictors are defined by

xi = uh1(i) + (1− u)h2(i) + εi Group1

xi = uh1(i) + (1− u)h3(i) + εi Group2

xi = uh2(i) + (1− u)h3(i) + εi Group3,

where i = 1, . . . , 21, u is uniform on [0, 1], εi ∼ N (0, 1) and the hi are the
shifted triangular forms defined by: h1(i) = max(6 − [i − 11], 0), h2(i) =
h1(i− 4) and h3(i) = h1(i+ 4).
The training and test sets consisted of 500 and 300 observations, respectively,
are selected and their averaged success rates are shown in Table 1 where equal
prior are used. Again, KRCM is better than QDA, LDA and KPE.



Classification via kernel regression 505

Mixture data Nonadditive boundary Waveform
Method Train Test Train Test Train Test

LDA 62.92(.050) 59.23(.015) 84.32(.018) 50.62(.012) 97.72(.005) 97.44(.008)
QDA 61.73(.046)) 59.22(.013) 85.13(.021) 74.72(.054) 97.95(.007) 96.25(.017)
KPE 78.14(.043) 76.23(.015) 85.39(.023) 84.75(.012) 91.22(.002) 93.89(.003)
KRCM 83.17(.034) 77.31(.015) 99.92(.001) 99.04(.002) 100(.000) 100(.000)

Table 1. Average success rates and standard deviation in parentheses.

4.2 Real data example

The real data set considered is the Diabetes in Pima Indian Women. It is
described for instance in [Ripley, 1996]. It concerns a population of n =
532 women who were at least 21 years old, of Pima Indian heritage and
living near Phoenix, Arizona, was tested for diabetes according to World
Health Organization criteria. This women described by 7 predictors and two
groups. The data were collected by the US National Institute of Diabetes
and Digestive and Kidney Diseases. The training set contains a randomly
selected set of 200 subjects, and the sample test set contains the remaining
332 subjects.
For both the training data set and the test data set, the success rates is
summarized in Table 2. Here again, the behavior of KRCM is better than all
the other methods.

Pima
Method Train Test

LDA 76.000 77.108
QDA 76.500 69.879
KPE 85.000 81.626
KRCM 99.000 99.698

Table 2. Success rates corresponding to Pima data set.

5 Discussion

In this paper, we propose a nonparametric discrimination method based on a
nonparametric Nadaray-Watson kernel regression type-estimator of the pos-
terior probability that an incoming observed vector is a given class. To over-
come the curse of dimensionality we introduce a Cooley and MacEachern’s
variance stabilizing approach which constructs independent predictor vari-
ables. Then, the multivariate kernel density estimates is replaced by product
of univariate kernel estimators.
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Summarizing results experiments, performance of KRCM is very good com-
pared with KPE, LDA and QDA. Consequently, our study confirms that
using discriminative rather than generative classifiers is preferred.
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Abstract. In the framework of statistical learning, fitting a model to a given
problem is usually done in two steps. First, model selection is performed, to set
the values of the hyperparameters. Second, training results in the selection, for
this set of values, of a function performing satisfactorily on the problem. Choosing
the values of the hyperparameters remains a difficult task, which has only been
addressed so far in the case of bi-class SVMs. We derive here a solution dedicated
to M-SVMs. It is based on a new bound on the risk of large margin classifiers.
Keywords: Multi-class SVMs, hyperparameters, soft margin parameter.

1 Introduction

When support vector machines (SVMs) [Vapnik, 1998] were introduced in
the early nineties, they were seen by some as off-the-shelf tools. This ideal-
istic picture soon proved too optimistic. Not only does their training raise
technical difficulties, but the tuning of the kernel parameters and the soft
margin parameter C also remains a difficult task. In literature, this ques-
tion is addressed for (two-class) pattern recognition and function estimation
SVMs. The methods proposed often rest on estimates of the true risk of the
machine [Chapelle et al., 2002]. The case of multi-class discriminant analysis
was only considered in the framework of decomposition schemes [Passerini
et al., 2004]. The case of multi-class SVMs (M-SVMs) calls for specific solu-
tions. Indeed, the implementation of the structural risk minimization (SRM)
inductive principle [Vapnik, 1982] utterly rests on the availability of tight
error bounds and the standard uniform convergence results do not carry over
nicely to the case of multi-category large margin classifiers. In this paper,
we derive a new bound on the generalization performance of M-SVMs in
terms of constraints on the hyperplanes. This bound, interesting in its own
right, makes central use of a result relating covering problems and the degree
of compactness of operators. It serves as an objective function to tune the
value of the soft margin parameter. This way, the value of C and the dual
variables α can be determined simultaneously, at a cost of the same order
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of magnitude as the one of a standard training. The organization of the
paper is as follows. Section 2 is devoted to the description of the bound on
which the study is based. In Section 3, the measure of capacity involved is
bounded in terms of the entropy numbers of a linear operator. The resulting
objective function is used in Section 4, to derive the algorithm tuning C and
the parameters α. A first assessment of this algorithm on a toy problem is
described in Section 5. Due to lack of space, proofs are omitted.

2 Bound on the risk of large margin classifiers

We consider the case of aQ-category pattern recognition problem, withQ ≥ 3
to exclude the degenerate case of dichotomies. Let X be the space of de-
scription and C = {C1, . . . , Ck, . . . , CQ} the set of categories. We make the
assumption that there is a joint probability measure µ, fixed but unknown,
on (X × C,B), where B is a σ-algebra on X × C. This measure utterly char-
acterizes the problem of interest. Our goal is to find, in a given set H of
functions from X into RQ, a function with the lowest “error rate” on this
problem. The “error rate” of a function h in H with component functions
hk, (1 ≤ k ≤ Q), is the expected risk of the corresponding discrimination func-
tion, obtained by assigning each pattern x to the category Ck in C satisfying:
hk(x) = maxl hl(x). The patterns for which this assignation is ambiguous are
assigned to a dummy category, so that they contribute to the computation of
the different risks considered below. Hereafter, C(x) will denote indifferently
the category of the (labelled) pattern x, or the index of this category. To
simplify notations, when no confusion is possible, the labels of the categories
will be identified with their indices, i.e. k could be used in place of Ck. First
of all, we define the functional that is to be minimized, the expected risk.

Definition 1 (Expected risk) The expected risk of a function f from X
into C is the probability that f(x) 6= C(x) for a labelled example (x,C(x))
chosen randomly according to µ, i.e.:

R(f) = µ {(x, k) : f(x) 6= k} =

∫

X×C
1l{f(x) 6=k}(x, k)dµ(x, k) (1)

where 1l{f(x) 6=k} is the indicator function of the set
{(x, k) ∈ X × C : f(x) 6= k}.

In the framework of large margin multi-category pattern recognition, the
class of functions of interest is not H itself, but rather its image by an ade-
quately chosen operator. Basically, this is due to the fact that the two central
elements to assign a pattern to a category and to derive a level of confidence
in this assignation are respectively the index of the highest output and the
difference between this output and the second highest one. The operator
used here was introduced in previous works.
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Definition 2 (∆ operator) Define ∆ as an operator on H such that:

∆ : H −→ ∆H
h = (hk)1≤k≤Q 7→ ∆h =

(
∆hk : x 7→ 1

2 {hk(x) −maxl 6=k hl(x)}
)
1≤k≤Q .

Let sm be a m-sample of examples independently drawn from µ. The empir-
ical margin risk is defined as follows:

Definition 3 (Empirical margin risk) The empirical risk with margin
γ > 0 of h on a set sm is

Rγ,sm(h) =
1

m
·#
{
(xi, C(xi)) ∈ sm : ∆hC(xi)(xi) < γ

}
, (2)

where # returns the cardinality of the set to which it is applied.

For technical reasons, it is useful to bound the values taken by the functions
∆hk in [−γ, γ], the smallest interval such that this change has no incidence on
the empirical margin risk. This is achieved by application of the πγ operator.

Definition 4 (πγ operator [Bartlett, 1998]) Let G be a set of functions
from X into RQ. For γ > 0, let πγ : g = (gk)1≤k≤Q 7→ πγ(g) =
(πγ (gk))1≤k≤Q be the piecewise-linear squashing operator defined as:

∀x ∈ X , πγ(gk)(x) =

{
γ.sign (gk(x)) if |gk(x)| ≥ γ
gk(x) otherwise

. (3)

Let ∆γ denote πγ ◦∆ and ∆γH be defined as the set of functions ∆γh. Our
guaranteed risk is made up of two terms, the empirical margin risk given
above and a “confidence interval” involving a covering number of ∆γH.

Definition 5 (ε-cover, ε-net and covering numbers) Let (E, ρ) be a
pseudo-metric space and E′ be a subset of E. An ε-cover of E′ is a cov-
erage of E′ with balls of radius ε the centers of which belong to E. These
centers form an ε-net of E′1. If E′ has an ε-cover of finite cardinality, then
its covering number N (ε, E′, ρ) is the smallest cardinality of its ε-covers. If
there is no such finite cover, then the covering number is defined to be ∞.

The covering number of interest uses the following pseudo-metric:

Definition 6 Let G be a set of functions from X into RQ. For a set s of
points in X of finite cardinality, define the pseudo-metric ds on G as:

∀(g, g′) ∈ G2, ds(g, g
′) = max

x∈s
‖g(x)− g′(x)‖∞ . (4)

1 Hereafter, we will only consider a restricted case in which the ε-nets of E′ will
be supposed to be subsets of E′ itself.
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Let N∞,∞(ε,∆γH,m) = supsm∈Xm N (ε,∆γH, dsm). These definitions being
given, we can formulate the following theorem, which extends to the multi-
class case Corollary 9 in [Bartlett, 1998].

Theorem 1 (Theorem 1 in [Guermeur, 2004]) Let sm be a m-sample
of examples independently drawn from µ. With probability at least 1− δ, for
every value of γ in (0, 1], the risk of any function h in the class H of functions
computed by a Q-class large margin classifier is bounded from above by:

R(h) ≤ Rγ,sm(h)+

√
2

m

(
ln(2N∞,∞(γ/4, ∆γH, 2m)) + ln

(
2

γδ

))
+

1

m
. (5)

The practical interest of such a bound utterly rests on the possibility to derive
a tight bound on the covering number appearing in the “confidence interval”.
To that end, a preliminary simplification is useful.

Proposition 1 ∀(γ, ε) : 0 < ε ≤ γ ≤ 1, N∞,∞(ε,∆γH,m) ≤
N∞,∞(ε,H,m).

Theorem 1 and Proposition 1 imply that deriving a guaranteed risk for H
can boil down to deriving a bound on N∞,∞(ε,H,m). In [Guermeur, 2004],
to bound the covering number appearing in (5), we investigated a standard
pathway, consisting in relating this capacity measure to a generalized VC di-
mension [Vapnik, 1998] through an extension of Sauer’s lemma [Sauer, 1972].
It appeared then that in the multivariate case, establishing the connection be-
tween the separation of functions (with respect to the selected pseudo-metric)
and their shattering capacity is no longer trivial. Taking our inspiration from
[Carl and Stephani, 1990, Williamson et al., 2000], we assess here a more di-
rect approach: relating the covering numbers of H to the entropy numbers
of a linear operator.

3 Bound on the covering numbers of M-SVMs

SVMs [Cortes and Vapnik, 1995] are learning systems introduced by Vapnik
and co-workers as a nonlinear extension of the maximal margin hyperplane
[Vapnik, 1982]. Originally, they were designed to compute dichotomies. In
this context, the principle on which they are based can be outlined very sim-
ply. First, the examples are mapped into a high-dimensional Hilbert space
thanks to a nonlinear transform. Second, the maximal margin hyperplane is
computed in that space, to separate the two categories. Initially, the exten-
sion to perform multi-class discriminant analysis utterly rested on decompo-
sition schemes. The M-SVMs are globally more recent (see [Guermeur, 2004]
for references). The family H of functions h = (hk)1≤k≤Q computed by these
machines can be defined by:

∀k ∈ {1, . . . , Q} , hk(x) = 〈wk, Φ(x)〉 + bk, (6)
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where Φ is some mapping from X into a Reproducing Kernel Hilbert Space
(RKHS) [Aronszajn, 1950]

(
EΦ(X ), 〈., .〉

)
, derived from a symmetric positive

kernel κ. The vectors wk belong to EΦ(X ), whereas the bk are real numbers.
As in the case of all kernel machines, Φ does not appear explicitly in the
computations. Thanks to the “kernel trick”, which rests on the equation:

∀(x, x′) ∈ X 2, κ(x, x′) = 〈Φ(x), Φ(x′)〉, (7)

all what is needed to perform training or testing are the values taken by the
kernel κ. To ensure the finiteness of the capacity measures, we make the ad-
ditional assumption that Φ(X ) is included in the closed ball of radius ΛΦ(X )

in EΦ(X ), that is: ∀x ∈ X , ‖Φ(x)‖ =
√
κ(x, x) ≤ ΛΦ(X ). To upperbound

N∞,∞(ε,H,m) when H is a M-SVM, we use a result regarding linear oper-
ators on Banach spaces. This implies that the covering numbers of H could
be bounded in terms of the covering numbers of its linear counterpart.

Proposition 2 Let H be the class of functions implemented by a Q-category
SVM under the constraint that b = (bk) ∈ [−β, β]

Q
. Let H̃ be the subset of

H made up of the functions for which b = 0. Then, for all ε > 0,

N∞,∞(ε,H,m) ≤
(

2

⌈
β

ε

⌉
+ 1

)Q
N∞,∞(ε/2, H̃,m). (8)

A function h̃ in H̃ is characterized by the vector w = (wk)1≤k≤Q in EQΦ(X ).

This space is endowed with a Hilbertian structure. Its dot product is given

by: ∀ (w,w′) ∈
(
EQΦ(X )

)2

, 〈w,w′〉 =
∑Q

k=1 〈wk, w′
k〉. Its norm is the one

derived from 〈., .〉. Since the additional hypothesis ‖w‖ ≤ 1 will also be used,
we introduce another proposition.

Proposition 3 Let H̃ be defined as above, under the additional constraint
that ‖w‖ ≤ Λw. Let U be its restriction to the functions satisfying ‖w‖ ≤ 1.

∀ε > 0, N∞,∞(Λwε, H̃,m) ≤ N∞,∞(ε,U ,m). (9)

Definition 7 (entropy numbers) Let (E, ρ) be a pseudo-metric space. Let
E′ be a subset of E. The nth entropy number of E′, εn(E′), is defined as the
smallest real ε such that there exists an ε-cover of E′ of cardinality at most
n. Let E and F be two Banach spaces. L (E,F ) denotes the Banach space of
all (bounded linear) operators from E into F equipped with the usual norm.
Let UE be the closed unit ball of E. The nth entropy number of S ∈ L (E,F )
is defined as

εn(S) = εn (S(UE)) . (10)

By `np we denote the vector space of n-tuples equipped with the norm ‖.‖p.
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Definition 8 (Evaluation operator) Let sm be any element of Xm. We
define Ssm as the linear operator given by:

Ssm : EQΦ(X ) −→ `Qm∞
w 7→ Ssm(w) = (〈wk, Φ(xi)〉)1≤k≤Q, 1≤i≤m

The connection between N∞,∞(ε,U ,m) and the entropy numbers of Ssm is
given by the following proposition.

Proposition 4 If for all sm ∈ Xm, εn(Ssm) ≤ ε, then N∞,∞(ε,U ,m) ≤ n.
To bound εn(Ssm), we use a result due to Maurey and Carl.

Lemma 1 (Lemma 6.4.1 in [Carl and Stephani, 1990]) Let H be a
Hilbert space, m a positive integer and S ∈ L (H, `m∞). Then, for 1 ≤ n ≤ m,

ε2n−1(S) ≤ c‖S‖
(

1

n
log
(
1 +

m

n

))1/2

, (11)

where c is a universal constant and by log we denote the logarithm to base 2.

Lemma 1 still holds without the hypothesis n ≤ m. Gathering the results
from Propositions 1 to 4 together with this lemma (applied on Ssm) produces
a handy bound on the covering number of interest.

Theorem 2 Let H be the class of functions computed by a Q-category M-
SVM under the hypothesis that Φ(X ) is included in the closed ball of radius

ΛΦ(X ) in EΦ(X ) and the constraints that ‖w‖ ≤ Λw and b ∈ [−β, β]Q. For
every value of γ in (0, 1],

N∞,∞(γ/4, ∆γH, 2m) ≤
(

2

⌈
4β

γ

⌉
+ 1

)Q
· 2

8cΛwΛΦ(X)
γ

q
2Qm
ln(2)

−1
. (12)

4 Tuning the soft margin parameter

To tune C thanks to the guaranteed risk derived above, we propose a simple
line search. Although it is compatible with any of the training algorithms
published, for the sake of simplicity, we focus here on the case of the most
common machine, introduced in [Weston and Watkins, 1998]. Training it
amounts to solving the following quadratic programming (QP) problem:

Problem 1 (Primal).

min
(w,b)

{
1

2

Q∑

k=1

‖wk‖2 + C

m∑

i=1

Q∑

k=1

ξik

}

s.t.

{
hC(xi)(xi)− hk(xi) ≥ 1− ξik, (1 ≤ i ≤ m), (1 ≤ k 6= C(xi) ≤ Q)
ξik ≥ 0, (1 ≤ i ≤ m), (1 ≤ k 6= C(xi) ≤ Q)

.
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In the objective function, the sum of slack variables is used in place of the
empirical margin risk, whereas the penalty term 1

2

∑Q
k=1 ‖wk‖2 is added to

perform capacity control. To the best of our knowledge, Theorem 2 offers
the first justification for this choice. By setting the soft margin parameter
C, one specifies a compromise between training accuracy and complexity. If
the objective function itself cannot be used in that purpose, since it is only
distantly related to a guaranteed risk, performing n-fold cross-validation is
a sensible possibility. However, it implies training the machine n times for
each value of C considered, which can be prohibitive in terms of cpu time re-
quirements. Furthermore, this no longer corresponds to the implementation
of the SRM principle. In that respect, our solution should prove more satis-
factory. To detail it, we first introduce the formulation in which Problem 1
is solved, its Wolfe dual. Let αik be the Lagrange multiplier associated with
the constraint 〈wC(xi) − wk, Φ(xi)〉+ bC(xi) − bk − 1 + ξik ≥ 0. Let

J(α) =
1

2




∑

i'j

Q∑

k=1

Q∑

l=1

αikαjlκ(xi, xj)− 2

m∑

i=1

m∑

j=1

Q∑

k=1

αikαjC(xi)κ(xi, xj)

+

m∑

i=1

m∑

j=1

Q∑

k=1

αikαjkκ(xi, xj)



−

m∑

i=1

Q∑

k=1

αik,

with i ' j meaning that xi and xj belong to the same category.

Problem 2 (Dual).

min
α
J(α)

s.t.

{∑
xi∈Ck

∑Q
l=1 αil −

∑m
i=1 αik = 0 (1 ≤ k ≤ Q− 1)

0 ≤ αik ≤ C (1 ≤ i ≤ m), (1 ≤ k 6= C(xi) ≤ Q)
.

Based on this dual formulation, our algorithm can be expressed as follows:

/* Initialization */

C0 := C(0), α(0) := 0Qm;
/* Main loop */

For i := 1 to nb_iter do

train_SVM(Ci−1 , sm, α(i−1)) −→ α(i);
Ci := Ci−1 + ε;

done

/* Termination */

i0 := Argmin1≤i≤nb_iter { compute_bound(Ci−1 , sm, α(i)) };
C := Ci0 ;

In words, this algorithm consists in training the M-SVM a given number
of times (calls of the function train_SVM) for increasing values of C, and
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checking each time the value of the guaranteed risk (calls of the function
compute_bound). Eventually, the value retained is the one corresponding to
the “argmin”, Ci0 . The benefit in terms of cpu time springs from the fact that
the initial feasible solution used for the i+1-th training is the optimal solution
of the i-th training, α(i). Note that this is possible since we are working with
increasing values of C. As a consequence, each training procedure converges
more quickly than if the starting feasible solution was simply the null vector.
Obviously, this exploration of the regularization path could also benefit from
the implementation of a multi-class extension of the algorithm proposed in
[Hastie et al., 2004].

5 Experimental results

The bound provided by the conjunction of Theorem 1 and Theorem 2 can be
applied to any M-SVM, whatever the kernel is. This is not a trivial property
indeed, since it means that the feature space can be infinite dimensional, as
in the case of a Gaussian kernel. In this section, for the sake of simplicity,
we restrict to the case of a linear machine, i.e. a machine where the kernel is
the Euclidean dot product. In that case, we can make use of a simpler result
than Lemma 1 to bound from above the covering numbers of interest.

Proposition 5 (Proposition 1.3.1 in [Carl and Stephani, 1990]) Let
E and F be Banach spaces and S ∈ L (E,F ). If S is of rank r, then for
n ≥ 1,

εn(S) ≤ 4‖S‖n−1/r. (13)

The bound resulting from this proposition is the following.

Theorem 3 Let H be the class of functions computed by a Q-category M-
SVM under the hypothesis that Φ(X ) is included in the closed ball of radius

ΛΦ(X ) in EΦ(X ) and the constraints that ‖w‖ ≤ Λw and b ∈ [−β, β]
Q
. Sup-

pose further that the dimensionality of EΦ(X ) is finite and equal to d. For
every value of γ in (0, 1],

N∞,∞(γ/4, ∆γH, 2m) ≤
(

2

⌈
4β

γ

⌉
+ 1

)Q
·
(

32ΛwΛΦ(X )

γ

)Qd
. (14)

The derivation of this bound rests on the fact that under the hypothesis
dim

(
EΦ(X )

)
= d, the rank of Ssm (or Ss2m) is bounded from above by the

dimensionality of its domain, Qd. Otherwise, the sole bound on the rank
available would be Qm (resp. 2Qm), which would not meet our purpose
(the guaranteed risk would not tend to the margin risk asm tends to infinity).

The algorithm of Section 4 is evaluated on a toy problem: the discrimination
between three categories corresponding to isotropic Gaussian distributions in
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the plane with respective means and variances
(
(2.5 ·

√
3,−2.5), 1

)
, ((0, 5), 4)

and
(
(−2.5 ·

√
3,−2.5), 16

)
. The priors on the categories are equal. The

training set is made up of 3000 points, 1000 for each category. This problem
is illustrated on Figure 1. The optimal separating surfaces, implementing
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Fig. 1. Separating 3 Gaussian-distributed categories in R2. Left: training set.
Right: Bayes’ classifier (circles), optimal linear classifier and boundaries computed
by the linear M-SVM for the (estimated) optimal value of C (thick lines).

Bayes’ classifier, are two circles. The smaller one, at the bottom right of the
right subfigure, corresponds to the boundary of the first category, the other
one corresponding to the boundary of the second category. For this classifier,
a Monte-Carlo method provides us with an estimate of the expected risk equal
to 5.27%. With the same method, the estimates of the risks of the optimal
linear separator and the M-SVM specified by the algorithm of Section 4 are
respectively 5.85% and 6.30%. Thus, the estimation error is slightly inferior
to the approximation error. Obviously, the significance of these initial results
is limited, since they were obtained with a linear model, for which overfitting
seldom happens. Additional experiments are currently being performed with
a polynomial kernel in place of the Euclidean dot product.

6 Conclusions and future work

In this paper, a bound on the covering numbers of M-SVMs in terms of con-
straints on the parameters of their hyperplanes has been established. When
plugged into the guaranteed risk derived in [Guermeur, 2004], it provides us
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with an objective function which can be used to implement the SRM induc-
tive principle, and especially to tune the hyperparameters. An experimental
validation on real-world data is underway, in protein secondary structure pre-
diction, with the aim to improve the accuracy of the classifier introduced in
[Guermeur et al., 2004].
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Abstract. In this article, the bias of the empirical error rate in supervised classi-
fication is studied. The exact formula and a robust estimator of the bias are given.
From these results, we propose a new penalized criterion to perform model selection
in classification. Applications to simulated and real data are presented.
Keywords: Classification, Model Selection, Covariance Penalty.

1 Introduction

The aim of supervised classification is to predict the unknown label Y of an
observation (here Y = 0 or 1), according to some collected information X . A
classifier φ∗n : x 7→ φ∗n(x) = ŷ is constructed on the basis of a collection of i.i.d.
examples (Xi, Yi), i = 1, ..., n for which both the label and the information
are known. An important problem is to estimate the conditional error rate
(CER)

Lx(φ
∗
n) =

1

n

n∑

i=1

P (φ∗n(xi) 6= Y )

of the constructed classifier, where the xi were observed on the training set.
A natural estimator of Lx(Φ

∗
n) is the empirical error rate (EER)

Ln(φ
∗
n) =

1

n

n∑

i=1

I{φ∗
n(Xi) 6=Yi} ,

but this estimator is known to be optimistically biased, and we would like to
gain insight into the bias of the EER estimator.
In this paper, we study the behavior of the random variable B(Φ∗

n) =
Lx(Φ

∗
n) − Ln(Φ∗

n), where Φ∗
n is constructed on the basis of an independent

copy of the Yi’s, and with the same xi’s as in the initial dataset. We give an
exact formula for the bias

EY (B(Φ∗
n)) = EY (Lx(Φ

∗
n)− Ln(Φ∗

n)) , (1)

along with an estimator Sn of EY (B(Φ∗
n)).

An important motivation for estimating (1) is to perform complexity regu-
larization in pattern recognition. When the CER is close to the true error
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rate P (φ∗n(X) 6= Y ) (TER), it should be relevant to minimize the criterion

C(Φ∗
n) = Ln(Φ

∗
n) + Sn (2)

to find a classifier with good generalization performance. We call the mini-
mization of criterion (2) the swapping method (designated by (S)). We anal-
yse the empirical behavior of (S) on a theoretical example, and we compare
(S) with cross-validation (CV). We then present the adaption of (S) to the
popular k-nearest neighbors algorithm (kNN), where (S) is used to select k.
Applications to experimental data are presented to assess the performance of
(S).

2 Bias estimation in classification

Let (Xi, Yi), i = 1, ..., n be n i.i.d. random vectors with distribution P . We
note px = P (Y = 1|X = x). We define φ∗n as a fixed classification function
obtained from a given sample. The ”*” indicates that the function was found
by optimization of some criterion. We also define Φ∗

n as the corresponding
random classification rule obtained for any sample with the same xis and
random Yis. In practice we would like to obtain some mathematical proper-
ties about φ∗n which is the classification function we will use for prediction.
However, these properties are difficult to obtain, and we must use Φ∗

n as an
intermediate trick.
The following theorem gives the exact form for the bias of the EER in the
general classification case:

Theorem 1 For any classification rule Φ∗
n we have:

EY (B(Φ∗
n)) =

2

n

n∑

i=1

pxi(1− pxi)EY [Φ∗
n(xi|Yi = 1)− Φ∗

n(xi|Yi = 0)] , (3)

where Φ∗
n(. |Yi = 1) is the decision rule computed from the learning dataset

with Yi set to 1.

The proof is not given here. It is worthwhile to interpret this result. The
label of each observation is swapped alternatively and the consequence on
the decision rule is observed. If the swap does not change the decision for
the observation under concern, its contribution to the bias estimate is null.
Conversely, if the decision is changed, the contribution is equal to 2px(1−px)
with a sign - or +, usually +. Thus if a decision rule is ”too versatile” the
bias of the EER is high.
From Theorem 1 we can derive an unbiased estimator for the bias of any
classification method:
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Corollary 1 With the notations of Theorem 1, an unbiased estimator of
EY (B(Φ∗

n)) is

Sn =
2

n

n∑

i=1

pxi(1 − pxi)[φ
∗
n(xi|Yi = 1)− φ∗n(xi|Yi = 0)] .

Of course this estimator is theoretical, since px is unknown. Many classifica-
tion methods provide estimations of the posterior probabilities p̂x that could
be used in place of px in Lemma 1. But this method leads to an inconsistent
estimation of the bias. We propose a robust version of the plug-in estimator:

p̂x,B =
nxp̂x + n0 × (1/2)

nx + n0
, (4)

where p̂x is the plug-in estimator, nx is the number of points used to compute
p̂x and n0 is a fixed integer. The ”B” index stands for ”Bayesian”. If n0 = 0,
then p̂B = p̂x and we find the plug-in estimator. Inversely, if n0 = ∞, then
p̂B = 1/2 which corresponds to the worst case in classification
The behavior of the swapping estimate may be closely related to the value
of n0. For high levels of noise in the data and rich classes of classification
functions, n0 should be large. Conversely for low level of noise and poor
classes of functions, n0 should be small. In the following, n0 is fixed to 10,
that seems to be an omnibus compromise (see section 3).

3 Model selection by swapping

3.1 Model selection

Classification aims at finding a classifier φ∗n in a class of functions C on the
basis of data ((X1, Y1), ..., (Xn, Yn)). Of course, we want the TER of φ∗n to
be close to the Bayes error rate, i.e. the error rate L∗ of the Bayes classifier

Φ∗(x) = { 1 if P {Y = 1|X = x} >1/2
0 otherwise .

In practice, φ∗n is selected by empirical risk minimization on C. Since we
do not know how to choose C, we consider many classes Ck with different
complexities. In the classical complexity regularization framework, the EER
minimizer φ∗n,k is computed for each class. Then among all the candidate
classifiers we choose the one that minimizes a given penalized criterion, which
usually is an upper bound of the TER.
We propose to use the swapping method (S) to perform model selection. The
selection among all the candidate classifiers is performed by minimizing:

C(φ∗n,k) = Ln(φ
∗
n,k) + Sn

= Ln(φ
∗
n,k) +

2

n

n∑

i=1

p̂xi(1− p̂xi)[φ
∗
n(xi|Yi = 1)− φ∗n(xi|Yi = 0)].(5)



Swapping 521

While this strategy is also based on the minimization of a penalized criterion,
the difference with the preceding strategy is the meaning of the criterion. In
(5), the criterion is an estimator of the conditional error risk, while in the
regularization framework the criterion is an upper bound for the true error
rate. The (S) strategy can be justified with the following break-down:

L(φ∗n) = Ln(φ
∗
n) + [Lx(φ

∗
n)− Ln(φ∗n)] + [L(φ∗n)− Lx(φ∗n)]

= Ln(φ
∗
n) +B(φ∗n) +A(φ∗n) ,

where A(φ∗n) = L(φ∗n)−Lx(φ∗n). In this paper we make the assumption that
A(φ∗n) does not strongly depend on the complexity of φ∗n, and therefore can
be neglected for model selection.

3.2 The Kearn’s example

[Kearns et al., 1997] proposed the following model for comparison of model
selection methods. The interval [0, 1] is divided into d equal subintervals,
alternatively labelled 0 and 1. Let ((X1, Y1), ...(Xn, Yn)) be an i.i.d. sample,
where Xi and Yi are the position and label of observation i, respectively. The
Xi’s are drawn from the uniform distribution on [0, 1]. Yi equals the label of
the interval to which Xi belongs with probability 1− η, and the alternative
label with probability η. η denotes the noise level of the problem.
We performed simulations according to this model with d = 10, η = 0.1, 0.2,
0.3 and 0.4 and n = 20, 100, 500. Simulations performed with d = 100 lead
to similar findings (not shown).
Figure 1 (left) shows the EER, CER and TER averaged on 100 trials, for
η = 0.2 and n = 100, displayed along the number of intervals k. One can
see that the curves of the conditional and true error rates are nearly parallel
for k ≥ d. This behavior is observed for any value of η, d and n (data not
shown). Therefore the basic condition on A(φ∗n) assumed in this paper is
satisfied for the Kearns example.
Figure 1 (right) shows the behavior of the estimate of the conditional bias
given by the swapping method (S). In this example with η = 0.2 the bias is
overestimated. This overestimation is higher for η = 0.1, vanishes for η = 0.3
and becomes an underestimation for η = 0.4 (not shown).
Figure 2 (left) gives the behavior of the empirical and (S) error rates (y-axis)
according to the number of intervals k (x-axis), for 3 trials with η = 0.2
and n = 100. One can see that the empirical error rate decreases to zero.
Conversely (S) estimate of the error rate decreases till k ' 10 and then grows
for k > 10. Figure 2 (right) shows the mean values of 100 trials of the two
error rate estimates with the same parameters as above.

3.3 Comparison between cross validation and swapping

We compared the swapping method selection with n0 = 10 (S) to its natural
competitors, the (n−1, 1) cross validation (CV) and the best possible classifi-
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Fig. 1. Left: EER (bold line), CER (dotted line) and TER (solid line) along the
number of intervals k. Average on 100 trials, with η = 0.2 and n = 100. Right:
Estimated bias (dotted line), conditional bias (solid line) and true bias (bold line)
along the number of intervals k.

Fig. 2. Left: Empirical and (S) error rates along the number of intervals k for
3 trials. Right: Empirical and (S) error rates along the number of intervals k,
averaged on 100 trials.

cation function ”oracle” (O). (O) is the classification function that minimizes
the true error rate for each sample. Figure 3 shows the results for η = 0.2.
Considering Figure 3 and the results obtained for other values of η (not shown
here), we draw the following conclusions:
• (S) outperforms (CV) for η ≤ 0.3. The relative gain (100(LCV −
LS)/(LCV − LO) of (S) on (CV) for η ≤ 0.3 lies between 20% and 80%
(not shown here). When η = 0.4 the gain exists but is tiny.
• The (S) 95% quantile of LS−LO is always lower than the (CV) 95% quan-
tile of LCV − LO.
• The empirical error rate penalized by the (S) method gives a better estimate
of the true error rate of the selected classification function. This estimate is
optimistic for η ≥ 0.2 and pessimistic for η ≤ 0.1. (CV) systematically gives
an optimistic view of the true error rate of the selected classification function.
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Fig. 3. Results of the (S) model selection for η = 0.2. Top left: Mean number of
intervals kO, kCV and kS obtained by (O), (CV) and (S), respectively. Top right:
Mean of the true error rate of the classifiers obtained by (O) selection (solid line),
(CV) selection (dashed line) and (S) selection (dotted line), respectively. Dashed
lines correspond to (CV) TER estimated by (CV), and (S) TER estimated by (S).
Bottom left: Mean of |kO − kCV | and |kO − kS |. Bottom right: 95% quantile
of LCV − LO and LS − LO.

4 Application to k-nearest-neighbors

We present a simple computational trick to efficiently apply the (S) method to
kNN. We then compare the performance of (CV) and (S) on a benchmarking
microarray dataset.

4.1 Computation of (S) for kNN

To avoid any concern about the parity of k, in the following we consider only
odd values for k, as proposed in [Fort and Lambert-Lacroix, 2004]. For a
given k, we need to compute for each observation xi the quantity pxi(1 −
pxi)[φ

∗
n(xi, 1) − φ∗n(xi, 0)]. The posterior probability pxi can be estimated

according to the Bayes method presented in section 2. In this case, the
Bayes estimator of pxi for the kNN is:

p̂xi,B =
k × (m/k) + n0 × 1/2

k + n0
=
m+ n0/2

k + n0
, (6)

where m is the number of 1 among the k neighbors of point xi. Clearly,
this posterior probability can be obtained from the kNN classifier without
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additional computational time.
The difference φ∗n(xi, 1)−φ∗n(xi, 0) can also be easily obtained from the kNN
classifier considering the following argument: when the label of point xi is
swapped, its classification is not changed except in the case where xi belongs
to the majority and the majority is ”short”, i.e. m = (k − 1)/2 or m =
(k+1)/2 (remember that k is odd). Hence, the difference φ∗n(xi, 1)−φ∗n(xi, 0)
will be 1 if m = (k−1)/2 or m = (k+1)/2, and 0 otherwise. So this difference
is easily obtained from the kNN algorithm.
This shows that (S) is a competing method from a computational point of
view. In practice, for samples of size n ∼ 100 and a number of variables as
big as 2000, the minimization of the penalized empirical risk to select k is
performed within a few seconds.

4.2 Microarray data

We consider the Colon microarray dataset, described in [Alon et al., 1999]. It
contains 62 tissue samples for which 2,000 genes were observed. Among the 62
observations, 40 of them are tumor tissues and 22 are normal. For comparison
with other published studies, the data normalization, the preliminary gene
selection, and the re-randomization study to assess the performance of (S)
and (CV) were performed according to the procedures described in [Fort and
Lambert-Lacroix, 2004]. It should be noticed that the high level of noise in
the data along with the high number of variables considered (with possibly
many of them irrelevant) should be in favor of (CV). We display the average
performance of the classification rules obtained with (S) and (CV) selection
methods.

Table 1 shows that (S) outperforms (CV) for three gene selections: g =

Oracle Swapping Cross-Valid.
Nb. Genes N R N R N R

2000 6.0 19.0 9.11 28.6 6.7 28.8

1000 7.6 13.8 12.8 21.4 11.2 21.1

500 6.4 13.1 12.1 18.1 15.7 18.7

100 4.8 12.0 12.0 15.6 20.7 16.0

Table 1. Results for the Colon dataset, over 500 resamplings. First column indi-
cates the number of selected genes. For each selection method (Oracle, Swapping
and Cross-Valid.) the mean number of neighbors (N) and the mean test error (R)
are computed.

100, 500, 2000. As for simulations, both methods are far from the oracle
results, even for the simpler case where the number of genes is 100 (which
corresponds to the low level of noise case). We conclude that the (S) method
for kNN is competing on simulated and real data.
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5 Discussion

The methods proposed in this paper to estimate the conditional error rate
are connected to some recent papers. A review of the field of prediction
error estimation in a quite general context has been made by [Efron, 2004]
who divides the methods into two classes: covariance penalties, assuming a
parametric model, and nonparametric methods such as cross validation and
bootstrap. The swapping method is clearly a covariance penalty method,
but it may be applied to non parametric statistical methods. Its only
requirement is that a conditional probability P (Y = 1/X = x) may be
estimated for each observed value x. This is true because the field is reduced
to the error rate in classification, where the p.d.f. of the response variable Y
reduces to only one parameter.

The swapping expression in Theorem 1 was present in an earlier paper of
[Efron, 1986], but the idea of estimating EY (B(Φ∗

n)) by its sample estimate
(Corollary 1), and the application to model selection in classification are new.
Moreover we propose a robust estimate of px, which attempts to correct the
over-learning bias. In this study n0 was fixed to 10, but simulations performed
with values ranging from 5 to 20 give similar results. However the choice of
n0 is an open problem.
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2 LEAR – INRIA Rhône-Alpes, 655 avenue de l’Europe, Montbonnot,
38334 Saint-Ismier Cedex – France (e-mail: Cordelia.Schmid@inrialpes.fr)

Abstract. We propose a new method of discriminant analysis, called High Di-
mensional Discriminant Analysis (HHDA). Our approach is based on the assump-
tion that high dimensional data live in different subspaces with low dimensionality.
Thus, HDDA reduces the dimension for each class independently and regularizes
class conditional covariance matrices in order to adapt the Gaussian framework to
high dimensional data. This regularization is achieved by assuming that classes are
spherical in their eigenspace. HDDA is applied to recognize object in real images
and its performances are compared to classical classification methods.
Keywords: Discriminant analysis, Dimension reduction, Regularization.

1 Introduction

In this paper, we introduce a new method of discriminant analysis, called
High Dimensional Discriminant analysis (HDDA) to classify high dimensional
data, as occur for example in visual object recognition. We assume that high
dimensional data live in different subspaces with low dimensionality. Thus,
HDDA reduces the dimension for each class independently and regularizes
class conditional covariance matrices in order to adapt the Gaussian frame-
work to high dimensional data. This regularization is based on the assump-
tion that classes are spherical in their eigenspace. It is also possible to make
additional assumptions to reduce the number of parameters to estimate. This
paper is organized as follows. We first remind in section 2 the discrimination
problem and classical discriminant analysis methods. Section 3 presents the
theoretical framework of HDDA. Section 4 is devoted to the inference aspects.
Our method is then compared to reference methods on a real images dataset
in section 5.

2 Discriminant analysis framework

In this section, we remind the general framework of the discrimination prob-
lem and present the main methods of discriminant analysis.

2.1 Discrimination problem

The goal of discriminant analysis is to assign an observation x ∈ Rp with un-
known class membership to one of k classes C1, ..., Ck known a priori. To this
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end, we have a learning dataset A = {(x1, c1), ..., (xn, cn)/xj ∈ Rp and cj ∈
{1, ..., k}}, where the vector xj contains p explanatory variables and cj in-
dicates the index of the class of xi. It is a statistical decision problem and
the learning dataset allows to construct a decision rule which associates a
new vector x ∈ Rp to one of the k classes. The optimal decision rule, called
Bayes decision rule, affects the observation x to the class Ci∗ which has the
maximum a posteriori probability which is equivalent, in view of the Bayes
formula, to minimize a cost function Ki(x) i.e. i∗ = argmini=1,...,kKi(x),
with

Ki(x) = −2 log(πi fi(x)),

where πi is the a priori probability of class Ci and fi(x) denotes the class
conditional density of x, ∀i = 1, ..., k.

2.2 Classical discriminant analysis methods

Some classical discriminant analysis methods can be obtained by combining
additional assumptions with the Bayes decision rule. We refer to [Celeux,
2003] and [Saporta, 1990, chap. 18] for further informations on this topic. For
instance, Quadratic discriminant analysis (QDA) assumes that, ∀i = 1, ..., k,
the class conditional density fi for the class Ci is Gaussian N (µi, Σi) which
leads to the cost function

Ki(x) = (x− µi)tΣ−1
i (x− µi) + log(detΣi)− 2 log(πi).

This decision rule makes quadratic separations between the classes. In prac-
tice, this method is penalized in high-dimensional spaces since it requires the
estimation of many parameters. For this reason, particular rules of QDA
exist in order to regularize the estimation of Σi. As an example, it can be
assumed that covariance matrices are proportional to the identity matrix, i.e.
Σi = σ2

i Id. In this case, classes are spherical and this method is referred to as
QDAs. One can also assume that covariance matrices are equal, i.e. Σi = Σ,
which yields the framework of the linear discriminant analysis (LDA). This
method makes linear separations between the classes. If, in addition, covari-
ance matrices are assumed equal and proportional to the identity matrix, we
obtain the so-called LDAs method.

2.3 Dimension reduction and regularization

Classical discriminant analysis methods have disappointing behavior when
the size n of the training dataset is small compared to the number p of
variables. In such cases, a dimension reduction step and/or a regularization
of the discriminant analysis are introduced.
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Fisher discriminant analysis (FDA) This approach combines a dimension re-
duction step and a discriminant analysis procedure and is in general efficient
on high dimensional data. FDA provides the (k− 1) discriminant axes maxi-
mizing the ratio between the inter class variance and the intra class variance.
It is then possible to perform one of the previous methods on the projected
data (usually LDA).

Regularized discriminant analysis (RDA) In [Friedman, 1989] a regulariza-
tion technique of discriminant analysis is proposed. RDA uses two regulariza-
tion parameters to design an intermediate classifier between LDA and QDA.
The estimation of the covariance matrices depends on a complexity param-
eter and on a shrinkage parameter. The complexity parameter controls the
ratio between Σi and the common covariance matrix Σ. The other param-
eter controls shrinkage of the class conditional covariance matrix toward a
specified multiple of the identity matrix.

Eigenvalue decomposition discriminant analysis (EDDA) This other regular-
ization method [Bensmail and Celeux, 1996] is based on the re-parametri-
zation of the covariance matrices: Σi = λiDiAiD

t
i , where Di is the matrix

of eigenvectors of Σi, Ai is a diagonal matrix containing standardized and
ordered eigenvalues of Σi and λi = |Σi|1/p. Parameters λi, Di and Ai re-
spectively control the volume, the orientation and the shape of the density
contours of class Ci. By allowing some but not all of these quantities to
vary, the authors obtain geometrical interpreted discriminant models includ-
ing QDA, QDAs, LDA and LDAs.

3 High Dimensional Discriminant Analysis

The empty space phenomena [Scott and Thompson, 1983] enables us to as-
sume that high-dimensional data live in subspaces with dimensionality lower
than p. In order to adapt discriminant analysis to high dimensional data and
to limit the number of parameters to estimate, we propose to work in class
subspaces with lower dimensionality. In addition, we assume that classes
are spherical in these subspaces, in other words class conditional covariance
matrices have only two different eigenvalues.

3.1 Definitions and assumptions

Similarly to classical discriminant analysis, we assume that class conditional
densities are Gaussian N (µi, Σi) ∀i = 1, ..., k. Let Qi be the orthogonal
matrix of eigenvectors of the covariance matrix Σi and Bi be the eigenspace of
Σi, i.e. the basis made of eigenvectors of Σi. The class conditional covariance
matrix ∆i is defined in the basis Bi by ∆i = QtiΣiQi. Thus, ∆i is diagonal
and made of eigenvalues of Σi. We assume in addition that ∆i has only
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two different eigenvalues ai > bi. Let Ei be the affine space generated by
the eigenvectors associated to the eigenvalue ai with µi ∈ Ei, and let E⊥

i be
Ei ⊕ E⊥

i = Rp with µi ∈ E⊥
i . Thus, the class Ci is both spherical in Ei and

in E⊥
i . Let Pi(x) = Q̃iQ̃i

t
(x − µi) + µi be the projection of x on Ei, where

Q̃i is made of the di first raws of Qi and supplemented by zeros. Similarly,
let P⊥

i (x) = (Qi − Q̃i)(Qi − Q̃i)t(x− µi) + µi be the projection of x on E⊥
i .

3.2 Decision rule

The preceding assumptions lead to the cost function:

Ki(x) =
‖µi − Pi(x)‖2

ai
+
‖x− Pi(x)‖2

bi
+di log(ai)+(p−di) log(bi)−2 log(πi),

(cf. [Bouveyron et al., 2005] for the proof). In order to interpret the decision

rule the following notations are needed: ∀i = 1, ..., k, ai =
σ2

i

αi
and bi =

σ2
i

(1−αi)

with αi ∈]0, 1[ and σi > 0. The cost function can be rewritten:

Ki(x) =
1

σ2
i

(
αi‖µi − Pi(x)‖2 + (1− αi)‖x− Pi(x)‖2

)

+ 2p log(σi) + di log

(
1− αi
αi

)
− p log(1 − αi)− 2 log(πi).

The Bayes formula allows to compute the classification error risk based on
the a posteriori probability

p(Ci|x) = exp

(
−1

2
Ki(x)

)/ k∑

j=1

exp

(
−1

2
Kj(x)

)
.

Note that some particular cases of HDDA reduce to classical discriminant
analysis. If ∀i = 1, ..., k, αi = 1/2: HDDA reduces to QDAs. If moreover
∀i = 1, ..., k, σi = σ: HDDA reduces to LDAs.

3.3 Particular rules

By allowing some but not all of HDDA parameters to vary between classes,
we obtain 24 particular models which some ones have easily geometrically
interpretable rules and correspond to different types of regularization (see
[Bouveyron et al., 2005]). Due to space restrictions, we present only two
methods: HDDAi and HDDAh.

Isometric decision rule (HDDAi) The following additional assumptions are
made: ∀i = 1, ..., k, αi = α, σi = σ, di = d and πi = π∗, leading to the cost
function

Ki(x) = α‖µi − Pi(x)‖2 + (1− α)‖x− Pi(x)‖2.
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Case α = 0: HDDAi affects x to the class Ci∗ if ∀i = 1, ..., k, d(x,Ei∗ ) <
d(x,Ei). From a geometrical point of view, the decision rule affects x to the
class associated to the closest subspace Ei.
Case α = 1: HDDAi affects x to the class Ci∗ if ∀i = 1, ..., k, d(µi∗ , Pi∗(x)) <
d(µi, Pi(x)). It means that the decision rule affects x to the class for which
the mean is closest to the projection of x on the subspace.
Case 0 < α < 1: the decision rule affects x to the class realizing a compromise
between the two previous cases. The estimation of α is discussed in the
following section.

Homothetic decision rule (HDDAh) This method differs from the previous
one by removing the constraint σi = σ. The corresponding cost function is:

Ki(x) =
1

σ2
i

(α‖µi − Pi(x)‖2 + (1− α)‖x− Pi(x)‖2) + 2p log(σi).

It favours classes with large variance. Indeed, if the point x is equidistant to
two classes, it is natural to affect x to the class with the larger variance.

Removing constraints on di and πi The two previous methods assume that
di and πi are fixed. However, these assumptions can be too restrictive. If
these constraints are removed, it is necessary to add the corresponding terms
in Ki(x): if di are free, then add di log(1−α

α ) and if πi are free, then add
−2 log(πi).

4 Estimators

The methods HDDA, HDDAi and HDDAh require the estimation of some
parameters. These estimators are computed through maximum likelihood
(ML) estimation based on the learning dataset A. In the following, the
a priori probability πi of the class Ci is estimated by π̂i = ni/n, where
ni = card(Ci) and the class covariance matrix Σi is estimated by Σ̂i =
1
ni

∑
xj∈Ci

(xj − µ̂i)t(xj − µ̂i) where µ̂i = 1
ni

∑
xj∈Ci

xj .

4.1 HDDA estimators

Starting from the log-likelihood expression found in [Flury, 1984, eq. (2.5)],
and assuming for the moment that the di are known, we obtain the following
ML estimates:

âi =
1

di

di∑

j=1

λij and b̂i =
1

(p− di)

p∑

j=di+1

λij ,

where λi1 ≥ · · · ≥ λip are the eigenvalues of Σ̂i. Moreover, the jth column

of Qi is estimated by the unit eigenvector of Σ̂i associated to the eigenvalue
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λij . Note that parameters ai and bi are estimated by the empirical variances

of Ci respectively in Êi and in Ê⊥
i . The previous result allows to deduce the

maximum likelihood estimators of αi and σ2
i :

α̂i = b̂i/(âi + b̂i) and σ̂2
i = âib̂i/(âi + b̂i).

4.2 Estimation of the intrinsic dimension

Estimation of the dataset intrinsic dimension is a difficult problem which we
can find for example in the choice of the factor number in PCA. Our approach
is based on the eigenvalues of the class conditional covariance matrix Σi. The
jth eigenvalue of Σi corresponds to the fraction of the full variance carried by
the jth eigenvector of Σi. Consequently, we propose to estimate dimensions
di, i = 1, ..., k, by the empirical method of the scree-test of Cattell [Cattell,
1966] which analyses the differences between eigenvalues in order to find a
break in the scree. The selected dimension is the dimension for which the
following differences are very small compared to the maximum of differences.

4.3 Particular model estimators

Among the 24 particular models, 9 benefit from explicit ML estimators (see
[Bouveyron et al., 2005]). The computation of the ML estimates associated
to the 15 other particular rules requires iterative algorithms. We do not
reproduce them here by lack of space.

5 Application to object recognition

Object recognition is one of the most challenging problems in computer vi-
sion. In the last few years, many successful object recognition approaches
use local images descriptors. However, local descriptors are high-dimensional
and this penalizes classification methods and consequently recognition. For
this reason, HDDA seems well adapted to this application. In the following,
we show that HDDA outperform existing techniques in this context.

5.1 Framework of the object recognition

In our framework, small scale-invariant regions are detected on a learning
image set and they are then characterized by the local descriptor Sift [Lowe,
2004]. The object is recognized in a test image if a sufficient number of
matches with the learning set is found. The recognition step is done using
supervised classification methods. Frequently used methods are LDA and,
more recently, kernel methods (SVM) [Hastie et al., 2001, chap. 12]. In
our approach, the object is represented as a set of object parts. For the
motorbike, we consider three parts: wheels, seat and handlebars.
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Fig. 1. Comparison of classification results between HDDA method and reference
methods.

5.2 Data and protocol

Sift descriptors are computed on 200 motorbike images and 1000 descriptors
of motorbike features and of the background were preserved. Consequently,
the dataset is made of descriptors in 128 dimensions divided into 4 classes:
wheels, seat, handlebars and background. The learning and test dataset
are respectively made of 500 and 500 descriptors. Class proportions are
respectively: ∀i = 1, ..., 3, πi = 1/6 and π4 = 1/2.

5.3 Results

Figure 1 presents classification results obtained on test data. In order to
synthesize the results, only two classes were considered to plot recall-precision
curve: motorbike (positive) and background (negative). We remind that the
precision is the ratio between the number of true positives and the number
of detected positives, and the recall is the number of detected positives. The
different values for each method corresponds to different classifiers. For SVM,
the parameter γ is fixed to the best value (0.6) while the parameter C varies.
For the other methods, the decision rule varies according to the a posteriori
probability. In addition, for LDA, we reduced the dimension of data to 45
using PCA in order to obtain the best results for this method. It appears
that HDDA outperforms the other methods. In addition, HDDA method
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Fig. 2. Recognition of the class “motorbike” using HDDA (top) and SVM (bottom)
classifiers. Only descriptors classified as motorbike are displayed. The colors blue,
red and green are respectively associated to handlebars, wheels and seat.

is as fast as classical discriminant analysis (computation time ' 1 sec. for
1000 descriptors) and much faster than SVM (' 7 sec.). Figure 2 presents
recognition results obtained on 5 motorbike images. These results show that
HDDA gives better recognition results than SVM. Indeed, the classification
errors are significantly lower for HDDA compared to SVM. For example, on
the 3th image, HDDA recognizes the motorbike parts without error whereas
SVM makes five errors.

6 Conclusion and further work

We presented in this paper a new generative model to classify high-
dimensional data in the Gaussian framework. This new model estimates
the intrinsic dimension of each class and uses this information to reduce the
number of parameters to estimate. In addition, classes are assumed spherical
in both subspaces in order to reduce again the number of parameters to esti-
mate and to obtain easily geometrically interpretable rules. In the supervised
framework, this model gives very good results without dimension reduction
of the data and with a small learning set. Another advantage of this gen-
erative model is that it can be used either in supervised or in unsupervised
classification. In unsupervised classification, the model presented here arises
to a new clustering method based on the EM algorithm. In addition, it is
possible to combine unsupervised and supervised classification to recognize
an object in a natural image without human interaction. Indeed, the cluster-
ing method associated to our model can be used to learn automatically the
discriminant part of the object, and then HDDA can be used to recognize the
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object on a new natural image. First results obtained using this approach
are very promising.
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Abstract. Combinatorial optimization is a well known technique to solve prob-
lems in various fields such as jet engine design, factory and project scheduling or
image recognition. Evolutionary computation and particularly genetic algorithms
are commonly used to solve problems defined by complex and high dimensional
mathematical expressions. Nevertheless, in some cases, domain experts cannot de-
fine this function exactly because of its complexity. In this paper we show that it
is possible to solve such optimization problems, where the so called fitness function
is unknown. To do this, we hybridize a classic genetic algorithm with a knowledge
discovery system which extracts information from a database containing known ob-
servations allowing to build a model replacing the fitness function. We use the k
nearest neighbours algorithm to solve such a problem sat in heterogeneous cataly-
sis, a division of chemical science where a compound shall be optimized to favour
a reaction.
Keywords: datamining, combinatorial optimization, genetic algorithm, fitness
function.

1 Introduction

In drug design for medical applications as well as in catalyst development
for oil refinery, the discovery and optimization of new formulations is based
on the trial and error process. The state of knowledge in both biochemistry
and solid state chemistry does not enable to build a model which would give
guidelines for the design of formulations with targeted performance. In the
vocabulary of optimization it means that the fitness function is not a priori
known : each formulation must be first synthesized and then its performance
measured with specific equipments. At the light of the results, chemists can
draw new hypothesis and can design new formulations. A cycle is usually
a day and years are required to end up with a final formulation. The new
research methodology named high-throughput experimentation now enables
to synthesize and test several dozen to hundreds of samples in parallel fashion
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in order to speed up the research process [B.Jandeleit et al., 1998]. But now
the question is : what are the experiments to be performed among an infinite
possible number, which maximizes the chance of discovery and/or speeds up
the optimization process? [Isar and al., 2002], [Isar and Moga, 2004].

Computer assisted issues were recently reported to develop new catalysts.
In [Wolf et al., 2000], libraries of samples corresponding to populations are
synthesized and tested in an iterative manner, using an evolutionary stra-
tegy. After typically 10 generations, the targeted compound presenting the
best performance, the optimum, was found. Nevertheless, the total number
of catalysts synthesized is still too high and shall be reduced. We present
a system which enable to save experiments by hybridizing an optimization
process with a knowledge discovery (KD) system. The concept was already
reported in [Farrusseng et al., 2003] and [Hanagandi and Kargupta, 1996].
The starting point consists in a real catalyst library which is synthesized and
then tested. The corresponding information is stored in a database (DB)
which is used by a KD algorithm to estimate new virtual individuals. The
best estimated are evaluated (synthesized and tested) and the resulting in-
formation is added to DB so the prediction will be finer. This process is
repeated until the checking of a given criterion. The creation of statistical
models after each generation shall enable to direct the design of the libraries
(i.e. population) by a virtual pre-screening.

In a first section we describe the hybrid optimization process, in a second
section, the constraints and issues of the learning process are detailed. The
experimental methodology and the results are presented in the third section,
before concluding.

2 Hybridizing an optimization process with a
knowledge discovery algorithm

Among several optimization processes such as tabu search [Laguna and
Glover, 1998] and simulated annealing [S.Kirkpatrick et al., 1983], we de-
cided to use genetic algorithms (GA) [Holland, 1975],[Goldberg, 1989] as this
technique was already known and used in the field of heterogeneous catalysis.
The mechanics of a genetic algorithm are conceptually simple: (1) maintain
a population of individuals (library or generation), (2) select the better for
crossover operator, (3) perform mutation operator, and (4) use the offspring
to replace poorer individuals. The hybridization consists at inserting a learn-
ing process in the genetic algorithm as described in Fig.1.

1. Initialization : Generating randomly a first population of n individuals
which are potential solutions to the catalysis problem.

2. Evaluation : Giving a real value to each individual by synthesizing and
testing the catalyst. The information produced is stored in DB. Each
catalyst is defined by (1) a set of parameters and (2) its performance.
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Fig. 1. Hybrid GA with KD system. The hatched bricks are the elements of the
KD engine, the remainder are traditional elements of GA.

(number of loops*size of population) individuals are really evaluated and
stored in DB.

3. Criterion : Stopping the evolution if verified. Usually, a number of loops
is used.

4. Evolutionary operators : Applying traditional GA operators (crossover
and mutation) on the parameters of the catalysts which has just been
evaluated. During this operation, M*n virtual catalysts are generated in
order to maximize the chances of obtaining the optimum quickly. This
operation is costless as no individual is really synthesized.

5. KD engine : Mining the database DB so as to estimate the virtual li-
brary proposed by evolutionary operators. This quantitative prediction
of the fitness involves the use of a supervised learning technique which is
described in the next section. This virtual screening which is used as a
first pass filter is the added value to classical GA.

6. Selection : Applying a selection which extracts n individuals among M*n
from the virtual estimated ones. The two best are always picked up and
the remaining (n-2) ones are selected using their rank. The selection
and its role in genetic algorithms is complex and of importance. It is
developed in [Miller and Goldberg, 1996].

7. Loop : Returning at step (2), individuals resulting from selection will be
evaluated.
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Fig. 2. Schematic evolution of database during a 4 generation process. From a
generation to the other, the individuals get closer to the optimum. Thus, some
zones of the space are well known, others are almost unknown. This training
sample is not homogeneous and the algorithm must take this into account

3 The knowledge discovery algorithm

The knowledge discovery algorithm is integrated in an optimization process,
so it needs to be adapted to this particular use. In the field of application
the constraints are the following: (1) the search space is usually defined by
10 to 20 predictive continuous or categorical variables, (2) the representation
space is non linear, (3) a maximum of 400 individuals can be screened and
the less the better (4) the predicted variable is continuous. In addition, the
learning algorithm has to face the issue of non homogeneous sampling of the
search space. Indeed, because the optimization process focuses on specific
zones of the search space (see Fig 2) the data set is usually biased.

Among various datamining algorithms [D.Hand et al., 2001], we use the
k nearest neighbours algorithm (k-nn)[D.W.Aha et al., 1991]. To estimate a
new individual, the algorithm searches among the known individuals (DB)
its k nearest neighbours and attributes it their average performance. This
algorithm fulfils the main requirements e.g. the learning is (1) adapted to
overcome the problem of evolution and convergence as k-nn algorithm itself
doesn’t require complex update like neural networks or decision trees, (2)
nonlinear.

4 Methodology and experiments

4.1 Benchmark

Because there is no open database in the field of catalysis, and because of the
cost, the validation of optimization algorithms is performed through simula-
tion using virtual benchmarks. We consider in this study the one presented in
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Fig. 3. The virtual benchmark

[Wolf et al., 2000]. It is composed of 9 predictive variables : 8 percentages of
elements for the composition of the catalyst (V, Mg, B, Mo, La, Mn, Fe and
Ga) represented by continuous variables from zero to one and a preparation
method (coprecipitation or impregnation) represented by a discrete variable
(0 or 1). The performance, named Y for Yield, is the continuous variable
to predict and is defined in Fig.3. The optimum is a compound containing
32% of Vanadium, 32% of Magnesium and 36% of Molybdenum, the method
being coprecipitation. According to the benchmark, we calculate that Y(0.32
, 0.32 , 0 , 0.36 , 0 , 0 , 0, 0) = 7.55

4.2 Conditions

We hybridize a very simple and classical GA for two major reasons. First,
the application of computer based optimization methods in the field of het-
erogeneous catalysis is something quite new and before examining complex
issues, we have to experiment the simple ones. Second, in this paper, we’re
aiming at measuring the performance of an hybrid GA and specially the KD
algorithm. This GA, used to generate relevant new virtual individuals, uses
a rank selection associated with an elitist selection (2 best individuals kept),
a 3 point crossover (probability = 0.8) and a bit-flip mutation (probability =
0.01). Furthermore, the value of the multiplier M is arbitrarily fixed at 15.

In real conditions, the evaluation of a single catalyst is very costly so we
have a strong constraint to respect. We consider the optimization finished at
the end of 10 generations of 40 individuals, meaning 400 individuals evaluated
during the whole experiment. This constitutes the stopping criterion we used.
We call one optimization experiment a run. GA being stochastic processes
only an average value is significative. Thus all the following results are based
on 30 runs.

The behaviour of the k-nn algorithm is compared to the behaviour of
trivial learning algorithms, the ”learning limits” : no and perfect estimation.
The upper limit is the perfect learning : the real value of the individual. The
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Fig. 4. Evolutionary behaviour of a hybridized GA with a k-nn algorithm, k ∈
{2, 3, 4}. Comparison with the learning limits. Note: the starting value of each
curve depends on the benchmark and on the size of the population. Here, its value
is 2.6± 0.5

lower limit is the absence of learning, a random value with respect to the
range of the benchmark (from 0 to 7.5).

4.3 Results

The quality of the algorithm is assessed by 2 criteria. First, the performance
(vMax) is the average maximum value reached at the tenth generation. It is
a percentage of the real optimum, for instance vMax = 50% means 7.5/2 =
3.75. The Fig.4 presents the results of a hybrid for various k values. Whatever
it is, the performance is manifestly better than using no learning. We expect
that the upper bound is unreachable.

Second, the reliability of each algorithm is computed. Indeed a stochas-
tic algorithm presents a different behaviour from one run to another. The
confidence (conf) illustrates the percentage of runs where at least 98% of
the optimum is really obtained on the whole the 30 runs. For instance, if 3
runs out of 30 reached at least 7.4 (98% of the optimum) then conf = 10%.
The Fig.5 summarizes the values of this indicator according to the learning
algorithm. The hybridization of a GA with no learning never reaches the
optimum. In the opposite, the perfect learning fully benefits from the multi-
plication mechanism, the optimum is reached 23 times out of 30 at the tenth.
Our proposal using k nearest neighbours occupies an intermediate position,
whatever the value of k.

The results are in average better than no learning, either in terms of per-
formance or in terms of confidence and the use of 4 neighbours gives the best
results considering both criteria. In a real experiment, we would favour the
confidence because the cost of a catalyst would not allow failure. The use
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Fig. 5. Percentage of runs which reaches at least 98% of the global optimum. Con-
fidence of the hybrid GA/KD algorithm.

of a KD system makes it possible to improve the behaviour of a simple op-
timization algorithm, without increasing the global cost of experimentation.
It makes it possible to choose in a relevant way among multiplied virtual
individuals those which present truly good real performances.

5 Conclusion

We empirically studied in this article the hybridization of a genetic algorithm
with a knowledge discovery system and its application to a heterogeneous
catalysis problem whose fitness function is unknown. Its objective is to esti-
mate the value of a potential solution to a problem which is not defined by a
mathematical expression but by a set of observations, each of high monetary
cost. We compare the results obtained by hybridizing a genetic algorithm
with (1) a learning process using k nearest neighbours algorithm, (2) a per-
fect learning and (3) no learning. We show that the use of k-nn increases
the optimization speed and improves the robustness compared to random
learning.

There remains opened interrogations concerning the role of the number of
neighbours. Increasing k value means that the k-nn algorithm is more linear
and so the hybrid GA/KD would become less efficient for this application,
but this remains to be demonstrated. Another question concerns the popu-
lation multiplier, one expects that the higher, the more the chances to gain
the optimum quickly are large. But however, this postulate is limited by
the learning process. A ceiling value probably exists giving the best results
possible for each KD algorithm.

Combinatorial catalysis is a vast field of investigation for applying new
types of computer based optimizations and knowledge discovery systems.
The actors of the domain are currently acquiring and storing data in vast
databases. Combinatorial optimization methods are in total adequacy with
experts needs and the expansion of such techniques is ensured. For this kind
of hybrids, we are particularly interested in knowledge discovery methods
which extract association rules. Indeed, the interactions between the pre-
dictive variables are often badly known and their description would be of a
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great interest. This constitutes the Knowledge Discovery in Genetic Algo-
rithms (KDGA) project, materialized by a self made free software : OptiCat
[IRC and ERIC, 2005] which has been used to perform all experiments pre-
sented here.
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Abstract. Often, in pattern recognition, complementary knowledge is available.
This could be useful to improve the performance of the recognition system. Part
of this knowledge regards invariances, in particular when treating images or voice
data. Many approaches have been proposed to incorporate invariances in pattern
recognition systems. Some of these approaches require a pre-processing phase, oth-
ers integrate the invariances in the algorithms. We present a unifying formulation
of the problem of incorporating invariances into a pattern recognition classifier and
we extend the SimpleSVM algorithm [Vishwanathan et al., 2003] to handle invari-
ances efficiently.
Keywords: SVM, Invariances, Classification, Active Constraints.

1 Introduction

The problem of invariances has been widely studied from a signal processing
point of view for pattern recognition (see [Wood, 1996] for a review). Pro-
posed methods in this area mainly consists in invariant features extraction
before feature classification. To do so, Fourier transforms and similar trans-
forms are used, as well as moment methods like Zernike moments [Wood,
1996]. In 1993 the invariances where taken into account in neural networks
[Simard et al., 1993] with the idea to modify the metric distance and use one
that allows the variations of a pattern to be close the one from the others.
In 1996 the invariances appeared for SVMs. In [Schölkopf et al., 1996] the
authors propose to generate some virtual examples to enlarge the dataset and
thus make the algorithm learn invariances. Our approach is to provide a uni-
fying framework for invariances in Support Vector Machines. First we define
a general view of invariances in pattern recognition and show how to incorpo-
rate it in SVMs. The next part shows the connexion between our method and
the existing ones. Finally we give details on Invariant SimpleSVM algorithm
and some results obtained on the USPS database.
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2 Invariant SimpleSVM

In this section we will propose a general formalisation of invariances in pattern
recognition.

Definition. We need to define what a transformation is and how to apply
it to any kind of patterns. A pattern x belongs to a level space L (for instance
the contrast) and relies on its support space S (for instance the background).
A pattern transformation is an application that maps a pattern and some
parameters to a transformed pattern:

T : L×Θ → L
x, θ 7→ T (x, θ)

Moreover we require T (x, 0) = x.

If we now consider the binary classification purpose, we define the decision
function D(x) as a mapping from X d to {0, 1} that maps x to D(x). If we
want the decision function to be invariant with respect to the rotation, we
will require that it gives the same decision for an image and its rotations:

D({I(`i, Li), i = [1, d]}) = D({I(Rθ(`i, Li)), i = [1, d], ∀θ})
D(x0) = D(xθ)

2.1 Formulation

Integrating invariances into SVMs requires us to distinguish between separa-
ble (with no error) and non separable (with errors) cases. The first case is
quite easily solvable while the second requires some non trivial constraints to
be satisfied.

A kernel k(x, y) is a positive and symmetric function of two variables (for
more details see [Atteia and Gaches, 1999]) lying in a Reproducing Kernel
Hilbert Space with the scalar product:

〈f, g〉H =

k∑

i=1

l∑

j=1

figjk(xi,x
′
j).

Hard-margins. In the separable case we can formulate the SVM problem
with invariances as follows:





min
f,b

1

2
‖f‖2H

s.t. yi(f(T (xi, θ)) + b) ≥ 1 i ∈ [1,m], θ ∈ Θ
(1)

where b is a scalar called bias. From this we can deduce the dual formulation
(Wolfe’s dual):
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max
α
−1

2

m∑

i,j=1

∫ ∫

Θ

αi(θ1)αj(θ2)yiyjk(T (xi, θ1), T (xj , θ2))dθ +

m∑

i=1

∫

Θ

αi(θ)dθ

s.t.

m∑

i=1

∫

Θ

αi(θ)yidθ = 0

and αi(θ) ≥ 0 i ∈ [1,m], θ ∈ Θ
(2)

The Lagrange multipliers will be 0 for all points except the support vectors.
Because of the nature of the hypothesis space, it is reasonable to assume that
αi(θ) will have non-zero values only for a few finite number of parameters θ,
thus we can simplify the writing:





max
α
−1

2

∑

i,j,θ1,θ2

αi(θ1)αj(θ2)yiyjk(T (xi, θ1), T (xj , θ2)) +
∑

i,θ

αi(θ)

s.t.
∑

i,θ

αi(θ)yi = 0

and αi(θ) ≥ 0 i ∈ [1,m], θ ∈ Θ

(3)





max
γ∈Rm×p

− 1
2γ>Gγ + e>γ

s.t. γ>y = 0
and γi ≥ 0 i ∈ [1,mp]

(4)

where γ = [α1(θ); α2(θ); . . . ; αm(θ)], G is the block matrix defined as
GIJ = yiyjK

ij with Kij
kl = k(T (xi, θk), T (xj , θl)) and p is the size of Θ.

Soft-margin. Considering the case of soft-margin, i.e. the non separable
case, we face another problem. Adding a slack variable to allow errors in
the solution makes the last condition of system 2 αi(θ) ≥ 0 become 0 ≤∫
Θ
αi(θ)dθ ≤ C where C is a trade-off acting on the regularity of the decision

function. This is quite similar to the hard-margin case. However we cannot
make the assumption that we will end up with a finite number of non-zero
valued Lagrange multipliers. Indeed if the trajectory of a transformation goes
through the margin, then we have an infinite number of Lagrange multipliers
bounded so that

∫
Θ αi(θ)dθ = C.

3 A Unifying Formulation

We can roughly identify three main streams in the algorithms dealing with
invariances and support vector methods. Some are based on an artificial en-
largement of the dataset, others rely on the modification of the cost function
to incorporate the invariances (and thus using a different metric) and there
are also methods using polynomial approximations to represent trajectories.
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3.1 Enlarging artificially the dataset

A very intuitive way to learn invariances is to incorporate them in the training
set. This operation can be processed before the use of the learning algorithm
by artificially generating transformations of the sample data. The enlarged
dataset (actual samples and virtual samples) contains thus the prior knowl-
edge. Despite its simplicity, one major drawback of this method is the size
of the resulting problem.

Virtual-SV. This idea was applied in SVM in [Schölkopf et al., 1996] with
the V-SV. The authors propose a way to reduce the size problem. Knowing
that all the information needed for the classification task in SVM is contained
in the support vectors, the authors make the assumption that one do not
need to take into account the non-support vector’s variations, since they are
supposed to be far from the frontier between the classes. So basically the idea
is to run a first time a classical SVM to retrieve the support vectors. Then
the virtual vectors are generated from these support vectors and another
SVM is run on the enlarged database. Experiments show that applying
transformations on support vectors only gives at least as good results as
enlarging the complete dataset.

Invariant SimpleSVM can achieve the same task if the transformation
T (x, θ) is approximated by a finite number of point by fixing a finite number
of values for θ.

3.2 Adapting the distance metric to invariances

Introduced in 1993 in [Simard et al., 1993] and referred as the tangent dis-
tance, the motivation was to find a better distance measure than the Eu-
clidean distance for the purpose of invariances treatment. In the field of
support vector algorithm this idea has been used in various methods and we
briefly describe some of them in the following parts.

Invariant SVM Let’s now introduce the tangent vectors. The idea is
to associate each training vector with one or several tangent vectors and
to incorporate the invariances in the cost function [Chapelle and Schölkopf,
2002]. Optimising this cost function turns out to be equivalent to run a
classic SVM with pre-processed data with a particular linear mapping. In
the non-linear case, the results are similar except one would train a linear
SVM on pre-processed data with a non-linear mapping.

Tangent Distance and Tangent Vector Kernels. Following the idea of tak-
ing a tangent measure (TD-measure), kernels embedding the invariances has
been proposed. In [Pozdnoukhov and Bengio, 2003] the authors propose ker-
nel functions between trajectories rather than between points. They define a
function that measures the proximity between a point and the transformation
trajectory of another point.

Invariant SimpleSVM is similar to these methods if the transformation is
approximated by a first order polynomial (T (x, θ) ' x+∇θT (x, 0)θ).
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3.3 Polynomial Approximation

Semi-Definite Programming Machines.
Presenting the SDPM [Graepel and Herbrich, 2004], the authors are trying

to learn data that are trajectories instead of the usual points. The aim is then
to separate trajectories that represent the (differentiable) transformations of
the original training points.

They show that this problem is solvable for transformations that can be
represented or approximated by polynomials. Basing their approach on Nes-
terov’s theorem they formulate the problem of learning a maximum margin
classifier with an SDP formulation under polynomial constraints. Using the
SD-representability of non negative polynomials they replace the usual non-
negativity constraints in SVM by positive semi-definite constraints. Doing
so they show that it is possible to learn to classify trajectories. However this
approach is rather intractable since it requires to solve large SDP.

Invariant SimpleSVM also contains this approach if the transformation
is approximated by a second order polynomial (T (x, θ) ' x +∇θT (x, θ)θ +
1
2θ

>Hθθ).
In the separable case, we can solve directly the problem and our solution

is thus more tractable than the SDPM. Nevertheless we are penalised in the
non separable case since we need to discretise the parameter space. Despite
the complexity of SDPM, it always works in the original space Θ.

4 Algorithm and applications

We present in this section the SimpleSVM algorithm. We extend this method
for invariances because of its structure. Briefly, SimpleSVM adds points to
the solution one by one and this let us incorporate some treatment to each
point separately. This strong property breaks down the computing time
that would occur if one would apply the equivalent treatment to the whole
database. The main idea is to transform points only when adding them to
the solution, which excludes from this treatment all the points that are far
from the frontier between classes.

4.1 SimpleSVM

The SimpleSVM algorithm [Vishwanathan et al., 2003] is based on the de-
composition of the database into three groups (the working set, the inactive
set and the bounded set). Assuming the groups are known, it solves the SVM
optimisation problem on the working set only. Having a solution, it checks
whether the group repartition is relevant. If not the groups are updated (by
adding a violator point in the working set) and it iterates over these two
steps (see algorithm 1). A detailed explanation can be found in [Loosli et al.,
2004].
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Algorithm 3 : simpleSVM

1. (Is, I0,Ic)← initialise
while minimumReached=FALSE

2. (α,λ)← solve the system without constraints(Is)
if ∃αi ≤ 0 or ∃αi ≥ C

3.1 project α inside the admissible set
3.2 transfers the associated point from Is to I0 or Ic

else
4. look for the best candidate xcand in Ic and I0
if xcand is found

5. transfer xcand to Is

else
6. minimumReached ← TRUE

end if
end if

end while

The Matlab implementation of this algorithm as well as the invariant
SimpleSVM are available at:
http://asi.insa-rouen.fr/~gloosli/simpleSVM.html [Loosli, 2004].

4.2 Invariant SimpleSVM

Invariant SimpleSVM integrates invariances like virtual vectors, first order
polynomials and so on. In the implementation we present here we chose to
deal with virtual vectors. The idea is to add virtual vectors that are derived
from potential support vectors only. Doing so we can achieve the same task
as V-SV in only one run of the algorithm. Compared to SimpleSVM, only the
step 4 in algorithm 1 is modified. While in SimpleSVM the best candidate
is the point that violates the most the constraints in the dual space (or
is the worst classified in the primal space), for Invariant SimpleSVM the
best candidate is chosen among the transformations of one vector. Here we
can come up with several heuristics, depending on how the transformations
are represented. Let’s take the case we choose to discretize the space of
parameters Θ:

• complete search: each step considers only one point and all its transfor-
mations and searches whether one violates the constraints,
• incomplete search: each step considers a group of points and searches

whether one violates the constraints. If so, it also considers all the trans-
formations and looks if one is worse than the original point,
• random search: can be applied to both of the previous heuristics. In-

stead of taking all the transformations, pick randomly one or several
transformations. This way is faster but does not necessarily reach the
best solution.
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4.3 Application to character recognition

It is known that incorporating invariances improves the results of a recogni-
tion task. In our experiments we first to get an idea of the efficiency of the
method, in other words to monitor the actual improvements. We present the
results for the complete USPS database in order to compare our method to
the published results.

Experiments settings. All the results here are obtained on the USPS
database. This database contains 7291 training pictures 16× 16 pixels, val-
ued in [−1, 1] and 2007 test pictures. Pictures represent digits from 0 to 9
collected from handwritten postcodes. This dataset is widely used to bench-
mark recognition methods and is known as a difficult set. Indeed the human
performance is 2.5% of error.

The nature of the data induces the choice of the transformations to ap-
ply. A digit means the same regardless of translations, small rotations, line
thickness for instance. Hence the transformation used for experiments are
vertical and horizontal translation, rotation with angle 10◦ clockwise and
anti-clockwise, line thinning and thickening. These transformations are com-
puted on-the-fly for any point point that is about to reach the working set.
The main advantage of this choice is that we do not need to store all the
transformations of all the points. However it increases the training time.

The experiments on the USPS database were done with several objectives.
The first one was to show our algorithm was efficient and fast. The second
one was to explore different combinations of transformations (for instance
published results with SVM methods are applied with only the translation
of one pixel). The results are shown in table 1. The parameters are obtained
from a cross-validation. In table 2 we give the main published results on
USPS.

Kernel bandwidth C Transformation Error Time (train and test)

Poly 5 0.1 10−5 none 4.09 235 sec
Poly 5 0.1 10−4 tr 3.44 1800 sec
Poly 5 0.1 10−4 tr+rot 3.19 3200 sec
Poly 5 0.1 10−4 tr+er 3.14 -
Poly 5 0.1 10−4 tr+er+dil 3.24 2400 sec
Poly 5 0.1 10−4 tr+rot+er 2.99 2300 sec
Poly 5 0.1 10−4 tr+rot+er+dil 3.24 4800 sec

Table 1. results on USPS: Here we present results obtained with Invariant Sim-
pleSVM. The applied transformations are translation of 1 pixel (tr), rotation (rot),
erosion and dilatation (respectively er et dil). The best result is obtained in less than
40 minutes. Note that the computation time depends on the number of support
vectors, thus adding a transformation may improve computing time if it generates
good support vectors that are eliminating many candidates (for instance this hap-
pens between tr + rot and tr + rot + er, where erosion clearly gives good support
vectors and the algorithm converges faster).
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Method Error

Tangant Vector and Local Rep. [Keysers et al., 2002] 2.0 %
Virtual SVM [Schölkopf et al., 1996] 3.2 %

Invariance Hyperplane + V-SV 3.0 %
Invariant SimpleSVM (this paper) 3.0 %

Human performance 2.5 %

Table 2. Some published results on USPS

4.4 Discussion

We show here that Invariant SimpleSVM is efficient. Let’s note that we have
implemented the transformations with the discrete point of view, which is
equivalent to the V-SV method. However we achieve a better performance
on USPS. This can be explained by the fact we method is more flexible con-
cerning the points which generates virtual vectors. Indeed we consider the
transformations of each point that could be support vector, but not necessar-
ily is support vector in the end. That way we consider more transformations.
Taking into account the invariances considerably increases the training time
(from less than 6 min without transformations up to 1 hour if we consider all
the listed transformations) but it is still very fast compared to other methods.
As for the effect of the different transformations, it is hard to conclude. We
noticed that the translation is the most influential one. The others have small
effects and the differences between different combinations are not significant
enough.

5 Conclusion

Based on the unifying approach for invariances with SVM proposed, an ef-
ficient implementation for the virtual vector case has been developed. This
implementation is an interesting evolution of the SimpleSVM algorithm and
is available on our website [Loosli, 2004]. The efficiency of our method has
been illustrated on the USPS database. Our results outperform the equiv-
alent algorithm Virtual-SVM in a significantly shorter computational time.
We are now carrying on a deeper study of the comparison with the SDPM.

This work was supported in part by the IST Program of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.
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Abstract. The recent developments of statistical learning focused mainly on vector
machines, i.e. on machines that learn from examples described by a vector of
features. There are many fields where structured data must be handled; therefore,
it would be desirable to learn from examples described by graphs. The presentation
describes graph machines, which learn real numbers from graphs. Applications
in the field of Quantitative Structure-Activity Relations (QSAR), which aim at
predicting properties of molecules from their (graph) structures, are described.
Keywords: Graph machines, Vector machines.

1 Introduction

The present paper describes graph machines, i.e. machines that learn num-
bers from structured data, which can be described by graphs, in contrast to
conventional approaches such as neural networks, kernel machines, support
vector machines, which handle vectors. Unlike recursive neural networks,
graph machines can handle any type of graph, whether cyclic or not. The
first part of the paper is devoted to definitions. The second part is devoted to
examples of applications; first, academic validations are described, showing
that graph machines are indeed able to learn numbers related to the graph
structure itself, such as graph diameters or Wiener indices. We proceed to
show that graph machines are very efficient for QSAR and QSPR applica-
tions; comparisons with results obtained by other authors on the same data
show that graph machines outperform standard machine learning techniques
and recursive neural networks, with the computational advantage of exempt-
ing the model designer from performing the steps of computing and selecting
descriptors, which are generally at least as costly as the training of the ma-
chine.

2 Graph machines

Before describing graph machines, some facts and definitions pertaining to
vector machines are described cursorily.
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2.1 Vector machines

Conventional numerical machine learning methods aim at learning applica-
tions from Rn to Rm: data is in the form of pairs of vectors, the input vector
being of dimension n, and the output vector of dimension m. In all the fol-
lowing we consider that m = 1 without loss of generality. When the task
to be learnt is a classification task, the output is often binary; for process
modeling, whether static or dynamic, the output is real. The techniques of
machine learning for static modeling are very similar to statistical regression
techniques: the main difference is the fact that statistical regression is es-
sentially interested in the values of the parameters of the models, whereas
modeling by machine learning is essentially interested in the predictions of
the models. Support vector machines and neural networks are typical vector
machines; support vector machines were designed mainly for classification
tasks, with excellent performances; neural networks are more suitable for
modeling, whether static (feedforward neural networks, also termed Multi-
layer Perceptrons), or dynamic (recurrent neural networks).

In all the following, we focus on static modeling, i.e. learning from ex-
amples an application of Rn to R. The model is sought within a family
of parameterized functions gθ(x), where x is the vector of variables (of di-
mension n) and θ is the vector of parameters (of dimension p). Training is
performed by minimizing a cost function, which is usually the least squares
cost function, with respect to the parameters:

J(θ) =
N∑

i=1

(yip − gθ(xi))2 (1)

where the summation runs on all N examples of the training set, yip is
the value of the quantity to be modeled for example i, and xi is the vector
of variables for example i.

2.2 Graph machines

2.2.1 Definition We turn now to the problem of learning an application
between a set of graphs and a corresponding set of real (or possibly binary)
numbers. To start with, we consider directed acyclic graphs only. A natural
idea is to build a model whose mathematical structure is the same as the
structure of the input graph: each node of the graph is a parameterized
function, and the model is a composition of that function, which reflects
the structure of the graph. In the field of neural networks, such models are
known as folding networks (the function present at each node is a feedforward
neural network), but the idea can be extended to other types of machines (for
a review see [Hammer, 2003]). Consider, as an illustration, the graphs shown
on Figure 1:
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• the graph machine associated to graph 1 is:
f1
θ,Θ = GΘ{gθ(x), gθ(x), gθ(x)};

• the graph machine associated to graph 2 is:
f2
θ,Θ = GΘ{gθ(gθ(gθ(x), gθ(x)), 0), gθ(gθ(x), gθ(gθ(x), gθ(x)))};

• the graph machine associated to graph 3 is:
f2
θ,Θ = GΘ{gθ(gθ(gθ(x), gθ(gθ(gθ(x), 0), gθ(gθ(x), gθ(x)))), 0), 0}.

Fig. 1.

In the above examples, the size of x must be at least equal to the maximal
in-degree dm of the nodes of the graph. For a node of in-degree d < dm, dm−d
components of x are arbitrary, and may be taken equal to 1 for instance.

For generality, in the above examples, the function GΘ associated to the
final root is different from the function gθ of the other nodes. That is by no
means necessary; in all examples described in the present paper, all nodes
including the root were assigned the same function.

The size of vector θ (and the size of Θ) depends on the complexity of the
mapping, just as for vector machines.

Definition: a graph machine is a set G of parameterized functions, con-
structed as described above from the same functions gθ(x) (and GΘ(x)),
which are representations of the graphs of the training set. The size of x is
lower bounded by the maximal in-degree of the nodes of the graphs.

2.2.2 The training of a graph machine The training of a graph ma-
chine is performed by minimizing a cost function with respect to the param-
eters θ (and Θ); in all the examples described below, the least squares cost
function was used:

J(θ,Θ) =

N∑

i=1

(yip − f iθ,Θ)2 (2)
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where yip is the quantity to be learnt, associated to graph i. Note the
difference with the cost function (1) that is minimized during the training of
a vector machine: .

J(θ) =

N∑

i=1

(yip − gθ(xi))2

Instead of training a single parameterized function with different input
output-pairs, different parameterized functions, sharing the same set of pa-
rameters, are trained with a single example each.

As mentioned above, the fact that two sets of parameters, θ and Θ, are
used in graph machines is unimportant. A single parameter vector θ is often
sufficient.

In practice, training is performed much in the same way as vector ma-
chines. One has

δJ

δΘk
=

N∑

i=1

δJ i

δΘk
where J i = (yip − f iθ,Θ)2 (3)

and Θk denotes the k-th component of vector Θ. For neural networks, the

gradient of J i with respect to each parameter δJi

δΘkj
is computed by back-

propagation on the network that represents graph i; δΘkj denotes the j-th
occurrence of parameter Θk in graph i. Denoting by niΘk

the number of
occurrences of parameter Θk in graph i, the shared weight trick consists in
setting

δJ i

δΘk
=

ni
Θk∑

j=1

δJ i

δΘkj

(4)

(if the root node has the same parameters as the other nodes, then niΘk

is equal to the number of nodes in graph i). Therefore, one obtains:

δJ

δΘk
=

N∑

i=1

ni
Θk∑

j=1

δJ i

δΘkj

(5)

Finally, the cost function (2) is minimized by any appropriate gradient op-
timization method (Levenberg-Marquardt, BFGS, conjugate gradient, etc.),
using gradient (5).

2.2.3 Model selection All the tricks-of-the-trade that are usually applied
to vector machines can be applied to graph machines as well: validation,
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cross-validation, leave-one-out, bootstrap estimates of the generalization er-
ror, etc. In the following examples, cross-validation is used for model selec-
tion; the root mean square error on a set (training or validation) is defined
as:

RMSE =

√√√√ 1

N

N∑

i=1

(yip − fθ,Θ(xi))2 (6)

where N is the size of the set.

3 Examples

3.1 Neural-network-based graph machines

In all examples described below, the function gθ is a neural network. There-
fore, a machine is made of identical neural networks, connected with the same
structure as the nodes in the graph. For example, consider a node A with
n parent vertices Bi, i = 1, . . . , n. An elementary neural network (A) is as-
signed to that node: its inputs are (i) the outputs of the networks (Bi), and
(ii) additional inputs that provide information on the node (e.g. its degree).
If the graph is cyclic, the degree of the node is provided by one such input, so
that a cyclic graph is first turned into a directed acyclic graph by deleting as
many edges as necessary, while retaining the information about the original
graph structure.

3.2 Learning graph properties

In order to validate the approach in an academic way, graph machines were
trained to learn graph properties. For all examples described below, a data
base of 150 randomly generated graphs, featuring 2 to 15 nodes and 0 to 9
cycles was created. Various splits between training and validation sets were
performed on that data base.

3.2.1 Learning the number of nodes and cycles of a graph The
easiest problem consists in learning the number of nodes of a graph, since
it is a linear problem. The number of vertices N is equal to the number of
elementary functions gθ in the graph machine, and the number of cycles of a
connected graph is given by:

C = E −N + 1

where E is the number of edges. Therefore, graph machines with linear
elementary functions
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gθ(x) =
∑

i

Θixi

should learn those tasks. As expected, for all splits between training and
validation sets, the task was perfectly learnt and the error was equal to zero.

3.2.2 Learning the diameter of a graph The diameter of a graph is
the length of the shortest path between its most distant nodes:

D = max
u,v

d(u, v)

where d(u, v) is the distance (the shortest path) between nodes u and v.
In the database under investigation, that index ranges from 1 to 9. That is
clearly a non-linear property; therefore, the elementary function was a neural
network with four hidden neurons. The RMS error (relation (6)) on the
training set is 0.36, and the RMS validation error (10-fold cross-validation)
is 0.53. Since the index is an integer ranging from 1 to 9, the prediction is
excellent given the complexity of the graphs.

3.2.3 Learning the Wiener Index of a graph The Wiener Index of
a graph G is the sum of the distances between the vertices of G. That
index was first defined by the chemist H. Wiener, in order to investigate the
relationships between the structure of chemicals and their properties:

W (G) =
1

2

∑

u,v

d(u, v)

In our database, that index ranges from 1 to 426. 10-fold cross-validation
was performed with a 4-hidden neuron elementary neural network, leading
to a RMS validation error of 7.9.

The above examples (together with other examples not reported here)
show the ability of graph machines to learn from the sole data structure,
without any need for extraneous descriptors.

In addition, they prove that indices such as the Wiener index need not
be used as descriptors (e.g. in QSAR as described in the next section) since
the information is present in the structure of the machine.

3.3 Application to the prediction of chemical properties of
molecules

3.3.1 Graph machines for QSPR/QSAR Graph machines are particu-
larly appropriate for the prediction of molecular properties in QSPR (Quan-
titative Structure-Property Relations) and QSAR (Quantitative Structure-
Activity Relations). A molecule can be described as a directed graph by
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associating each non-hydrogen atom to a node and each bond to an edge.
The original graphs are preprocessed in order to turn them to acyclic graphs
as described in section 3.1. Provision is made for extraneous inputs that
code (in a one-out-of-n code) for the nature of the atoms, their degree or
their stereochemistry for example. Therefore, any type of molecule can be
handled, be it acyclic, cyclic or even aromatic. Figure 2 shows how an aro-
matic compound can be described as a graph; the digits are the degrees of
the nodes.

Fig. 2.

3.3.2 Learning and predicting boiling points of alkanes Graph ma-
chines were first tested on the prediction of the boiling points of a set of linear
or branched acyclic alkanes. Table 1 compares the results obtained by graph
machines to those found in the literature.

RMSE (K) RMSE (K)

Graph machines 1.0 1.5

Recursive neural networks 2.0 3.0
[Bianucci et al., 2000]

Conventional neural networks 2.2 2.7
[Cherqaoui and Villemin, 1994]

Table 1.

3.3.3 Predicting the toxicity of phenols Phenols are a family of chem-
icals that are of current industrial use as biocides or disinfectants. Most syn-
thetic phenols are toxic and considered as dangerous pollutants. We studied
a set of 153 of these phenols, whose toxicity to a particular kind of cells,
Tetrahymena pyriformis, was available ([Schultz, 1997]). This database is
especially interesting since it contains complex molecules with 6 kinds of
heteroatoms, and it deals with a property that is close to pharmacological
properties.
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In order to compare the performances of graph machines to those obtained
with other methods - Multiple Linear Regression (MLR), Support Vector Ma-
chines (SVM) and Radial Basis Function Neural Networks (RBFNN) - the
same protocol as used in [Yao et al., 2004] was implemented: the database
was split into training and validation sets of 131 and 22 examples respec-
tively. The results obtained with graph machines built with 4 and 5 hidden
neuron (GM-4N and GM-5N) elementary neural networks are summarized
in Table 2, where they are compared to those obtained with the previously
cited methods.

Method Learning Validation
GM-4N 0.17 0.29
GM-5N 0.09 0.32

RMSE MLR 0.30 0.46
RBFNN 0.19 0.29

SVM 0.22 0.36

Table 2.

For a more rigorous assessment, 7-fold cross-validation was also performed
on the same set with a 4 hidden neuron network. The RMSE obtained were
then respectively 0.16 and 0.29 in learning and validation. No test set was
provided in the referenced articles.

The above results show that graph machines compare favorably with other
QSAR methods for the prediction of that biological activity, with an accuracy
that is at least as good as the accuracy of the methods investigated by other
authors, be it on the learning or on the validation sets. However, whereas the
other methods require the prior selection and measurement or computation
of descriptors such as hydrophobicity (log Kow), acidity constant (pKa), and
frontier orbital energies (HOMO and LUMO), the structure of the molecules
is the only information required for graph machines to perform accurate pre-
dictions. This is a twofold advantage. First, graph machines are much less
computationally expensive than methods that require the design, selection
and computation of descriptors. Furthermore, since no specific descriptors
are selected, a graph machine implemented for a given molecule can be used
for the prediction of any property of that molecule: the only requirement is
a re-training of the machine, whereas conventional vector machines require
the selection and computation of an appropriate set of descriptors for each
property to be predicted.

3.3.4 A classification task: classification of the molecules as aro-
matics/ non aromatics Graph machines can perform classification tasks,
just as neural networks or SVM’s do. As a test example, 240 molecules
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were classified into two classes: molecules that feature no aromatic cycle and
molecules that feature at least one aromatic cycle. 10-fold cross-validation
was performed on that database, leading to a training classification error rate
of 0% and a validation error rate of 2% with a 4 hidden neuron elementary
neural network. A test set of 40 examples lead to an error rate of 0%. Again,
no descriptor whatsoever was computed prior to performing classification.

4 Conclusion

In the present paper, graph machines have been described, and some of their
applications have been outlined. The results presented here show that graph
machines outperform vector machines and recursive neural networks. The
prediction of the properties of molecules from their structure is obviously
an important field of application of our approach, but it can be conjectured
that graph machines may be beneficial in all fields where learning must be
performed from structured data.
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Abstract. This work concerns testing the number of parameters in one hidden
layer multilayer perceptron (MLP). For this purpose we assume that we have iden-
tifiable models, up to a finite group of transformations on the weights, this is for
example the case when the number of hidden units is know. In this framework, we
show that we get a simple asymptotic distribution, if we use the logarithm of the
determinant of the empirical error covariance matrix as cost function.
Keywords: Multilayer Perceptron, Statistical test, Asymptotic distribution.

1 Introduction

Consider a sequence (Yt, Zt)t∈N of i.i.d.1 random vectors (i.e. identically
distributed and independents). So, each couple (Yt, Zt) has the same law
that a generic variable (Y, Z) ∈ Rd × Rd

′

.

1.1 The model

Assume that the model can be written

Yt = FW 0 (Zt) + εt

where

• FW 0 is a function represented by a one hidden layer MLP with parameters
or weights W 0 and sigmoidal functions in the hidden unit.
• The noise, (εt)t∈N, is sequence of i.i.d. centered variables with unknown

invertible covariance matrix Γ (W 0). Write ε the generic variable with
the same law that each εt.

Notes that a finite number of transformations of the weights leave the MLP
functions invariant, these permutations form a finite group (see [Sussman,
1992]). To overcome this problem, we will consider equivalence classes of

1 It is not hard to extend all what we show in this paper for stationary mixing
variables and so for time series
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MLP : two MLP are in the same class if the first one is the image by such
transformation of the second one, the considered set of parameter is then the
quotient space of parameters by the finite group of transformations.

In this space, we assume that the model is identifiable, this can be done if
we consider only MLP with the true number of hidden units (see [Sussman,
1992]). Note that, if the number of hidden units is over-estimated, then such
test can have very bad behavior (see [Fukumizu, 2003]). We agree that the
assumption of identifiability is very restrictive, but we want emphasize the
fact that, even in this framework, classical test of the number of parameters in
the case of multidimensional output MLP is not satisfactory and we propose
to improve it.

1.2 testing the number of parameters

Let q be an integer lesser than s, we want to test “H0 : W ∈ Θq ⊂ Rq” against
“H1 : W ∈ Θs ⊂ Rs”, where the sets Θq and Θs are compact. H0 express
the fact that W belongs to a subset of Θs with a parametric dimension lesser
than s or, equivalently, that s− q weights of the MLP in Θs are null. If we
consider the classic cost function : Vn(W ) =

∑n
t=1 ‖Yt − FW (Zt)‖2 where

‖x‖ denotes the Euclidean norm of x, we get the following statistic of test :

Sn = n×
(

min
W∈Θq

Vn(W )− min
W∈Θs

Vn(W )

)

It is shown in [Yao, 2000], that Sn converges in law to a ponderated sum of
χ2

1

Sn
D→

s−q∑

i=1

λiχ
2
i,1

where the χ2
i,1 are s− q i.i.d. χ2

1 variables and λi are strictly positives values,
different of 1 if the true covariance matrix of the noise is not the identity.
So, in the general case, where the true covariance matrix of the noise is not
the identity, the asymptotic distribution is not known, because the λi are not
known and it is difficult to compute the asymptotic level of the test.

To overcome this difficulty we propose to use instead the cost function

Un (W ) := ln det

(
1

n

n∑

t=1

(Yt − FW (Zt))(Yt − FW (Zt))
T

)
. (1)

we will show that, under suitable assumptions, the statistic of test :

Tn = n×
(

min
W∈Θq

Un(W )− min
W∈Θs

Un(W )

)
(2)

will converge to a classical χ2
s−q so the asymptotic level of the test will be

very easy to compute. The sequel of this paper is devoted to the proof of
this property.
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2 Asymptotic properties of Tn

In order to investigate the asymptotic properties of the test we have to prove
the consistency and the asymptotic normality of Ŵn = argminW∈Θs Un(W ).
Assume, in the sequel, that ε has a moment of order at least 2 and note

Γn(W ) =
1

n

n∑

t=1

(Yt − FW (Zt))(Yt − FW (Zt))
T

remark that these matrix Γn(W ) and it inverse are symmetric. in the same
way, we note Γ (W ) = limn→∞ Γn(W ), which is well defined because of the
moment condition on ε

2.1 Consistency of Ŵn

First we have to identify contrast function associated to Un(W )

Lemma 1

Un(W )− Un(W 0)
a.s.→ K(W,W 0)

with K(W,W 0) ≥ 0 and K(W,W 0) = 0 if and only if W = W 0.

Proof : By the strong law of large number we have

Un(W )− Un(W 0)
a.s.→ ln det(Γ (W ))− ln det(Γ (W 0)) = ln det(Γ (W ))

det(Γ (W 0)) =

ln det
(
Γ−1(W 0)

(
Γ (W )− Γ (W 0)

)
+ Id

)

where Id denotes the identity matrix of Rd. So, the lemme is true if Γ (W )−
Γ (W 0) is a positive matrix, null only if W = W 0. But this property is true
since

Γ (W ) = E
(
(Y − FW (Z))(Y − FW (Z))T

)
=

E
(
(Y − FW 0(Z) + FW 0(Z)− FW (Z))(Y − FW 0(Z) + FW 0(Z)− FW (Z))T

)
=

E
(
(Y − FW 0(Z))(Y − FW 0(Z))T

)
+

E
(
(FW 0 (Z)− FW (Z))(FW 0 (Z)− FW (Z))T

)
=

Γ (W 0) + E
(
(FW 0 (Z)− FW (Z))(FW 0 (Z)− FW (Z))T

)
�

We deduce then the theorem of consistency :

Theorem 1 If E
(
‖ε‖2

)
<∞,

Ŵn
P→W 0

Proof Remark that it exist a constant B such that

supW∈Θs‖Y − FW (Z)|2 < ‖Y ‖2 +B
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because Θs is compact, so FW (Z) is bounded. For a matrix A ∈ Rd×d, let
‖A‖ be a norm, for example ‖A‖2 = tr

(
AAT

)
. We have

lim infW∈Θs ‖Γn(W )‖ = ‖Γ (W 0)‖ > 0
lim supW∈Θs

‖Γn(W )‖ := C <∞

and since the function :

Γ 7→ ln detΓ, for C ≥ ‖Γ‖ ≥ ‖Γ (W 0)‖

is uniformly continuous, by the same argument that example 19.8 of
[Van der Vaart, 1998] the set of functions Un(W ), W ∈ Θs is Glivenko-
Cantelli.

Finally, the theorem 5.7 of [Van der Vaart, 1998], show that Ŵn converge
in probability to W 0 �.

2.2 Asymptotic normality

For this purpose we have to compute the first and the second derivative with
respect to the parameters of Un(W ). First, we introduce a notation : if
FW (X) is a d-dimensional parametric function depending of a parameter W ,

write ∂FW (X)
∂Wk

(resp. ∂2FW (X)
∂Wk∂Wl

) for the d-dimensional vector of partial deriva-

tive (resp. second order partial derivatives) of each component of FW (X).
First derivatives : if Γn(W ) is a matrix depending of the parameter

vector W , we get from [Magnus and Neudecker, 1988]

∂

∂Wk
ln det (Γn(W )) = tr

(
Γ−1
n (W )

∂

∂Wk
Γn(W )

)

Hence, if we note

An(Wk) =
1

n

n∑

t=1

(
−∂FW (zt)

∂Wk
(yt − FW (zt))

T

)

using the fact

tr
(
Γ−1
n (W )An(Wk)

)
= tr

(
ATn (Wk)Γ

−1
n (W )

)
= tr

(
Γ−1
n (W )ATn (Wk)

)

we get
∂

∂Wk
ln det (Γn(W )) = 2tr

(
Γ−1
n (W )An(Wk)

)
(3)

Second derivatives : We write now

Bn(Wk,Wl) :=
1

n

n∑

t=1

(
∂FW (zt)

∂Wk

∂FW (zt)

∂Wl

T
)
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and

Cn(Wk,Wl) :=
1

n

n∑

t=1

(
−(yt − FW (zt))

∂2FW (zt)

∂Wk∂Wl

T
)

We get

∂2Un(W )
∂Wk∂Wl

= ∂
∂Wl

2tr
(
Γ−1
n (W )An(Wk)

)
=

2tr
(
∂Γ−1

n (W )
∂Wl

An(Wk)
)

+ 2tr
(
Γ−1
n (W )Bn(Wk,Wl)

)
+ 2tr

(
Γn(W )−1Cn(Wk,Wl)

)

Now, [Magnus and Neudecker, 1988], give an analytic form of the derivative
of an inverse matrix, so we get

∂2Un(W )
∂Wk∂Wl

= 2tr
(
Γ−1
n (W )

(
An(Wk) +ATn (Wk)

)
Γ−1
n (W )An(Wk)

)
+

2tr
(
Γ−1
n (W )Bn(Wk,Wl)

)
+ 2tr

(
Γ−1
n (W )Cn(Wk,Wl)

)

so
∂2Un(W )
∂Wk∂Wl

= 4tr
(
Γ−1
n (W )An(Wk)Γ

−1
n (W )An(Wk)

)

+2tr
(
Γ−1
n (W )Bn(Wk,Wl)

)
+ 2tr

(
Γ−1
n (W )Cn(Wk,Wl)

) (4)

Asymptotic distribution of Ŵn : The previous equations allow us to
give the asymptotic properties of the estimator minimizing the cost function
Un(W ), namely from equation (3) and (4) we can compute the asymptotic
properties of the first and the second derivatives of Un(W ). If the variable Z
has a moment of order at least 3 then we get the following lemma :

Theorem 2 Assume that E
(
‖ε‖2

)
< ∞ and E

(
‖Z‖3

)
< ∞, let ∆Un(W

0)
be the gradient vector of Un(W ) at W 0 and HUn(W

0) be the Hessian matrix
of Un(W ) at W 0.

Write finally

B(Wk,Wl) :=
∂FW (Z)

∂Wk

∂FW (Z)

∂Wl

T

We get then

1. HUn(W
0)

a.s.→ 2I0

2.
√
n∆Un(W

0)
Law→ N (0, 4I0)

3.
√
n
(
Ŵn −W 0

)
Law→ N (0, I−1

0 )

where, the component (k, l) of the matrix I0 is :

tr
(
Γ−1

0 E
(
B(W 0

k ,W
0
l )
))

proof : We can show easily that, for all x ∈ Rd, we have :

‖∂FW (Z)
∂Wk

‖ ≤ Cte(1 + ‖Z‖)
‖∂

2FW (Z)
∂Wk∂Wl

‖ ≤ Cte(1 + ‖Z‖2)
‖∂

2FW (Z)
∂Wk∂Wl

− ∂2F 0
W (Z)

∂Wk∂Wl
‖ ≤ Cte‖W −W 0‖(1 + ‖Z‖3)



566 Rynkiewicz

Write

A(Wk) =

(
−∂FW (Z)

∂Wk
(Y − FW (Z))T

)

and U(W ) := log det(Y − FW (Z)).
Note that the component (k, l) of the matrix 4I0 is:

E

(
∂U(W 0)

∂Wk

∂U(W 0)

∂W 0
l

)
= E

(
2tr
(
Γ−1

0 AT (W 0
k )
)
× 2tr

(
Γ−1

0 A(W 0
l )
))

and, since the trace of the product is invariant by circular permutation,

E
(
∂U(W 0)
∂Wk

∂U(W 0)
∂W 0

l

)
=

4E
(
−∂FW0 (Z)T

∂Wk
Γ−1

0 (Y − FW 0(Z))(Y − FW 0 (Z))TΓ−1
0

(
−∂FW0(Z))

∂Wl

))

= 4E
(
∂FW0 (Z)T

∂Wk
Γ−1

0
∂FW0 (Z)

∂Wl

)

= 4tr
(
Γ−1

0 E
(
∂FW0 (Z)

∂Wk

∂FW0 (Z)T

∂Wl

))

= 4tr
(
Γ−1

0 E
(
B(W 0

k ,W
0
l )
))

Now, the derivative ∂FW (Z)
∂Wk

is square integrable, so ∆Un(W
0) fulfills Linde-

berg’s condition (see [Hall et al., 2001]) and

√
n∆Un(W

0)
Law→ N (0, 4I0)

For the component (k, l) of the expectation of the Hessian matrix, remark
first that

lim
n→∞

tr
(
Γ−1
n (W 0)An(W

0
k )Γ−1

n (W 0)An(W 0
k )
)

= 0

and
lim
n→∞

trΓ−1
n Cn(W 0

k ,W
0
l ) = 0

so

limn→∞Hn(W
0) = limn→∞ 4tr

(
Γ−1
n (W 0)An(W 0

k )Γ−1
n (W 0)An(W

0
k )
)
+

2trΓ−1
n (W 0)Bn(W

0
k ,W

0
l ) + 2trΓ−1

n Cn(W
0
k ,W

0
l ) =

= 2tr
(
Γ−1

0 E
(
B(W 0

k ,W
0
l )
))

Now, since ‖∂
2FW (Z)
∂Wk∂Wl

‖ ≤ Cte(1 + ‖Z‖2) and

‖∂
2FW (Z)
∂Wk∂Wl

− ∂2F 0
W (Z)

∂Wk∂Wl
‖ ≤ Cte‖W −W 0‖(1 + ‖Z‖3), by standard arguments

found, for example, in [Yao, 2000] we get

√
n
(
Ŵn −W 0

)
Law→ N (0, I−1

0 )

�
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2.3 Asymptotic distribution of Tn

In this section, we write Ŵn = argminW∈Θs Un(W ) and
Ŵ 0
n = argminW∈Θq Un(W ), where Θq is view as a subset of Rs. The asymp-

totic distribution of Tn is then a consequence of the previous section, namely,
if we have to replace nUn(W ) by its Taylor expansion around Ŵn and Ŵ 0

n ,
following [Van der Vaart, 1998] chapter 16 we have :

Tn =
√
n
(
Ŵn − Ŵ 0

n

)T
I0
√
n
(
Ŵn − Ŵ 0

n

)
+ oP (1)

D→ χ2
s−q

3 Conclusion

It has been show that, in the case of multidimensional output, the cost func-
tion Un(W ) leads to a test for the number of parameters in MLP simpler than
with the traditional mean square cost function. In fact the estimator Ŵn is
also more efficient than the least square estimator (see [Rynkiewicz, 2003]).
We can also remark that Un(W ) matches with twice the “concentrated Gaus-
sian log-likelihood” but we have to emphasize, that its nice asymptotic prop-
erties need only moment condition on ε and Z, so it works even if the dis-
tribution of the noise is not Gaussian. An other solution could be to use an
approximation of the covariance error matrix to compute generalized least
square estimator :

1

n

n∑

t=1

(Yt − FW (Zt))
T Γ−1 (Yt − FW (Zt)) ,

assuming that Γ is a good approximation of the true covariance matrix of
the noise Γ (W 0). However it take time to compute a good the matrix Γ and
if we try to compute the best matrix Γ with the data, it leads to the cost
function Un(W ) (see for example [Gallant, 1987]).

Finally, as we see in this paper, the computation of the derivatives of
Un(W ) is easy, so we can use the effective differential optimization techniques
to estimate Ŵn and numerical examples can be found in [Rynkiewicz, 2003].
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Abstract. In the general classification context the recourse to the so-called Bayes
decision rule requires to estimate the class conditional probability density func-
tions. In this paper we propose a mixture model for the observed variables which
is derived by assuming that the data have been generated by an independent factor
model. Independent factor analysis is in fact a generative latent variable model
whose structure closely resembles the one of ordinary factor model but it assumes
that the latent variables are mutually independent and not necessarily Gaussian.
The method therefore provides a dimension reduction together with a semipara-
metric estimate of the class conditional probability density functions. This density
approximation is plugged into the classic Bayes rule and its performance is evalu-
ated both on real and simulated data.
Keywords: Classification, Independent Factor Analysis, Mixture Models.

1 Introduction

In the general classification context the goal is to define a rule for the assign-
ment of one new unit, on which a p-variate vector of variables X has been
observed, to the class, out of G unordered ones, from which it comes. The
training sample on which the rule is built consists of an indication of the
class membership and of the p predictors for a set of n units. Denoted by
fg, with g = 1, . . . , G, the class conditional densities and by πg the a priori
probability of observing an individual from population g, the so-called Bayes
decision rule suggests to allocate x to the population ĝ such that

ĝ = arg maxg=1,...,G {fg(x)πg} (1)

If the class conditional densities are Gaussian, the expression (1) simply
yields the well known linear or quadratic discriminant functions according
to whether the condition of homoscedasticity is fulfilled or not. But in most
applications neither fg(x) nor πg (g = 1, . . . , G) are known and the recourse
to the Gaussian based approach may be strongly misleading.

When the training sample data may be considered as a random sample
from the pooled population, the prior probabilities may be easily estimated
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by the relative frequencies of the g classes in the sample π̂g = ng/n where
ng is the number of units from class g observed in the training sample. The
estimation of the unknown densities fg is on the contrary a more complex
task.

The solution most often used in the statistical literature is based on kernel
density estimation ([Hand, 1982] and [Silverman, 1986]) and on the use of
the estimated densities in the classification rule (1), which therefore becomes
a nonparametric one. It is well known however that kernel methods deeply
suffer from the curse of dimensionality when applied in the multidimensional
context (as the one we are dealing with is). They also tend to produce poor
estimates of the density tails, whose role may on the contrary be crucial for
classification purposes. Amato et al. [Amato et al., 2002] suggest to overcome
the problem by transforming the data into independent components [Comon,
1994]. Exploiting the independence condition they rephrase the multivariate
density estimation task as a sequence of univariate ones, i.e. the estimation
of the marginal densities, whose product yields the multivariate density in the
transformed space. This density is then back-transformed in order to obtain
an estimate of the probability density function of the observed variables.
The method seems to outperform linear, quadratic and flexible discriminant
analysis in the training set, but its performance is quite poor in the test one.

Other approaches to nonparametric density estimation for classification,
such as the one due to Polzehl [Polzehl, 1995], who suggests a discrimination
oriented version of projection pursuit density estimation, seem to produce
quite good results but at a high computational cost and many aspects, at least
from an algorithmic point of view, still need improvement (for instance, the
selection of the bandwidth parameters in univariate kernel density estimation,
which should be optimal from a classification perspective).

A more recent approach is based on mixture models. In particular, in
[McLachlan and Peel, 2000] each class conditional density, fg, is modeled as
a mixture of mg normally distributed components (Gaussian Mixture Model,
GMM):

f̂g(x) =

mg∑

l=1

wglφ(x; µgl,Σgl) (2)

where φ(x,µgl,Σgl) denotes the p-variate normal density function with vec-
tor mean µgl and covariance matrix Σgl (l = 1, . . . ,mg), and wgl are the
mixing proportions. The density estimation involves therefore the estima-
tion of µgl, Σgl and wgl for l = 1, . . . ,mg and g = 1, . . . , G; this is a quite
large number of parameters as it is

hGMM
g = mgp+mg

p(p+ 1)

2
+ (mg − 1), for g = 1, . . . , G

which may be difficult to estimate for relatively small sample sizes.
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Hastie and Tibshirani [Hastie and Tibshirani, 1996] introduce what they
call mixture discriminant analysis (MDA) which exploits Gaussian mixtures
for classification purposes by imposing some constraints which make esti-
mation and interpretation easier. A completely different solution, aimed at
reducing the number of free parameters in a mixture model, is due to McLach-
lan et al. [McLachlan et al., 2002] who propose to assume a factor model for
each mixture component, thus modeling the density as a mixture of factor
analyzers.

In this paper we derive an approach for modeling class conditional den-
sities which combines the potentialities of the independence condition in a
low dimensional latent space (in the spirit of Amato et al.) with the semi-
parametric structure of mixture models. The method which simultaneously
allows to address both aspects is Independent Factor Analysis [Attias, 1999].

2 Independent Factor Analysis

Independent Factor Analysis has been recently introduced by Attias (1999)
in the context of signal processing and only recently it has been given a solid
statistical foundation [Montanari and Viroli, 2004]. Its aim is to describe p
observed variables xj , which are generally correlated, in terms of a smaller
set of k unobserved independent latent variables yi and an additive specific
term uj:

xj =

k∑

i=1

λjiyi + uj ,

where j = 1, ..., p, i = 1, ..., k. In a more compact form the model is

x = Λy + u (3)

where the factor loading matrix Λ = {λji} is also termed as mixing matrix.
Its structure closely resembles the classical factor model but it differs from
it as far as the properties of the latent variables it involves is concerned.
The random vector u representing the noise is assumed to be normally dis-
tributed, u ∼ N (0, Ψ) with Ψ allowing for correlations between the error
terms. The latent variables y are assumed to be mutually independent and
not necessarily normally distributed; their densities are indeed modeled as
mixtures of Gaussians. The independence assumption allows to model the
density of each yi in the latent space separately. In more formal terms each
factor is thus described as a mixture of mi gaussians with mean µi,q, variance
νi,q and mixing proportions wi,q (q = 1, ...,mi) :

f(yi) =

mi∑

q=1

wi,qφ (yi;µi,q, νi,q) (4)
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The mixing proportions wi,q are constrained to be non-negative and sum to
unity.

A particular characterization of the IFA model is that it involves two
layers of latent variables: besides the factors, y, an allocation variable, z, must
be introduced, as always when dealing with mixture models. With reference
to a particular factor i, the mixture can be thought of as the density of an
heterogeneous population consisting of mi subgroups. For each observation
the allocation variable denotes the identity of the subgroup from which it is
drawn. In the k -dimensional space, the multivariate allocation variable, z,
follows a multivariate multinomial distribution. The density of the observed
data can be constructed by conditioning to these two latent layers:

f (x|Θ) =
∑

z

∫
f(x,y,z|Θ)dy

=
∑

z

∫
f(z|Θ)f(y|z, Θ)f(x|y, z, Θ)dy

=
∑

z

f(z|Θ)f(x|z, Θ) (5)

where Θ denotes the whole set of the IFA model parameters.
It is not difficult to derive that the conditional density f(x|z, Θ) follows

a Gaussian distribution since it is the convolution of two Gaussian densities:
.

x|y, z ∼ N (Λy, Ψ) (6)

and

y|z ∼ N (µz,Vz) (7)

where µz and Vz are respectively defined as:

µz =

[
m1∏

q=1

µ
z1,q

1,q , ...,

mk∏

q=1

µ
zk,q

k,q

]
Vz = diag

[
m1∏

q=1

ν
z1,q

1,q , ...,

mk∏

q=1

ν
zk,q

k,q

]
.

For more details see [Montanari and Viroli, 2004].
Therefore the expression (5) indicates that the density of the observed

data given the IFA model, i.e. the likelihood function f(x|Θ), is a finite
mixture of p-variate normals. Its generic component is given by

f(x|z, Θ) = φ
(
x|z;Λµz, ΛVzΛ

T + Ψ
)

(8)

Implicit in the IFA estimation problem (which is solved by the EM-
algorithm) are the two assumptions regarding the correct number of factors
and the number of mixture components for modeling each factor. Assessing
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the correct specification of the model is an important but as jet unsolved
problem; this issue has been addressed in [Montanari and Viroli, 2004]. Once
the number of factors, k, and the number of components for each of them, mi,
have been correctly specified, the total number of the IFA model parameters
for fg is

hIFAg = pk +
p(p+ 1)

2
+ 3

k∑

i=1

mi − k g = 1, . . . , G.

As a consequence of this a priori double choice, the number of the mixture
components in (5) is univocally determined as mg =

∏k
i=1mi.

An advantage of this approach is that by applying mixture models not
directly to the observed variables but onto the reduced latent space the den-
sity of the observed variables is still a Gaussian mixture model that generally
involves a smaller set of parameters. For instance, a mixture model for the
class conditional density fg with mg = 4 components can be obtained by es-
timating k = 2 factors with mi = 2 components each. The resulting number
of parameters

hIFAg =
p2

2
+

5

2
p+ 10

is smaller than the one to be estimated in (2)

hGMM
g = 2p2 + 6p+ 3

for p ≥ 2.
A further appealing feature of the proposed solution is that the formula-

tion given by (4) and (5) does not rely on any constraints on the parameters,
allowing for a very flexible density approximation.

3 Empirical results

3.1 Simulated data

The discrimination performance of Independent Factor Discriminant Analysis
(IFDA) has been tested on the popular waveform data. This example has
been taken from [Breiman et al., 1984] and subsequently used in many works
on classification, since it is considered a difficult pattern recognition problem.
It is a three class problem with 21 variables, which are defined by

xi = uh1(i) + (1− u)h2(i) + εi Class 1

xi = uh1(i) + (1− u)h3(i) + εi Class 2

xi = uh2(i) + (1− u)h3(i) + εi Class 3

where i = 1, . . . , 21, u is uniform on [0,1], εi are standard normal ran-
dom variables and h1, h1 and h3 are the following shifted triangular forms:
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h1(i) = max(6 − |i − 11|, 0), h2(i) = h1(i − 4) and h3(i) = h1(i + 4). The
method discussed here is compared with the following classification proce-
dures: linear discriminant analysis (LDA), quadratic discriminant analysis
(QDA), mixture discriminant analysis (MDA), flexible discriminant analy-
sis (FDA), penalized discriminant analysis (PDA) and the CART procedure.
The training sample consists of 300 observations and the test sample has size
500. Both of them have been generated with equal priors.

Technique Error rates
Training Test

LDA 0.121(.006) 0.191(.006)
QDA 0.039(.004) 0.205(.006)
CART 0.072(.003) 0.289(.004)
FDA/MARS (degree=1) 0.100(.006) 0.191(.006)
FDA/MARS (degree=2) 0.068(.004) 0.215(.002)
MDA (3 subclasses) 0.087(.005) 0.169(.006)
MDA (3 subclasses, penalized 4df) 0.137(.006) 0.157(.005)
PDA (penalized 4df) 0.150(.005) 0.171(.005)

IFDA (2 factors) 0.054(.010) 0.133(.004)

Table 1. Results for waveform data. The values are averages over 10 simulations,
with the standard error of the average in parentheses. The eight entries above the
line are taken from Hastie and Tibshirani (1996). The last line indicates the error
rates in the IFDA with 2 components for each factor.

Table 1 indicates the classification results taken from Hastie and Tibshi-
rani [Hastie and Tibshirani, 1996] and includes the performances of IFDA
over 10 simulations. Independent Factor Discriminant Analysis shows the
lowest classification error rate in the test samples.

3.2 Real data

We applied the proposed method on the thyroid data [Coomans et al., 1983].
The example consists of 5 measurements (T3-resin uptake test, Total Serum
thyroxin, Total serum triiodothyronine, Basal thyroid-stimulating hormone
and maximal absolute difference of TSH value after injection of 200 micro
grams of thyrotropin-releasing hormone as compared to the basal value) on
215 patients, that are distinguished in three groups on the basis of their thy-
roid status (normal, hyper and hypo). The data have been randomly divided
into a training sample of size 143 and a test sample that consists of the re-
maining patients. Table 2 shows a summary of the performance of several
classification procedures. In order to compare our results with those pub-
lished in a technical report which represents an extended version of [Hastie
et al., 1994], only one split into training and test set has been considered.



Independent Factor Discriminant Analysis 575

Independent Factor Discriminant Analysis performs very well and it is com-
petitive with respect to non linear methods such as neural networks and the
MDA/FDA procedure.

Technique Error rates
Training Test

LDA 0.091 0.083
MDA 0.028 0.042
MDA/FDA 0.049 0.014
FDA 0.049 0.042
Neural network (10 hidden units) 0.000 0.027

IFDA (2 factors) 0.056 0.027

Table 2. Results for Thyroid data. The first five lines are taken from an extended
version (technical report) of the paper by Hastie and Tibshirani (1996). The last
entry indicates the error rates in the IFDA with 2 components for each factor.

4 Conclusion

In this paper we have proposed a new approach to classification by Gaussian
mixtures. Its main assumption is that the observed data have been generated
by an independent factor model. In this way we obtain a very flexible density
approximation, which, for a given number of mixture components, is often
based on a lesser number of parameters than the classic mixture model solu-
tion and allows for heteroscedastic components. Its performance seems to be
very competitive with respect to the main classification procedures proposed
in the statistical literature.
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Abstract. In this paper, a new method is proposed for measuring the distance
between a training data set and a single, new observation. The novel distance
measure reflects the expected squared prediction error, when the prediction is based
on the k nearest neighbours of the training data set. The simulation shows that the
distance measure correlates well with the true expected squared prediction error
in practice. The distance measure can be applied, for example, to assessing the
uncertainty of prediction.
Keywords: Distance measure, Model uncertainty,
Distance weighted k-nearest-neighbour, Novelty detection.

1 Introduction

In some applications, such as in evaluation of the reliability of prediction at a
query point, it is interesting to measure the information given by the training
data set about a new observation via the current prediction model. In this
work, we propose a novel measure for the distance between a single observa-
tion and a data set. The distance measure reflects the expected uncertainty
of the new observation being predicted based on the data set. The distance
measure is a linear function of the approximated expected squared predic-
tion error, when the new observation is predicted with the distance weighted
k-nearest-neighbour method.

There has been much discussion about measuring the distance between
two observations. We refer to a review paper [Wettschereck et al., 1997] that
discusses the different methods. Often, Euclidean distance or Manhattan
distance is used, and the problem lies in the weighting or scaling of the
variables. The input variables that have a large effect on the response should
have large weights in the distance measure. Global distance measures use
constant weights, unlike local distance measures. Some distance measures
take the correlations between the explanatory variables into account.

The measurement of the distance between a set of observations and a sin-
gle observation has also been widely discussed. Different distance measures
have been applied in clustering and in prototype methods. In these applica-
tions, the aim in defining the distance has been to assign the observation to
the nearest cluster or prototype. Examples of the different methods include
the average pairwise distance, the Mahalanobis distance and the Euclidian
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distance to the cluster centroid. We refer to [Kaufman and Rousseeuw, 1990]
for these methods. However, these methods have been planned to measure
the distance between a cluster and a single observation and not the distance
between a data set and a single observation.

Novelty detection aims to find abnormal observations from a data set.
Abnormal observations can indicate that the modelled system is in an abnor-
mal state, which needs to be reported. In classification, detection of novel
observations is needed to identify new classes and observations that cannot
be classified reliably. Novelty detection can be used to differentiate novel in-
formation from existing information when only the novel information needs
to be shown to the learners. For novelty detection methods, we refer to the
review [Markou and Singh, 2003].

The usual approach in novelty detection is to measure somehow the sim-
ilarity with the training data and to use some threshold to interpret the
observations as novel. The most common method is to model the joint den-
sity function of input variables to judge the observations with low density
as novel [Markou and Singh, 2003]. Our approach differs in that we do not
construct any distribution model for the inputs. Our distance measure tries
to measure the uncertainty about the expected response value at a new query
point, which is quite a novel approach to the problem. The standard errors
of predictions measure the uncertainty with variance, but we take also bias
into account.

[Angiulli and Pittuzi, 2005] suggested a method for detecting outliers
in a data set. They calculated the sum of the Euclidean distances to the
k nearest neighbours for measuring the distance, which approach is quite
similar to our proposal. [Mahamud and Hebert, 2003] discussed the optimal
distance measures in k-nearest-neighbour prediction, and we constructed our
distance measure using a similar optimality principle.

2 Distance between two single observations

Let x(j) refer to the jth explanatory variable and xij denote the ith observa-
tion of x(j), yi denote the ith observation of the response and T denote the
training data set consisting of N observations (x1, y1), (x2, y2), . . . , (xN , yN).
Let (x0, y0) be a new test data observation and di = d(x0, xi) measure the
distance between x0 and xi ∈ T . We assume that the response depends on
the inputs via a regression function f(·), and that the additive error term
has a constant variance

yi = f(xi) + εi, E(εi) = 0, Var (εi) = σ2. (1)

[Mahamud and Hebert, 2003] discussed the optimal distance measures in
nearest-neighbour classification. The optimal distance measure in 1-nearest-
neighbour prediction minimises the expected loss function Ey0,x0,TL(y0, y

′),
where y′ is the measured response at x′, which is the nearest neighbour of x0



Measuring Distance from a Training Data Set 579

using the distance measure d. The distance measure d(x0, xi) = EL(y0, yi)
is optimal, because the nearest neighbour x′ = arg minxi EL(y0, yi) min-
imises the expected loss L(y0, y

′) ∀x0 ∀T [Mahamud and Hebert, 2003]. The
same reasoning holds for k-nearest-neighbour prediction. All order-preserving
transformations of the expected loss function are optimal, because the near-
est neighbours remain the same. We use the expected squared error loss
EL(µ0, yi) = E(µ0 − yi)2 = E(y0 − yi)2 − σ2 related to the true expectation
µ0 = E(y|x0) = f(x0) without losing optimality.

The optimal distance measure cannot be used directly because the con-
ditional expectation of the response is not known, and the true expected loss
cannot be solved. The optimal distance measure is not monotonic, which
implies an interpretational disadvantage: The nearest neighbours may lie far
away from the query point on the scale of explanatory variables. To elimi-
nate this problems, we must be content with a coarse approximation of the
expected loss: We use the sum of the expectations of squared differences in
the true regression function, when one input variable at a time is set to the
measured values x0 and xi, and other input variables are drawn randomly,

E(µ0− yi)2 = σ2 + [f(x0)− f(xi)]
2 ≈ σ2 +

p∑

j=1

Ex
{
f [w

(j)
i (x)]− f [w

(j)
0 (x)]

}2
.

(2)

In the formula, x is a randomly drawn input observation, w
(j)
0 (x) is otherwise

identical with x but the jth element is altered w
(j)
0j = x0j , and w

(j)
i (x) is

otherwise identical with x but the jth element w
(j)
ij = xij .

In the case of continuous input variables, we further approximate the
squared differences in y with squared differences in the input variable val-

ues Ex
{
f [w

(j)
i (x)] − f [w

(j)
0 (x)]

}2 ≈ αj(x0j − xij)2. [Mahamud and Hebert,
2003] proposed to estimate the α-coefficients by fitting a regression model
to a data set of pairs of training data instances using the response L(yi, yj).
The advantage of their direct method is that the regression function need
not be estimated. We propose a different method. Let our prediction model
be ŷ = f̂(x) = f̂(x(1), x(2), . . . , x(p)), and let σ̂2 be the corresponding error
variance estimate. Let now xc ∈ T denote a training data observation lying

near x0, and let f̂ ′(xc) =
(
∂ bf(x)
∂x(1)

, ∂
bf(x)

∂x(2)
, . . . , ∂

bf(x)
∂x(p)

)
(x=xc) denote the gradient

of the fitted response surface at point xc. Motivated by the first-order Tay-
lor approximation around xc, we suggest that α1, . . . , αp are defined as the
average squared partial derivative over the training data set

αj =
1

N

N∑

i=1

(∂f̂(x)

∂x(j)
(x=xi)

)2

. (3)

For large N , it is enough to calculate the average over a sample. The regres-
sion function can be fitted using any learning method, for example, neural
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networks or additive models. The partial derivatives of the fitted response

surface can be approximated numerically with ∂ bf(x)
∂x(j)

(x=xi) =
bf(xi)− bf(xi+oj)

|oj | ,

where oj is a vector of zeros elsewhere but a small constant at the jth element.

When x(j) is a categorical variable with class levels γj1, γj2, . . . , γjqj , we

can estimate the expected squared difference Ex
{
f [w

(j)
i (x)]−f [w

(j)
0 (x)]

}2
be-

tween each two class levels γjl and γjm using the fitted prediction model with

1
|J|
∑

j∈J

(
f̂(xi) − f̂(w

(j)
i )
)2

. The input vectors w
(j)
i are otherwise identical

to xi but the jth element is altered: w
(j)
ij = γjm, if xij = γjl, and w

(j)
ij = γjl,

if xij = γjm. The squared differences in the prediction are averaged over the

index set J =
{
i|f̂(xi), f̂(w

(j)
i ) are reliable and (xij = γjl or xij = γjm)

}
.

For binary variables we can notate

αj =
1

|J |
∑

j∈J

(
f̂(xi)− f̂(w

(j)
i )
)2

. (4)

We propose to use an approximate optimal distance measure that is the
approximated expected squared error loss

d(x0, xi) = α0 +

p∑

j=1

αj(x0j − xij)2. (5)

The coefficient α0 is the error variance estimate σ̂2. The notation (Eq. 5) is
applicable for continuous and binary variables, but categorical variables can
be taken into account as explained previously.

3 Distance between a single observation and a data set

We suggest that the distance of a single observation from a set of k observa-
tions, Sk, is measured on the basis of the expected squared error when the
single observation is predicted based on Sk. This can be seen as the general-
isation of the pairwise optimal distance measure. The true expected loss at
x0 is not known and has to be approximated. We predict µ0 = E(y0) with a
distance-weighted linear combination of the y values measured in Sk, which
results in measurement of the distance with the harmonic sum of pairwise
distances.

Let Sk = (x1, x2, . . . , xk) with the distances d1, d2, . . . , dk from x0, and
let each distance be known di = E(µ0 − yi)2. Let us now estimate µ0 with
a weighted linear combination ŷ0 = ω1y1 + ω2y2 + · · · + ωkyk. Under the
symmetry assumption E(µ0 − yi) = 0, the minimum variance unbiased esti-
mator gives weights proportional to the inverses of the variances and sums the
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weights to unity ωj = 1
dj

/∑k
i=1

1
di

. We use this distance-weighted estimator

ŷ0 =
( k∑

i=1

1

di
yj

)/ k∑

i=1

1

di
(6)

to predict y0 based on Sk. We keep the estimator (Eq. 6) as a natural
basis for the interpretation of our distance measure because the approach
does not make any assumption about the form of the regression function.
The expected squared loss of our estimator is the harmonic sum of pairwise
distances di plus a bias term

E(ŷ0 − µ0)
2 = E

( k∑

i=1

(ωiyi)− µ0

)2

= E
( k∑

i=1

ωi(yi − µ0)
)2

=
k∑

i=1

ω2
iE(yi − µ0)

2 + 2
k∑

j=1

∑

i6=j
E(yi − µ0)E(yj − µ0)ωiωj

=
( 1
∑k

i=1
1
di

)2[ k∑

i=1

di/d
2
i + 2

∑∑

i6=j

E(yi − µ0)E(yj − µ0)

didj

]

=
1

∑k
i=1

1
di

+
( 1
∑k

i=1
1
di

)2

2
∑∑

i6=j

E(yi − µ0)E(yj − µ0)

didj
. (7)

We take the expectations (Eq. 7, 8, 9 and 10) over xi, also, which means that
xi are assumed to be random points satisfying the condition d(x0, xi) = di.
If the assumption EY,xi|di

(µ0− yi) = 0∀i holds, the bias term would be zero,
and the expected squared error would be the harmonic sum of the pairwise
distances. However, that is not a realistic assumption. Some query points
x0 may lie in a ’symmetric’ position where the assumption holds. But some
query points may lie at the bottom of a valley or on the top of a hill, where
the expectation E(yi − µ0) is negative for all possible neighbours xi.

Let us now us examine the bottom of a valley scenario in more detail.
Because E (yi − µ0)

2 = di and Var yi = σ2, it holds that E (yi − µ0) =√
di − σ2. Let d̄ denote the average inverse distance 1

k

∑k
i=1 1/di. We can

derive an upper bound for the bias term

2
∑∑

i6=j

E (yi − µ0)E (yj − µ0)

didj
= 2

∑∑

i6=j

√
di − σ2

√
dj − σ2

didj

=

k∑

i=1

[√di − σ2

di

∑

j 6=i

√
dj − σ2

dj

]
<=

k∑

i=1

d̄

√
1

d̄
− σ2

∑

j 6=i
d̄

√
1

d̄
− σ2

= k(k − 1)d̄2(
1

d̄
− σ2) = (k − 1)

k∑

i=1

1

di
− σ2 k − 1

k

[ k∑

i=1

1

di

]2
(8)

The result follows from the Jensen inequality and concavity of the function
q(x) = x

√
1/x− σ2. Equality is achieved if the distances to all the neigh-
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bours are constant 1/di = d̄ ∀i. When all the k neighbours are roughly
equally distant, and x0 lies at the bottom of a valley or on the top of a hill,
the bias term can be approximated as a linear function of the harmonic sum
1/
∑k
i=1

1
di

and k

( 1
∑k
i=1

1
di

)2

2
k∑

j=1

∑

i6=j

E(yi − µ0)E(yj − µ0)

didj
≈ k − 1
∑k
i=1

1
di

− σ2 k − 1

k
. (9)

Simulation studies showed that this approximation holds well in practice: In
all of the simulated data sets, the correlation between the harmonic sum and
the bias term was over 0.99 when pairwise distances depending only on x
were used (Eq. 5) and over 0.94 when the true distances di = E(µ0 − yi)2
were used and k ≤ 50.

At all query points x0, the true bias can be expressed in relation to the
maximum bias with EY,xi|x0,di

(yi − µ0) = c(x0)
√
di − α0. When x0 lies in a

symmetric position, c(x0) = 0, at the bottom of the valley c(x0) = 1, and
on the top of the hill c(x0) = −1. When we assume that c(x0) does not
depend on the distance di and denote Ex0c(x0)

2 = δ2, the expected squared
prediction error can be approximated with

EY,x|d1...dk
(µ0 − ŷ0)2 = Ex0

( 1
∑k

i=1
1
di

)2

2
∑∑

i6=j

c(x0)
2
√
di − σ2

√
dj − σ2

didj

+
1

∑k
i=1

1
di

≈ 1
∑k

i=1
1
di

+ δ2(k − 1)
1

∑k
i=1

1
di

− σ2δ2
k − 1

k
. (10)

This is a linear transformation of the harmonic sum when k is kept fixed.
Thus, the harmonic sum 1/

∑k
i=1

1
di

can be used as a measure of the uncer-
tainty about µ0 when y1, . . . , yk and d1, . . . , dk are given. On the basis of
simulated data, the approximation seems to work well in practice: The cor-
relations between the approximation and the true expected loss were about
0.9.

We propose that the distance between a single observation x0 and a set
of observations Sk = (x1, x2, . . . , xk) is measured with the harmonic sum of
pairwise distances di = d(xi, x0). When the pairwise distances correspond to
the expected squared error di ≈ E(µ0 − yi)2, our distance measure d(x0, Sk)
approximates an increasing linear function of the expected squared prediction
error E(µ0 − ŷ0(Sk))2. We suggest that the distance between x0 and Sk is
measured with

d(x0, Sk) =
1

∑k
i=1

1
di

di =

p∑

j=1

α0 + αj(x0j − xij)2. (11)
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4 Measuring the distance to a training data set

Our method could be used directly to measure the distance between a single
observation and the training data set by letting Sk = T . However, when the
training data set is large, it makes more sense to use only the k nearest obser-
vations. In the k-nearest-neighbour method, typically 5 to 100 neighbours are
used to obtain the most accurate prediction. Thus, the observations lying far
away from x0 should not have an effect on the distance measure, because they
do not affect the prediction. Let d(k) be the kth smallest distance d(x0, xi).
Our suggestion for the distance between the training data set and a single
observation is

d(x0, T ) = d(x0, Sk), Sk =
{
xi ∈ T | d(x0, xi) ≤ d(k)

}
, (12)

Our distance measure is problem-dependent. If we have the same inputs
and several responses, the distance measure has to be defined separately for
each response. The distance measure adapts itself to the regression func-
tion. The variables that do not affect the response do not affect the distance,
either. The distance measure is invariant for linear transformations and ap-
proximately invariant for order-preserving transformations of the inputs. The
distance measure also has a reasonable interpretation as the approximate
measure of the expected loss function, which is an informative and novel way
to measure the uncertainty about a new observation. The distance measure
uses the squared error loss function, but can also be used for non-gaussian
responses. If µ0 were estimated with the unweighted k-nearest-neighbour
method, the result would be the sum of single distances, just as proposed in
[Angiulli and Pittuzi, 2005].

After the distance measure has been initialised by defining the α-
coefficients, the major computational task is to find the k nearest training
data observations. The computation of a single distance to the training data
set requires about N(p+ 2)+ k2 operations. Initialision of the distance mea-
sure consists of fitting a prediction model and defining the α-coefficient for
each explanatory variable, which is not a computational problem even in
large data sets.

When prediction using some novel input values is needed, there rises the
question of whether the model gives a reliable prediction or not. If the query
point has enough training data instances nearby, the prediction can be kept
reliable. If the query point is far away from the training data instances, the
model will give a poor prediction with a high probability. The distance be-
tween the query point and the training data set gives information about the
uncertainty of the prediction, see the example in Figure 1. The prediction ac-
curacy of the model for validation data observations distant from the training
data gives some information about the interpolation ability of model. In the
example shown in Figure 1, the smoothed prediction accuracies of a linear
regression model, a quadratic regression model and an additive spline model
are plotted as functions of distance from the training data set.
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Fig. 1. Average prediction error (rMSE) in a simulated data set.

5 Performance in simulated data sets

The proposed distance measure reflects the expected squared error loss func-
tion d(x0, Sk) ≈ c1+c2E(µ0−ŷ0(Sk))2. We evaluated the correlation between
the distance measure and the true expected loss using simulated data sets.
The simulated data sets tried to represent a range of data sets which could
arise from an industrial process of production. The observations occurred
in clusters of different sizes, and the input variables were correlated. The
true expected response was defined as a sum of 24 random effects of the form
ν|b0+β1x(1)+β2x(2)+· · ·+β16x(16)|bs, where b = e0.5zb , zb ∼ N(0, 1), making
the typical effect rather linear, and the signum s turns the effect monotone
with a probability of 0.7. Only 1, 2, 3 or 4 of βi differs from 0, which means
that interactions are restricted to the 4th order. The observed response was
normally distributed around the true expected response. One simulated data
set consisted of 10 000 observations and 16 input variables.

We simulated 20 data sets. We split all simulated data sets randomly into
a learning data set and a validation data set. Out of the 2000 observations
in the validation data, we calculated the distances to the learning data set
using the proposed method. For each data set, we fitted an additive model
with univariate thin plate regression splines as basis functions to define the
α- coefficients of our distance measure. We defined the true pairwise distance
as the true expectation E(µ0−yi)2 and the true distance to the training data
as the true expected squared prediction error

E
(
µ0 −

∑k
i=1 yi/d(xi, x0)∑k
i=1 1/d(xi, x0)

)2

. (13)

We examined the accuracy of our pairwise distance measure in approxi-
mating the expected loss E(µ0− yi)2 ≈ α0 +

∑p
j=1 αj(x0j −xij)2 = d(x0, xi)

based on the correlations between the pairwise distance measure d(xi, xj)
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and its theoretical reciprocal (µi − µj)2 + σ2. In the simulated data sets,
the correlation varied between 0.19 and 0.81, the average correlation being
0.47. When neighbourhood size k = 30 was used, the correlation between the
distance measure (Eq. 11) and the true expected squared error EY (µ0− ŷ0)2
(ŷ0 is defined in Eq. 6) varied between 0.41 and 0.66, the average correlation
being 0.52. Thus, our distance measure d(x0, T ) reflects relatively well its
theoretical reciprocal, the expected squared error loss when x0 is predicted
based on T using distance-weighted k-nearest-neighbour. The deviation be-
tween the true expected squared error and our distance measure is mainly the
consequence of the difficulty in approximating pairwise expected loss based
only on x. If the true pairwise expected losses were known, the approxima-
tion would work much better: The correlation between the true expected loss
E(y0 − ŷ0)2, ŷ0 =

∑k
i=1 yi/E(yi − µ0)

2 and the harmonic sum of the true

pairwise distances 1/
∑k
i=1 1/E(yi − µ0)

2 was typically about 0.93 and over
0.83 in all simulated data sets for k ≤ 200. The size of the neighbourhood had
a relatively small effect on the results, and all alternatives between k = 5 and
k = 500 gave satisfactory correlations, and the best size of the neighbourhood
varied greatly between the simulation runs. We suggest the use of k = 30,
because that seemed to work best, and no larger neighbourhood was needed
for k-nearest-neighbour prediction. Also, it seems intuitively reasonable that
the distance to the training data can be defined based on the distances to
the 30 nearest neighbours.

We compared our distance measure to the sum of pairwise distances of
[Angiulli and Pittuzi, 2005]. Using k = 30, our distance measure was slightly
better in 90 % of the simulation runs, and the average difference in corre-
lation was 0.035. We also examined the effect of the method on defining
α-coefficients for the distance measure. The average correlation between the
pairwise distances based on a fitted additive model and on the true response
surface was 0.92. The correlations between distances calculated based on two
different learning methods were around 0.95, which means that the model fit-
ting had only a small effect on the results. The method of [Mahamud and
Hebert, 2003] for specifying α-coefficients gave poor results: The average
pairwise correlation was only 0.30.

In the simulated data sets, the distance measure reflected the uncertainty
about a new observation pretty well. We applied the distance measure to real
industrial process data. We used a training data set having 90 000 obser-
vations, 26 continuous input variables and 6 binary input variables without
any computational problems. In the test data set containing 60 000 obser-
vations, the average prediction error increased along with the distance from
the training data (Figure 2). The correlations between the measured loss and
the distance measure were between 0.25 and 0.5, depending on the response
variable and the prediction model.
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Fig. 2. Prediction error plotted against distance from the training data set in the
real data set. The lines are the smoothed medians for four different prediction
models.

6 Conclusion

We proposed a novel distance measure for the distance between a data set
and a single observation. The distance measure can be interpreted to reflect
the expected squared error loss when the single observation is predicted based
on the data set using distance-weighted k-nearest-neighbour. Measurement
of the distance from a data set has many potential applications, such as
evaluation of the uncertainty of prediction and discovery of outliers.
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Abstract. ”Statistical inference techniques, if not applied to the real world, will
lose their import and appear to be deductive exercises. Furthermore, it is my belief
that a statistical course emphasis should be given to both mathematical theory of
statistics and to application of the theory to practical problems. A detailed discus-
sion on the application of a statistical technique facilitates better understanding
of the theory behind the technique.” C. Radhakrishna RAO in Linear Statistical
Inference and Its Applications

The following summary presents important topics currently being debated for
companies risk assessment and the main problems to be solved in the construction
and use of credit scoring. Many examples and statistical issues will be presented
during my presentation.
Keywords: discriminant analysis, credit risk forecasting, accuracy of probability
of failure, stability of risk classes, transition matrices, credit risk models.

1 Introduction

The need for better control of credit risk by banks has led to a stepping-up of
research concerning credit scoring. Several types of technique make possible
the early detection of payment defaults by companies. These techniques fall
within the field of discriminant analysis.

One of banks’ major objectives is to estimate expected loss and, using
an extreme quantile, unexpected loss, for a population of companies, for
example the customers of a bank. In order to do so, it is necessary to know
the probability of default for each company for a given horizon. It is then
possible to determine homogenous classes of risk.

Such an objective gives rise to several questions about the properties of
the score made available. These relate to:

- the accuracy of estimates of probability and homogeneity of risk classes
- the stability over time of risk classes and their properties
- the dependence of the risk measurement on the business cycle
- the stability of transition matrices
- the correlation of risks

In order to get to grips with these questions, it is necessary to investigate
the process of constructing the score and to examine the sensitive stages of
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the process. The practice of constructing and using scores leads to a second
set of questions regarding:

- the type of variables
- the historical period of the files used to construct the scores
- the process of selecting variables
- the choice of discriminant analysis technique
- the forecasting horizon
- the stability of companies within risk classes
- the frequency with which the tool is revised
- the interaction between the business cycle, forecasting and revision

These issues are important for the quality of risk forecasting. They have
increasingly been the subject of research and it appears that they are highly
interdependent. The successive stages of a score’s construction have an im-
pact on the robustness and effectiveness of the tool eventually developed. In
examining them, we shall set out the choices made at the Banque de France.
Various different uses of the tool will be looked at.

2 Construction

2.1 How appropriate is the model for the data

2.1.1 The data Defining the event to be detected constitutes the first
difficulty: Should this be legal proceedings or payment default? How seri-
ous does the payment default need to be? For the statistician, the criterion
chosen is dependent on the information available. The question then arises
of the correlation between these events for the same company. The popula-
tion of target companies. For the statistical work to be of good quality, it
requires: homogeneity of the population, representativeness of samples and
their possible adjustment.

The forecasting horizon is determined by the needs of the banking system,
but is dependent on how recent the data are and the impact of the economic
cycle. The way in which the data files are organised is the result of a compro-
mise. The choice of explanatory variables is also determined by availability
and reliability. Qualitative variables are especially fragile and often better
suited to expert assessment. Among quantitative variables, monitoring com-
panies’ bank accounts is probably very revealing over the short term, but
this option is not available to the Banque de France. Economic and financial
ratios constructed using accounting variables are widely available and rela-
tively homogenous thanks to the existence of a chart of accounts. They are
based on an underlying theory: financial analysis.

They are tricky and time-consuming to prepare. Abnormal, extreme or
“bizarre” values are examined, as well as their law of probability, discrimi-
nant capacity, correlations and linearity or non-linearity with respect to the
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problem in question. This last characteristic may only be known via an ex-
amination of ratio distributions. It also determines the choice of technique
(linear or non-linear). Once the correct ratios have been identified, the dis-
criminant capacity is assessed by tests on quantiles [Vessereau, 1987]. Some
statisticians use the stochastic dominance test [Davidson and Duclos, 1999].

2.1.2 The models The aim in constructing a score may be confined to the
desire to identify risk signals. However, if one wishes to obtain an operational
tool, its construction needs to be based on a decision rule, but its practical use
requires knowing the probability of failure at a given horizon. The methods
that result in linear combination of ratios are by far the most robust and are
easy to interpret.

Indeed, corporate failure is a complex phenomenon for which the actual
causal variables are difficult to access and to identify. The score functions
therefore make use of symptoms such as descriptors of the company’s situa-
tion before its failure. In other words, it is impossible to accurately define the
phenomenon of company failure, contrary to what occurs in other fields of
application of discriminant analysis that are closer to physical science, such
as shape recognition, where overlearning is easier to master and techniques
such as neural networks are successfully applied. It is, therefore, the very
traditional linear discriminant analysis (LDA) of Fisher that is used at the
Banque de France.

Estimating probability may be associated with the theoretical model used
or may be done on the basis of empirical distributions and Bayes’ theorem.
The choice between the two will depend on how representative the files are
and the extent to which the data correspond to the assumptions in the model.

2.2 Some thoughts on models

With detailed theoretical comparisons having been made in several studies
[Baesens et al., 2003], here we suggest some thoughts about suitability for
companies’ economic data and robustness over time. The main models will
be looked at: Fisher’s linear or quadratic discriminant analysis; logistical
regression; Disqual [Lelogeais, 2003]; decision tree; neural networks; and other
non-parametric methods.

The much-debated comparison between Fisher LDA and LOGIT warrants
some further investigation – in terms of the theoretical properties [Amemiya
and Powell, 1983], interpretability (the great advantage of Fisher’s LDA:
contributions of variables to the value of the score), sensitivity to the sampling
plan of the logistical regression [Celeux and Nakache, 1994], estimation of
the probability of failure (either via a theoretical formula or by use of Bayes’
theorem on empirical distributions).
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2.2.1 Some arguments regarding the choice between models The
model’s appropriateness for the data derives from the following properties
and the corresponding choices:

- linearity or non-linearity,
- robustness to loss of parametric assumptions
- sensitivity to extreme values
- robustness over time (problem of thresholds for economic variables)
- interpretability of results for the user.

2.3 Probability of failure

The probability of failure provides a measure of the intensity of risk. It
is much more informative than a decision threshold. Several crucial issues
determine the quality of the tool:

1. The forecasting horizon must be consistent with the nature of the data.
There is by definition a lag of a few months between balance sheet vari-
ables and the time at which the company is assessed, and these variables
describe what has occurred over the course of the past year; they are con-
sequently better suited to a medium-term forecast than to a short-term
one. Balance sheets undoubtedly provide useful and robust informa-
tion, provided that the assessment and the forecasting horizon are well
matched. With a one-year horizon, it might be thought that it would be
possible to create a short-term indicator, which, if it were re-estimated
sufficiently often, would allow us to track the conditions under which
companies are operating. But such an indicator would then follow the
business cycle closely. However, this kind of perspective is very difficult
to work with as frequent re-estimation in a changing environment is li-
able to lead to functions that always lag the current situation. It was
therefore decided to work on a medium-term horizon with quantitative
variables based on balance sheets and which are submitted to a method
of financial analysis whose quality is long established. Given that balance
sheet structures are related to the sector to which a company belongs,
scores are created according to the major sectors (industry, wholesale
trade, retail trade, transport, construction, business services).

2. An estimate of posterior failure probabilities well suited to the empirical
data using Bayes’ theorem is closely associated with the determination
of risk classes. Robustness over time must be ensured for the average
probability per risk class. The confidence interval of this average indicates
the accuracy and provides a measure of what can happen in the worst
case scenario.

3. The stability of companies in risk classes is studied using transition ma-
trices. This paper is participating in the currently heated debate about
“through the cycle” vs. “point in time” estimates.
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3 Use

3.1 Individual diagnosis

Credit scoring is the first stage in the analysis of individual cases. A whole
range of tools is made available. The scores are accompanied by aids to
interpretation for the user, who is not a statistician but rather a financial
analyst: failure probabilities, contributions of ratios to the score, and the
company situation relative to the sector as a whole.

It is a great asset for the statistician to be able to identify ways in which
the tool is unsuitable thanks to the analyst users who point out concrete
cases where there are measurement difficulties. Their observations make it
possible to improve the statistical measure of concepts of financial analysis
and understanding of corporate failure processes.

3.1.1 Risk assessment for a given population Progress reports for a
given group of customers are recommended by the Basel Committee. The
Banque de France has produced some examples aimed at monitoring a par-
ticular population: IRISK method; economic impact of corporate failure.

3.2 Research under way

The scores constructed at the Banque de France cover a wide range of sectors.
Applied to a representative sample of firms whose turnover exceeds EUR 0.75
million, they allow us to study many questions related to credit risk.

Risk contagion [Stili, 2003] [Stili, 2005] can be studied using the Banque
de France’s database of payment incidents involving trade bills.

Risk correlation [Foulcher et al., 2003] between companies has a sub-
stantial impact on the assessment of potential losses.

If the link between risk and the business cycle [Bataille et al., 2005]
can be clarified, it would make it possible to better anticipate the risk of
future failures in the light of macroeconomic variables or specific factors.

Looking at the paths followed by companies [Bardos, 1998b] makes
possible the dynamic study of risk.

The transition matrices between classes of risk allow us to study the
Markovian character or otherwise of failure processes.

Concentration of debt [Bardos and Plihon, 1999] is a source of major
risk for banks.

Furthermore, investigation of credit risk models requires comparisons be-
tween company rating systems. Statistical research on the simulation of
distributions of default rates by rating [Tiomo, 2002] make it possible
to establish scales of reference for these comparisons.
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Abstract. Some semiparametric models for binary response data are reviewed:
single-index models, generalized partially linear models, generalized partially linear
models single-index models and multiple-index models. All these models can be
seen as extensions of the classical logistic regression. We test and compare these
models using data on bankruptcy of French companies and data from credit busi-
ness.
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1 Introduction

Classification techniques are used in many statistical applications. The ob-
jective of any classification model is to classify individuals in two or more
groups based on a predicted outcome associated with each individual. Here,
we are interested in statistical models classifying individuals in two groups:
’good’ (or ’not default’) and ’bad’ (or ’default’) individuals. Such models
can be applied in banking and credit control, marketing, medicine, etc. The
classification rule for an individual must be based on the information about
the individual at the time of the decision. This information is contained
in a vector of explanatory variables (factors, indicators, characteristics, ...)
X = (X1, ..., Xp)

>. Usually, the available information for an individual is
synthesized into a single value usually called the score. The score aims to
reflect the probability that the individual will ’not default’.

Various parametric and nonparametric methods can be used to solve clas-
sification problems (see, e.g., [Hand and Henley, 1997] for a review). Dis-
criminant analysis, linear regression and logistic regression are the standard
parametric techniques, while k−nearest neighbors, classification trees, neu-
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ral networks and, more recently, support vector machine are some common
nonparametric (distribution-free) procedures.

The simple, user friendly and easily interpretable character of the para-
metric regression models make them the most popular classification tech-
niques in many application fields. The nonparametric methods, unlike the
parametric methods, make no (or mild) assumption about the distribution
of the observations and are therefore attractive when data on hand does not
meet strict statistical assumptions. The price of this flexibility can be high,
however. First, estimation precision decreases rapidly as the dimension of
X, the vector of explanatory variables, increases. This is the so-called curse
of dimensionality. A second problem with nonparametric methods is that
the results can be difficult to display, communicate, and interpret when X is
multidimensional. A further problem with nonparametric methods is the dif-
ficulty to extrapolate the prediction to individuals with characteristics that
are very different from the characteristics of the individuals that served for
estimation.

The semiparametric methods represent an appealing compromise for con-
structing statistical models. By making assumptions that are of intermediate
strength between the parametric and nonparametric approaches, the semi-
parametric models reduce the risk of misspecification relative to a parametric
model and avoid at least in part the aforementioned drawbacks of the non-
parametric methods.

In this paper we review some semiparametric regression methods that ap-
ply to scoring, that is to determine how likely an individual will ’not default’.
The starting point of the review is the logistic regression. The power of the
semiparametric methods is investigated using data on bankruptcy of French
companies and publicly available data on credit-scoring from a German bank.

2 Semiparametric models for binary response variables

Let Y be a random variable taking the values 0 (’bad’ or ’default’ individual)
or 1 (’good’ or ’not default’ individual). The problem on hand to estimate
the probability of the event {Y = 1} given a vector of explanatory variables
X. The logistic regression is a particular case of the so-called generalized
linear model (see [McCullagh and Nelder, 1989]) where the conditional mean
of Y given X has the form

E(Y | X) = G(c+ X>β) (1)

with a known monotone function G (G(x) = {1 + exp(−x)}−1 for the lo-
gistic regression) and an unknown parameters (c, β>)>. This model can be
interpreted as follows: there exists a latent variable Y ∗ that can be related
to X through a linear model Y ∗ = c + X>β + u with u an error term with
cumulative distribution function (cdf) G. The observation Y is nothing but
1{Y ∗≥0} where 1{·} equals one if the condition inside the curly brackets holds,
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and zero otherwise. The model (1) is purely parametric in the sense that one
only has to estimate the vector of coefficients (c, β>)>.

Several semiparametric extensions of model (1) have been proposed. A
natural idea is to relax the hypothesis of a linear regression model for the
latent variable Y ∗. [Härdle et al., 1998] proposed to separate the explanatory
variables into two groups, that is X = (Z>,T>)> with Z ∈ Rp1 , T ∈ Rp2 ,
and to suppose that Y ∗ = Z>β+m(T)+u, where the error term has a logistic
law (the constant c appearing in model (1) is absorbed by the function m(·)).
The function m is unknown and it must be estimated nonparametrically. In
this settings one has a generalized partially linear model

E(Y | Z, T ) = G(Z>β +m(T)) (2)

with G(x) = {1 + exp(−x)}−1. This model is semiparametric in the
sense that in addition to the finite dimensional vector β, one has to esti-
mate also the function m. If one wants to assume that several explana-
tory variables have a nonlinear effect on the conditional mean of Y ∗, one
has to estimate nonparametrically a multivariate function m. In order to
avoid the course of dimensionality, [Härdle et al., 2004] considered that
m(T) = m(T1, ..., Tp2) = m1(T1)+...+m(Tp2). Another approach that avoids
nonparametric estimation of a multivariate function is to suppose that there
exists a vector (α1, ..., αp2)

> (identifiable up to a scaling factor) such that

m(T1, ..., Tp2) = m(α1T1 + ...+ αp2Tp2).

See [Carroll et al., 1997]. In all these models the coefficients β (β and α for
the model of [Carroll et al., 1997]) can be estimated with a precision of order
n−1/2 where n is the sample size, that is the usual precision of a parametric
model.

Another natural extension of the parametric model goes as follows. As-
sume that Y ∗ = c + X>β + u with u an error term with unknown law
independent of X given X>β. Then,

E(Y | X) = r(X>β) (3)

with r(·) an unknown function that has to be estimated nonparametrically.
The constant c is absorbed by r(·). Moreover, the vector β can only be
determined up to a scaling factor. The model (3) belongs to a general class
of semiparametric models called single-index models (SIM). In such models
one only assumes that when computing the conditional expectation of Y
given X, all the relevant information carried by X is contained in a linear
combination of the components of X. In the following we shall concentrate
on inference methods for model (3). Note that model (3) can be obtained as
a particular case of the model of [Carroll et al., 1997] by taking β = 0 and
setting r = G ◦m (and relabelling the explanatory variables).

Several semiparametric approaches for consistent estimation of β in SIM
have been proposed including M−estimation, average derivative methods
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and iterative methods. See [Delecroix et al., 2004] for a review. Here, we
focus on M−estimation. Typically, if (Y1,X

>
1 )>, ..., (Yn,X>

n )> denote the
observations, a semiparametric M -estimator of β is defined as

β̂ = arg minβ
1

n

n∑

i=1

ψ
(
Yi, r̂

(
X>
i β;β

))
τn(Xi), (4)

where r̂ (t;β) is a nonparametric estimator, for instance the Nadaraya-Watson
estimator, of the regression function r (t;β) = E

(
Y | X>β = t

)
, ψ is a con-

trast function and τn(·) is a so-called trimming function introduced to guard
against small values of the denominators appearing in the nonparametric es-
timator. Finally, the conditional mean of Y is estimated by r̂(x>β̂; β̂). [Klein
and Spady, 1993] considered the case ψ(y, r) = −{y log(r)+(1−y) log(1−r)}
which yields the semiparametric maximum likelihood estimate of β. [Do-
minitz and Sherman, 2003] considered the case ψ(y, r) = (y − r)2 and pro-
posed a nice iterative method that avoids optimization with respect to both
occurrences of β in equation (4). [Delecroix et al., 2004] suggested other

choices for ψ(y, r) that improve the performances of the estimator β̂ in the
presence of outliers.

The large sample properties of the estimates β̂ and r̂(x>β̂; β̂) obtained
from optimization procedures as (4) are now well known in the case of in-
dependent, identically distributed observations of (Y,X>)>. In particular,
this allows to obtain significance tests for the coefficients β and confidence
intervals for the conditional probability of ’not default’ given X. Extensions
to the case of dependent data have been also studied. See [Xia et al., 2002]
for a description of the techniques of proof that apply for dependent data
and for a list of references.

A crucial problem associated with the estimator β̂ is the choice of the
smoothing parameter for the nonparametric estimator of the regression func-
tion r (t;β). One may consider the smoothing parameter as another parame-
ter of interest which can be estimated at the same time as β, that is one can
optimize the objective function in (4) simultaneously with respect to β and
the smoothing parameter. In general, to avoid degenerate problems when
optimizing simultaneously with respect to β and the smoothing parameter,
a leave-one-out version of the nonparametric estimator should replace r̂ in
equation (4). See, e.g., [Delecroix et al., 2004] for the theoretical properties
of the simultaneous optimization approach.

Despite the fact that the regression function is supposed unknown, a SIM
still imposes that all the relevant information carried by X is contained in
one factor that is obtained as a linear combination of the components of X.
A natural idea is to investigate whether more than one factor is necessary to
capture the information contained in X. For instance, one may consider the
model

E(Y | X) = r(X>β1,X>β2) (5)
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with r(·, ·) an unknown bivariate function that has to be estimated nonpara-
metrically and β1, β2 two vectors of unknown coefficients. (Suitable normal-
ization conditions are necessary to make the vectors β1, β2 identifiable.) The
unknown parameters can be estimated by an extension of (4), that is

(β̂1, β̂2) = arg min(β1,β2)

1

n

n∑

i=1

ψ
(
Yi, r̂

(
X>
i β

1,X>
i β

2; (β1, β2)
))
τn(Xi), (6)

where r̂
(
t, s; (β1, β2)

)
is a nonparametric estimator of the regression function

r(t, s; (β1, β2)) = E
(
Y | (X>β1,X>β2) = (t, s)

)
. The smoothing parameters

of the bivariate estimator of r can be selected by simultaneous optimization
in (6) with respect to (β1, β2) and the smoothing parameters. See [Xia et al.,
2002] and [Delecroix et al., 2004].

An alternative procedure for finding β1, β2 is to search these directions

one by one: first, search β̂1 like in (4); second, search β̂2 orthogonal to β̂1

and solution of the problem

β̂2 = argminβ2

1

n

n∑

i=1

ψ
(
Yi, r̂

(
X>
i β̂

1,X>
i β

2; (β̂1, β2)
))

τn(Xi).

This procedure simplifies the optimization problem. It can be shown that,
under mild conditions, the linear subspace generated by directions obtained
by sequential search is the same as the linear subspace generated by the
directions obtained from (6). One may search for more than two directions
β, either by joint maximization as in (6) or by sequential search after finding

the first two directions β̂1, β̂2, but the results will become much more difficult
to interpret.

The last theoretical issue we shall discuss here is the problem of testing
in the semiparametric models mentioned above. There are at least two types
of test problems one may consider. First, it is important to be able to test
the traditional parametric binary response regression models, typically the
logistic regression, using semiparametric models. [Härdle et al., 1998] started
from model (2) and tested the logistic regression model by setting the null
hypothesis m(T) = c+ T>γ for some constant c and some vector γ. [Härdle
and Spokoiny, 1997] considered the SIM framework described by equation
(3) and proposed a test procedure for checking whether the function r has a
given form (typically, whether r is the logistic function or not).

If the parametric model is rejected in favor of a more flexible semipara-
metric specification, the next step is to test the semiparametric model itself
against more general semiparametric or nonparametric alternatives. It is only
recently that promising testing procedures for SIM have been proposed. See
[Xia et al., 2004] and [Stute and Wang, 1994].



Semiparametric scoring techniques 599

3 The data

The stakes of a reliable, interpretable, easy to implement and easy to update
scoring method are important. The semiparametric methods represent an
alternative stream of dealing with these aspects. Their power was relatively
little investigated in scoring applications. Our aim is to provide additional
empirical evidence on the utility of the semiparametric methods in scoring
problems. The semiparametric techniques mentioned above are tested and
compared with the benchmark parametric models. For this purpose we use
two types of data. First, we work with a sample from a database of Banque de
France. Our dataset contains the accounting balances of French companies
from one economic sector during several years. The task is to asses the risk of
bankruptcy for a company given the information provided by the company.

For our second application we use data on private loans from a German
bank. The data are presented in [Fahrmeir and Tutz, 1994] and are publicly
available. In credit business, banks are interested in information whether
prospective consumers will pay back their credit or not. The aim of credit
scoring is to predict the probability that a consumer with certain character-
istics is to be considered as a potential risk. The dataset we consider consists
of 1000 consumer credits. For each consumer the binary response variable
”creditability” is available, together with a set of covariates that are assumed
to influence creditability.
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Abstract. The aim of this paper is to extract cyclical factors, first from companies’
data used to build the score functions estimated by the Bank de France and, second,
from these functions themselves. The constraints are those of a database including
a large number of variables and companies and a small number of time periods.
The method chosen is the ”principal components analysis” adapted by [Bai and
Ng, 2000] and [Bai and Ng, 2004a] in the context of large N and limited T. We
show that the factorial structure could be useful to immunize the score functions
and the related decisions against the cyclical variations in the state of economy.
Keywords: Panel data, common factors, principal components analysis, scoring.

1 Introduction

Over the last 30 years, many research papers have focused on the early de-
tection of corporate failures. The Banque de France has developed several
scores for use by financial analysts in the branches and at head office. Indeed,
for reasons of robustness and for the seak of simplicity, the Bank has chosen
to implement the linear Fisher classification method to build its scores. The
analysis is static: the classification is conducted with a cross-section estima-
tion over one year and adjusted so as to be robust to changes over time, even
if the score functions need to be regularly adapted. In certain cases, a com-
plete reestimation is needed: this is the case, when the nature of corporate
failure has significantly changed and the related structural change cannot be
modelled ex ante. In the other cases, the score function remains valid but
the discriminiant threshold has to be adjusted. Thus, this one seems to be
dependent on the position of the economy in the business cycle.

In that purpose, we choose to extract an endogeneous cyclical component
directely from the corporate database, because it allows to answer directly
the question about immunization of the scores against cyclical variations and
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because the whole analysis remains at a microeconomic level, which avoids
considering difficult questions about data agregation.

The business cycle can be represented as an unobservable component
which can be identified with the principal components method presented in
[Bai and Ng, 2000] and [Bai and Ng, 2004a].

After extracting cyclical component from corporate database and from
the scores themselves, we look for interpreting these factors as cyclical co-
movements, by comparing them to macroeconomic series which usually enter
in the characterization of the French business cycle ([Bruneau et al., 2002a]).

2 The dynamic factor analysis (DFA) in the lines of
[Stock and Watson, 1998]

In this section, we recall the main contributions in Dynamic Factor Analysis
starting with the work by [Stock and Watson, 1998] continuing with the
papers by [Bai and Ng, 2000], [Bai and Ng, 2004a] and [Bai and Ng, 2004b].

2.1 The main assumptions

From now on, Xt will denote a N -dimensional multiple time series. The
factor structure is as follows:

Xt = ΛtFt + ut (1)

where the dimensions are respectively : Nx1, Nxr, rx1 and Nx1. The
common part of Xt is ΛtFt and ut denotes its idiosyncratic part. Note that,
in the previous model, the dynamics is introduced in three ways:

1) the factors are assumed to evolve according to a time series (multivari-
ate) process which is not observable;

2) the idiosyncratic error terms are serially correlated;
3) the factors can enter with lags (or even with leads).
Note also that the dynamic factor model can be rewritten such that Λt is

constant by suitable redefinition of the factors and the idiosyncratic distur-
bances.

The factors as well as the loadings (Λt) are considered as parameters
that are estimated by solving a non-linear least squares problem which is
decomposed into two successive ordinary least squares minimizations, which
finally lead to solve an eigenvalue problem.

It is important to recall the assumptions:
i) Λt = Λ0

ii) the disturbances ut are i.i.d. independent across series, normally
distributed so that the covariance matrix Σ of the vector of residuals
u = (u1, ..., uT ) is diagonal. (Its seems to be possible to allow a weak corre-
lation sructure between the ujt for any date t ([Chamberlain and Rothschild,
1983]).
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Thus the estimator of (Λ0, F ) solves the non-linear least squares problem
with the objective function:

VNT (Λ0, F ) =
1

NT

N∑

i=1

T∑

t=1

Iit(Xit − λi0Ft)2 (2)

where Iit = 1 if the variable is observed at time t and equal to 0, otherwise.
The previous analysis is a standard principal component analysis with the

only difference that dynamic features are taken into account.
Recently, [Bai and Ng, 2004a] have proposed a statistical procedure to

extract factors without considering the degree of persistance in the series.
It is the so-called PANIC approach (Panel Analysis of Non-stationary in
Idiosyncratic and Common components).

2.2 PANIC analysis ([Bai and Ng, 2004a])

The model is the following:

Xit = ci + βit+ λ′iFt + eit

(1− L)Ft = C(L)ut

(1 − ρiL)eit = Di(L)εit

with C(L) =
∑∞
j=0 CjL

j and Di(L) =
∑∞

j=0Di,jL
j. The idiosyncratic eit is

I(1) if ρi = 1 and is stationary if |ρi| < 1.
When the residuals eit are I(0) it is possible to get consistent estimates

of the factors. When it is not the case, eit are I(1), one has to work with the
first differences of the series. The model allows r0 stationary factors and r1
common trends with r = r0 + r1

1. Equivalently, the rank of C(1) is equal to
r1.

Instead of testing for the presence of a unit root in Xit, the approach
proposed here is to test the common factor and the idiosyncratic separately.
PANIC has two objectives: first, to determine if non-stationarity comes from
the common or from the idiosyncratic component. Second, to construct valid
pooled tests for panel data when units are correlated; that is under the cross-
sectional dependence (CSD) assumption.

More precisely, the objective of PANIC is to determine r1 and test if
ρi = 1 when neither Ft nor eit is observed and is estimated by the method
of principal components.

The large N permits consistent estimation of the factor and idiosyncratic
components, whether or not they are I(1) or I(0). A large T enables appli-
cation of relevant central limit theorems so that limiting distributions of the
tests can be obtained.
1 The number of factors r is supposed to be given. Recently, [Bai and Ng, 2000]

have proposed to use relevant information criteria to determine the number of
factors in the S&P framework.
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A important aspect of PANIC is that the idiosyncratic errors can be
analysed (more specifically their stationarity) without knowing if the factors
are stationary and vice-versa. More precisely, the tests on the factors are
asymptotically (large N and T ) independent of the tests on the idiosyncratic
terms.

When the idiosyncratic part is non stationary, [Bai and Ng, 2004a] rec-
ommend to deal with the firts differenced series.The rank parameter r is
identified by using an information criterium like the previous one, applied for
the model in first differences.

Simulations show that the proposed tests have good finite sample prop-
erties even for panels with only 40 units.

It is worth noting that the factors are estimated more efficiently from the
series in levels, if the idiosyncratic components are I(0). The procedure we
use can be find in [Bai and Ng, 2004a] and because computing individual
p-values requires simulation, for that purpose we use the table computed by
S. Ng for the DF distribution.

To give an economic intrepretation of the factors extacted in the lines
of [Bai and Ng, 2004a], we use the methodology presented in the paper by
[Bai, 2003]. The point is to estimate a confidence interval around each of the
(true) factors and check if an observed series lies or not in this interval.

3 Data and results

We first comment the main contents in the database before presenting the
results.

3.1 Corporate Database

The Banque de France built 8 scores to detect corporate failures. Estimates of
score functions are based on data from company balance sheets in the Banque
de France’s Fiben banking database2. This database is used to construct a
pool of ratios. Some of them enter the score functions. We work on the basis
of ratio and on ones of the scores themselves. In all cases, we work on the
averages of ratios or scores3.

The database of ratios covers 10 industries defined by the NES classifi-
cation. It reports 91 ratios, that are usually employed in financial analysis
and scoring decisions. They are estimated from the data characterizing firms
over the 1989–2002 period. We formed their average on the 10 NES groups.

2 For a complet description of the Banque de France scoring methodology, see
[Bardos et al., 2004].

3 The restrictive choice of average measures can be ex post justified by the Fisher
classification analysis employed at the Banque de France for the construction of
the scores.
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The statistical results can be summarized as follows, by focusing first on
the stationarity properties of the series and, next, on the co-movements of
these series.

3.2 The results

As some of the series exhibit a trend, we regresse them on a linear function
of time and replace them by the corresponding residuals when the trend
is significant. In what follows, the residuals are designed as the detrended
series4.

First, we focus on the idiosyncratic components, estimated from the first
differences of the series. The test statistic P cbe takes the value 19.6, which
leads to reject the stationarity of the idiosyncratic components ei. However,
as the time dimension is very low (T = 12), we work with the level of the
series to extract the factors. A contrario, the three extracted factors appear
stationary.

According to the [Bai and Ng, 2000] criterion, 13 factors appear to be
necessary to summarize the panel. Since 14 is the time dimension in the
present analysis, this criterion does not appear to be relevant here. As the
first three factors account for 74% of the variance (43.5% for the first one,
23.5% for the second and 7% for the third), we retain them to summarize the
co-movements of the series at hand.

In addition, the contributions of the ten sectors appeared to be very
homogenous5. It justifies the choice of implementing a global analysis and,
more precisely, a business cycle analysis.

To make easier the interpretation of the contributions of the 91 ratios,
we group them together in 10 financial-type ratios. The contribution of each
synthetic ratio is just the sum of the contributions of the underlying ratios
it summarizes. To take into account the number of contributing ratios to
each synthetic ratio, we compare their effective contribution with the average
contribution of all ratios. So, the first factor appears strongly associated with
mark-up variables, the second one with solvability features and the third one
with indebtedness characteristics.

Since the Principal Component Analysis is essentially static, the second
and third factors may be lags or leads of the first factor. Correlation estima-
tions accredit this hypothesis. The maximum correlations are achieved for a
lag of 2 years for the second factor (0.89) and 4 years for the third one (0.84).

The use of the correlation procedure developed by [Bai, 2003] seems to
confirme it. We should conclude that there is a unique factor, rather than

4 The analysis was also conducted on the raw series to control the robustness of the
method. It appeared that the first factor extracted in the later context looked
like the trend of the series and the following factors like the factors extracted from
the detrended series. Indeed, one finds high correlations between the factors of
both analysis, around 0.8 (results available on request).

5 The detailed results will be presented in the complet paper.
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three, which really summarizes the co-movements of our series. But this
result has to be considered with caution, because of the low time dimen-
sion of the series. Focusing on the contributions of each synthetic ratio to
the factors supports this interpretation. Indeed, we can suppose that the
cyclical co-movement, which we interpret as a business cycle effect (see the
following paragraph), affects beforehand the profitability of the firms and,
consequently, the balance sheet structure, which is weakened via the increase
in debts or the degradation of stockholders’ equity.

In what follows, we give a precise interpretation of the factors by compar-
ing them to observable series that are usually considered as representative of
the business cycle in France. Three macroeconomic series were chosen: the
annual variation of French GDP in value, the output gap of the French GDP
in volume obtained by the Hodrick-Prescott filter and the industrial produc-
tion capacity utilization (TUC) as calculated by the Banque de France. We
use confidence intervals in the lines of [Bai, 2003].

The results confirm the relationship between our three factors and the
business cycle6.But at the last, we have to decide if using the factors to
represent business cycle is more relevant, or efficient, than using particular
macroeconomic series, as the output gap, for example. It would be also in-
teresting to investigate the possibility of using variables to partially forescast
the cyclical co-movements.

Indeed, such a forecasting power would allow setting up scenarii charac-
terizing different states of economy.

The scoring method as it is implemented up to now at the Banque de
France does not cover all activity sectors and we are not sure that this lim-
itation does not influence the results of the factorial analysis. This question
is taken into account in this study.

Moreover, as we aime at measuring the influence of the business cycle on
the corporate ratios and especially on the failure risk, we have to take into
account information on failure. However, the failure rate in our sample is very
weak -around 2 and 5%. The weight of the failing firms is consequently very
weak within the sample. Their influence on the detection of business cycle
could be out of measure. To overcome this difficulty, we performe weighted
averages for each sector/ratio.

To refine the diagnosis, we also use separately the samples of failing and
non-failing firms. The PCA gives the results summarized in the following
table. In spite of the rebalancing of sample, the contributions of the first
three factors for the failing firms significantly differ from those obtained for
the other firms.

In order to investigate if the restriction of the database or/and the dis-
tinction between failing and non-failing firms modified the results obtained
over the whole sample, we projecte the first factors of every partial ACP
on the space spanned by the first three factors stemming from the complete

6 The detailed results and graphs will be presented in the complet paper.
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sample. The results indicate a very strong similarity of the common factors7,
indicating that the state of economy influences failing and non-failing firms
in a similar way, whaterver the sector considered.

After extracting common cyclical facors from corporate, we focuse on the
score functions themselves. Indeed, nothing says that the cyclical components
are detectable from the scores, which have been precisely adapted to be
immunized against cyclical variations.

The same plan of study as previously was thus applied to the averages of
the score functions. To increase the cross-section dimension of the sample,
the desagregation is made according to the NAF classification which is finer
than the NES classification used before.

We had thus a sample of 8 averaged score functions over the same time
period (1989 to 2003) for 49 sectors. So it includes 392 variables over 14
years. We then apply the principal components estimation on the 392x392
dimensional matrix. The first three factors account for 58.8% of the variance
(33.6% for the first one, 17.5% for the second and 7.7% for the third). To
compare these factors with the first three factors obtained before, we use
again confidence intervals estimated in the lines of Bay [2003].

The results8 show that the cyclical component is common to the ratios
and the function scores. The projection of each height average score on the
same space has come to the same conclusion.

The functions scores do not modify substantially the cyclical common
component which is present in the original ratios.

So, we have to conclude that we should take into account the information
about the cycle of activity to improve modeling of the corporate failure risk.

To finish, a question remains un-answered: how to implement scoring so
as to account for cyclical variations? Have we just to adjust the decision
thresholds or should we modify the score functions according to the state of
economy? To give a first answer to these questions, we compute, for every
year and for every score, the optimal decision threshold. Optimality equalizes
both first and second type errors. Thus, we regresse the different optimal
thresholds onto the first three factors extracted from the scores database.

What do we observe? The decision threesholds are significantly correlated
with the factors most of the time, as they generally belong to the confidence
interval around each factor. But it is not always the case, so that we have
to conclude that the analysis should be deepened in order to decide how
to modify the scoring decision and more precisely the threeshold, so as to
include the cyclical variations observed in the score functions.

7 The detailed results and graphs will be presented in the complet paper.
8 The detailed results and graphs will be presented in the complet paper.
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4 Conclusion

To summarize, we have to claim that the corporate ratios of the firms in
our data base display significant cyclical comovements, which are quite sim-
ilar when they are extracted from the whole corporate database and from
the database just including the firms for which a score function has been
estimated up to now in Banque de France. Moerover, the score functions
themselves display the same cyclical comovements and, as a consequence,
we have to conclude that these score functions are not immunized against
cyclical variations in the state of economy.

Indeed, macroeconomic series, that are usually recognized as proxy vari-
ables to characterize the cyclical behavior of the French economy, appear
to be significantly correlated with the estimated factors extracted from the
database of the financial ratios as well as from the database of the scores.

Finally, we examine what kind of consequence this dependency of the score
functions on the cyclical movements in economy may have on the scoring
decision process itself.

We compared the decision thresholds to the estimated factors for each
sector. We observed that the thresholds are correlated with the factors most
of the time. Accordingly, the threshold should be vary over time like the
underlying cyclical components in order to improve the scoring procedure.
However, there are subperiods where the correlation disappears, indicating
that changing the threshold is not always sufficient to account for changes in
the economic environment. So, the analysis has to be deepened and this is
left for further research.
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Abstract. A recursive solution is given to the linear one-stage prediction problem
in discrete-time systems involving correlated signal and noise. Using Principal
Component Analysis of stochastic processes, a suboptimum filter is designed. The
main advantage of this solution is that it can be computed through a Kalman-like
filter in those situations in which the signal does not verify a state-space model.
The efficiency of the proposed methodology lies in the possibility of representing
adequately the processes involved by a sample of points not excessively large.
Keywords: Linear Prediction Problem, PCA.

1 Introduction

In this paper we treat the discrete linear one-stage prediction problem in-
volving correlated signal and noise. This estimation problem is useful in
applications to feedback control and feedback communications. Thus, let
{x(ti), t1 ≤ ti ≤ tn} be a signal process which is a real second-order stochastic
process, with zero-mean and correlation function Rx. Let {z(ti), t1 ≤ ti ≤ tn}
be a second-order stochastic process with zero-mean and correlation function
Rz.

We assume that the signal process is observed corrupted by an additive
white noise through the equation

y(ti) = x(ti) + v(ti), t1 ≤ ti ≤ tn

where v(ti) is a zero-mean white noise process with E[v(ti)v(tj)] = riδij and
correlated with both the signal x(ti) and the process z(ti). Let Rx1x2(ti, tj)
denote the correlation function between any two processes x1(ti) and x2(tj).

Under the above hypotheses, we consider the problem of finding the linear
minimum variance estimator ẑ(tk+1/tk) of the process z(tk+1), based on the
set of observations {y(t1), . . . , y(tk)}, with k < n.

? This work was supported in part by Project MTM2004-04230 of the Plan
Nacional de I+D+I, Ministerio de Educación y Ciencia, Spain. This project
is financed jointly by the FEDER.
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According to the projection theorem, this element ẑ(tk+1/tk) exists, is
unique and can be expressed as a linear transform of the observations set
{y(t1), . . . , y(tk)} of the form [Poor, 1994]

ẑ(tk+1/tk) = h′
k(tk+1)yk (1)

where yk = [y(t1), . . . , y(tk)]
′

and the vector of optimum coefficients
hk(tk+1) = [h1(tk+1), . . . , hk(tk+1)]

′
satisfies the Wiener-Hopf equation

σk(tk+1) = Σk×k(tk)hk(tk+1) (2)

where σk(tk+1) = [Rzy(tk+1, t1), . . . , Rzy(tk+1, tk)]
′, with Rzy(tk+1, ti) =

Rzx(tk+1, ti) + Rzv(tk+1, ti), and Σk×k(tk) is the correlation matrix of the
vector yk whose elements are Ry(ti, tj) = Rx(ti, tj)+Rxv(ti, tj)+Rvx(ti, tj)+
riδij .

Then, the estimation problem is basically that of solving the equation (2)
involving the correlation functions of the signal process and the process to
be estimated. In principle, this equation is easy to solve and its solution is
given by

hk(tk+1) = Σ−1
k×k(tk)σk(tk+1) (3)

Unfortunately, from the practical point of view, the determination of these
optimum coefficients through the equation (3) can lead to a computational
difficulty since the inversion of the matrix Σk×k(tk) makes that the number
of basic computational operations grows linearly with the number of obser-
vations considered.

Recently, an extensive literature concerning the design of a more effi-
cient computational procedure has been developed. One of the most used
techniques consists in imposing additional structural conditions on the corre-
lations involved such as, stationarity [Poor, 1994], state-space models which
lead to the Kalman filter [Kalman and Bucy, 1961], semi-degenerate kernel
forms [Sugisaka, 1983], among others. Although this approach is widely ap-
plied, there is a great number of physical phenomena that do not satisfy these
assumptions. In these situations, an alternative methodology is possible by
using Principal Component Analysis (PCA) of stochastic processes [Aguilera
et al., 1995, Aguilera et al., 1996].

In this paper, we propose a new recursive one-stage prediction procedure
following this second perspective. In this framework, by considering any
truncated series representation for the involved processes in terms of their
principal components, the vector of optimum coefficients (3), and then the
optimum one-stage predictor (1), can be approximated. Although a sub-
optimum one-stage predictor is provided, the main advantage of this via of
solution is that it can be efficiently computed through a recursive algorithm
without imposing any structural assumption on the processes involved. In
fact, they can be applied under the only hypothesis that the involved corre-
lation functions are known. This occurs frequently in applications to system
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identification problems or in statistical communication theory, where the rel-
evant statistics of the problem are initially known in terms of correlation
functions derived from measurements or mathematical models [Gardner and
Franks, 1971]. In particular, these results can be applied in detection prob-
lems [Kailath, 1970] and in feedback communication systems [Gardner, 1975].

Then, the rest of the paper is structured as follows. In the next subsection,
a brief description about the orthogonal representation of a stochastic process
in terms of its principal components is included. The main characteristic of
these series expansions is that they allow us to represent adequately a process
through a short number of terms. Next, in Section 2, a new methodology
based on these series representations is developed with the aim of designing a
suboptimum one-stage predictor which can be efficiently computed through
a Kalman-like recursive algorithm.

1.1 Approximate Series Expansions Using PCA

Let us consider the random vector z2n = [z(t1), . . . , z(tn), x(t1), . . . , x(tn)]
′
.

Let a2n(i) = [a1(i), . . . , a2n(i)]
′

and λi denote the principal values and
the principal factors, respectively. Let also bi be the principal components
obtained from the principal factors as bi = a′

2n(i)z2n
1.

Then, z2n admits the following orthogonal representation in terms of its
principal components:

z2n =

2n∑

i=1

a2n(i)bi (4)

Moreover, this representation is optimal in the sense of being the
best 2n-dimensional linear model for z2n in the least squares sense
[Fukunaga and Koontz, 1970].

From (4), we have that the processes z(tj) and x(tj) can be expressed
through finite series expansions in terms of their principal components as
follows:

z(tj) =

2n∑

i=1

aj(i)bi, x(tj) =

2n∑

i=1

aj+n(i)bi, j = 1, . . . , n

On the other hand, the correlation functions involved in (2) can be ex-
pressed by the following product of matrices:

Rx(tk, tj) =d′
2n(tk)Λ2n×2nd2n(tj)

Rxv(tk, tj) =d′
2n(tk)f2n(tj)

Rzx(tk, tj) =c′2n(tk)Λ2n×2nd2n(tj)

Rzv(tk, tj) =c′2n(tk)f2n(tj)

(5)

1 Note that, E[bi] = 0 and E[bibj ] = λiδij .
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where d2n(tj) = [aj+n(1), . . . , aj+n(2n)]′, c2n(tj) = [aj(1), . . . , aj(2n)]′,
Λ2n×2n is the 2n-dimensional diagonal matrix whose elements are the prin-
cipal values λi, and f2n(tj) is the 2n-dimensional vector with elements
fi(tj) = E[v(tj)bi], for i = 1, . . . , 2n.

Finally, note that a suitable representation of any stochastic process is
possible without taking all the samples but that it is sufficient to select an
adequate subset of them [Fukunaga and Koontz, 1970]. Then, we can select
m < n instants of times, t1 ≤ ti1 < ti2 <, . . . , < tim < tn, and consider
the vector [z(ti1), . . . , z(tim), x(ti1 ), . . . , x(tim )]′. Next, using the principal
values λ̃i, the principal factors ã2m(i) = [ã1(i), . . . , ã2m(i)]

′
and the principal

components b̃i associated with this vector, z2n can be approximated by the
series expansion

z2n ≈ z̃2n =

2m∑

i=1

g̃2n(i)b̃i (6)

where g̃2n(i) is a 2n-dimensional vector whose elements are of the form

g̃j(i) =
1

λ̃i
E
[
z(tj)b̃i

]
=

1

λ̃i

m∑

k=1

(
ãk(i)Rz(tj , tik) + ãm+k(i)Rzx(tj , tik)

)

g̃j+n(i) =
1

λ̃i
E
[
x(tj)b̃i

]
=

1

λ̃i

m∑

k=1

(
ãk(i)Rxz(tj , tik) + ãm+k(i)Rx(tj , tik)

)

for j = 1, . . . , n.
The main advantage of the series expansion (6) with respect to (4) is the

reduction of the computational burden. In fact, the amount of computation
required depends on the number of points selected, m, and a criterion for
determining a suitable m can be found in [Fukunaga and Koontz, 1970].

Now, the processes z(tj) and x(tj) can be approximated by finite series
expansions with less number of terms as follows:

z(tj) ≈ zm(tj) =

2m∑

i=1

g̃j(i)b̃i, x(tj) ≈ xm(tj) =

2m∑

i=1

g̃j+n(i)b̃i, j = 1, . . . , n

Moreover, the correlation functions given in (5) can be approximated by
the product of matrices of reduced dimension. Specifically,

Rx(tk, tj) ≈ Rxm(tk, tj) =d̃′
2m(tk)Λ̃2m×2md̃2m(tj)

Rxv(tk, tj) ≈ Rxmv(tk, tj) =d̃′
2m(tk )̃f2m(tj)

Rzx(tk, tj) ≈ Rzmxm(tk, tj) =c̃′2m(tk)Λ̃2m×2md̃2m(tj)

Rzv(tk, tj) ≈ Rzmv(tk, tj) =c̃′2m(tk )̃f2m(tj)

(7)

where d̃2m(tj) = [g̃j+n(1), . . . , g̃j+n(2m)]
′
, c̃2m(tj) = [g̃j(1), . . . , g̃j(2m)]

′
,

Λ̃2m×2m is the 2m-dimensional diagonal matrix with i-th entry λ̃i, and
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f̃2m(tj) is the 2m-dimensional vector with elements f̃i(tj), for i = 1, . . . , 2m,
of the form

f̃i(tj) = E[v(tj)b̃i] =

m∑

k=1

(
ãk(i)Rvz(tj , tik) + ãm+k(i)Rvx(tj , tik)

)

2 Suboptimum Predictor

In this section, a recursive suboptimum solution to the linear least mean-
square one-stage prediction problem in discrete-time systems involving corre-
lated signal and noise is devised. For that, the following approximate version
of (2) is considered by taking the approximate representations (7) for the
correlation functions involved:

σ̃k(tk+1) = Σ̃k×k(tk)h̃k(tk+1) (8)

where σ̃k(tk+1) = [Rzmym(tk+1, t1), . . . , Rzmym(tk+1, tk)]
′, and Σ̃k×k(tk) is

the correlation matrix of ỹk = [ym(t1), . . . , ym(tk)]
′
, with ym(ti) = xm(ti) +

v(ti).
From (7), we obtain that

σ̃k(tk+1) = Lk×4m(tk)A4m×4mq4m(tk+1)

and

Σ̃k×k(tk) = Lk×4m(tk)A4m×4mL′
k×4m(tk) + Rk×k(tk)

where q4m(tk) = [c̃′2m(tk),0
′
2m]

′
, with 02m the 2m-dimensional vector whose

elements are zero, Lk×4m(tk) =
[
D′

2m×k(tk),F
′
2m×k(tk)

]
with D2m×k(tk) =[

d̃2m(t1), . . . , d̃2m(tk)
]

and F2m×k(tk) =
[
f̃2m(t1), . . . , f̃2m(tk)

]
, Rk×k(tk) is

a diagonal matrix with i-th entry ri, and

A4m×4m =

[
Λ̃2m×2m I2m×2m

I2m×2m 02m×2m

]

being I2m×2m the 2m × 2m-dimensional identity matrix and 02m×2m the
2m× 2m-dimensional matrix with zero elements.

Then, the solution of (8) is of the form

h̃k(tk+1) =
[
Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)
]−1

× Lk×4m(tk)A4m×4mq4m(tk+1) (9)

From (9) we can define the suboptimum one-stage predictor

ẑm(tk+1/tk) = h̃′
k(tk+1)yk (10)
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At a first sight, in comparison with the optimum one-stage predictor
(1), the proposed solution (10) does not show an improvement from the
computational standpoint since both estimates require the computation of the
product of two k-dimentional vectors. However, the suboptimum coefficients
(9) lead to a reduction in the computational burden with respect to solving
directly the Wiener-Hopf equation.

In the following result, a recursive algorithm similar to the Kalman fil-
ter is designed for the computation of the proposed suboptimum one-stage
predictor (10).

Theorem 1
ẑm(tk+1/tk) = q′

4m(tk+1)e4m(tk) (11)

where e4m(tk) is recursively computed through the equation

e4m(tk) = e4m(tk−1) + k4m(tk) [y(tk)− l′4m(tk)e4m(tk−1)]

with the initialization e4m(t0) = 04m, and where l′4m(tk) =
[
d̃′

2m(tk), f̃
′
2m(tk)

]

and the vector k4m(tk) is given by

k4m(tk) = P4m×4m(tk−1)l4m(tk) [l′4m(tk)P4m×4m(tk−1)l4m(tk) + rj ]
−1

(12)
with

P4m×4m(tk) = P4m×4m(tk−1)− k4m(tk)l
′
4m(tk)P4m×4m(tk−1)

where P4m×4m(t0) = A4m×4m.

Proof. From (9), we have that the suboptimum one-stage predictor (10) is
given by

ẑm(tk+1/tk) = q′
4m(tk+1)A4m×4mL′

k×4m(tk)

×
[
Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)
]−1

yk

Then, introducing the vector

e4m(tk) = A4m×4mL′
k×4m(tk)

×
[
Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)
]−1

yk (13)

the equation (11) for ẑm(tk) is obtained.
Next, applying the matrix inversion lemma [Anderson and Moore, 1979,

p. 138] in (13), we have that

e4m(tk) = P4m×4m(tk)L
′
k×4m(tk)R

−1
k×k(tk)yk

where

P4m×4m(tk) =
[
A−1

4m×4m + L′
k×4m(tk)R

−1
k×k(tk)Lk×4m(tk)

]−1
(14)
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Finally, taking into account the matrix inversion lemma in (14) and defin-
ing the vector k4m(tk) as in (12), the theorem holds.

Remark 1 Note that, from (5), a similar recursive algorithm can be designed
for the optimum one-stage predictor. However, the amount of computation
required with the resulting recursive formulas makes that this algorithm loss
interest in practical applications.

Remark 2 From the PCA, the convergence of the proposed suboptimum pre-
dictor toward the optimum one is guaranteed. Then, the suboptimum one-
stage predictor becomes a better approximation of the optimum one as the
number m increases. On the other hand, a suitable m must be selected in or-
der to reduce the computational burden. In fact, the efficiency of the proposed
suboptimum estimate will be more relevant when the signal can be represented
by a short series expansion. Some examples of such signals can be found in
[Ghanem and Spanos, 1991].
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Abstract. We are interested in the functional linear regression when the covariates
are subject to errors, for instance measurement errors. The aim of this paper is
to propose a procedure giving a spline estimator of the functional coefficient of
the model with noisy covariates. The functional coefficient is the solution of an
ill-conditioned minimization problem, so a penalization approach is used. Indeed,
we present an extension of the penalized total least squares algorithm to the case
where the covariates are curves. Then, this estimation procedure is evaluated by
the way of simulations.
Keywords: functional linear regression, errors-in-variables, total least squares,
penalization, spline functions.

1 Introduction

In many fields of applications, it is frequent to deal with the problem of
the explanation of a random variable Y (response), usually scalar, using
information from a random variable X (covariate), belonging to some Hilbert
space E. Then, a way to formulate this problem is to consider the linear
regression of Y on X that, in case of existence and unicity, allows us to write

Y = µ+ 〈α,X〉+ ε, (1)

where 〈., .〉 stands for the inner product of the Hilbert space E and ε is a
real random variable satisfying E(ε) = 0 and E(εX) = 0. Implicitly, in (1),
the variable X is supposed to be observed without error, and all errors are
into the variable Y by the way of ε. However, in practice, this assumption
seems to be quite unrealistic, for example because of instrument measurement
errors. That is why it should be natural to consider that the variable X is
not directly observed, but we observe instead a variable W such that

W = X + δ. (2)

In the case where E is R or Rp, that is to say when X is an univariate
or a multivariate random variable, this problem of errors-in-variables model
has already been studied. Some theoretical approaches have been proposed,
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using the maximum likelihood method (see [Fuller, 1987]) or deconvolution
techniques (see [Carroll et al., 1995]). A practical point of view is given un-
der the name of Total Least Squares (TLS) in [Van Huffel and Vandewalle,
1991]. However, in many fields of applications (chemistry, climatology, telede-
tection, linguistics, . . . ), the data do not belong to the frame of univariate
or multivariate variables. Indeed, the data can come from the observation of
continuous phenomenons (that is to say continuous functions of time, space,
. . . ), then they are comparable to curves. These data, called functional data
in the literature, are the object of many studies (see [Ramsay and Silverman,
1997] and [Ramsay and Silverman, 2002] for a functional data analy! sis
overview). Our goal is to study the problem of errors-in-variables model in
the framework where X is a functional random variable, in other words when
E is an infinite dimension space.

In the following, we consider n couples of random variables (Xi, Yi)i=1,...,n

independant and identically distributed, with the same distribution as (X,Y ),
where X is a random variable taking values in some functional space E and
Y belongs to R. For sake of simplicity, we consider that E is the space
L2(I) of the functions of square integrable defined on an interval I of R.
We still denote by 〈., .〉 the usual inner product of L2(I) and by ‖.‖ the
associated norm. We rewrite (1) taking the point of view of the functional
linear regression introduced in [Ramsay and Dalzell, 1993], hence we assume
that

Y = µ+

∫

I

α(t)X(t) dt+ ε, (3)

where µ ∈ R and α ∈ L2(I) are the unknown parameters of the model and ε is
a real random variable such that E(ε) = 0 and E(εX) = 0. We assume condi-
tions for existence and unicity of α (see [Cardot et al., 2003]). Let us remark
that, if we denote by ΓX the covariance operator of X (defined by ΓXu =
E (〈X − E(X), u〉(X − E(X))) for all u ∈ L2(I)) and by ∆XY the cross co-
variance operator of X and Y (defined by ∆XY u = E (〈X − E(X), u〉Y ) for
all u ∈ L2(I)), then we easily see that 〈ΓXα, u〉 = ∆XY u for all function
u ∈ L2(I). One of the properties of ΓX is that it is a nuclear operator (see
[Loève, 1963] for details). So Γ−1

X is not bounded and estimation of ! α
is an ill-conditioned problem. A possibility to deal with this problem is to
introduce a penalization approach (this is done in [Cardot et al., 2003]), and
to find µ and α as solutions of the minimization problem

min
µ∈R,α∈L2(I)

{
1

n

n∑

i=1

(Yi − µ− 〈α,Xi〉)2 + ρ
∥∥∥α(m)

∥∥∥
2
}
, (4)

where α(m) stands for the derivative of order m of the function α and ρ is
a smoothing parameter allowing to control the regularity of the estimator of
the function α.
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Now coming back to our errors-in-variables setting, we suppose that the
curve X is not directly available. In practice, the curves X1, . . . , Xn are
observed in p discretization points t1, . . . , tp ∈ I such that t1 ≤ . . . ≤ tp. So,
the data are

W (tj) = X(tj) + δ(tj), j = 1, . . . , p, (5)

where (δ(tj))j=1,...,p is a sequence of real random variables independent and
identically distributed, centered and with variance σ2

δ . We also assume that
δ(tj) and ε are independant for all j = 1, . . . , p. These variables represent
the error made on X at each measure point. The random variables W and
δ give us the corresponding samples (Wi)i=1,...,n and (δi)i=1,...,n. The aim of
this paper is to build an estimator of µ and α. In section 2, we generalize
the TLS algorithm to our functional framework. In section 3, this estimator
is evaluated by the way of simulations. Finally in section 4, we make some
concluding remarks.

2 Functional Total Least Squares

The aim of this section is to adapt the Total Least Squares algorithm intro-
duced in [Van Huffel, 2004] when the covariate X is of functional nature.

2.1 Total Least Squares in the multivariate case

When X is a multivariate random variable, the linear regression is written

Y = µ+ tXα + ε, (6)

where X = t(X1, . . . , Xp) belongs to Rp. We have to estimate µ ∈ R and
α ∈ Rp, assuming we observe Yi and Wi = Xi + δi for i = 1, . . . , n. We
denote by Y the vector t(Y1, . . . , Yn), ε the vector t(ε1, . . . , εn), X and W
the matrices of respective elements Xij and Wij . Under an hypothesis of
normality for the errors (that is to say if ε ∼ N (0, σ2

ε ) and δ(tj) ∼ N (0, σ2
δ )

for all j = 1, . . . , p), the likelihood function is proportional to

exp

{
−

n∑

i=1

[
1

σ2
ε

(
Yi − µ− tXiα

)2
+

1

σ2
δ

t(Xi −Wi)(Xi −Wi)

]}
. (7)

Without any more condition, the model (6) with Wi = Xi+δi is not iden-
tifiable and another condition needs to be imposed (see [Van Huffel, 2004]).
In the following, we choose to assume that the ratio of the variances σ2

ε /σ
2
δ

is known. Indeed, we can suppose that this ratio is equal to 1 (if the ratio is

η = σ2
ε /σ

2
δ , we consider the scaled variable X̃ =

√
ηX and then α =

√
ηα̃).
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Then, the maximization of (7) comes back to the resolution of the minimiza-
tion problem

min
µ∈R,α∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[
(Yi − µ−Xiα)

2
+ t(Xi −Wi)(Xi −Wi)

]}
. (8)

The TLS algorithm given in [Van Huffel, 2004] follows the two steps below:

• step 1: we make the singular value decomposition (SVD) of the matrix
[1 | W | Y ], that is to say [1 | W | Y ] = UΣ tV with tUU = In
and tVV = Ip+2, where In and Ip+2 are respectively the n × n and
(p+ 2)× (p+ 2) identity matrices,
• step 2: if the elements of the matrix V are denoted by vjl, then the TLS

estimator of µ and α is given by
(
µ̂TLS
α̂TLS

)
= − 1

vp+2,p+2

t(v1,p+2, . . . vp+1,p+2). (9)

However, the problem of this algorithm is that it can not be used directly
when the minimization problem (8) is ill-conditioned and needs a regular-
ization. The minimization problem we consider is then (see [Golub et al.,
1999])

min
µ∈R,α∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[
(Yi − µ−Xiα)

2
+ t(Xi −Wi)(Xi −Wi)

]

+ρ tαtLLα

}
, (10)

where L is a p× p matrix. Using the properties of the SVD, it can be shown
(see [Golub and Van Loan, 1996]) that

(
µ̂TLS
α̂TLS

)
= ( t[1 | W ] [1 | W ]− σ2

p+2Ip+1)
−1 t[1 | W ]Y, (11)

where σp+2 is the smallest singular value of the matrix [1 | W | Y ] and
Ip+1 is the (p+ 1)× (p+ 1) identity matrix. From this expression, the TLS
solution to the minimization problem (10) is given by

(
µ̂TLS
α̂TLS

)
= ( t[1 | W ] [1 | W ]− λIp+1 + ρ tMM)−1 t[1 | W ]Y, (12)

where M is the (p+ 1)× (p+ 1) matrix defined by M =




0 0 . . . 0
0
... L
0


.
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2.2 Total Least Squares in the functional case

All that has been done in the previous paragraph can be adapted to the case
where X is of functional type. The minimisation problem considered is a
combination of (4) and (10), that we write

min
µ∈R,α∈L2(I),Xi∈L2(I)

{
1

n

n∑

i=1

[
(Yi − µ− 〈α,Xi〉)2 + ‖Xi −Wi‖2

]

+ρ
∥∥∥α(m)

∥∥∥
2
}
. (13)

We choose to build a spline estimator of α. We have to fix a degree q ∈ N
and a number k ∈ N? of knots (taken equispaced) giving a subdivision of
the interval I (see [de Boor, 1978] for details on spline functions). These
spline functions have well-known properties, in particular, this space of spline
functions is a vectorial space of dimension k+q. A usual basis is the set of the
so-called B-spline functions, that we denote by Bk,q = t(B1 . . . Bk+q). Then,
we estimate α as a linear combination of the B-spline functions, that is to
say we have to find a vector θ̂ = t(θ̂1 . . . θ̂k+q) ∈ Rk+q such that α̂ = tBk,qθ̂

with µ̂ and θ̂ solutions of the minimization problem

min
µ∈R,θ∈Rk+q,Xi∈L2(I)

{
1

n

n∑

i=1

[(
Yi − µ− 〈 tBk,qθ̂, Xi〉

)2

+ ‖Xi −Wi‖2
]

+ρ

∥∥∥∥
(
tBk,qθ̂

)(m)
∥∥∥∥

2
}
.(14)

Using the work in [Cardot et al., 2003] for the spline estimator of the func-
tional coefficient and what has been done in the multivariate case (see equa-
tion (12)), it is possible to find an explicit solution to the minimization prob-
lem (14), given by

(
µ̂FTLS
θ̂FTLS

)
=

1

n
(
1

n
tDD− λIk+q+1 + ρK)−1 tDY, (15)

with

D =




1 〈B1,W1〉 . . . 〈Bk+q ,W1〉
...

...
...

1 〈B1,Wn〉 . . . 〈Bk+q ,Wn〉


 ,

and
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K =




0 0 . . . 0

0 〈B(m)
1 , B

(m)
1 〉 . . . 〈B(m)

1 , B
(m)
k+q〉

...
...

...

0 〈B(m)
k+q, B

(m)
1 〉 . . . 〈B(m)

k+q , B
(m)
k+q〉



.

3 A simulation study

The aim of this simulation is to see the behaviour of this TLS estimator and
to compare it with the spline estimator given in [Cardot et al., 2003] by

(
µ̂FLS
θ̂FLS

)
=

1

n
(
1

n
tDD + ρK)−1 tDY. (16)

We choose to take

• n = 200: the initial sample will be splitted into a learning sample of
length nl = 100 (to estimate µ and α) and a test sample of length nt =
100 (to see the quality of prediction),
• p = 50 discretization points on I = [0, 1],
• X is either a standard brownian motion or an Ornstein-Uhlenbeck process

on I,
• µ = 2,
• α(t) = 10 sin(2πt),
• ε ∼ N (0, σ2

ε ) with σε = 0.1,
• δ(tj) ∼ N (0, σ2

δ ) with either σδ = 0.05, σδ = 0.1, or σδ = 0.2.

Concerning the choice of the different parameters of the model, we have taken
k = 8, q = 3 and m = 2. Moreover, in the functional least squares estimation,
ρ is fixed by generalized cross validation (see [Wahba, 1990]). For the total
least squares estimation, we have made the estimation for different values of
λ and ρ among the values 10−2, 10−3, . . . , 10−10, and we have kept the best
values for these two parameters in terms of prediction.
We have given in table 1 the mean relative errors on 50 simulations for the
different models tested when X is a standard brownian motion on I and in
table 2 the same errors when X is an Ornstein-Uhlenbeck process on I. The
estimation of the curve Xi, noted X̂i, is given by

X̂i = Wi +
Yi − µ̂− 〈α̂,Wi〉

1 + ‖α̂‖2
α̂, (17)

as the generalization of X̂i in the multivariate case (see [Fuller, 1997]), ob-
tained by differentiation of equation (13) with respect to Xi. An example of
the estimation of α is plotted on figure 1 in the case where X is a standard
brownian motion on I with the variance noise σδ = 0.1. These results show
that the corrected estimator constructed with the TLS approach improves
the estimation of α compared to the uncorrected estimator defined by (16).
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(bµ− µ)2

µ2

‖bα− α‖2
‖α‖2

1

n

nX

i=1

“
〈bα, bXi〉 − 〈α,Xi〉

”2

σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2

FLS 0.0002 0.0009 0.0017 0.21 0.41 0.78 0.007 0.010 0.018
FTLS 0.0002 0.0009 0.0016 0.12 0.27 0.56 0.006 0.008 0.015

Table 1. Errors on µ, α and prediction - case where X is a standard brownian
motion on I .

(bµ− µ)2

µ2

‖bα− α‖2
‖α‖2

1

n

nX

i=1

“
〈bα, bXi〉 − 〈α,Xi〉

”2

σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2

FLS 0.0004 0.0007 0.0017 0.07 0.19 0.39 0.006 0.011 0.021
FTLS 0.0004 0.0007 0.0015 0.02 0.11 0.26 0.005 0.010 0.019

Table 2. Errors on µ, α and prediction - case where X is an Ornstein-Uhlenbeck
process on I .

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

estimation of α

true curve α
estimation of α (FLS)
estimation of α (FTLS)

Fig. 1. Example of estimation of α (solid line) with functional least squares (dashed
line) and functional total least squares (dotted line).
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4 Conclusion and openings

This adaptation of the Total Least Squares method to the functional frame-
work seems to give encouraging results on simulations. A theoretical work is
needed to get the statistical properties of the estimator we have built. More-
over, it could also be interesting to compare this method to other ones. In
particular, another idea to deal with noisy functional covariates (which is a
work in progress) is to smooth the noisy curves (for instance by the way of a
kernel method) and to estimate α by a procedure equivalent to a functional
principal component regression used in the work of [Kneip and Utikal, 2001].
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Abstract. The purpose of this paper is to forecast the time evolution of a binary
response variable from an associated continuous time series observed only at dis-
crete time points that usually are unequally spaced. In order to solve this problem
we are going to use a functional logit model based on functional principal com-
ponent analysis of the predictor time series that takes into account its continuous
nature, close to classical ARIMA modelling of the associated discrete time series of
principal components.
Keywords: Logistic Regression, Funcional Principal Components, ARIMA mod-
els.

1 Problem formulation

In this paper we propose a functional logit model based in mixed ARIMA-
FPCA modelling of the functional predictor that allows to forecast the time
evolution of a binary response from discrete time observations of a continuous
time series. FPCA [Ramsay and Silverman, 1997] is a generalization of the
classic principal component analysis (PCA) of a sample of data vectors for
the reduction of dimension of a set of sample curves obtained in our case
by cutting the predictor series in periods of the same amplitude. Mixed
ARIMA-FPCA models [Valderrama et al., 2002] allows not only to forecast
a continuous time series in a whole future interval but also to reconstruct it
between the discretization time points in the past.

Let us suppose that we have observations of a continuous time series
{x(t)} at discrete time points in the interval (0, NT ] and one observation Yw
of a related binary response Y at each period ((w − 1)T,wT ], w = 1, . . . , N.
Then the purpose of this paper is to estimate a functional logit model to
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forecast the binary response in future periods ((w∗ − 1)T,w∗T ](w∗ > N)
from the forecasting of the series x(t) in such periods provided by a mixed
ARIMA-FPCA model.

In order to formulate and to estimate a functional logit model based on
functional principal component analysis, we propose to cut the observed series
x(t) in N periods of amplitude T, so that we have N sample paths of the
following functional predictor (continuous time process):

{Xw(s) = x((w − 1)T + s) : s ∈ (0, T ];w = 1, . . . , N}, (1)

and a sample of size N of the binary response given by {Yw : w = 1, . . . , N}
(see Figure 1).

Let us observe that the choice of the amplitude T is simple enough in
practice when there is a well defined seasonal period as in the case of many
real time series.

(0 ] T → Y1

X1(s) = x(s)

(T ] 2T → Y2

X2(s) = x(T + s)

...
...

((N−1)T ] NT → YN
XN (s) = x((N − 1)T + s)

Fig. 1. Sample information obtained after cutting the original continuous

time series

2 Functional logistic regression

The objective of the functional logistic regression (FLR) model is to explain
a binary response variable Y in terms of a functional variable X(s) whose
sample information is given by a set of curves measured without error.

Let X1 (s) , . . . , XN (s) be a sample of curves of a functional variable
{X (s) : s ∈ (0, T ]} , obtained by cutting in periods of amplitude T the orig-
inal predictor series x(t), and let Yw(w = 1, . . . , N) be the random ob-
servations of the binary response variable Y associated with the sample
curves. Then, the FLR model is given by Yw = πw + εw, where εw are
zero mean independent random errors with variance πw (1− πw) , and πw is
the probability of response Y = 1 for a specific curve Xw (s) modelled as
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πw = exp (lw)/(1+exp (lw)), with lw being the logit transformation given by

lw = α+

∫ T

0

Xw (s)β (s) ds, w = 1, . . . , N, (2)

where α is a real parameter and β (s) is a parameter function that has to be
estimated. In terms of the logit transformations, the model can be equiva-
lently seen as a functional generalized linear model [James, 2002].

As in the functional linear model [Ramsay and Silverman, 1997], it is
impossible to obtain a direct estimation of the FLR model by using the
usual likelihood or least squares methods. In addition functional data are
usually observed only in a finite set of time points so that its true functional
form has to be reconstructed from its discrete time observations by using
an approximating procedure. Then, the most used solution for solving this
estimation problem is based on assuming that the parameter function and
the sample curves belong to a finite dimension space generated by a basis of
functions {φ1 (t) , . . . , φp (t)} , so that they can be expressed in terms of the
basis as

β (s) =

p∑

k=1

βkφk (s) and Xw (s) =

p∑

j=1

awjφj (s) . (3)

Then, the functional model given by equation (2) is equivalent to a multi-
ple logit model given in matrix form by L = 1α+AΨβ, with L = (l1, . . . , lN)

′
,

A the matrix that has the basis coefficients of the sample curves as rows,
Ψ = (ψjk)p×p the one that has the L2-usual inner products between the ba-

sic functions as entries,
(
ψjk =

∫ T
0
φj (s)φk (s) dt

)
, and β = (β1, . . . βp)

′ the

vector of the parameter function basis coefficients.
Before estimating by likelihood the vector β, we have to compute the

matrix A of sample curves basis coefficients. Let xw = (xw1, . . . , xwmw)′

be the vector of observations of the wth sample curve Xw(s) at mw time
points of the interval ((w − 1)T,wT ], ∀w = 1, . . . , N. When discrete-time
observations are considered to be measured without error, xwk = xw (twk) ,
an interpolation method to estimate the basis coefficients can be used. On the
other hand, if some error is considered in the observations, xwk = xw (twk)+
εwk, least squares approximation is usually used for estimating the basis
coefficients for a specific curve as aw = (aw1, . . . , awp)

′
= (Φ′Φ)

−1
Φ′xw, with

Φmw×p = (φj (twk)) . Let us observe that least squares approximation can be
also applied when the functional variable is recorded at different time points
for each individual (missing longitudinal data). On the other hand, taking
into account the underlying nature of curves, different basis have been used
in literature as for example, Fourier, Wavelets or Spline functions.

The problem is that likelihood estimation of the parameters of the logit
model with design matrix AΨ is very unaccurate due to multicollinearity so
that the estimated parameter function can not be used to stablish the true
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relationship between the response and predictor variables [Escabias et al.,
2004].

3 Functional principal component logit model

In order to reduce dimension and to obtain better estimations of the param-
eter function, two different approaches based on FPCA of sample paths have
been proposed in literature [Escabias et al., 2004], so that the FLR model
is reduced to a multiple one with a reduced number of functional principal
components as covariates. In this paper we are going to perform FPCA of the
sample paths Xw(s) with respect to the usual inner product in L2 ((0, T ]) .

Functional principal components of Xw(s) are defined as N-dimensional
vectors ξj(j = 1, . . . , N − 1) with components

ξwj =

∫ T

0

(Xw (s)− x̄(s))fj (s) ds, w = 1, . . . , N,

where x̄(s) is the sample mean of the sample curves and the weight functions
fj (s) (j = 1, . . . , N − 1) that define the functional pc’s are the eigenfunc-
tions of the sample covariance function of the sample curves whose associ-
ated positive eigenvalues λ1 > λ2 > · · · > λn−1 ≥ 0 are the variances of the
corresponding principal components (pc’s).

Then, the sample curves admit the following orthogonal representation in
terms of the sample pc’s:

Xw (s) =

N−1∑

j=1

ξwjfj (s) , w = 1, . . . , N.

By truncating this expression we obtain a reconstruction of the sample paths
in terms of a reduced number of pc’s that accumulate a certain percentage
of the total variance TV =

∑N−1
j=1 λj .

It can be shown that if the sample paths belong to a finite space of
L2(0, T ] generated by a basis, their functional pc’s are given by the standard
principal components of the matrix AΨ1/2. If we denote by Γ = (ξij)N×p
the matrix whose columns are the pc’s of the AΨ1/2 matrix, and G the one
whose columns are its associated eigenvectors, then Γ =

(
AΨ1/2

)
G and the

weight functions that define the functional pc’s are given by

fj (s) =

p∑

k=1

fjkφk (s) , j = 1, . . . , p (4)

with F = (fjk)p×p = Ψ−1/2G.

Then, FLR model (2) can be equivalently expressed in terms of the pc’s
as

lw = α+

p∑

j=1

ξwjγj , w = 1, . . . , N. (5)
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[Escabias et al., 2004]
The functional principal component logistic regression (FPCLR) model is

obtained by truncating model (5) in terms of a subset of pc’s. If we consider
the matrices defined before partitioned as follows

Γ =
(
Γ(q) Γ(r)

)
, F =

(
F(q) F(r)

)
, r + q = p,

then, the FPCLR model is defined by taking as covariates the first q principal
components

L(q) = α(q)1 + Γ(q)γ(q),

where α(q) is a real parameter and L(q) =
(
l1(q), . . . , lN(q)

)′
with

lw(q) = ln

[
πw(q)

1− πw(q)

]
= α(q) +

q∑

j=1

ξwjγj(q), i = 1, . . . , N. (6)

Finally, the likelihood estimation of the parameter function given by

β̂(q) (s) =

p∑

j=1

β̂j(q)φj (s) , (7)

with the coefficient vector β̂(q) = F(q)γ̂(q) is more accurate than the one
obtained with the original AΨ design matrix [Escabias et al., 2004].

4 Mixed ARIMA-FPCA logit model

Let us observe that functional PCA provides an orthogonal expansion of the
functional predictor {X(s)} in terms of a set of deterministic functions (the
principal factors) and random variables (the principal components).

In our case, the values ξwj (w = 1, . . . , N) of each sample principal
component ξj can be seen as observations of a discrete time series at each
period ((w − 1)T,wT ] of amplitude T where the original series x(t) is ob-
served. Then, in order to forecast the binary response in future periods
((w∗ − 1)T,w∗T ](w∗ > N), we propose the modelization of each princi-
pal component by an ARIMA model [Box and Jenkins, 1970]. The gen-
eral expression of an ARIMA(p,d,q) model for the jth principal compo-
nent ξj is given by Φ(B)(1 − B)dξwj = θ(B)εwj , where B is the back-
ward shift operator, Φ(B) is the autoregressive operator defined as Φ(B) =
1−Φ1B−Φ2B

2− · · · −ΦpBp, θ(B) is the moving average operator given by
θ(B) = 1−θ1B−θ2B2−· · ·−θpBp, and εwj is a white noise process for each
j (j = 1, . . . , q).

The prediction model proposed in this paper is based on ARIMA fore-
casting of each of the q principal components selected for estimating the
functional logit model. After estimating in the usual form these q ARIMA
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models, we will be able to obtain forecasts for each principal component in
the future periods ((w∗ − 1)T,w∗T ], denoted by ξ̃w∗j .

Finally, the original series x(t) is predicted in all the interval of time
((w∗ − 1)T,w∗T ], by the principal component reconstruction of the process
{X(s)} in terms of the predicted principal component values

x̃((w∗ − 1)T + s) = X̃q
w∗(s) = x̄(s) +

q∑

j=1

ξ̃w∗jfj(s) s ∈ [0, T ],

and the estimated probabilities of success in the future periods ((w∗ −
1)T,w∗T ] are predicted from the logit transformations

l̃w∗(q) = α̂(q) +

q∑

j=1

ξ̃w∗j γ̂j(q),

in terms of the ARIMA forecasts of the principal components ξ̃w∗j .

5 Predicting the risk of drought

In order to illustrate the proposed Mixed ARIMA-FPCA logit model, we are
going to predict the risk of drought in the future in terms of its evolution
in the past by using as predictor the past evolution of temperatures, as in
[Escabias et al., 2005]. With this objective, let us consider a specific zone
where drought has been tested monthly for several years by classifying a
month as dry or not dry according to the definition of drought based on the
amount of precipitations observed in this zone. That is, if it rains less that
a certain percentile during a specific month, it is considered as a dry month
meanwhile in the opposite case the month is considered as not dry. Then, if
we define the binary variable Y = {0, 1} as the one that takes value one in a
specific month if it is not a dry month and zero in the opposite case, we have
a monthly time series of binary values.

We have daily temperatures and precipitations observed in the Estación
Meteorológica del Departamento de Botánica de la Universidad de Granada
from 01/01/1992 to 12/31/2001. In this period the precipitation have been
monthly accumulated (30 days period) and each month has been classified
as dry if the accumulated precipitations in this month have been lower than
a specific percentile of the precipitations observed in same month over all
the years. In order to test the forecasting performance of mixed ARIMA-
FPCA logit models we have considered different examples by using different
percentiles (0.25 and 0.50) for defining the binary time series of drought.

As predictor time series x (t) we have considered the daily temperatures
cut at 30 days periods (T=30). In order to obtain the functional form of
temperatures in each month we have considered the expansion of such func-
tions as in (3) in terms of the basis of B-splines defined from the knots
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{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 30} , and we have obtained the ba-
sis coefficients of each curve by least squares approximation from the discrete
time observations of daily temperatures.

Once the predictor curves have been approximated from their discrete-
time observations and the response observed in each one of the considered
examples (percentiles 0.25 and 0.50), we have considered the first N = 108
observations to fit the Mixed ARIMA-FPCA logit model and the last 12
to validate the results. ¿From the fist N = 108 observations of monthly
temperatures (predictor) and drought (binary response) we have fitted the
FPCLR model with different number of functional pc’s in the model. The
percentages of variance explained by the first four functional pc’s can be seen
in Table 1. Once the functional pc’s have been computed, we have modeled
them as ARIMA’s obtaining that only the two first pc’s have such structure.
We have considered the rest as white noises. ARIMA modelling of pc’s can
be seen in Table 1. After modelling the pc’s we have obtained 12 steps ahead
forecasts (12 months) of such time series.

pc Exp. Var. Cum. Var. ARIMA Model Estimated Parameters

ξ1 87.17% 87.17% SARIMA(0, 0, 1) × (0, 1, 1)12 θ1 = −0, 351239
Θ1 = 0, 567944

ξ2 4.13% 91.30% SARIMA(0, 0, 0) × (0, 1, 1)12 Θ1 = 0, 894991

ξ3 2.26% 93.56% White Noise (σ = 5.44)

ξ4 1.46% 95.02% White Noise (σ = 4.37)

Table 1. Percentages of explained variances (Exp. Var.), cumulated variances
(Cum. Var.), and ARIMA modelling for the first four pc’s.

In order to test the performance of mixed ARIMA-FPCA logit models we
have obtained the estimated probabilities for the response (risk of drought)
from the 12 predictions provided by ARIMA modelling of the first pc’s (see
Table 2). These probabilities have been obtained by using the estimated
parameters of the logistic models with the first 1, 2, 3 and 4 pc’s in the
models with each one of the responses. All adjusted logit models have high
deviance statistics with low p-values what shows that the models fit well
and that the logit model is a good election for estimating this response. In
each case the Mean Squared Error (MSE) between predictions and observed
values have been obtained. The results can be seen in Table 2. It can be
observed that the MSE of the models with the components that are modelled
as ARIMA are always lower than the ones that include not modelled principal
components.
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2002 Y defined by 0.25 precentile Y defined by 0.50 precentile

Months Dry 1 cp 2 cp’s 3 cp’s 4 cp’s Dry 1 cp 2 cp’s 3 cp’s 4 cp’s

Jan 1 0.684 0.684 0.779 0.670 1 0.425 0.425 0.446 0.282
Feb 1 0.678 0.679 0.522 0.537 1 0.408 0.408 0.377 0.395
Mar 1 0.690 0.674 0.627 0.581 1 0.441 0.438 0.427 0.369
Apr 1 0.713 0.698 0.616 0.719 1 0.507 0.504 0.486 0.628
May 0 0.717 0.707 0.798 0.827 0 0.520 0.518 0.539 0.591
Jun 1 0.741 0.716 0.597 0.623 0 0.593 0.588 0.562 0.598
Jul 1 0.774 0.765 0.787 0.821 1 0.691 0.689 0.692 0.743
Oct 1 0.794 0.793 0.824 0.836 1 0.748 0.748 0.753 0.768
Sep 1 0.791 0.803 0.937 0.950 1 0.742 0.744 0.785 0.823
Oct 1 0.779 0.797 0.818 0.753 0 0.705 0.709 0.711 0.596
Nov 1 0.743 0.758 0.768 0.606 1 0.600 0.603 0.603 0.363
Dec 1 0.717 0.748 0.822 0.847 1 0.519 0.525 0.543 0.586

MSE 0.108 0.107 0.130 0.142 0.248 0.247 0.247 0.267

Table 2. Observed values of the response (no drought) and estimated probabilities
of no drought for the mixed ARIMA-FPCA logit model in each one of the selected
responses (percentiles 0.25 and 0.50) for the models with the first 1, 2, 3 and 4 pc’s.
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Abstract. In many applications, input data are in fact sampled functions rather
than standard high dimensional vectors. Most of the traditional data analysis tools
for regression, classification and clustering have been adapted to handle functional
inputs under the general name of Functional Data Analysis (FDA). In general,
the major problem is to overcome the issue of infinite dimensional input. This
is done by introducing regularity constraints on the studied functions, thanks to
penalization or to projection on finite dimensional functional spaces.

Support Vector Machine (SVM) are large margin classifier tools that have the
interesting property of being less sensitive to the curse of dimensionality than other
tools. On the contrary, they are based on implicit non linear mappings of the
considered data into high dimensional spaces (sometimes with infinite dimension)
thanks to kernel functions.

In this paper, we investigate the use of Support Vector Machine for functional
data analysis. We define simple kernels that take into account the functional nature
of the data and lead to consistent classification. Experiments conducted on real
world data emphasize the benefit of taking into account some functional aspects of
the problems.
Keywords: Functional Data Analysis, Support Vector Machine, Classification.

1 Introduction

This paper deals with functional classification: let (X,Y ) be a pair of random
variables in which Y takes values in {−1; 1} and X in a functional space. Y
is the label (the class) associated to X . The goal of classification is to predict
the value of Y given an observed value for X . The difficulty in functional
data analysis [Ramsay and Silverman, 1997], compared to the traditionnal
setting, is that X does not take values in Rd but in a functional space.

In this paper, we investigate how Support Vector Machine (SVM) can
be used for functional data classification. The paper is organized as follows:
Section 2 explains why functional SVM leads to particular problems and
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proposes solutions to overcome them. Section 3 develops several functional
kernels and explains how some of them lead to consistent classifier. Finally,
Section 5 illustrates the various approaches on real data sets.

2 Support Vector Machine For FDA

2.1 Hard margin functional SVM

We assume given a learning set, i.e. N examples (x1, y1), . . . , (xN , yN) which
are i.i.d. realizations of (X,Y ). As explained before, X is a function valued
random variable. More formally, X takes its values in a separable Hilbert
space X , for example a subspace of L2(µ) where µ denotes a finite Borel
measure on R. We denote 〈., .〉 the inner product of X .

The principle of SVM is to perform an affine discrimination of the obser-
vations with the largest margin as possible, that is to find a function w ∈ X
with a minimum norm and a real value b, such that yi(〈w, xi〉+ b) ≥ 1 for all
i. The classification rule associated to (w, b) is simply φ(x) = sign(〈w, x〉+b).
We therefore request the rule to have zero error on the learning set.

In functional spaces, it is always possible to find such a discrimination,
provided the (xi)1≤i≤N are in general position, i.e. provided they span a
vector space of dimension N . However it is well known that the obtained
classification rule do not behave in a satisfactory way unless a regularization
method is used (see [Hastie and Mallows, 1993], [Marx and Eilers, 1996],
[Ramsay and Silverman, 1997] and [Cardot et al., 1999]).

2.2 Soft margin functional SVM

While SVM introduces a form of regularization by looking for large mar-
gin (i.e., minimal norm for w), additional regularization can be obtained by
solving the following optimization problem:

(PC) minw,b,ξ〈w,w〉 + C
∑N

i=1 ξi,
subject to yi(〈w, xi〉+ b) ≥ 1− ξi,

ξi ≥ 0, for all i = 1, . . . , N,

for an appropriate C ≥ 0. Using the slack variables ξi allows to relax the
very strong condition that the classification rule should make no error on the
learning set. It is well known (see e.g., [Hastie et al., 2004]) that this form
of regularization is needed to achieve good performances for classification in
high dimensional spaces.

In order to solve this problem, we use results from [Chih-Jen, 2001] that
apply to any Hilbert space. Problem (PC) is indeed equivalent to the dual
optimization problem:

(DC) minα
∑N

i=1 αi −
∑N

i,j=1 αiαjyiyj〈xi, xj〉,
subject to

∑N
i=1 αiyi = 0 and 0 ≤ αi ≤ C for all i = 1, . . . , N.
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The advantage of (DC) versus (PC) in the infinite dimensional context is
that the optimization problem (DC) has to be solved in RN whereas (PC)
needs an optimization procedure in X . Moreover inner products in func-
tional spaces such as L2(µ) are easy to approximate using classical quadra-
ture or Monte Carlo methods. Finaly, the classification rule is obtained as
φ(x) = sign(

∑N
i=1 yiαi〈xi, x〉 + b) which is only based on inner products. In

practice, this means that any SVM software can be used to provide func-
tional classification as long as inner products can be calculated and used in
the software.

It should be noted that C is a free parameter. It has therefore to be chosen
so has to provide good performances. We will provide a possible solution in
section 4.1.

3 Functional kernels

3.1 Kernels for SVM

A major difference between standard multivariate data and functional data
is that the former are seldom linearly separable whereas the latter often are.
In finite dimensional settings, this motivates the use of kernels to replace
the inner product that is used in problem (Dc). A kernel corresponds to an
implicit mapping from the input space to another feature space. In general
this feature space has a high dimension so that the data become linearly
separable in it. Thanks to the dual formulation of the SVM optimization
problem, the implicit mapping is not calculated: everything is based on the
kernel.

For functional data, the use of kernels might seem worthless. However,
despite the regularization provided by using slack variables, it happens in
practice for linear functional SVM to have very bad performances. A possible
solution consists in using functional transformation and functional kernels,
as proposed in this section.

3.2 Using an orthogonal basis

A natural functional kernel can be constructed thanks to the general func-
tional classification framework proposed in [Biau et al., 2005]. The methods
proceeds as follows:

1. choose a complete orthonormal system of X , {Ψj}j≥1, and express each
observation xi as a series expansion xi =

∑
j≥1 xij Ψj ;

2. approximate each observation xi by the sum
∑d
j=1 xij Ψj ;

3. perform a classical Rd SVM on the coefficients x
(d)
i = (xi1, . . . , xid) ∈ Rd

for all i = 1, . . . , N .
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This procedure is equivalent to working with a functional kernel which can
be written as

Kd(x, x′) = K(Pd(x),Pd(x′))
where Pd denotes the projection onto the the space spanned by {Ψj}j=1,...,d

and K is any standard SVM kernel. Of course, d has to be chosen appropri-
ately. As recalled in section 4.1, [Biau et al., 2005] proposes to use a split
sample approach.

3.3 Using a B-Spline basis

Another way of choosing a projection space consists in using spline spaces and
their B-spline bases. Results from [Biau et al., 2005] are still applicable, but
with major restriction. Indeed, a B-spline basis is not a basis of L2: it only
spans a subspace of L2. Nevertheless, they perform efficiently in practice.

An interesting property of B-spline bases if they can be use to provide
additional transformation on the input data: using a B-Spline expansion, an
estimation of x(q), the q-th derivative of x, can be easily obtained. Then any
kernel can be used on the derivatives. This method allows to focus on some
particular aspects of the underlying functions, such as the curvature for the
second derivative. It is well known that in some application domain such
as spectrometry, such kind of features might be more interesting than the
original curves. We give in Section 5.3 an application of this approach.

4 Consistency of functional SVM

4.1 Choice of the parameters

Performing a functional SVM leads to choose three types of parameters:

1. parameters due to the functional pre-processing: d, the dimension of the
projection if we use a orthogonal basis as in section 3.2 or the order of the
B-Splines basis, the number of knots and the order q of the derivative(s)
chosen in the case of the pre-processing described in section 3.3;

2. C, the regularization parameter of the SVM (see section 2.2);
3. K, which is indeed the kernel: we can both choose the type of kernel

(linear, gaussian, . . . ) but also the parameter of this kernel such as σ for

the gaussian kernel K(x, x′) = e−‖x−x′‖2/σ.

In order to select these parameters, we follow [Biau et al., 2005] and use a
data splitting device. To do that, let us introduce some notations: a denotes
the parameters that we have to chosen in a set A of relevant parameters and
P the preprocessing performed on the original data set. The data are then
split into two sets. First, for a fixed value of the parameters, a, a training
set {(xi, yi), i = 1, . . . , l} is used to calculate the SVM classification rule
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φla = sign(
∑l

i=1 α
∗
i yiK(P(.),P(xi)) + b∗) where ({α∗

i }i, b∗) are the solution
of (DC) in which we replace the classical dot product by K ◦ P . Then a
validation set {(xi, yi), i = l + 1, . . . , N} is used to select a optimally in A:

a∗ = argmin
a∈A

{
L̂(φla) +

λa√
N − l

}
.

where L̂(φla) = 1
m

∑N
i=l+1 1{φl

a(xi) 6=yi} and λa√
N−l is a penalty term.

4.2 Consistency

We now restrict ourselves to the case of the functional kernels of section
3.2. Then, as pointed out by [Biau et al., 2005], a necessary and sufficient
condition of consistency for the procedure described in sections 3.2 and 4.1 is
that classical SVM are consistent in Rd. [Steinwart, 2002] shows the universal
consistency of some SVMs when two conditions are fulfilled: the input data
must belong to a compact subset of Rd and the regularization parameter for
N observations must be equal to CN = Nβ−1 (see Corollary 1 of [Steinwart,
2002]). This consistency result holds as long as the kernel used to perform
it is universal ; that is : if Φ is the feature map of the kernel, then the
set of all the functions of the form 〈w,Φ(.)〉 has to be dense in the set of all
continuous functions defined on the considered compact subset. In particular,
the gaussian kernel with any σ > 0 is universal for all compact subsets of Rd.

Therefore, for this procedure, the choice of a = (d, C,K) leads to a con-
sistent classifier provinding some simple facts: for any fixed dimension d, K
has to be chosen in a finite set Kd which contains, at least, one universal
kernel. C can be chosen in a finite grid search (as this is the case in our
applications) but recent progresses (see [Hastie et al., 2004]) allows to choose
C in an interval of the form Id = [0; Cd] by an automatic recurrent procedure.

The consistency result of [Biau et al., 2005] is obtained for a k-nn classifier
but, as stated in the paper, the result can be extended to any classifier.
When choosing C in a infinite set, an adaptation of the proof is needed. As
the original proof is constructed thanks to an oracle inequality that gives
an upper bound for EL(φd∗,C∗,K∗)− L∗ in finite dimension (L∗ denotes the
Bayes error), we have to obtain a similar oracle inequality: this can be done
by the use of the shatter coefficient of a particular class of linear classifiers
which provides the behavior of the classification rule on a set of N − l points
(see [Devroye et al., 1996]). A limitation of SVM that does not appear in
[Biau et al., 2005] for k-nn, is that the input functions must belong to a
compact subset of the functional space.

5 Applications

5.1 Speech recognition in very high dimensional space

We compare SVM to k-nn by applying exactly the procedure described in
[Biau et al., 2005] to the data used in the paper. The only difference is the
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replacement of the k-nn classifier by a regular SVM. The problem considered
in [Biau et al., 2005] consists in classifying speech samples. There are three
two classes problems: classifying “yes” against “no”, “boat” against “goat”
and “sh” against “ao”. For each problem, we have 100 functions. Each
function is described by a vector in R8192. Performances of the algorithms
are obtained thanks to a leave-one-out procedure: 99 functions are used as
the learning set (to which the split sample procedure is applied to choose the
parameters) and the remaining function provide a test example. We use the
Fourier functional basis. We report the percentage of error for each problem
in the following table:

Problem k-nn QDA Gaussian SVM linear SVM
yes/no 10% 7% 10% 58%

boat/goat 21% 35% 8% 46%
sh/ao 16% 32% 12% 47%

The first two columns have been reproduced from [Biau et al., 2005] (QDA
corresponds to Quadratic Discriminant Analysis). The “Gaussian SVM” col-
umn corresponds to the functional kernel obtained thanks to the projection of
the Fourier basis combined to a Gaussian kernel in Rd. The “linear SVM” cor-
responds to the direct application of the procedure described in 2.2, without
any prior projection. In general the functional kernel give very satisfactory
results, whereas the direct linear approach obtain extremely bad results (they
corresponds to a random classification). This shows that the regularization
provided by the slack variables is not adapted to functional data, a fact that
was already known in the context of linear discriminant analysis [Hastie et
al., 1995].

The functional SVM performs in general better than k-nn and QDA, but
the training time of the methods are not comparable. Indeed, solving problem
(DC) can cost up to O(N3) operations, whereas there is no training time for
k-nn.

5.2 Using wavelet basis

In order to investigate the limitation of the direct use of the linear SVM,
we have applied them to another speech recognition problem. We studied
a part of TIMIT database which was investigated in [Hastie et al., 1995].
The data are log-periodograms corresponding to recording phonemes of 32
ms duration. We have chosen to restrict ourselves to classifying “aa” against
“ao”, because this is the most difficult sub-problem in the database. The
database is a multi-speaker database. Each speaker (325 in the training set
and 112 in the test set) is recorded at a 16-kHz sampling rate; and we retain
only the first 256 frequencies. We have 519 examples for “aa” in the training
set (759 for “ao”) and 176 in the test set (263 for “ao”). We use the split
sample approach to choose the parameters on the training set (50% of the
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training examples are used for validation) and we report the classification
error on the test set. The projection basis is here a hierarchical wavelet basis
(see e.g., [Mallat, 1989]). We obtain the following results:

Functional Gaussian SVM Functional linear SVM Linear SVM
22% 19.4% 20%

It appears that functional kernels are not as useful here as in the previous
example, as linear SVM applied directly to the discretized functions (in R256)
performs as well as linear SVM on the wavelet coefficients. A natural expla-
nation is that the actual dimension of the input space (256) is smaller than
the number of learning examples (1278) which means that evaluating the
optimal coefficients of the SVM is less difficult than in the previous exam-
ple. Therefore, the additional regularization provided by the projection is
not really useful in this context.

5.3 Spectrometric data set

The data presented in this section are 215 near infrared spectra of a meat
sample recorded on a Tecator Infrared Food and Feed Analyser1. The classi-
fication problem consists in separating meat samples with a high fat content
(more than 20%) from sample with a low fat content (less than 20%). It is well
known that in some spectrometric problem, the curvature of the spectrum
is more relevant for the prediction of the sample content than the spectrum
itself. This drives us to construct a classifier based on the curvature of the
spectra i.e. on the second derivative as explained in section 3.3.

We then decide to compare: a linear and a gaussian kernel performed on
the original data and a linear and a gaussian kernel on the second derivatives.
The training set contains 120 spectra (randomly chosen) and the testing set
95 spectra. The parameters (C and σ for the gaussian kernel) are chosen
using a 10-fold cross validation procedure rather than a simple cross valida-
tion procedure. The following table gives the performances of the various
methodologies:

Kernel Learning set error rate Test set error rate
Linear 0.83% 2.11%
Gaussian 0% 4.21%
Linear on second derivatives 0% 0%
Gaussian on second derivatives 0.83% 1.05%

It appear that the functional pre-processing slightly improves the results: in
both linear and gaussian kernels, the use of the second derivatives introduces
a kind of expert knowledge and overcomes the limitation of the original kernel.
This is specially the case for the gaussian kernel which is norm dependant
and is then dominated by the mean value of the spectra (which is not a good
feature for spectrometric problems as we already said).

1 available on statlib: http://lib.stat.cmu.edu/datasets/tecator
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6 Conclusion

We have proposed in this paper functional kernels that provide consistent
classification in Hilbert spaces with Support Vector Machines. When the
considered functions are represented by very high dimensional vectors, pro-
jection based kernels provide regularization that enhance SVM classification
rates. In other contexts, transformation based kernels allow to integrate ex-
pert knowledge in the SVM.

References

[Biau et al., 2005]Gérard Biau, Florentina Bunea, and Marten Wegkamp. Func-
tional classification in hilbert spaces. IEEE Transactions on Information The-
ory, 2005. To be published.
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Abstract. Let X be a random variable taking values in L2

`
[0, 1]

´
and let Y be a

random label with values in {0, 1}. Given a class of classifiers and n independent
copies (Xi, Yi) of the pair (X,Y ), we show how to select optimally a particular
classifier in the class and derive its consistency properties. To build our classi-
fier, we first reduce the dimension of the functional observations using a particular
thresholding on the coefficients of the curves Xi expressed in a wavelet basis. Then
a classification rule working in finite dimension is performed on the selected coeffi-
cients. The dimension is automatically selected by data-splitting and empirical risk
minimization. An application of this technique to a signal discrimination problem
involving speech recognition is presented.
Keywords: Functional Data Analysis, Classification, Wavelets.

1 Introduction

The problem of pattern recognition (or classification or discrimination) is
about guessing or predicting the unknown class of an observation. An ob-
servation is usually a collection of numerical measurements represented by a
d-dimensional vector. In many real-life problems however, input data are in
fact sampled functions rather than standard high dimensional vectors, and
this casts the classification problem into the class of Functional Data Analy-
sis.

Although standard pattern recognition techniques appear to be feasible, the
intrinsic infinite dimensional structure of the observations makes learning suf-
fer from the curse of dimensionality (see [Abraham et al., 2003] for a detailed
discussion, examples and counterexamples). In practice, before applying any
learning technique to model real data, a preliminary dimension reduction
or model selection step reveals crucial for appropriate smoothing and cir-
cumscription of the dimensionality effect. As a matter of fact, filtering is
a popular dimension reduction method in signal processing, and this is the
central approach we take in this paper.

Roughly, filtering reduces the infinite dimension of the observations by con-
sidering only the first d coefficients of the data on an appropriate basis. This
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approach was followed by [Kirby and Sirovich, 1990], [Comon, 1994], [Bel-
humeur et al., 1997], [Hall et al., 2001], or [Amato et al., 2005]. Given a
collection of functions we wish to classify, [Biau et al., 2005] propose to use
first Fourier filtering on each function and then perform k-nearest neigh-
bor classification in Rd. These authors study finite sample and asymptotic
properties of a data-driven procedure that selects simultaneously both the
dimension d and the optimal number of neighbors k.

The aim of the present paper is to extend the data-based filtering approach
of [Biau et al., 2005] to wavelet bases and general discrimination rules. Our
motivation is twofold.

• First, as pointed out for example in [Amato et al., 2005], wavelet bases
offer some significant advantages over other bases. Indeed, wavelets can
be used successfully for compression of a stochastic process, in the sense
that the sample paths can be accurately reconstructed from a fraction
of the full set of wavelet coefficients. Further, the wavelet decomposition
of the sample paths is a local one, so that if the information relevant to
the classification problem is contained in a particular part of the sample
functions, as typically it is, this information will be carried by a very
small number of wavelet coefficients. Moreover, the ability of wavelets to
model the signal at different levels of resolution means that we have the
option of selecting from the paths at a range of bandwidths.

• Second, we seek for general performance bounds and consistency results
when using (finite dimensional approximations of) the sample data in
the selection of a discrimination rule and/or its parameters. This article
offers both a practical methodology and general performance results for
all those who are willing to use wavelet filtering as a dimension reduction
step before effective classification.

Throughout the manuscript, we will adopt the point of view of automatic
pattern recognition described, to a large extend, in [Devroye, 1988]. In this
setup, one uses a test sequence to select the best rule from a rich class of
discrimination rules defined in terms of a training sequence. For the clarity
of the paper, all important concepts regarding this classification paradigm
are summarized in the next section. In Section 3, we outline the method and
state consistency of our classification rule. Section 4 offers some experimental
results on real-life data.

2 Automatic pattern recognition

This section gives a brief exposition and set up terminology of automatic
pattern recognition. For a detailed introduction, the reader is referee to
[Devroye, 1988].
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To model the automatic learning problem, we introduce a probabilistic
setting. Denote by F = L2([0, 1]) the space of all square integrable func-
tions on [0, 1]. The data consist of a sequence of n + m i.i.d. F × {0, 1}-
valued random variables (X1, Y1), . . . , (Xn+m, Yn+m). The Xi’s are the ob-
servations, and the Y ′

i s are the labels1. Note that the data are artifi-
cially split by us into two independent sequences, one of length n, and
one of length m: we call the n sequence the training sequence, and the
m sequence the testing sequence. A discrimination rule is a function g :
F × (F × {0, 1})n+m → {0, 1}. It classifies a new observation x ∈ F as
coming from class g (x, (X1, Y1), . . . , (Xn+m, Yn+m)). We will write g(x) for
the sake of convenience.

The probability of error of a given rule g is

Ln+m(g) = P {g(X) 6= Y |(X1, Y1), . . . , (Xn+m, Yn+m)} ,

where (X,Y ) is independent of the data sequence and is distributed as
(X1, Y1). Although we would like Ln+m(g) to be small, we know that it
cannot be smaller than the Bayes probability of error

L∗ = inf
s:F→{0,1}

P{s(X) 6= Y } ,

(see [Devroye et al., 1996], Theorem 2.1, page 10). In the learning process, we
aim at constructing rules with small probability of error. To do this, we em-
ploy the learning sequence to design a class of data-dependent discrimination
rules, and we use the testing sequence as an impartial judge in the selection
process. More precisely, we denote by Dn a (possibly infinite) collection of
functions g : F × (F × {0, 1})n → {0, 1}, from which a particular function ĝ
is selected by minimizing the empirical risk based upon the testing sequence:

L̂n,m(ĝ) =
1

m

n+m∑

i=n+1

1[ĝ(Xi) 6=Yi] = min
g∈Dn

1

m

n+m∑

i=n+1

1[g(Xi) 6=Yi].

At this point, observe that

g(Xi) = g (Xi, (X1, Y1), . . . , (Xn, Yn))

and
ĝ(Xi) = ĝ (Xi, (X1, Y1), . . . , (Xn, Yn)) ,

i.e., the discriminators themselves are based upon the training sequence only.
Observe however that ĝ depends on the entire data set, as the rest of the data
is used for selecting the classifiers.

1 In this study we restrict our attention to binary classification. The reason is sim-
plicity and that the binary problem already captures many of the main features
of more general problems. Even though there is much to say about multiclass
classification, we will not approach this increasing field of research.
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3 Dimension reduction for classification

3.1 Wavelet-based expansion of the observations

The theory of wavelets has recently undergone a period of rapid development
with exciting implications for nonparametric function estimation. Wavelets
are orthonormal basis functions that cut up signals into different frequency
components, and then study each component with a resolution matched to
its scale. The books of [Daubechies, 1992], [Meyer, 1992] and [Mallat, 1999]
give detailed expositions of the mathematical aspects of wavelets.

To summarize in our context, we recall that L2([0, 1]) is approximated by a
multiresolution analysis, i.e., a ladder of closed subspaces

V0 ⊂ V1 ⊂ . . . ⊂ L2([0, 1])

whose union is dense in L2([0, 1]), and where each Vj is spanned by 2j or-
thonormal scaling functions φj,k, k = 0, . . . , 2j − 1, such that supp(φj,k) ⊂
[k2−j, (k + 1)2−j]. At each resolution level j ≥ 0, the orthonormal com-
plement Wj between Vj and Vj+1 is generated by 2j orthonormal wavelets
ψj,k, k = 0, . . . , 2j − 1. Thus, the family

⋃

j≥0

{ψj,k}k=0,...,2j−1

completed by {φ0,0} forms an orthonormal basis of L2([0, 1]). As a conse-
quence, any observation X in L2([0, 1]) reads

X(t) =

∞∑

j=0

2j−1∑

k=0

ζj,kψj,k(t) + ηφ0,0(t), t ∈ [0, 1],

where

ζj,k =

∫ 1

0

X(t)ψj,k(t)dt and η =

∫ 1

0

X(t)φ0,0(t)dt.

3.2 Consistent functional classification

In this paragraph, we present the construction of our classifier and discuss
its consistency properties. Using the notation of Section 2, the data consist
of a sequence of n +m i.i.d. L2([0, 1]) × {0, 1}-valued random observations
(X1, Y1), . . . , (Xn+m, Yn+m). Given a multiresolution analysis of L2([0, 1]) as
explicited above, each observation Xi is expressed as a series expansion

Xi(t) =

∞∑

j=0

2j−1∑

k=0

ζij,kψj,k(t) + ηiφ0,0(t), t ∈ [0, 1]. (1)
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For the sake of coherence, it will be convenient to reindex the sequence
{φ0,0, ψ0,0, ψ1,0, ψ1,1, ψ2,0, ψ2,1, ψ2,2, ψ3,0, ...} into {ψ1, ψ2, ψ3, ...}. With this
scheme, expression (1) may be rewritten as

Xi(t) =
∞∑

j=1

Xijψj(t), t ∈ [0, 1], (2)

hence the random coefficients

Xij =

∫ 1

0

Xi(t)ψj(t)dt.

Let Xi = (Xi1, Xi2, . . .) be the coefficients associated with Xi. Recall that
the Hilbert space L2([0, 1]) is isomorphic with `2 =

{
x = (x1, x2, . . .) :∑∞

j=1 x
2
j < ∞

}
. Consequently, knowing Xi is the same as knowing Xi =

(Xi1, Xi2, . . .). In our quest of dimension reduction, we first fix in (1) a
maximum resolution level J (J ≥ 0, possibly function of n) so that

Xi(t) ≈
J−1∑

j=0

2j−1∑

k=0

ζij,kψj,k(t) + ηiφ0,0(t), t ∈ [0, 1]

or equivalently, using (2),

Xi(t) ≈
2J∑

j=1

Xijψj(t), t ∈ [0, 1].

At this point, we could try to use these finite-dimensional approximations of

the observations, and let the data select optimally one of the 22J −1 subbases
of {ψ1, . . . , ψ2J}. By doing so, we would face with an unreasonable overall
algorithmic complexity, and therefore catastrophic subsequent performance
bounds. Thus, in order to reduce the overall complexity of the problem, we
suggest the following procedure.

First, for each d = 1, . . . , 2J , we assume to be given beforehand a (pos-

sibly infinite) collection D
(d)
n of rules g(d) : Rd × (Rd × {0, 1})n → {0, 1}

working in Rd and using n d-dimensional learning data as input. For fixed

training sequence (x1, y1), . . . , (xn, yn), denote by C
(d)
n the collection of all

sets {
{x ∈ Rd : φ(x) = 1} : φ ∈ D(d)

n

}
,

and define the shatter coefficient as

S
C

(d)
n

(m) = max
z1,...,zm∈Rd

Card
{
{z1, . . . , zm} ∩ C : C ∈ C(d)

n

}
.
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With a slight abuse of notation, we will denote by S
(J)
Cn

(m) the shatter co-

efficient corresponding to the collection of all rules {g(d) : d = 1, . . . , 2J}
embedded in R2J

. Observe that

S
(J)
Cn

(m) ≤
2J∑

d=1

S
C

(d)
n

(m). (3)

Second, we let the n training data reorder the first 2J basis functions
{ψ1, . . . , ψ2J } into

{
ψj1 , . . . , ψj2J

}
via the scheme

n∑

i=1

X2
ij1 ≥

n∑

i=1

X2
ij2 ≥ . . . ≥

n∑

i=1

X2
ij

2J
. (4)

In other words, we just let the training sample decide by itself which basis
functions carry the most significant information.

We finish the procedure by a third selection step: pick the effective di-

mension d ≤ 2J and a classification rule g(d) in D
(d)
n by approximating each

Xi by X
(d)
i = (Xij1 , . . . , Xijd) (without loose of generality, we assume implic-

itly that the sequence (jk) is ordered – if not, just reorder it).

We select the dimension d and the rule simultaneously, using the data-
splitting device described in Section 2. Precisely, we select both d and g(d)

optimally by minimizing the empirical probability of error based on the in-
dependent validation set, that is

(
d̂, ĝ(d̂)

)
= argmin
d=1,...,2J ,g(d)∈D

(d)
n

[
1

m

n+m∑

i=n+1

1
[g(d)(X

(d)
i ) 6=Yi]

]
. (5)

Apart from being conceptually simple, this method leads to the classifier

ĝ(x) = ĝ(d̂)(x(d̂)) with a probability of misclassification

Ln+m(ĝ) = P
{
ĝ(X) 6= Y | (X1, Y1), . . . , (Xn+m, Yn+m)

}
.

The selected rule ĝ satisfies the following optimal inequality.

Theorem 1

E
{
Ln+m(ĝ)

}
− L∗ ≤ L∗

2J − L∗ + E
{

inf
d=1,...,2J

g(d)∈D(d)
n

Ln(g
(d))
}
− L∗

2J

+ 2E





√
8 log

(
4S

(J)
Cn

(2m)
)

m
+

1√
(m/2) log

(
4S

(J)
Cn

(2m)
)



 .
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Here

L∗
2J = inf

s:R2J →{0,1}
P{s(X(2J )) 6= Y }

stands for the Bayes probability of error when the feature space is R2J

.

We may view the first term, L∗
2J − L∗, on the right of the inequality as

an approximation term – the price to be paid for using a finite dimensional
approximation – and it converges to zero. The second term,

E
{

inf
d=1,...,2J

g(d)∈D(d)
n

Ln(g
(d))
}
− L∗

2J

can be handled by standard results on classifications. Let us first recall the
definition of a consistent rule: a rule g is consistent if E

{
Ln(g)

}
→ L∗ as

n→∞.

Corollary 1 Let J ≥ 0 be a fixed integer. Assume that from each D
(2J )
n ,

n ≥ 1, we can pick one g
(2J)
n such that the sequence (g

(2J )
n )n≥1 is consistent

for a certain class of distributions. Then the automatic rule ĝ defined in (5)
is consistent for the same class of distributions, i.e.,

E
{
Ln+m(ĝ)

}
→ L∗ as n→∞

if

lim
n→∞

J =∞, lim
n→∞

m =∞, and lim
n→∞

E

{
log S

(J)
Cn

(2m)

m

}
= 0.

This consistency result is new and is especially valuable since few theo-
retical results have been established for functional classification. Corollary 1
shows that a consistent rule is selected if, for each fixed J ≥ 0, the sequence

of D
(2J )
n ’s contains a consistent rule, even if we do not know which functions

from D
(2J )
n lead to consistency. If we are just worried about consistency,

Corollary 1 reassures us that nothing is lost as long as we take m much

larger than log E
{

S
C

(J)
n

(2m)
}
. Often, this reduces to a very weak condition

on the size m of the testing set and the maximum resolution J . Note also that
it is usually possible to find upper bounds on the random variable S

C
(J)
n

(2m)

that depend on n,m and J , but not on the actual values of the random vari-
ables (X1, Y1), . . . , (Xn, Yn). In this case, the bound is distribution-free, and

the problem is purely combinatorial: count S
(J)
Cn

(2m). For example, if D
(d)
n

contains all nearest-neighbor rules, a trivial bound is

S
C

(d)
n

(2m) ≤ n
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because there are only n members in D
(d)
n . Consequently

S
(J)
Cn

(2m) ≤ 2Jn .

[Stone, 1977] proved the striking result that k-nearest neighbor classifiers are
consistent if X ∈ Rd, provided k →∞ and k/n→∞. Thus we see that our
strategy leads to a consistent rule whenever J/m → 0 and logn/m → 0 as
n→∞. For other examples, we refer to [Devroye, 1988].

4 Application to a speech recognition problem

In this section, we illustrate performance of our method. To this aim, we
study a part of TIMIT database which was investigated in [Hastie et al.,
1995]. The data are log-periodograms corresponding to recording phonemes
of 32 ms duration. We are concerned with the discrimination of five speech
frames corresponding to five phonemes transcribed as follows : “aa” as the
vowel in “dark” (695 items), “a0” as the first vowel in “water” (1022 items),
“dcl” as in “dark” (757 items), “iy” as the vowel in “she” (1163 items) and
“sh” as in “she” (872 items). The database is a multispeaker database. Each
speaker is recorded at a 16k-Hz sampling rate and we retain only the first
256 frequencies (see Figure 1). Thus, the data consist of 4509 series of length
256 with known class membership.

0 1
0

30
aa

0 1
0

30
ao

0 1
0

20
dcl

0 1
0

30
iy

0 1
0

20
sh

Fig. 1. A sample of 5 log-periodograms per class.
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We first compute the wavelet filtering approach described in Section 3 using

three collections of rules D
(d)
n working in Rd. Precisely:

• W-LDA denotes the wavelet filtering followed by the class D
(d)
n of all

linear discrimination rules.
• W-NN denotes the wavelet filtering followed by the class D

(d)
n of all

nearest-neighbor rules.

• W-T denotes the wavelet filtering followed by the class D
(d)
n of all binary

trees in which each internal node corresponds to a split perpendicular to
one of the axes [Devroye et al., 1996].

In addition, we propose to compare our algorithm with two existing alterna-
tive approaches:

• F-NN refers to the Fourier filtering approach combined with the k nearest-
neighbor rule described in [Biau et al., 2005].
• MPLSR refers to the multivariate partial least square regression. This

approach is studied in detail in [Preda and Saporta, 2002] and is used as
a benchmark in our context. The number of PLS components is selected
by minimizing the empirical probability of error based on the testing
sequence.

We use the split sample approach presented in Section 2 to select the free
parameters. The training sequence and the testing sequence both contain
250 observations. The error rate (e.r.) for classifying new observations is
unknown, but it can be estimated using the rest of the data:

e.r. =
1

3509

4509∑

i=501

1[ĝ(Xi) 6=Yi] ,

where ĝ denotes the selected rule. Table 1 displays the estimated error rates
for the different methods together with the dimensions selected (number of
PLS components for MPLSR). Results are averaged over 50 random parti-
tions of the data.

Method e.r. d̂

W-LDA 0.0854 18.70

W-NN 0.1096 19.52

W-T 0.1253 9.10

F-NN 0.1277 48.76

MPLSR 0.0904 5.96

Table 1. Estimated error rates.

We see that method W-LDA achieves the best estimated error rates, and
that its results are slightly inferior to method MPLSR. The results of the
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Fourier-based algorithm are still acceptable, because of a good localisation of
the signal.
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Abstract. Partial least squares regression on functional data is applied in the
context of linear discriminant analysis with binary response. The discriminant co-
efficient function is then used to compute scores which allow to assign a new curve
to one of the two classes. The method is applied to gait data and the results are
compared with those given by linear discriminant analysis and logistic regression
on the principal components of predictors.
Keywords: PLS, Second order stochastic process, Functional data, Linear dis-
criminant analysis.

1 Introduction

Functional data analysis extends the classical multivariate methods when
data are functions or curves. Examples of functional data can be found in
different fields of application such as medicine, economics, chemometrics and
many others (see [Ramsay and Silverman, 2002] for an overview). Figure 1
gives an example of such data. A well accepted model for this kind of data
is to consider it as paths of a stochastic process X = {Xt}t∈T taking values
in a Hilbert space of functions on some set T .

In this paper we consider X to be a second order stochastic process X =
{Xt}t∈[0,1], L2–continuous and with sample paths in L2([0, 1]). Let also Y
be a binary random variable, for instance, Y ∈ {0, 1}, defined on the same
probability space as X .

As formulated by Fisher in the classical setting (finite dimensional pre-
dictor), the aim of the linear discriminant analysis (LDA) of (X,Y ) is to

find the linear combination Φ(X) =
∫ 1

0 Xtβ(t)dt, β ∈ L2[0, 1], such that the
between-class variance is maximized relative to the total variance, i.e.

max
β∈L2[0,1]

V(E(Φ(X)|Y ))

V(Φ(X))
. (1)
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Fig. 1. Knee angular rotation over a complete gait cycle for one subject.

The random variable Φ(X) is referred as discriminant variable and the func-
tion β as discriminant coefficient function ([Hastie et al., 2001]).

In the context of functional data, the estimation problem for the discrim-
inant coefficients function, β, is generally an ill–posed one. Indeed, is well
known that the optimization problem (1) is equivalent to find the regres-
sion coefficients of the regression of Y (after a convenient encoding) on the
stochastic process X under the least-squares criterion. [Cardot et al., 1999],
[Preda and Saporta, 2002] point out the inconsistency of such a criterion for
this kind of predictors and propose solutions to overcome this difficulty. From
practical point of view, a large number of predictors (relatively to the size
of the learning sample) as well as the multicollinearity of predictors, lead to
inconsistent estimators. Nonparametric approaches for functional discrimi-
nant analysis are proposed in [Ferraty and Vieu, 2003] and [Biau et al., 2004].
Logistic regression for functional data using the projection method [Aguilera
et al., 1998] is given in [Escabias et al., 2004] and [Araki and Sadanori, 2004].

The aim of this paper is to perform LDA using the Partial Least Squares
(PLS) approach developed in [Preda and Saporta, 2002]. The paper is orga-
nized as follows. In section 2 we introduce some basic results on the linear
regression on functional data and the PLS approach. The relationship be-
tween LDA and linear regression is given in section 3. The section 4 presents
an application of the PLS approach for LDA using gait data provided by the
Center of Neurophysiology of the Regional Hospital of Lille (France). The
goal is to separate young and senior patients from the curve given by the
knee angular rotation over a complete gait cycle. The results are compared
with those given by the LDA and the logistic regression using as predictors
the principal components of data. The comparison of methods is made using
the criterion based on the area under the ROC curve.
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2 Some tools for linear regression on a stochastic
process

As stated above, let X = {Xt}t∈[0,1] be a second order stochastic process L2-
continuous and with sample paths in L2[0, 1] and Y a real random variable.
Without loss of generality we assume also that E(Xt) = 0, ∀t ∈ [0, 1] and
E(Y ) = 0.

It is well known that the approximation of Y obtained by the classical

linear regression on X , Ŷ =
∫ 1

0
β(t)Xtdt is such that β is in general a distri-

bution rather than a function of L2([0, 1]) ([Saporta, 1981]). This difficulty
appears also in practice when one tries to estimate the regression coefficients,
β(t), using a sample of size N . Indeed, if {(Y1, X1, (Y2, X2), . . . (YN , XN )} is
a finite sample of (Y,X), the system

Yi =

∫ 1

0

Xi(t)β(t)dt, ∀i = 1, ..., N,

has an infinite number of solutions ([Ramsay and Silverman, 1997]). Regres-
sion on principal components (PCR) of (Xt)t∈[0,1] ([Aguilera et al., 1998])
and PLS approach ([Preda and Saporta, 2002]) give satisfactory solutions to
this problem.

2.1 Linear regression on principal components

Also known as Karhunen-Loève expansion, the principal component ana-
lysis (PCA) of the stochastic process (Xt)t∈[0,1] consists in representing Xt

as :
Xt =

∑

i≥1

fi(t)ξi, ∀t ∈ [0, 1], (2)

where the set {fi}i≥1 (the principal factors) forms an orthonormal system of
deterministic functions of L2([0, 1]) and {ξi}i≥1 (principal components) are
uncorrelated zero-mean random variables. The principal factors {fi}i≥1 are
solution of the eigenvalue equation :

∫ 1

0

C(t, s)fi(s)ds = λifi(t), (3)

where C(t, s) = cov(Xt, Xs), ∀t, s ∈ [0, 1]. Therefore, the principal compo-

nents {ξi}i≥1 defined as ξi =
∫ 1

0fi(t)Xtdt are eigenvectors of the Escoufier
operator, WX , defined by

WXZ =

∫ 1

0

E(XtZ)Xtdt, Z ∈ L2(Ω). (4)

The process {Xt}t∈[0,1] and the set of its principal components, {ξk}k≥1,
span the same linear space. Thus, the regression of Y on X is equivalent to
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the regression on {ξk}k≥1 and we have Ŷ =
∑

k≥1

E(Y ξk)

λk
ξk.

In practice we need to choose an approximation of order q, q ≥ 1 :

ŶPCR(q) =

q∑

k=1

E(Y ξk)

λk
ξk =

∫ 1

0

β̂PCR(q)(t)Xtdt. (5)

But the use of principal components for prediction is heuristic because
they are computed independently of the response. One alternative is the PLS
approach which builds directions for regression (PLS components) taking into
account the response variable Y .

2.2 PLS regression on a stochastic process

The PLS (Partial Least Squares) approach offers a good alternative to the
PCR method by replacing the least squares criterion with that of maximal
covariance between (Xt)t∈[0,1] and Y ([Preda and Saporta, 2002]).

The PLS regression is an iterative method. Let X0,t = Xt, ∀t ∈ [0, 1]
and Y0 = Y . At step q, q ≥ 1, of the PLS regression of Y on X , we
define the qth PLS component, tq, by the eigenvector associated to the largest
eigenvalue of the operator WX

q−1W
Y
q−1, where WX

q−1, respectively WY
q−1, are

the Escoufier’s operators associated to X , respectively to Yq−1. The PLS step
is completed by the ordinary linear regression of Xq−1,t and Yq−1 on tq. Let
Xq,t, t ∈ [0, 1] and Yq be the random variables which represent the residual
of these regressions : Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.

Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and
the following decomposition formulas hold :

Y = c1t1 + c2t2 + . . .+ cqtq + Yq,
Xt = p1(t)t1 + p2(t)t2 + . . .+ pq(t)tq +Xq,t, t ∈ [0, 1].

The PLS approximation of Y by {Xt}t∈[0,1] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + . . .+ cqtq =

∫ 1

0

β̂PLS(q)(t)Xtdt. (6)

[de Jong, 1993] and [Phatak and De Hoog, 2001] show that for a fixed q, the
PLS regression fits closer than PCR, that is,

R2(Y, ŶPCR(q)) ≤ R2(Y, ŶPLS(q)). (7)

In [Preda and Saporta, 2002] we show the convergence of the PLS approxi-
mation to the approximation given by the classical linear regression :

lim
q→∞

E(|ŶPLS(q) − Ŷ |2) = 0. (8)

In practice, the number of PLS components used for regression is determined
by cross-validation ([Tenenhaus, 1998]).
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3 LDA and linear regression for functional data

Let us denote by

p0 = P(Y = 0), p1 = 1− p0 = P(Y = 1),
µ0(t) = E(Xt|Y = 0), µ1(t) = E(Xt|Y = 1), t ∈ [0, 1].

Since E(Xt) = 0, it follows that p0µ0(t) + p1µ1(t) = 0, ∀t ∈ [0, 1].
Let also denote by C the covariance operator associated to the process X
defined on L2[0, 1] by

f
C7−→ g, g(t) =

∫ 1

0

E(XtXs)f(s)ds,

and by B the operator on L2[0, 1] defined by

f
B7−→ g, g(t) =

∫ 1

0

B(t, s)f(s)ds,

where B(t, s) = p0µ0(t)µ0(s) + p1µ1(s)µ1(t) = p0p1(µ0(t) − µ1(t))(µ0(s) −
µ1(s)). Denoting by φ =

√
p0p1(µ0 − µ1), it follows that

B = φ⊗ φ,

where φ⊗ φ(g) = φ〈φ, g〉L2[0,1], g ∈ L2[0, 1].
As in the classical setting, the discriminant coefficient function, β ∈

L2[0, 1], which satisfies the criterion given in (1), corresponds to the largest
λ, λ ∈ R, such that

Bβ = λCβ, (9)

with 〈β,Cβ〉L2[0,1] = 1.

Without loss of generality, let us recode Y by : 0 
√

p1
p0

and 1 −
√

p0
p1

.

If β is a solution of (9) then λ = 〈φ, β〉2L2 [0,1] and β is solution of the Wiener-
Hopf equation

E(Y Zt) =

∫ 1

0

E(ZtZs)β(s)ds, (10)

where Zt = 〈φ, β〉L2[0,1]Xt, t ∈ [0, 1]. The function β given by equation
(10) is the regression coefficient function of the linear regression of Y on
Z = {Zt}t∈[0,1]. Equation (10) has an unique solution under conditions of
convergence of series implying the eigenvalues and eigenvectors of the covari-
ance operator of the process X [Saporta, 1981]. These conditions are rarely
satisfied. Thus, in practice, the problem to find β is generally an ill-posed
problem.

However, if the aim is to find the discriminant variable (scores), then one
can use the above relationship between LDA and linear regression. The reg-
ularized linear methods proposed in Section 2 provides good approximations
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by using (5) and (6) with Y recoded as above. Then β̂PCR(q)
and β̂PLS(q)

can
be used to compute the discriminant score for a new observation for which
one has only the observation of X . The prediction for a new observation is
given with respect to a reference score value which is determined on a test
sample such that the classification error rate is minimum.

4 Application to gait data

The application deals with data provided by the Department of Movement
Disorders, Lille University Medical Center (France). This data is described by
a set of curves representing the knee flexion angle evolution over one complete
gait cycle and characterizes patients from two classes of age ([Duhamel et al.,
2004]). We are interested in predicting the class of age from the knee curve.
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a) A sample of 40 cubic spline interpolated curves of the right knee angular
rotation (20 for young subjects – in red, and 20 for senior subjects – in blue).
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b) Mean estimation of angular rotation of the right knee during a complete cycle
for each group.

Fig. 2. Knee flexion angular data

Two groups of 30 subjects were studied : 30 young students (mean age 27
years and standard deviation 4 years) and 30 healthy senior citizens (mean
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age 64 years and standard deviation 6 years). For each subject the observed
data represent the flexion angle for the right knee measured during one com-
plete gait cycle. Each curve represents a gait cycle and is given by a set
{(xti , ti)}i=1,...,50 of 50 values corresponding to an equidistant discretisation
of the cycle.

We assume that data represent sample paths of a stochastic process
{Xt}t∈T of second order and L2 continuous. Also, it is natural to consider
that the paths are derivable functions of time (percent of gait cycle) and
therefore, cubic spline interpolation is performed for each curve.

Data is randomly divided into two samples, a learning sample of 40 sub-
jects (Figure 2a) and a test sample of 20 patients. Each sample contains the
same number of young and senior subjects.

In order to approximate the discriminant variable Φ(X) =
∫ 1

0 Xtβ(t)dt, we
use the PLS regression ([Preda and Saporta, 2002]) for binary response. The
number of PLS components in the model is given by cross validation [Tenen-
haus, 1998]. A PLS model with q components is quoted by LDA PLS(q). In
our example q = 3 and the proportion of inertia of X explained by {t1, t2, t3}
is 0.825. The PLS approach is compared with linear discriminant analysis
and logistic regression using the principal components of X = {Xt}t∈[0,1] as
predictors (the four first principal components explain 94.64% of the total
inertia of X). Let us quote by LDA PCR(q) and LogPCR(q) these mod-
els using the q first principal components. The logistic regression using q
PLS components is quoted by LogPLS(q). The comparison criterion is the
area under the ROC (Receiver Operating Characteristic) curve (Figure 3)
estimated on the test sample.

 ROC curve
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Fig. 3. ROC curves for each discriminant function.
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Fig. 4. Discriminant coefficient function β̂PLS(3) for LDA PLS(3)

Model LDA PLS(3) LDA PCR(4) Log PCR(4) Log PLS (3)

Area 0.790 0.780 0.790 0.780

Table 1. Area under the ROC curve. Sample test estimation.

5 Conclusion

PLS regression on functional data is used for linear discriminant analysis with
binary response. It is an interesting alternative to classical linear methods
based on principal components of predictors. Our intuition that similar or
better results may be obtained with less PLS components than principal
components is confirmed by an example on medical data.
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Abstract. A new partitioning method based on the non-homogeneous Poisson
processes is presented. The principle of construction is of hierarchical divisive
monothetic type. A variable is selected at each stage to cut a group into two sub-
sets in a recursive way. The criterion consists in maximizing the ’gap’ between the
data. This last-one is deduced from the maximum likelihood criterion. A pruning
phase, that is a simplification of the tree structure, based on the Gap test is then
performed. An application of this algorithm on the well-know Ichino’s oils dataset
(interval data) is described.
Keywords: Clustering trees, Non-homogeneous Poisson processes, Gap test, Sym-
bolic data.

1 Introduction

One of the most common tasks in data analysis is the detection and con-
struction of groups of objects in a population E such that objects from the
same group show a high similarity whereas objects from different groups are
typically more dissimilar. Such groups are usually called ’clusters’ and must
be constructed on the basis of the data which were recorded for the objects.
This problem is know as clustering.

The present method is a divisive monothetic clustering method for a sym-
bolic n× p data array X.

The resulting classification structure is a k-partition.

2 Input Data: Interval Data

This algorithm studies the case where n symbolic objects are described by p
interval variables Y1, . . . , Yp.

The interval-valued variable Yj(j = 1, . . . , p) is measured for each element
of the basic set E = {1, . . . , n}. For each element x ∈ E, we denote the
interval Yj(x) by [y

jx
, ȳjx], thus y

jx
(resp. ȳjx) is the lower (resp. the upper)

bound of the interval Yj(x) ⊆ R.
An example is given by table 1.
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3 The Clustering Tree Method

The proposed algorithm is a recursive one intended to divide a given popula-
tion of symbolic objects into classes. According to the clustering tree method,
nodes are split recursively by choosing the best interval variable.

The original contribution of this method lies in the way of splitting a
node. The cut will be based on the only assumption that the distributions
of points can be modeled by non-homogeneous Poisson process, where the
intensity will be estimated by the kernel method. The cut will be made in
order to maximize the likelihood function.

3.1 General Hypothesis: Non-Homogeneous Poisson Process

The only assumption on which the clustering problem rests is that the ob-
served points are generated by a non-homogeneous Poisson process with in-
tensity q(.) and are observed in E, where E is the union of k disjoint convex
fields.

The likelihood function, for the observations x = (x1, x2, . . . , xn) with
xi ∈ Rd, i = 1, . . . , n is:

fE(x) =
1

(ρ(E))n

n∏

i=1

l1E(xi).q(xi)

where

• ρ(E) =
∫
E
q(x)dx is the integrated intensity;

• q(.) is the process intensity (q(x) > 0 ∀x).

Consequently, if the intensity of the process is known, the solution of the
maximum likelihood will correspond to k disjoint convex fields containing all
the points and for which the sum of the integrated intensities is minimal. For
an homogenous Poisson process on the line, this gives exactly the N-N rule.
When the intensity is unknown, it will be estimated.

3.2 Kernel Method

To estimate the intensity of a non-homogeneous Poisson process, the non-
parametric kernel method is used. Because this algorithm proceeds in a
monothetic way, formulas dont’t need to be extended beyond one dimension.
The kernel estimator, which is a sum of ’bumps’, each of these centered on
an observation, is defined by:

q̂(x) =
1

n

n∑

i=1

1

h
K
(x−Xi

h

)

where
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• K is the kernel and is a positive continuous symmetric function satisfying∫
K(x)dx = 1. The kernel determines the shapes of the bumps.

• h is the window width, also called the smoothing parameter and deter-
mines the width of the bumps.

The choice of the smoothing parameter is important. If it is too small,
the estimator degenerates into a succession of peaks located at each point of
the sample. If it’s too large, the estimation approaches an uniform law and
then we will have a loss of details.

3.3 Bumps and Multi-modalities

Within the clustering context, Silverman ([Silverman, 1981], [Silverman,
1986]) defined a mode in a density f as a local maximum while a bump
is characterized by an interval, in such way that the density is concave on
this interval but not on a larger interval.

In the framework of density estimation by the kernel method, the num-
ber of modes will be determined by the smoothing parameter, following Sil-
verman’s assertion : the number of modes is a decreasing function of the
smoothing parameter h ([Silverman, 1981],[Silverman, 1986]).

This has been proved at least for the normal kernel defined by :

KN (t) =
1√
2π
e−

t2

2 .

Consequently, this one was prefered to perform estimation of the intensity
of the non-homogeneous Poisson process.

Because of this choice, there is a critical value hcrit of the smoothing
parameter for which the estimation changes from unimodality to multi-
modality. The split criterion will seek this value.

3.4 Splitting Criteria

For each variable, a dichotomic process computes the highest value of param-
eter h, giving a number of modes of the associated intensities strictly larger
than 1. Once this h determined, E is split into two convex disjoint fields E1

and E2, such that E = E1 ∪E2, for which the likelihood function

fE1,E2(x) =
1

(ρ(E1) + ρ(E2))n

n∏

i=1

l1E1∪E2 .q̂(xi)

is maximum, i.e. for which the integrated density ρ(E1) + ρ(E2) is smallest.
Since the algorithm proceeds variable by variable, the best variable, i.e.

the one which generates the ”largest gap” (the density integrated on this gap
is the largest), is selected.

This procedure is recursively performed until some stopping rule is ful-
filled: the number of points in a node must be under a cut-off value.
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3.5 Pruning Method

At the end of the splitting process, a large tree is obtained. A pruning method
to select the best subtree was then developped. This pruning method takes
the form of a classical hypothesis test: the Gap test ([Kubushishi, 1996],
[Rasson and Kubushishi, 1994]).

The principle is the following: each cut is examined to determine if it is
a good one (Gap Test satisfied) or a bad one (Gap Test unsatisfied). In the
case of two classes D1 and D2, with D1 ∪D2 = D, the hypotheses are:

H0: there are n = n1 + n2 points in D1 ∪D2

VS
H1: there are n1 points in D1 and n2 points in D2, with D1 ∩D2 = ∅.
This pruning method crosses the tree branch by branch, from its root to

its leaves, in order to index the good cuts and the bad cuts. The ends of the
branches for which there are only bad cuts are pruned.

3.6 Application to Interval Data

The current problem is to apply this new method to symbolic data of interval
type. Let an interval set

I = {[ai, bi], i = 1, . . . , n, ai ≤ bi}.

The usual distance used for interval variables is the Hausdorff distance:

dH([a1, b1], [a2, b2]) = Max(|a1 − a2|, |b1 − b2|)

or ([Chavent and Lechevallier, 2002], [Chavent, 1997])

d([a1, b1], [a2, b2]) = |M1 −M2|+ |L1 − L2|

where Mi = ai+bi

2 is the middle point of the interval [ai, bi] and Li = bi−ai

2
is its half-length.

So each interval can be represented by its coordinates (middle,half-length),
on the space (M,L) ⊆ IR× IR+.

It is clear that separations must respect the order of the classes centers
and thus, in the half-plane IR × IR+, only partitions invariant in relation to
M are considered.

In the most general case of a non-homogeneous Poisson process, the inte-
grated intensity has to be minimized:

∫ Mi+1

Mi

ρ1(m)dm+

∫ Max(Li,Li+1)

Min(Li,Li+1)

ρ2(l)dl. (1)

Any bipartition generated by a point being located inside the interval
which maximizes (1) is appropriate.
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3.7 Set of Binary Questions for Interval Data

In the framework of the divisive clustering method, the split of a node C
is performed on the basis of one single variable (suitably chosen) and an-
swers ([Chavent and Lechevallier, 2002], [Chavent, 1997]) to a specific binary
question of type ’Is Yj ≤ c?’, where c is called the cut value.

To the binary question ’Is Yj ≤ c?’, an object x ∈ C answers ’yes’ or
’no’ according to a binary function qc : E → {true, false}. The bipartition
(C1, C2) of C induced by the binary question is as follows :

• C1 = {x ∈ C | qc(x) = true}
• C2 = {x ∈ C | qc(x) = false}

Consider the case of interval variables: Let Yj(x) = [α, β], the middle of

[α, β] is mx = α+β
2 .

1. The binary question is ”Is mx ≤ c?”.
2. The function qc is defined by:
• qc(x) = true if mx ≤ c
• qc(x) = false if mx > c

3. The bipartition (C1, C2) of C induced by the binary question is :
• C1 = {x ∈ C | qc(x) = true}
• C2 = {x ∈ C | qc(x) = false}

3.8 Output Data and Results

After the tree-growing algorithm and the pruning procedure, the final clus-
tering tree is obtained.

The nodes of the tree represent the binary questions selected by the al-
gorithm and the k leaves of the tree define the k-partition. Each cluster is
characterized by a rule, i.e, the path in the tree which provided it. The clus-
ters therefore become new symbolic objects defined according to the binary
questions leading from the root to the corresponding leaves.

4 Example on the Oils and Fats Data

The above clustering method has been examined with the well-known Ichino’s
oils dataset. The data set (Table 1) is composed of 8 oils described in terms
of four interval variables.

This divisive algorithm yields the 3-cluster partition represented in the
tree given in figure 1.

Two binary questions correspond to two binary functions E →
{true, false}, given by q1 = [Spec. Grav.(x) ≤ 0.89075] and q2 =
[Iod. Val.(x) ≤ 148.5].

Each cluster corresponds to a symbolic object, e.g. a query assertion:



S-Class, A Divisive Clustering Method, and Possible ”Dual” Alternatives 667

Sample Specific Gravity Freezing point Iodine Value Saponification Value

linseed oil [0.930;0.935] [-27;-18] [170;204] [118;196]
perilla oil [0.930;0.937] [-5;-4] [192;208] [188;197]

cottonseed oil [0.916;0.918] [-6;-1] [99;113] [189;198]
sesam oil [0.920;0.926] [-6;-4] [104;116] [187;193]

camelia oil [0.916;0.917] [-21;-15] [80;82] [189;193]
olive oil [0.914;0.919] [0;6] [79;90] [187;196]

beef tallow [0.860;0.870] [30;38] [40;48] [190;199]
hog fat [0.858;0.864] [22;32] [53;77] [190;202]

Table 1. Table of oils and fats

Fig. 1. Clustering tree obtained on the Ichino’oils dataset.

• C1 = [Spec. Grav.(x) ≤ 0.89075],
• C2 = [Spec. Grav.(x) > 0.89075]∧ [Iod. Val.(x) ≤ 148.5],
• C3 = [Spec. Grav.(x) > 0.89075]∧ [Iod. Val.(x) > 148.5].

Then, the resulting 3-cluster partition is: C1 = {beef, hog}, C2 =
{cottonseed, sesam, camelia, olive}, C3 = {linseed, perilla}.

5 Further Works and Conclusions

Following that work, a new clustering method was conceived. It’s also a
hierarchical clustering method but a multivariate agglomerative one. The
basic idea was to find a merging criterion which would have been dual and
complementary to the splitting one. But the strictly dual criterion, consisting
in measuring the area sustended by the density between 2 points (or groups
of points) and then merging the 2 points (or groups) which are the closest in
that sense, presents a risk: gathering 2 points (or groups) which are obviously
in different groups.

If a model in dimension d is used, the real criterion (the maximum like-
lihood criterion) for the divisive method, e.g. between two convex clusters
consists in finding the two clusters such that the difference of the hypervol-
umes sustended by the density between the global convex hulls of the two
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clusters is the largest. In an agglomerative way, this difference should be the
smallest.

Computing hypervolumes causes computational problems. But, if all the
sustended areas (on each axis) between the respective coordinates of the two
points are small, then the hypervolume in dimension d will be small (This
implication is not reversible).

Therefore for each couple of points xi = (xi1, · · · , xid) and xj =
(xj1, · · · , xjd), the following quantities are computed

diss(xi, xj) = max
1≤k≤d

|
∫ xjk

xik

f̂k(x)dx| (2)

where f̂(·) is an estimation of the density function for the variable k:

f̂k(x) =
1

nhk

n∑

i=1

1√
2π
e
− (x− xi)2

2h2
k .

The value of hk, the smooting parameter is chosen following Silverman
([Silverman, 1986]) as hk = 1, 06 ·min(σk, Rk/1, 34) ·n−0,2, where σk (respec-
tively Rk) is the standard deviation (respectively the interquartil range) of
the n values x1k, · · · , xnk.

It can be shown easily that (2) is a dissimilarity measure. For two clusters
Ci and Cj , there exist many ways to define diss(Ci, Cj). For example:

• the single linkage method where diss(Ci, Cj) = min
x∈Ci,y∈Cj

diss(x, y),

• the complete linkage method where diss(Ci, Cj) = max
x∈Ci,y∈Cj

diss(x, y).

Based on these definitions, the merging criterion consists in grouping the
two objects X and Y (either points or clusters) for which diss(X,Y ) is the
smallest.

The method proceeds from the situation where all the points are in sep-
arate clusters until they all form a unique cluster. Consecutive merging can
be represented by a dendrogram (figure 2).

The resulting algorithm based on these concepts was implemented and
seems to be very powerful. The first results obtained are promising. For ex-
ample, the structure of the dendrogram (figure 2) constructed by the method
on the Ichino’s Oils dataset is very good if compared with the tree obtained
with the first method or those presented in ([Chavent, 1997], page 139).

A new hierarchical divisive monothetic method was first developped. The
only hypothese needed was that the observed points are generated by a non-
homogeneous Poisson process. The algorithm performed in two steps : split-
ting and pruning. The splitting rule was deduced from a maximum likelihood
criterion; the pruning method was based on the Gap test. An application
of this algorithm was presented on a well-known interval dataset. The split-
ting criterion also gave the idea to develop a new dissimilarity measure for
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Fig. 2. Dendrogram obtained on the Ichino’oils dataset, complete linkage method.

hierarchical agglomerative clustering. The resulting algorithm was briefly
described. Applied on the same dataset, it produced very interesting results.
All these ways will be thorough in the future.
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Abstract. Interval variables can be measured on very different scales. We first
remind a general methodology used for measuring the dispersion of a variable from
an optimal center and we define two measures of dispersions associated to two op-
timal ”centers” for interval variables. Then we study the relations between the
standardization of a data table and the use in clustering of a normalized distance.
Finally we define two normalized distances between hyper-rectangles and their use
in two normalized k-means clustering algorithms.
Keywords: Interval data, Standardization, Normalized Hausdorff distance, Clus-
tering.

1 Introduction

A classical quantitative data table (xji )n×p describes n objects {1, ..., i, ..., n}
by p quantitative variables {1, ..., j, ..., p} which may be defined on different
scales. This phenomenon is measured by the dispersion (standard deviation,
range, percentile ranges...) of each variable.

Dealing with variables measured on very different scales is a problem
when comparing two objects globally on all the variables. For instance the
Euclidean distance or more generaly the Lp-distance will give implicitly more
importance to variables of strong dispersion and the comparison between ob-
jects will only reflect their differences on those variables. This phenomenon
has then an incidence on the clustering into classes of homogeneous objects
(i.e. objects highly similar to each other): only variables with strong disper-
sion will have an important contribution in the construction of clusters. A
natural way to avoid this effect is either to normalize the data table or to use
normalized distances.

Recently, several clustering methods have been proposed in the field of
symbolic data analysis [Diday, 1988], [Bock and Diday, 2000]. Several works
on k-means clustering of interval data sets have been published [Bock, 2001],
[Chavent and Lechevallier, 2002], [De Carvalho et al., 2003], [Chavent et al.,
2003], [De Souza and De Carvalho, 2004] and [Chavent, 2004].

The problem of the standardization of this new type of data is now nat-
urally arising. In [Chavent, 1997], the symbolic data set was not directly
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normalized but normalized distances between symbolic objects were used:

d(i, i′) = (

p∑

j=1

1

(σj)α
d(xji , x

j
i′ )
α)1/α (1)

where d was a measure of comparison between two symbolic descriptions (two
intervals for instance) and σj a measure of dispersion of a variable j defined
by:

σj =
1

2n

n∑

i=1

n∑

i′=1

d2(xji , x
j
i′) (2)

The use of a double sum in [2] was not really appropiate for computing σj

on voluminous data sets.
This question of the standarization of symbolic data has also been clearly

raised for interval data in [De Carvalho et al., 2003] where the authors pro-
posed measures of dispersion based on the dispersion of the centers, the lower
bounds or the upper bounds of the intervals.

In [Chavent and Lechevallier, 2002] and [Chavent, 2004], two k-means
clustering algorithms of hyper-rectangles with Hausdorff distances where pro-
posed. The idea here is to use the explicit formula of the optimum class
prototype given in those two papers in order to define two ”mean” intervals
optimizing two measures of dispersion (see section 2). Those two measures of
dispersion are called the ”star” and the ”radius” of an interval variable (see
sections 2.1 and 2.2). After a few words on the relation between standard-
izing an interval data table and using a normalized distance between hyper-
rectangles (see section 3), the two k-means algorithms given in [Chavent and
Lechevallier, 2002] and in [Chavent, 2004] are ”normalized” (see section 4).

In the rest of this paper we will consider an interval data table (xji )n×p
where each object i is described for each variable j by an interval

xji = [aji , b
j
i ] ∈ I = {[a, b] | a, b ∈ < , a ≤ b}

Each object i is then described by an hyper-rectangle of <p:

xi =

p∏

j=1

[aji , b
j
i ]

2 Measure of centrality and dispersion

For a classical quantitative variable j the mean squared deviation measures
the dispersion from the mean x̄j which is the optimal solution ŷ of the fol-
lowing minimization problem:

min
y∈<

n∑

i=1

(xji − y)2 = min
y∈<

n∑

i=1

d2(xji , y)

︸ ︷︷ ︸
f(y)

(3)
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In the same way the mean absolute deviation measures the dispersion from
the median xjM which is the optimal solution ŷ of the following minimization
problem:

min
y∈<

n∑

i=1

|xji − y| = min
y∈<

n∑

i=1

d(xji , y)

︸ ︷︷ ︸
f(y)

(4)

In both cases, f(ŷ) is a measure of dispersion.

For an interval variable j we have xji = [aji , b
j
i ] and the ”measures” of

centrality are not real values like the mean or the median values but an
interval of values noted y = [α, β]. We have seen that the mean and the
median are optimal centers of two different dispersion measures f . Our aim

is then to define optimal centers ŷ = [α̂, β̂] for functions f chosen to measure
the dispersion. Those functions are based on a distance d between intervals.

The distance chosen here to compare two intervals is the Hausdorff dis-
tance. This set-distance dH is simplified in the particular case of two intervals
to:

dH([aji , b
j
i ], [a

j
i′ , b

j
i′ ]) = max(|aji − aji′ |, |bji − bji′ |) (5)

In the next sections we will define two different optimal ”centers” ŷ = [α̂, β̂]
and two different measures of dispersion f(ŷ).

2.1 The ”star”

We consider the following measure of dispersion from ŷ:

f(ŷ) =

n∑

i=1

dH(xji , ŷ) (6)

where dH is the Hausdorff distance between the intervals xji and ŷ and where
ŷ is defined by:

ŷ = argmin
y∈I

n∑

i=1

dH(xji , y) (7)

We use a result of [Chavent and Lechevallier, 2002] to define an explicit

formula for the optimal “central” interval ŷ = [α̂, β̂]: by a simple rewriting of
the intervals xji = [aji , b

j
i ] according to their middle point mj

i and their half-

length lji , the authors proved that the middle point µ̂ and the half-length λ̂

of the interval ŷ minimizing
∑n

i=1 dH(xji , y) is:

µ̂ = median{mj
i | i = 1, ..., n} (8)

λ̂ = median{lji | i = 1, ..., n} (9)



Normalized k-means for hyper-rectangles 673

The following measure of dispersion σj is defined:

σj =

n∑

i=1

max(|aji − µ̂+ λ̂|, |bji − µ̂− λ̂|) (10)

Because the formulation of f given in (6) is close to the measure of homo-
geneity of a cluster C called the ”star”:

min
i∈C

∑

j∈C
dij

we will call σj defined in (10) the ”star” of the interval variable j.

2.2 The ”radius”

We consider the following measure of dispersion from ŷ:

f(ŷ) = max
i=1...n

dH(xji , ŷ) (11)

where dH is once again the Hausdorff distance between the intervals xji and
y and where ŷ is defined by:

ŷ = argmin
y∈I

max
i=1...n

dH(xji , y) (12)

We use here a result of [Chavent, 2004] to define an explicit formula for

the optimal “central” interval ŷ = [α̂, β̂]: the author proved that the lower
and upper bounds of interval ŷ minimizing maxi=1...n dH(xji , y) are:

α̂j =
maxi=1...n a

j
i + mini=1...n a

j
i

2
(13)

β̂j =
maxi=1,...,n b

j
i + mini=1,...,n b

j
i

2
(14)

The following measure of dispersion σj can then be defined:

σj = max
i=1...n

max(|aji − α̂j |, |bji − β̂j |) (15)

Because the formulation of f given in (11) is close to the measure of homo-
geneity of a cluster C called the ”radius”:

min
i∈C

max
j∈C

dij

we will call σj defined in (15) the ”radius” of the interval variable j.
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3 Standardization, distance and clustering

For a classical quantitative data table (xji )n×p, standardizing is a technique
for removing location and scale attributes. The standardized variables zj

have mean equal to 0 and standard deviation equal to 1 when the variables
xj are centered by their mean x̄j and normalized (reduced) by their standard
deviation σj . The Euclidean distance between two objects i and i′ of the
standardized matrix (zji )n×p is then:

d(zi, zi′) =

√√√√
p∑

j=1

(
xji − x̄j
σj

− xji′ − x̄j
σj

)2 (16)

=

√√√√
p∑

j=1

1

(σj)2
(xji − xji′ )2 (17)

= dM (xi, xi′) (18)

where dM is the weighed Euclidean distance and M = D1/σ2 . This weighed
distance is also sometimes called the normalized Euclidean distance.

We can then notice that:

• the clustering obtained from the initial data table (xji )n×p is similar to the

clustering obtained from the centered data table (xji−x̄j)n×p (because the
distances are equal). Indeed we are not directly concerned in this article
with the problem of centering interval data even if we have defined a
“central” interval previously in this article.
• the clustering performed with the initial data table (xji )n×p and the nor-

malized Euclidean distance dM is similar to the clustering performed
with the standardized (or simply normalized) data table (zji )n×p and the
”simple” Euclidean distance.

We have of course the same kind of results with the Minkowsky distance.

The questions are now: do we have the same kind of results for interval
data ? Is it equivalent to ”normalize” the intervals xji = [aji , b

j
i ] and to

use a ”normalized” distance ? What does “normalizing” an interval or
“normalizing” a distance between hyper-rectangles mean ?

Here we will try to answer those questions in the particular case of two
distances between hyper-rectangles of <p used in [Chavent and Lechevallier,
2002] and [Chavent, 2004]. We consider

xi =

p∏

j=1

[aji , b
j
i ]︸ ︷︷ ︸

xj
i
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and

xi′ =

p∏

j=1

[aji′ , b
j
i′ ]︸ ︷︷ ︸

xj

i′

The first distance d1 is not a real <p-set Hausdorff distance but a sum of
Hausdorff distances dH between intervals:

d1(xi, xi′ ) =

p∑

j=1

dH(xji , x
j
i′) (19)

The second distance d2 is a real <p-set Hausdorff distance called the
L∞-Hausdorff distance which can be written in the particular case of hyper-
rectangles as a maximum of Hausdorff distances dH between intervals:

d2(xi, xi′ ) = max
j=1...p

dH(xji , x
j
i′) (20)

If we consider now that “normalizing” an interval xji = [aji , b
j
i ] consists in

dividing its lower and upper bounds by the same measure of dispersion σj ,

the “normalized” interval of xji is zji = [
aj

i

σj ,
bj

i

σj ].

The Hausdorff distance between two “normalized” intervals is then:

dH(zji , z
j
i′) = max(|a

j
i

σj
− aji′

σj
|, | b

j
i

σj
− bji′

σj
|) =

1

σj
dH(xji , x

j
i′) (21)

and the distances d1 and d2 between the two “normalized” hyper-rectangles
zi and zi′ can then be written as:

d1(zi, zi′) =

p∑

j=1

1

σj
dH(xji , x

j
i′ ) (22)

and

d2(zi, zi′) = max
j=1...p

1

σj
dH(xji , x

j
i′) (23)

The normalized distance is then defined for d1 by:

d1(xi, xi′ ) = || (dH(xji , x
j
i′)j=1,...,p

σj
||L1 (24)

and for d2 by:

d2(xi, xi′) = || (dH(xji , x
j
i′)j=1,...,p

σj
||L∞ (25)

Finally, we have once again the result that the clustering performed with
the initial interval data table (xji )n×p and the normalized distances d1 or
d2 (given in (24) and 25 )) is similar to the clustering performed with the
“normalized” interval data table (zji )n×p and the “simple” distances d1 or d2

(given in (19) and (20)).



676 Chavent

4 Normalized k-means of hyper-rectangles

Dynamical clustering [Diday and Simon, 1976] called here for simplification k-
means clustering, proceeds by iteratively determining K class prototypes and
then reassigning all objects to the closest class prototype. If the prototype ŷ
of a cluster C is properly defined by optimization of an adequacy criterion f
(measuring the “dissimilarity” between the prototype and the cluster), the
algorithm converges and the partitioning criterion decreases at each iteration.

For classical quantitative data, when the prototype ŷ of a cluster C is the
mean-vector, the adequacy criterion minimized is:

f(y) =
∑

i∈C
d2(xi, y) =

∑

i∈C

p∑

j=1

(xji − yj)2 (26)

When a standardization is necessary, the columns xj are usually normalized

by σj =
√∑n

i=1(x
j
i − x̄j)2 or the normalized Euclidean distance dM with

M = D1/σ2 is used. The adequacy criterion measured on Ω = {1, ..., n} is
then equal to p, the number of variables.

In the same way when the prototype ŷ of a cluster C is the median-vector
xm, the adequacy criterion minimized is:

f(y) =
∑

i∈C
d(xi, y) =

∑

i∈C

p∑

j=1

|xji − yj| (27)

When a standardization is necessary, the columns xj are normalized by
σj =

∑n
i=1 |x

j
i − xjm| or the normalized Euclidean distance dM with

M = D1/σ is used. The adequacy criterion measured on Ω = {1, ..., n} is
then once again equal to p, the number of variables.

In the particular case of interval data the optimal prototype of a cluster is
an hyper-rectangle. We can repeat the previous reasoning for ”normalizing”
any k-means clustering algorithm of hyper-rectangles when the prototypes
are properly defined by optimization of an adequacy criterion. Here we use:

• the normalized distance (24) with σj the “star” defined in (10) for ”nor-
malizing” the k-means method of [Chavent and Lechevallier, 2002]
• the normalized distance (25) with σj the “radius” defined in (15) for

”normalizing” the k-means method of [Chavent, 2004]

5 Conclusion

In this paper we have proposed a general approach for the “normalization”
of dynamical clustering algorithms. We have seen that if the prototype of a
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cluster is properly defined by optimization of an homogeneity criterion, this
result can also be used to define a measure of dispersion and then to normal-
ize either the data or the distances. We have applied this methodology in
the particular case of two k-means clustering algorithms of hyper-rectangles.
The first one uses a “star” homogeneity criterion and a distance between
hyper-rectangles which is a sum of Hausdorff distances between intervals.
The second one uses a “radius” homogeneity criterion and the L∞ Hausdorff
distance between hyper-rectangles. The two corresponding dispersion mea-
sures of interval variables called here the “star” and the “radius” are then
simply used to “normalize” those two algorithms.
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Abstract. In this paper we propose an automatic method of describing classes
of complex objects (lists, diagrams, intervals, histograms, time series). The ap-
proach simultaneously generalizes a class and discriminates it from the others. This
method belongs to a family of algorithms called MGS (Marking and Generaliza-
tion by Symbolic objects) which were already applied on classical inputs, either to
Factorial Analysis interpretation in [Gettler Summa, 1992] [Giordano et al., 2000]
or to the interpretation of partitions [Gettler Summa et al., 1994]. It was also
used for summarizing huge databases in [Massrali et al., 1998]. For Customer Re-
lationship Management, MGS provides sets of client profiles which target shops,
brands or couponing analysis. An application through Intelligent Complex Miner
software is presented on jointed data bases of sells, couponing information, client
socio-demographic elements, and geo-marketing data.
Keywords: discriminant description, generalization, symbolic marking, general-
ized V-test, CRM.

1 Introduction

Data analysis on classes of statistical units is a crucial issue because huge
data bases are stored and results interpretation takes more and more time.
Furthermore, to take into account multiple arrays, distribution values, time
series or continuous functions appear to be the very appropriate inputs for
summarizing the data without loss of information, towards knowledge extrac-
tion. Very few approaches face such complex data analysis: Symbolic Data
Analysis brings for example a theoretical framework [Diday, 1988] for such
a challenge. Discrimination and generalisation are to be redefined in that
new context: Marking and Generalisation by Symbolic objects generalises to
symbolic inputs some Machine Learning approaches [Stepp, 1984] [Ho tu et
al., 1988] [Ganascia, 2000], or supervised classification algorithms that are
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generally not able to treat complex matrices [Gordon, 1999]. MGS provides
discriminant generalizing objects that describe subsets of the power set of
an initial classical data set. Some other symbolic approaches have recently
been published [Vrac and Diday, 2001] for similar purposes. As in recursive
partition algorithms [Périnel et al., 2003], the results could be written as
complex production rules but the inference validation phase is not included
in this paper.

2 The input matrix

We consider a set Ω = {ω1, ..., ωn} of n symbolic objects for p variables Yj :

Yj : Ω −→ Υj
ω −→ Yj(ω)

Yj(i) may be :

• a single real number or a single category (classical data);
• a finite set of real numbers or categories (multi-valued variable);
• a discrete finite frequency distribution (diagram variable); frequencies are

in this paper the frequencies of a statistical distribution, as it happens
for example when symbolic objects come from a query on a classical
categorical data base;
• an interval;
• a continuous frequency distribution on a finite number of intervals (his-

togram variable); an hypothesis of uniform distribution along the inter-
vals allows linear interpolation to calculate frequencies on sub intervals.

Let E and Ē be two classes of a binary partition on Ω (if the given
partition is not binary, E is the class to be marked and Ē its complementary
part, union of the other classes of the partition).

Y (ω) = {yj(ω), j ∈ {1, ..., p}} is the description of ω, denoted also dω. A
’partial description’ has fewer variables than in initial individuals. A symbolic
object s, is a triplet (a,R, d) where a is a mapping E → {0, 1} which measures
the fit between dω and d, R is a relation which associates (in this paper) to
a couple of descriptions a Boolean value (for example R is the inclusion
operator). The extent of a symbolic object s in E is defined in this paper in
the Boolean case by : ExtE(s) = {ω ∈ E/a(ω) = 1}.

Let SE be the set of symbolic objects belonging to E.

3 GV-TEST criterion

Marking is a process which builds discriminant descriptions of SE . Several
trees are simultaneously explored top down from initial nodes. Depending
on some parameter values, final descriptions:
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1. may be totally discriminant or only partially;
2. may have overlapping extents or not;
3. may include in their extent all E elements or not.

The first and the second points are simultaneously taken into account
in the descending process through a threshold ThrCr for some criterion Cr
which measures the link between any subset of Ω and E.

Let Mg be an intent of a subset in the case of a classical initial data set
(for example: ’colour = yellow and length = short’, partial description for all
’yellow and short’ units).

Almost all of them use for classical data the following quantities:

ng = Card[extΩ(Mg)], nE,g = Card[extE(Mg)], ng−nE,g = Card[extĒ(Mg)]

E Ē Ω

Mg nE,g ng − nE,g ng

Ω nE n− nE n

Table 1. GV-TEST criterion

We propose the GV-test criterion which is a generalization of the V-test
[Alevizos and Morineau, 1992] for symbolic objects.

The V-test is based on the hyper geometric distribution hypothesis; for
its 5% upper point, its value, which can be calculated by a Laplace Gauss
approximation, is greater or equal to 1.96. Explicit formula is the following :

TH =
nE,g − n

ng
nE

 nEng(n− nE)

(n− 1)n(1− ng
n

)




1
2

In the case of categorical variables, the V-test criterion can be used on not
too small data sets [Gettler Summa, 2000]. For non classical objects, some
other calculations (extents cardinalities) are to be considered depending on
the situation:

• for an interval variable Y , the frequency of an interval I1 among all
possible intervals for Y values (in E, in Ē, in Ω, in Mg) is equal to the
number of intervals that include I;
• for a multi-valued variable, the frequency of a list L among all possible

lists for Y values (in E, in Ē, in Ω, in Mg) is equal to the number of lists
which include L;
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• for a diagram variable Y , the frequency which occurs is that of a class
of bars of the following type( see ’initial nodes for the sets of diagrams
variables’): {mk, w ≥ wmin,mk

}; this cardinality is equal to the number
of bars among all Y diagrams (in E, in Ē, in Ω, in Mg) {mki, wki} where
mki = mk and w ≥ wmin,mk

;
• for a histogram variable Y , the frequency is the one of a class of rect-

angles of the following type( see ’initial nodes for the sets of histograms
variables’) : {Ik, w ≥ wmin,Ik

}; this cardinality is equal to the number of
rectangles among all Y histograms (in E, in Ē, in Ω, in Mg) {Iki, wki}
where Ik ⊆ Iki and (Ik/Iki)wki ≥ wmin,Ik

.

Fig. 1. Example of GV-test computation for an interval variable.

The GV-test of a variable value is used for ranking the initial nodes in order
to begin the descending process in the MGS algorithm.

For example, one can easily calculate from figure 1 the elements which oc-
cur for the GV-Test computation, for variable Yj taking its value in the inter-
val [4 5] : Let s[4,5] be the symbolic object associated to the partial description
d = (Yj = [4, 5]). ng = Card[extΩ(s[4,5])] = 3, nE,g = Card[extE(s[4,5])] =
3, ng − nE,g = Card[extĒ(s[4,5])] = 0, nE = 4, n = 6.

4 Initial Nodes

The choice of the initial nodes depends on the variables nature. Details are
given for diagram and histogram variables.

4.1 Initial nodes for the sets of categorical or continuous classical
variables

Continuous variables are discretized into optimized classes by a supervised
method in order to take into account the binary partition: for example the
supervised Fisher algorithm or any decision tree one-to-one variable [Zighed
et al., 1997]. Initial nodes are then built by the same method as for categor-
ical variables, each class being considered as a category. This approach on
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classical data is fully described in [Gettler Summa, 2000]. Let INC be the
subset of the initial nodes.

4.2 Initial nodes for the set of diagram variables

Fig. 2. Initial nodes for the set of diagram variables.

Let Swc,E be the set of all weighted categories belonging to the variables
describing SE and pwc be the number of the distinct categories in all diagram
variables.
Let’s call IND the subset of Swc,E which belong to the initial nodes set.
Let w1 and w2 be two weights of a same category, mk; suppose w1 > w2.
Taking into account {mk, w ≥ w2} implies taking into account {mk, w = w1}
because weights have a statistical frequency semantic.
Let then wmin,mk

be the minimum of mk weights that correspond to GV-test
values greater than the a priori threshold ThrGV . It may happen for some
category that no weight provides a good GV-test. Let p′wc

be the number of
those categories mk for which wmin,mk

does exist (p′wc
≤ pwc).

IND is then built of all {mk, w ≥ wmin,mk}k ∈ 1, ..., p′wc
.

4.3 Initial nodes for the set of histogram variables

A simple situation is the one of interval variables as it is shown in the
GV-test paragraph. It will thus not be detailed furthermore so let us present
directly the case of histogram variables.
Let SH,E be the set of all weighted intervals (Ik, wk), belonging to SE .
Let INH (INI for interval variables) be the subset of SH,E which will belong
to the initial nodes set.
Let pH be the cardinality of SH,E .
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Fig. 3. Initial nodes for the set of histogram variables.

Let us consider the ordered list of the ordered bounds of the intervals
{(Ik, wk), k ∈ 1, ..., pH}.
That list defines p′H = pH non overlapping intervals {I ′k, k ∈ 1, ..., p′H}.
Let SIk

be the set of weighted intervals including I ′k. For each of SIk
intervals, a new weight is calculated by linear interpolation (because of the
uniform distribution hypothesis).
Let w1 and w2 be two weights of a same interval, I ′k, depending of two
corresponding SH,E intervals the intersection of which is I ′k ; let suppose
w1 > w2.
Considering {I ′k, w ≥ w2} implies considering {I ′k, w = w1} because weights
have a statistical frequency semantic.
Let wmin, I ′k be the minimum of SIk weights that correspond to GV-test
values greater than the a priori threshold ThrGV. Note that it may happen
for some interval that no weight provides a good GV-test. Let p′′H be the
number of those intervals for which wmin,I′k does exist (p′′H ≤ p′H).
INH is then built of all {(I ′k, w ≥ wmin,I′k), k ∈ 1, ..., p′′H}.
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5 Generalized MGS Algorithm

In the proposed method a set of initial nodes is built by first exploring a
particular lattice, and then by the conjunction of some vertices, according to
various chosen criteria, further steps build the final Markings set.

’The output of the marking process consists of a set of partial descrip-
tions (’Markings’), the number of which is inferior to the number of initial
individuals.’ Let now call a partial description d and the symbolic object,
triplet (a,R, d) that is associated to it by the same notation .

Let’s denote Mg a generic marking for E. A threshold ThrGV for the
GV-test is to be chosen as an input parameter in order to select the initial
nodes for each type of variable. Let us denote L the union of initial nodes
sets of different types (see ’initial node’):

L = INC ∪ INI ∪ IND ∪ INH
L = {lg, 1 ≤ g ≤ v}

Each of L elements has a GV-test value (see GV-test) with respect to E, such
that GV-test values are not metric but ordered values, i.e. the greater the
absolute value is, the stronger is the link which is measured.
L elements are thus ordered according to their V-test values.
Various heuristics have already been proposed to construct Markings. The
main differences are, whether it is top down or bottom up [Gettler Summa
et al., 1995], greedy [Ho tu et al., 1988] or not, depth first or breadth first,
allowing overlapping branches or not etc.
Let’s denote SM a set of Makings.

Let’s denote Cov(lg) =
Card[extE(lg)]

Card(E)
.

Let’s denote Err(lg) =
Card[extĒ(lg)]

Card(Ω)
.

Two a priori thresholds are to be chosen:

• The final degree in which E is covered by the union of the markings,
RCov; a final marking set SM should be such that:

RCov ≤
Card(∪extE [Mg,Mg ∈ SM ])

Card(E)
(1)

• The error ratio made by the markings by covering elements out of E,
RErr; each marking should be such that:

∀Mg ∈ SM , RErr ≥
Card[extĒ(Mg)]

Card(Ω)
(2)

Step 1 : All initial nodes build a first set of markings. Criteria (1)
and (2) are calculated for each marking. If any node does not respect Cri-
terion (2), it is deleted from the markings. A first set of markings is thus
constructed:
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S1
M = {M1

g ,M
1
g = lg, 1 ≤ g ≤ v1 ≤ v}

Card(S1
M ) = v1

∀M1
g ∈ S1

M ,
Err(M1

g )

Card(Ω) ≤ RErr
The two following quantities are also calculated:

Cov(S1
M ) =

Card[∪extE(Mg,Mg ∈ S1
M )]

Card(E)

Err(S1
M ) =

Card[∪extĒ(Mg,Mg ∈ S1
M )]

Card(Ω)

Step 2 : Each element of S1M will be a root for descending branches built
as follows :

• the constituents of S1M are ordered by their corresponding GV-test val-
ues;
• the greatest GV-test value corresponds to the root which is processed at

first and so on;
• branches are constructed from each node by choosing the L elements

according to the above defined order;
• for each branch, one has to check if it has not yet been constructed to

avoid redundancy;
• for each branch, the error ratio is calculated; if it is greater than RErr,

the branch is abandoned;
• for each branch, the GV-test is calculated; if it is smaller than ThrGV,

the branch is abandoned;
• each remaining branch as a whole is a new marking.

A second set of markings is thus substituted to the first one:

S2
M = {M2

g , 1 ≤ g ≤ v2}
Card(S2

M ) = v2

∀M2
g ∈ S2

M ,
Err(M2

g )

Card(Ω)
≤ RErr

The two following quantities are also calculated:

Cov(S2
M ) =

Card[∪extE(Mg,Mg ∈ S2
M )]

Card(E)

Err(S2
M ) =

Card[∪extĒ(Mg,Mg ∈ S2
M )]

Card(Ω)

Further steps : Step 2 procedure is iterated; as the number of nodes is
limited by the GV-test criterion and redundancy of branches is avoided, the
algorithm is not fully combinatory and comes to an end according to some
stopping rules which are described in the following paragraph:

• a step f is the last one if Cov(SfM ) ≥ RCov i.e. E is sufficiently marked;
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• if one does not want long branches (for example for providing a quick
decision aid rule in an application), a parameter is proposed in input to
fix a maximum hmax for the number of nodes in a branch. The hth step
will thus be at the most, the last one;
• if a marking Mf is such that Err(Mf ) ≥ RErr, it can be cancelled, as

an option of the algorithm, from the results.

6 Applications

Fig. 4. Complex data editor

MGS is one of the statistical methods implemented in the Interactive
Complex Miner software. Based on a collaboration between Ceremade lab-
oratory from Dauphine University and Isthma Company, this software can
be used to manage and analyse complex and ”multivalued” data as curves,
distributions, intervals, sets as well as classical data. Temporal and geograph-
ical data are the most frequent complex data types which are analysed in the
applications.

Current application consists in three related data bases: 200 shops de-
scribed by their monthly turnover on several years, 800000 households de-
scribed by sociogeographic variables and one shop variable, and 4M coupon
data base with household, shop and time variables. A complex shop database
is generated by merging the three databases. The shops are thus symbolic
descriptions (see fig. 4).

Fig. 5. Client profile 1

A symbolic hierarchical clustering is carried on these shops. Each class
is then characterised by ’shops profiles’ through MGS. Each profile is graph-
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ically displayed (see fig. 5) through ICM editor. Each profile is a vector
providing a ’partial symbolic description’ (some variables don’t appear in the
description) called a ’marking core’ in the case of Marking approach.

7 Conclusion

Generalized MGS provides sets of descriptions for a chosen subset, depending
on initial discrimination quality request. It can be just a generalization of
the whole subset if this quality is null; it may also produce lots of specified
descriptions with little extents if the quality is high. MGS could also be used
for inference to provide rules if a validation step was added to the supervised
learning phase. But its best purpose remains a descriptive process of the
data, with generalizing and discriminating potential.
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Abstract. Statistical units described by interval-valued variables represent a spe-
cial case of Symbolic Objects, where all descriptors are quantitative variables. In
this context, the paper presents two different metrics in Rp for interval-valued data
that are based on the definition of the Hausdorff distance in R. Hausdorff distance
in Rp (for any p ≥ 1) is a L∞ norm between pairs of closed sets. However, when
p > 1 the problem complexity leads towards the definition of L2 norms approxi-
mating as well as possible the Hausdorff distance. Given a set of n units described
by p interval-valued variables, we compute and represent the distances over facto-
rial planes that are defined by factorial analyses that are consistent with the two
distance measure definitions.

Keywords: Factorial Analysis, Hausdorff distance, Interval Data.

1 Introduction

Let Ω = {ω1, ω2, . . . , ωn} be a set of individuals with description in the space
IRp, where IRp indicates the p-dimensional space of the closed subsets in
R. The individuals can be modeled as Symbolic Objects (SO) described
by interval descriptors. Interval data represent a special case of set-valued
data, where the sets are compact and identified by ordered couples of values:
[a] = [a, a] ⊂ R, which correspond to the interval bound values [Hickey et
al., 2001]. The generic n × p interval data matrix [A] has general term
[a]i,j , where i = 1, . . . , n and j = 1, . . . , p indicate the generic statistical unit
and the generic descriptor, respectively. The general term [a]i,j can also be
represented as the midpoint aci,j and range (or radius) ari,j notation: [a]i,j =
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responsible F. Palumbo.
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[ai,j , ai,j ] = [aci,j − ari,j , a
c
i,j + ari,j ]. Midpoints and ranges are respectively

defined by:

ac = 1
2 (a+ a), ar = 1

2 (a− a).
In the midpoints/ranges notation, the matrix [A] is split in the matrices

Ac and Ar that are called center and range matrix, respectively.
The interval (data) arithmetic has a wide specialized literature, see

[Alefeld and Mayer, 2000] for an exhaustive survey. However, the direct treat-
ment of interval-variables in statistics is limited to very few cases, this occurs
because the computation of the variance-bounds is an NP-hard problem and
does not have approximate solutions [Xiang et al., 2004]. It is worth noticing
that this aspect involves also the Principal Component Analysis (PCA) and
factorial analysis, more generally.

Facing the problem from a geometric point of view and starting from dif-
ferent definitions of distance between intervals, many authors have proposed
different approaches to the factorial analysis for interval data (see [Cazes et
al., 1997], [Lauro and Palumbo, 2000], [Lauro and Palumbo, 2005], [Giordani
and Kiers, 2004]). Generally, a distance between intervals takes into account
only some representative points. Cazes et al. and Giordani and Kiers based
their analysis on the distance between the interval bounds (vertices); Lauro
and Palumbo proposed a distance measure based on the interval centers and
radii (or ranges). However, there exist many distance definitions for interval
data and more generally for set-valued data; given any general function of
distance or proximity, it is possible to arrange a n × n matrix on which to
perform a MultiDimensional Scaling (MDS) analysis and to represent the SO
as points in the reduced space.

Dealing with punctual data, a statistical unit is represented by a dimen-
sionless point in Rp ∀p; whereas, the geometric nature of a closed subset
ωi in Rp varies according to p; it is a segment if p = 1, a parallelogram if
p = 2 a parallelepiped when p = 3 and, more generally, a parallelotope when
p > 3, where ωi = ([a]i,1, [a]i,2, . . . , [a]i,p) indicates the generic subsets in Rp,
∀p ≥ 1.

Differently from the MDS, our aim is to represent the distances but also
the size and shape of the SO [Lauro and Palumbo, 2005].

In section 2 we shall introduce the Hausdorff metric and in section 3 we
shall present two distances for interval valued data in IRp, both of them
are derived from the Hausdorff notion of distance. Section 4 presents an
application of the two distances on the Italian peppers data set. Distances
and SO sizes and shapes are represented over factorial planes by means of
two factorial analyses; section 5 closes the paper.

2 Distance measures in IRp

In this section we present the Hausdorff metric for interval data and we
introduce two different generalizations in the IRp space. We shall show that
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these distances are good approximations of the Hausdorff distance in Rp and
can be easily decomposed in suitable factorial models.

The Hausdorff metric was proposed by Felix Hausdorff in the early of 20th

century as a measure of distance between compact subsets in Rp.
Given a metric d(·), the distance from a generic point x ∈ Rp to a closed

subset A ⊂ Rp is defined as:

d(x,A) = min
ã∈A

d(x, ã).

Let H(X) be the space of all non-empty compact subsets of X , the Haus-
dorff metric on H(X) is defined on the basis of the following quantities:

h(A,B) = max
ã∈A

d(ã, B), h(B,A) = max
b̃∈B

d(b̃, A),

where {A,B} ∈ H(X) and {ã ∈ A, b̃ ∈ B}.
The Hausdorff distance H(A,B) is defined by:

H(A,B) = max{max{d(ã, B)},max{d(b̃, A)} =
= max (h(A,B), h(B,A)) . (1)

In the special case of R, the Hausdorff distance between two generic intervals
is given by: H(A,B) = max{| a − b |, | a − b |} =| ac − bc | + | ar − br | .
It is easy to show that H(A,B) ≥ 0 and H(A,B) = H(B,A). Moreover,
let C be a generic compact subset in R, the triangular inequality H(A,C) ≤
H(A,B) +H(B,C) can be easily proved taking into account the definition
of distance in (1) [Neumaier, 1990].

3 Generalization of H(A, B) in Rp

The generalization of the Hausdorff distance in IRp tends to be very complex
as p tends to be large. Readers interested in the properties of the Hausdorff
metric in Rp space may refer to [Braun et al., 2003]. However, when the
compact subsets in IRp are restricted to some special cases, the Hausdorff
metric can be easily generalized. This paper will focus the attention on two
special cases: boxes and hyperspheres.

3.1 Distance between boxes

In order to have a distance measure easy to handle in IRp, we introduce a
measure of distance that generalizes the Minkowski metric.

In the p−dimensional space Rp, H(X1, X2, . . . , Xp) indicates the set of all
possible bounded boxes (or parallelotopes) in the space IRp.

Given two boxes {A,B} ∈ H(X1, X2, . . . , Xp), the quantity:

H(A,B) =
{∑p

j=1 | H(Aj , Bj) |α
} 1

α ≥ 0, (2)
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for any α ≥ 1, is a metric. It is obvious that H(A,A) = 0 ⇔ A = A,
∀A ∈ H(X1, X2, . . . , Xp), being H(Aj , Aj) = 0, ∀j = 1, . . . , p. The two
following properties of (2) can be easily demonstrated:

i ) H(A,B) = H(B,A) (Symmetry):
For any (A,B) ∈ H(X1, X2, . . . , Xp) is:

H(A,B) =
{∑p

j=1 [H(Aj , Bj)]
α
} 1

α

=

=
{∑p

j=1 [H(Bj , Aj)]
α
} 1

α

= H(B,A) (3)

given the symmetry of H(Aj , Bj) for any j = 1, . . . , p.
For any A ∈ H(X1, X2, . . . , Xp) is:

H(A,A) =
{∑p

j=1 [H(Aj , Aj)]
α
} 1

α

= 0 (4)

ii ) H(A,B) + H(A,C) ≥ H(B,C) (Triangular inequality): For any
(A,B,C) ∈ H(X1, X2, . . . , Xp) under the hypothesis that the distance
H(Aj , Bj) satisfies the triangular inequality for any j = 1, . . . , p, this
follows from equation (1) (see [Neumaier, 1990] for a complete specifica-
tion of the metric properties in the IR space). The following proves the
inequality H(A,B) +H(A,C) ≥ H(B,C):

H(A,B) +H(A,C) =
{∑p

j=1 [H(Aj , Bj)]
α
} 1

α

+
{∑p

j=1 [H(Aj , Cj)]
α
} 1

α ≥

≥
{∑p

j=1 [H(Aj , Bj) +H(Aj , Cj)]
α
} 1

α ≥

≥
{∑p

j=1 [H(Bj , Cj)]
α
} 1

α

= H(B,C), (5)

being H(Aj , Bj) +H(Aj , Cj) ≥ H(Bj , Cj) satisfied for any j, according
to the Hausdorff metric definition in R.

The distance in IRp introduced in (2), for α = 2 can also be expressed in
terms of centers and radii:

H(A,B) =

√√√√
p∑

j=1

[
(acj − bcj)2 + (arj − brj)2 + 2 | acj − bcj | | arj − brj |

]
. (6)

This notation will be useful when we shall present the factorial model.

3.2 Hausdorff distance between two spheres in Rp

Another distance in Rp, which derives from the Hausdorff metric in R, is given
by the distance defined between the spheres inscribing the parallelotopes. This
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distances coincides with the Hausdorff metric when the SO are hypercubes
(equal edges).

Before illustrating the distance we prove the following theorem that de-
fines the Hausdorff distance between spheres in the Rp space.

In this section capital letters {A,B, . . .} indicate spheres in the Rp space;
the general sphere A has center in Ac = [acj ] (j = 1, . . . , p) and radius Ar ≥ 0.

Theorem 1 Given two spheres {A,B} in the Rp space, the Hausdorff dis-
tance between A and B is given by:

H(A,B) =
√∑p

j=1

(
acj − bcj

)2
+ | Ar −Br | (7)

Proof. We remind that the equation of the sphere A is:
∑p
j=1

(
xj − acj

)2
=

(Ar)
2
. The minimum and the maximum Euclidean distance from a point

O = [xj ] with (j = 1, . . . , p) to the sphere A are the radii of the spheres,
having centers in O, external to A and containing A, respectively. So that,
the Euclidean Hausdorff distance between O and A is the minimum one.

Two spheres A and B are tangent if:

∑p
j=1

(
acj − bcj

)2
= (Ar ±Br)2. (8)

If A does not intersect B, we have the sign +; if A is inside B, we have
the sign −. Let us suppose that O represents the center of the sphere B. If
O belongs to A, the minimum distance between O and A is 0, obviously. If
O is external to A, we need to solve the following equation for r�:

∑p
j=1

(
acj − xj

)2
= (Ar + r�)2. (9)

Solving with respect to r� we have:

r� =
√∑p

j=1

(
acj − xj

)2 −Ar = min
ã∈A

d(O, A). (10)

Let us assume that O belongs to B. The maxmin{d(B,A)} is given by:

max
b̃∈B

min
ã∈A

(
d(ã, b̃)

)
= max

b̃∈B

(√
∑p

j=1

(
acj − b̃j

)2
)
−Ar. (11)

Equivalently, the minimum radius sphere with the same center as A that
both contains and is tangent to B.

According to (8) we have to solve the following equation in r∗:

p∑

i=1

(
acj − bcj

)2
= (r∗ −Br)2

r∗ =
√∑p

j=1

(
acj − bcj

)2
+Br. (12)
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Then the Hausdorff distance based on the Euclidean distance from a
sphere B to a sphere A is:

h(B,A) = max
b̃∈B

min
ã∈A

d(b̃, ã) =
√∑p

j=1

(
acj − bcj

)2
+ (Br −Ar) (13)

then H(A,B) = max(h(A,B), h(B,A)) =
√∑p

j=1

(
acj − bcj

)2
+ |Ar −Br|

and the proof is complete. 2

Given two spheres {A,B} in the Rp space, H(A,B) is a metric. Reflexive
and symmetric properties are intuitive. We need to prove that H(A,B) +
H(B,C) ≥ H(A,C) is true (triangular inequality).
For the triangular property of Euclidean (for centers) and Manhattan (for
radii) distance we may assert that:

√∑p
j=1

(
acj − bcj

)2
+
√∑p

j=1

(
bcj − ccj

)2 ≥
√∑p

j=1

(
acj − ccj

)2

|Ar −Br|+ |Br − Cr| ≥ |Ar − Cr| .

Then it follows that:
√∑p

j=1

(
acj − bcj

)2
+ |Ar −Br|+

√∑p
j=1

(
bcj − ccj

)2
+ |Br − Cr| ≥

≥
√∑p

j=1

(
acj − ccj

)2
+ |Ar − Cr|

4 A comparison between two metrics

This section presents a comparison between the factorial analysis based on
the two proposed measures of distance for interval valued variables. The
example shows the results obtained on the “Italian Peppers” dataset; these
data are a good example of native interval variables, they describe some
chemio-physical properties (H2O, Glicide, Lipid, Protein) of eight different
species of Italian peppers: (Cuban, Cuban Nano, Corno di Bue, Grosso di
Nocera, Pimento, Quadrato d’Asti, Sunnybrook, Yolo wonder). [Lauro and
Palumbo, 2005]

Each factorial approach has been chosen to ensure the maximum degree of
consistency with respect to the distance measure. We remind that statistical
factorial analysis for interval variables does not limit itself to the study of
proximities among dimensionless points but, it must take into account the
size and shape of the compact subsets in Rp

Let [X] be a generic n× p interval data matrix. In order to simplify the
notation, we define the centers matrix C = 1

2 (X +X) and the ranges matrix

R = 1
2 (X−X) where, X and X are the minimum and the maximum values

matrices, respectively. All these matrices are of n× p order.
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The arithmetic mean of the generic interval-valued variables [x]j , accord-
ing to the the basic principles of the interval arithmetic [Hickey et al., 2001]
is defined as:

¯[x]j =
1

n

n∑

i=1

[x]i,j =
1

n

[
n∑

i=1

xi,j ,

n∑

i=1

xi,j

]
=

{
1

n

n∑

i=1

xci,j ,
1

n

n∑

i=1

xri,j

}
. (14)

Whereas dealing with single valued variables, in R space, difference and
distance measures are equivalent apart the sign; this is not true when variable
is interval-valued. Lauro and Palumbo (2005) defined the following measure
of variability for interval-valued variables based on the Hausdorff distance:

var([x]j) =
1

n

n∑

i=1

[
| xci,j − x̄cj | + | xri,j − x̄rj |

]2
, (15)

where x̄cj and x̄rj represent, respectively, the mean midpoint and the mean
range of the generic interval variable [X ]j. We call centered and reduced the
interval valued variable:

[z]j = {zcj , zrj} =

{
(xcj − x̄cj)√

var[x]j
,
| xrj − x̄rj |√

var[x]j

}
.

The distance presented in equation (6) can be rewritten in matrix notation
as: H2 = CCT + RRT+ | C || RT | + | R || CT |, where we assume that
interval variables have been centered and reduced. The quantity trace(H2)
is the sum of the n squared distances from the mean. However, in the PCA
practice it is preferred to apply the SVD to the p×p correlation (or covariance)
matrix, in this case we will apply the SVD to the matrices CTC and RTR.
The MR-PCA of Lauro and Palumbo performs two separate PCA’s on the
matrices CTC and RTR and permits to recover the intervals on the factorial
plan by adding and subtracting the rotated and translated radii into the
space of the centers coordinates in their own space. The rotation matrix T
is defined maximizing the quantity CTR. Notice that the square matrix Σ:

Σ = CTC + RTR+ | CT || R | + | RT || C |

is symmetric; the extra-diagonal terms vary in [−1, 1] and the diagonal terms
are equal to 1. It represents a sort of correlation matrix for interval valued
variables, where the total correlation is the sum of three different compo-
nents: midpoints association, ranges association and the midpoints/ranges
congruence.

The output of the method of Palumbo and Lauro consists in a represen-
tation of the centers and of the radii taken into account singly, and of a joint
representation where interval objects are represented by rectangles having
sides parallel to the axes. However, here we propose only the midpoints and
radii joint representation.
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In order to present the second factorial approach based on the definition
of the distance in (7), differently from the previous approach, we consider
that both center and radii variables, respectively in the matrices C and R,
are reduced with respect to standard deviations of the centers (see [Giordani
and Kiers, 2004]). Notice that the matrix B in (7) has a constant value over
the main diagonal, it corresponds to the norm of the average units radius.
The matrix notation of the distance in (7) is equal to:

∑n
i=1H(Ai, Ā)2 =

trCTC + trRTR. The symbol Ā indicates the mean SO that is obtained by
applying the formula (14). The problem consists in finding the orthogonal
subspace the maximizes trCTC + trRTR simultaneously. We introduce the
super matrix Y:

Y =

[
C
R

]
.

The projection of Y on a common orthogonal subspace can be obtained by
means of the extraction of the principal components of CTC denoted as DCC.
Considering the projection of Y on the space spanned by the centers using
the projector PC and on the orthogonal projection using P⊥

C we have:

Y = PCY + P⊥
CY = (PCC,PCR) + (P⊥

CC,P⊥
CR) =

= (C,P⊥
CR) + (0,P⊥

CR) (16)

that leads to the following decomposition:

DYY =

[
DCC DCR

DRC DRR

]
=

[
DCC DCR

DRC DRRC

]
+

[
0 0
0 DRR.⊥

C

]
(17)

where DRR.⊥
C

can be obtained computing the first principal components of C
and then obtaining the structure matrix of DCC on the base of the set of the
principal components of DCC. For further details see [Takeuchi et al., 1982].
Taking into account these results, there are several possible approaches to
the analysis [Lebart et al., 1995]; for sake of space, here we do not discuss
the choices and their motivations. Figure 1 shows the results based on the
distance between boxes: ranges are rotated and projected into the space
of the midpoints as supplementary points. The total variability associated
to the first factorial plan is 65.76%. Figure 2 shows the results obtained
representing the SO with respect to the distance between hyperspheres. Here
the variability associated to the first factorial plan is equal to 76.48%.

Looking at the outputs we notice that the SO can be distinguished accord-
ing to their position, size and shape. It is worth noticing that, with respect
to the positions, results of the two analyses are consistent. SO have the same
order on the first factor in both analyses. The size interpretation is quite
intuitive. Few words are necessary to correctly interpret the shapes: it is
necessary to take into account the shape itself and also the range orientation.
Looking at figure 1, we notice that Sunnybrook and Quadrato d’Asti have
similar shapes but they have opposite range orientation. This is confirmed
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Fig. 1. Distance between boxes: first factorial plan (65.76%)

Fig. 2. Distance between hyperspheres: first factorial plane (76.48%)

also in the other analysis: in figure 2 we see that Sunnybrook and Quadrato
d’Asti appear orthogonal.

To understand which variables have mainly characterized the positioning
and the size and shape of the SO it is necessary to look at the variables
representations on the same factorial plans.

5 Conclusion and future work

Since Edwin Diday introduced Symbolic Data Analysis [Diday, 1989] we have
noticed a growing interest for the analysis of complex data structures. The
first book entirely dedicated to Symbolic Data Analysis appeared five years
ago [Bock and Diday, 2000]. These new statistical data need new concepts
not having a counterpart in the “classical” data analysis, necessarily. At the
beginning, many have proposed special data-codings to make data tractable
by the traditional methods; so that, most of the big effort done up to now
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allowed us to treat complex data with suitably adapted methods for single-
valued data. We believe that the next challenge is to setup numerical and
statistical methods that are specifically designed for the complex-data struc-
tures. We see two main research directions: i) definition of new statistical
indexes (measures of central tendency, variability, etc.) that take into account
the innovative nature of the data; ii) development of analytical and numeri-
cal methods allowing to treat intervals as mathematical structures. Interval
arithmetic has been mainly developed to treat data imprecision caused by
the “old” fix-point CPU (the round-off error) and its generalization to the
statistical interval-valued data requires a big effort.

Nevertheless, the treatment of set-valued variables is a field with very
high potential for further developments.
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[Diday, 1989]E. Diday. Introduction à l’approche symbolique en analyse des
données. Rev. d’Aut., d’Informatique et de Rec. Opérationnelle, 32(2), 1989.

[Giordani and Kiers, 2004]P. Giordani and H.A.L. Kiers. Principal component anal-
ysis of symmetric fuzzy data. Comp. Stat. Data Anal., 45:519–548, 2004.

[Hickey et al., 2001]T. Hickey, Q. Ju, and M. H. Van Emden. Interval arithmetic:
From principles to implementation. Jour. of the ACM, 48(5):1038–1068, 2001.

[Lauro and Palumbo, 2000]C. N. Lauro and F. Palumbo. Principal component anal-
ysis of interval data: A symbolic data analysis approach. Computational Statis-
tics, 15(1):73–87, 2000.

[Lauro and Palumbo, 2005]C. N. Lauro and F. Palumbo. Principal component anal-
ysis for non-precise data. In M. Vichi et al., eds, New Developments in Clas-
sification and Data Analysis, pages 173–184. Springer, 2005.

[Lebart et al., 1995]Ludovic Lebart, Alain Morineau, and M. Piron. Statistique
exploratorie multidimensionelle. Dunod, Paris, 1995.

[Neumaier, 1990]A. Neumaier. Interval methods for systems of Equations. Cam-
bridge University Press, Cambridge, 1990.

[Takeuchi et al., 1982]K. Takeuchi, H. Yanai, and B. N. Mukherjee. The Fundations
of Multivariate Analysis. Wiley Eastern Ltd., New Delhi, 1982.

[Xiang et al., 2004]G. Xiang, S. A. Starks, V. Kreinovich, and L. Long-
pre. New algorithms for statistical analysis of interval data. Utep-
cs-04-04, NASA PACES, El Paso, TX 79968, USA, 2004. at:
http://www.cs.utep.edu/vladik/2004/list04.html.



Clayton copula and mixture decomposition

Etienne Cuvelier and Monique Noirhomme-Fraiture

FUNDP(Facultés Universitaires Notre-Dame de La Paix)
Institut d’Informatique
B-5000 Namur, Belgium
(e-mail: cuvelier.etienne@info.fundp.ac.be,

noirhomme.monique@info.fundp.ac.be)

Abstract. A symbolic variable is often described by a histogram. More gener-
ally, it can be provided in the form of a continuous distribution. In this case, the
problem is to solve the most frequent problem in data mining, namely: to classify
the objects starting from the description of the variables in the form of continuous
distributions. A solution is to sample each distribution in a number N of points,
and to evaluate the joint distribution of these values using the copulas, and also to
adapt the dynamical clustering (nuées dynamiques) method to these joint densi-
ties. In this paper we compare the Clayton copula and the Normal copula for more
than 2 dimensions, and we compare results of clustering by using on the one hand
the method based on the Clayton copula and traditional methods (MCLUST, and
K-means). Our comparison is based on 2 well-known classical data files.
Keywords: symbolic data analysis, mixture decomposition, Clayton copula, clus-
tering.

1 Introduction

The mixture decompostion is a classical tool used in clustering. The method
consists in estimating a probability density function from a given sample in
Rq, considering that the reached function f is a finite mixture of K densities:

f(x1, ..., xq) =

K∑

i=1

pi · f(x1, ..., xq, βi) (1)

with ∀ i ∈ {1, ...,K}, 0 < pi < 1, and
∑K
i=1 pi = 1. The function f(., β) is a

density function with parameter β belonging to Rd and pi is the probability
that one element of the sample get the density f(., βi). In this clustering
approach each component of the mixture corresponds to a cluster.
To find the partition P = (P1, ..., PK), which is the best adapted to the data
two main algorithms were proposed : the EM algorithm (Estimation, Max-
imisation) [Dempster et al., 1977] and the dynamical clustering algorithm
[Diday et al., 1974].
A use of the dynamical clustering algorithm in the symbolic data analysis
framework when the data are distribution probabilities was proposed in [Di-
day, 2002]. In a symbolic data table, a statistical unit can be described by
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numbers, intervals, histograms and probability distributions. We suppose to
have a table T with n lines and p columns, and that the jth column con-
tains probability distributions, i.e. if we note Y j the jth variable then Y ji
is a distribution Fi(.) for all i ∈ {1, ..., n}. To cluster this last type of data
two main ideas were proposed in [Diday, 2002]. The first idea is to use as
sample the values of the distributions found in table T in q quite selected
values T1, ..., Tq : {(Fi(T1), ..., Fi(Tq)) : i ∈ {1, ..., n}} . The second idea is to
estimate the margins of f(., βi) in a first step , and to join them in a second
step using copulas.
[Vrac et al., 2001] used this approach with success to cluster atmospheric
data with the Franck copula of dimension 2 (i.e. with only two real values T1

and T2 where distributions are computed). The starting point of our work
is to extend this approach with copulas with a higher number of dimensions
with the Clayton n-copula.
The organization of the paper is as follows. In section 2 we set the symbolic
data analysis framework for the mixture decomposition when data are prob-
ability distributions. A general presentation of the copulas is made in section
3, and we focus in section 4 on the Clayton copula. In the following section
we show the implementation and results, and we conclude with perspectives
and future work in the last section.

2 The symbolic data analysis framework

2.1 Distributions of distributions

We suppose to have a table T with n lines and p columns, and that the jth

column contains probability distributions, i.e. if we note Y j the jth variable
then Y ji is a distribution Fi(.) for all i ∈ {1, ..., n}. In the following we note ωi
the concept described by the ith row, and Fωi(.) the associated distribution.
We choose q real values T1, ..., Tq (we don’t discuss of the choice of this values
here), and for each i ∈ {1, ..., n} we compute Fωi(T1), ..., Fωi(Tq). Then, if
we call Ω the set of all concepts, the joint distribution of the Fi(Tj) values
is defined by:

HT1,...,Tq(x1, ..., xq) = P (ω ∈ Ω : {Fω(T1) ≤ x1} ∩ ... ∩ {Fω(Tq) ≤ xq}) (2)

which is called distribution of distributions. The classical classification
method consists in considering this distribution as the result of a finite mix-
ture distributions:

HT1,...,Tq(x1, ..., xq) =

K∑

i=1

pi ·Hi
T1,...,Tq

(x1, ..., xq;βi) (3)

with ∀ i ∈ {1, ...,K} : 0 < pi < 1 and
∑K

i=1 pi = 1.
The distribution of ith cluster is given by Hi

T1,...,Tq
(x1, ..., xq;βi) , where pa-

rameter βi ∈ Rd, and pi is the probability that one element is in this cluster.
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If we take a look at the densities, then the probability density of H is

h(x1, ..., xq) =
∂q

∂x1...∂xq
H(x1, ..., xq) (4)

And the mixture densities is given by:

hT1,...,Tq(x1, ..., xq) =

K∑

i=1

pi · hiT1,...,Tq
(x1, ..., xq ;βi) (5)

2.2 Clustering algorithm

The clustering algorithm proposed by [Diday, 2002] is an extension of the
dynamical clustering method [Diday et al., 1974] for density mixtures. The
main idea is to estimate at each step, the density which describes at best the
clusters of the current partition P, according to a given quality criterion. We
considered the classifier log-likelihood :

lvc(P, β) =

K∑

i

∑

ω∈Pi

log(h(w)) (6)

where

h(w) = hT1,...,Tq(Fω(T1), ..., Fω(Tq)) (7)

The classification starts with a random partition, then the two following steps
are repeated:

• Step 1 : Parameters estimation
Find the vector (β1, ..., βK) which maximizes the chosen criterion;

• Step 2 : Distribution of units in new classes
Build new classes (Pi)i=1,...,K with parameters found at Step 1 :

Pi = {ω : pi · h(ω, βi) ≥ pm · h(ω, βm)∀m} (8)

until the stabilization of partition.

2.3 Estimation

Before using this algorithm we must know how to estimate the density of
each cluster.
For univariate distributions we may use :

• a parametric approach, and use well-known laws as the Beta law (Dirich-
let’s law in one dimension) or the Normal law,
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• a non-parametric approach, as the kernel density estimation :

f̂(x) =
1

n · h

n∑

i=1

K

(
x−Xi

h

)
(9)

where
– (X1, ..., Xn), is the sample over which the estimation is made,
– K is the kernel density function (many possible choices...)
– h is the window width, and can be automatically estimated with

Mean Integrated Square Error(MISE) formulae h = 1.06σN−1/5

[Silverman, 1986], where σ is the standart deviation of the sample.

For multivariate distributions, we can also use parametric estimation, with
a Normal multivariate distribution for example like in [Fraley and Raftery,
2002] or a non parametric approach (the kernel estimation exists also in
higher dimensions, but is heavier in calculations), but we can also attempt to
re-build the joint distributions H with marginals coupling, by using copula,
and at the same time have a model of the dependence structure of the data.

3 Multivariate copulas

A multivariate copula, also called n-copula, is a function C from [0, 1]n to
[0, 1] with the following properties :

• ∀ u ∈ [0, 1]n,
– C(u) = 0 , if at least one coordinate of u is 0,
– C(u) = uk , if all coordinates of u are 1 except uk

• ∀ a,b ∈ [0, 1]n, such that ai ≤ bi, ∀ 1 ≤ i ≤ n,

VC([a,b]) ≥ 0, (10)

where [a,b] = [a1,b1] × ... × [an,bn], and VC([a,b]) is the nth order
difference of H on [a,b] :

VC([a,b]) = ∆b
aC(t) = ∆bn

an
∆bn−1
an−1

...∆b2
a2
∆b1
a1
C(t) (11)

with

∆bk
ak
C(t) = C(..., tk−1, bk, tk+1, ...)− C(..., tk−1, ak, tk+1, ...) (12)

The copulas are powerfull tools in modeling dependences since Abe Sklar
stated the following theorem [Sklar, 1959]:
Let H be an n-dimensional distribution function with margins F1, ..., Fn.
Then there exists an n-copula C such that for all x in R̄n ,

H(x1, ..., xn) = C(F1(x1), ..., Fn(xn)). (13)
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If F1, ..., Fn are all continuous, then C is unique; otherwise, C is uniquely
determined on Range of F1 × ...×Range of Fn.

In fact the copula captures the dependence structure of the distribu-
tion. In our case, if we note a univariate margin :

GT (x) = Pr (ω ∈ Ω : {Fω(T ) ≤ x}) (14)

then the mixture can be written as follows

HT1,...,Tq(x1, ..., xq) =

K∑

i=1

pi · Ci(GiT1
(x1), ..., G

i
Tq

(xq);βi) (15)

and in terms of densities

hiT1,...,Tq
(x1, ..., xq ;βi) =

q∏

i=1

dGiTi

dx
(xi)×

∂q

∂u1...∂uq
Ci(GiT1

(x1), ..., G
i
Tq

(xq);βi)

(16)
The use of copulas allows us to estimate all the marginals first, and in a
second time to estimate the parameters of each copula. The copula modelises
the dependences of the Fω(Ti) values inside each cluster. Note well that this
use of copulas can be made, not only when the original data are symbolic
data described by a continuous distribution, but also with quantitative
unspecified variables.

4 Clayton copula

In the following we present the Clayton’s copula we use for our implementa-
tion, and the Normal copula for comparison.

The Clayton copula is an Archimedean copula. These copulas are gener-
ated by a function φ, called the generator:

C(u1, ..., un) = φ−1

(
n∑

i=1

φ(ui)

)
(17)

where φ is a function from [0, 1] to [0,∞] such that:

• φ is a continuous strictly decreasing function
• φ(0) =∞
• φ(1) = 0
• φ−1 is completely monotonic on [0,∞[ i.e.

(−1)k
dk

dtk
φ−1(t) ≥ 0 (18)

for all t in [0,∞[ and for all k.
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If we use φθ(t) = tθ − 1 as generator, then we get the Clayton’s copula

C(u1, ..., un) =

(
1− n+

n∑

i=1

u−θi

)−1/θ

(19)

which is a copula only if θ > 0.
We choose this copula in the set of the multivariate Archimedean copulas
because as showed in [Cuvelier and Noirhomme-Fraiture, 2003], the density
is easy to compute:

c(u1, ..., uq) =

(
1− q +

q∑

i=1

u−θi

)−q− 1
θ q∏

j=1

(
u−θ−1
j {(j − 1)θ + 1}

)
. (20)

It is important to notice that all the k-margins of an Archimedean copula are

identical: C(u1, ..., un−1, 1) = φ−1
(∑n−1

i=1 φ(ui)
)
. This fact limits the na-

ture of dependence structure in these families because it introduces a certain
symmetry.
The Normal copula is built by the most obvious process: the inversion
method. If we have a multivariate distribution H , with margins F1, ..., Fn,
then for any u in [0, 1]n:

C(u1, ..., un) = H(F
(−1)
1 (u1), ..., F

(−1)
n (un)) (21)

is a copula. Let ρ be a positive correlation matrix, Φρ the Normal multi-
variate distribution defined with this matrix, and Φ the standard Gaussian
distribution. The Normal copula is then defined by:

C(u1, ..., un) = Φρ(Φ
−1(u1), ..., Φ

−1(un)). (22)

and its density is given by

c(u1, ..., un) =
1

|ρ| 12
exp

(
−1

2
ςτ (ρ−1 − I) ς

)
(23)

where ς = Φ−1(ui), and I is the (n × n) unity matrix. This copula has two
main advantages : there is a formula to calculate its density in any dimension

and, more significantly, a large set of parameters (n·(n−1)
2 ) which indicates

that one can have a very flexible modelisation of the dependence.
To show the difference between these two copulas, we generated 1000 random

couples of numbers, once with Clayton copula (θ = 5, figure 1), and then with
the Normal copula (with a correlation of 0.5 between the two variables, figure
2).
As we can see the spatial distributions of the generated points have radically
different forms. That implies that the choice of one of these two copulas
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Fig. 1. Dependence structure of Clayton copula
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Fig. 2. Dependence structure of normal copula

will influence the shape of the clusters we can retrieve in the data. The
Normal copula, and more generally the Normal distribution, tends to form
elliptic groups whereas, as we can see, the copula of Clayton will tend to form
groups ”with pear shape”.
In fact the ”pear shape” shown in figure 1 is due to a property of the Clayton
copula called lower tail dependence: a copula C has lower tail dependence
if

limu→0
C(u, u)

u
> 0 (24)

Of course the use of the Normal copula, in addition with Normal margins,
corresponds to the use of the Normal multivariate distribution which was
already largely studied and used in clustering methods. We will compare our
results to the results of MCLUST [Fraley and Raftery, 2002] on the same
data set.
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5 Implementation of the algorithm and results

In this section we call our clustering algorithm (i.e. the dynamical clustering
algorithm, with Clayon copula): Clayton Copule-Based clustering (CCBC).
We compare the results of CCBC to the k-means implemented in S-Plus, and
to the Model-Based clustering (MCLUST, [Fraley and Raftery, 2002] and
[Fraley and Raftery, 1999] ).
Our implementation of CCBC was made in the statistical language S, using
the S-plus software. To estimate the unidimensionnal margins, we used ker-
nel density estimation for margins (with Normal kernel).
To test our implementation we used two classical data sets. We used first the

- CCBC MCLUST k-means

Misclass. Numb. 9 5 17

Percent. 6% 3.33% 11.33%

Table 1. Misclassified data from Fisher’s Iris

very well known Iris database from Fisher. The data set contains 3 classes of
50 instances each, where each class refers to a type of Iris plant (Iris Setosa,
Iris Versicolour and Iris Virginica). The 4 numerical attributes are : sepal
length, sepal width, petal length and petal width. We found the same clus-
ters with few misclassified individuals as it can be seen in table 1. The results
are encouraging, especially taking into account the fact that MCLUST uses
multivariate Normal laws, and so uses 6 parameters for each law, which sup-
poses a greater flexibility to adapt it to various dependence structures.
After this we used the UCI Wisconsin diagnostic breast cancer data. In
a widely publicized work [Mangasarian et al., 1995], 176 consecutive fu-
ture cases were successfully diagnosed from 569 instances through the use
of linear programming techniques to locate planes separating classes of data.
Their results were based on 3 out of 30 attributes: extreme area, extreme
smoothness and mean texture. The three explanatory variables were chosen
via cross-validation comparing methods using all subsets of 2, 3, and 4 fea-
tures and 1 or 2 linear separating planes. The data is avalaible from the UCI
Machine Learning Repository (http://kdd.ics.uci.edu/). The three variables
of interest are shown in figure 3, and we can see that, if the joint distribution
of variables extreme smoothness and mean texture seems Normal, on the
other hand, the two other joint distributions are closer to Clayton copula.

We can see in table 2 that the mixture model with the Clayton copula
captures the structure dependence of the breast cancer data better than the
multivariate Normal distribution, in spite of the fact that all the k-margins of
the copula of Clayton are identical, i.e. that this one seeks clusters necessarily
presenting a certain symmetry.
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Fig. 3. Pair plots of Wisconsin Diagnostic Breast Cancer Data

- CCBC MCLUST k-means

Misclass. Numb. 27 29 62

Percent. 4.7% 5% 10.89%

Table 2. Misclassified data from Wisconsin Diagnostic Breast Cancer Data

6 Conclusions

Mixture decomposition is a tool for classification which has already largely
proved its reliability. In the same way the interest of the Copulas in the
study of the dependence structures is well-known. One of the main interest
of the copulas is to escape to the normality assumption and to the linear
correlation.
We have shown that we can obtain equivalent or better results for clustering
as with other methods, even if Clayton copula shares the weakness of all the
Archimedean copulas [Nelsen, 1999]: first, in general all the k-magins of an
archimedean n-copula are identical, secondly, the fact that there are only
one or two parameters limits the nature of the dependence structure in these
families. To overcome this weakness, in future work we intend to use other
copulas with more flexible dependence structures. Now we can start to test
CCBC on symbolic data.
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Abstract. This paper presents an optimization of the self organizing map for
dissimilarity data. In fact, practical clustering algorithms for dissimilarity data are
extremely costly because of the calculation of the dissimilarity table and require
multiple data scans to achieve convergence. Therefore, we propose working on
sample set data to speed up the training process and also to handle large data
set.
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1 Introduction

The self organizing map (SOM) [Kohonen, 1982a], [Kohonen, 1982b] and
[Kohonen, 1997] is considered as a clustering method and also a projection
method. It can be used at the same time both to reduce the amount data by
clustering, and for projecting the data nonlinearly onto a lower dimensional
display. Due to its unsupervised learning and topology preserving proprieties
it has proven to be especially suitable in analysis of complex systems. The
SOM algorithm implements a nonlinear topology preserving mapping from a
high-dimensional input metric vector data space, Rp, into a two-dimensional
network or grid of neurons. To understand what the SOM really shows,
it is important to understand that it actually performs two tasks: vector
quantization and vector projection. Vector quantization creates from the
original data a smaller, but still representative, data set to be worked with.
The set of prototype vectors reflects the properties of the data space. The
projection performed by the SOM is nonlinear and restricted to a regular grid
(the map grid). The SOM tries to preserve the topology of the data space
rather than relative distances.

The Kohonen’s SOM is based on the notion of center of gravity and
unfortunately, this concept is not applicable to many kinds of complex data.
The extension of the self organizing map to dissimilarity data [El Golli et
al., 2004] is an alternative solution for new forms of complex data and so
allows its process on dissimilarity measures rather than on raw data. With
this alternative only the definition of a dissimilarity for each type of data is
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necessary to apply the method and so treat complex data. This extension is
an adaptation of the batch-learning version of the SOM to dissimilarity data.
At each stage, the learning is performed by alternating an assignment step
and a representation step.

We focus on the problem of clustering large data set. In fact, when we
work with this kind of data this extension of the SOM to complex data is
extremely costly because of the calculation of the dissimilarity table. In order
to solve this problem we propose to work on a sample set either on the whole
learning set.

The paper is organized as follows: we first recall our adaptation of the
SOM algorithm in its batch version for the dissimilarity data. Then we
describe the algorithm working with a sample set.

2 Batch self-organizing map for dissimilarity data

The SOM can be considered as carrying out vector quantization and/or clus-
tering while preserving the spatial ordering of the prototype vectors (also
called referent vectors) in one or two dimensional output space. The SOM
consists of neurons organized on a regular low-dimensional map. More for-
mally, the map is described by a graph (C, Γ ). C is a set of m interconnected
neurons having a discrete topology defined by Γ .

For each pair of neurons (c, r) on the map, the distance δ(c, r), is defined
as the shortest path between c and r on the graph. This distance imposes a
neighborhood relation between neurons. The batch training algorithm is an
iterative algorithm in which the whole data set (noted Ω) is presented to the
map before any adjustments are made. We note zi an element of Ω and zi the
representation of this element in the space D called representation space of
Ω. In our case, the main difference with the classical batch algorithm is that
the representation space is not Rp but an arbitrary set on which dissimilarity
(denoted d) is defined.

Each neuron c is represented by a set Ac = z1, ..., zq of elements of Ω
with a fixed cardinality q, where zi belongs to Ω. Ac is called an individ-
ual referent. We denote A the set of all individual referents, i.e. the list
A = A1, ..., Am. In our approach each neuron has a finite number of repre-
sentations. We define a new adequacy function dT from Ω × P (Ω) to R+

by:

dT (zi, Ac) =
∑

r∈C
KT (δ(r, c))

∑

zj∈Ar

d2(zi, zj) (1)

dT is based on the kernel positive functionK. KT (δ(c, r)) is the neighborhood
kernel around the neuron r. This function is such that lim

|δ|−→∞
K(δ) = 0 and

allows us to transform the sharp graph distance between two neurons on the
map (δ(c, r)) into a smooth distance. K is used to define a family of functions
KT parameterized by T, with kT (δ) = K( δT ). T is used to control the size
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of the neighborhood [Anouar et al., 1997], [Dreyfus et al., 2002]; when the
parameter T is small, there are few neurons in the neighborhood. A simple

example of KT is defined by KT (δ) = e−
δ2

T2 .
During the learning, we minimize a cost function E by alternating an

assignment step and a representation step. During the assignment step, the
assignment function f assigns each individual zi to the nearest neuron, here
in terms of the function dT :

f(zi) = argmin
c∈C

dT (zi, Ac) (2)

If there is equality, we assign the individual zi to the neuron with the
smallest label.

During the representation step, we have to find the new individual refer-
ents A∗ that represent the set of observations in the best way in terms of the
following cost function E:

E(f,A) =
∑

zi∈Ω
dT (zi, Af(zi)) =

∑

zi∈Ω

∑

r∈C
KT (δ(f(zi), r))

∑

zj∈Ar

d2(zi, zj) (3)

This function calculates the adequacy between the induced partition by the
assignment function and the map referents A.

The criterion E is additive so this optimization step can be carried out
independently for each neuron. Indeed, we minimize the m following func-
tions:

Er =
∑

zi∈Ω
KT (δ(f(zi), r))

∑

zj∈Ar

d2(zi, zj) (4)

In the classical batch version, this minimization of E function is immedi-
ate because the positions of the referent vectors are the averages of the data
samples weighted by the kernel function.
Here is the algorithm:

Initialization: iteration k = 0, choose an initial codebook A0. Fix
T = Tmax and the total number of iterations Niter

Iteration: At iteration k, the set of individual referents of the previous
iteration Ak−1 is known. Calculate the new value of T :

T = Tmax ∗ (
Tmin
Tmax

)
k

Niter−1

I affectation step: up date the affectation function fAk associated
to the Ak−1 referent. Affecting each individual zi to the referent as defined
in equation (2).

I representation step: determine the new codebook Ak∗ that min-
imizes the E(fAk , A) function (with respect to A) Ak∗c is defined from equa-
tion (4).

Repeat Iteration until T = Tmin
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3 Incorporating sampling

The extension of the SOM to dissimilarity data (DisSom) is a solution for
different kind of complex data since we can define a dissimilarity but the
computational complexity constitute a problem when we have a large data
sets. In order to handle large data sets, we need an efficient mechanism
for reducing the size of the learning set of the DisSom. One approach to
achieving this is via random sampling (S ⊂ Ω), the key idea is to apply
DisSom’s clustering algorithm to the new learning set S drawn from the
data set rather than the entire data set. Typically, the random sample S
will fit in main memory and will be much smaller than the original data set.
Consequently, significant improvements in execution times for DisSom can be
realized. When we choose a random samples S of moderate sizes we preserve
information about the geometry of clusters fairly accurately, thus enabling
DisSom to correctly cluster the input. We propose to use the algorithm [?]
for drawing a sample randomly from data using constant space.

Data set Ω -
random
sample
S

-
Partition
sample with
DisSom

- Detection of
small clusters

-
Label the
remainder
data S′

?
Finding a new rep-
resentations for these
clusters among the
remainder data

6

Fig. 1. Overview of the steps of optimized DisSom

Once clustering of the random sample S is completed, the individual ref-
erent of each cluster is used to label the remainder of the data set (S′), where
Ω = S ∪ S′ and S ∩ S′ = ∅. Each data point zi ∈ S′ will be assigned to
the closest individual referent of the map using the assignment function f
(equation 2). But since we do not consider the entire data set, information
about certain clusters may be missing in the input. As a result, our clus-
tering algorithm may miss out certain clusters or incorrectly identify certain
clusters. To this end, before labelling the remainder of the learning set we
detect small clusters (c) and we have to find new individuals referent from
the remainder data S′ that minimizing the inertia criterion of the clusters c:

arg min
zi∈S′

∑

zj∈c
d2(zi, zj)

To detect outliers we can use the Chernoff bounds. In fact, assuming
that each cluster has a certain minimum size, we can use Chernoff bounds
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[Motwani and Raghavan, 1995] to calculate the minimum sample size for
which the sample contains, with high probability, at least a fraction fr of
every clusters [Guha et al., 1998].

The steps involved in clustering with DisSom are described in Figure 1.
Since the learning set of the DisSom clustering algorithm is a set of randomly
sampled points from original data set, the final k clusters involve only a
subset of the entire set of points. In DisSom, the algorithm for assigning the
appropriate cluster labels to the remaining data points employs a fraction of
randomly selected individuals referent for each of the final k clusters. Each
data point is assigned to the cluster containing the individual referent closest
to it.

4 Conclusion

In this paper, we propose to speed up the self organizing map on dissimilarity
data for large data sets. In fact, we propose to employ random sampling that
allows to handle large data sets efficiently.
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Abstract. We place ourselves in a so-called meet-closed description context; that
is a context consisting of a finite nonempty entity set E whose elements are de-
scribed in a complete meet-semilattice D, by means of a descriptor δ. Then we
consider multiway quasi-ultrametric dissimilarities on E, a class of multiway dis-
similarities that, with their relative k-balls, extend the fundamental in classification
bijection between ultrametric dissimilarities and indexed hierarchies. We also con-
sider multiway dissimilarities agreeing with entity descriptions in a quite natural
sense called δ-meet compatibility. It turns out that there exists an integer k such
that any strictly δ-meet compatible k-way dissimilarity is quasi-ultrametric. On
the other hand, the descriptor δ induces a Galois connection between the powerset
P(E) and D, which, in turn, induces a closure operator, say φδ, on P(E). then
it is proved that nonempty φδ-closed subsets of E coincide with k-balls relative to
some strictly δ-meet compatible multiway dissimilarities on E.
Keywords: Galois connection, Multiway dissimilarity, Closure operator, Descrip-
tion-meet compatibility, Quasi-ultrametric.

1 Introduction

Multiway dissimilarities are natural extensions of classical pairwise dissimi-
larities, that allow global comparison of more than two entities. In the last
decade, they have been investigated or considered from different approaches
in many works among which we just mention [Bandelt and Dress, 1994],
[Joly and Le Calvé, 1995], [Daws, 1996] and [Bennani and Heiser, 1997].
In this paper, these approaches are extended onto the so-called meet-closed
data description context. A meet-closed description context represents a fi-
nite entity set E using a complete meet-semilattice D. Then we consider
multiway quasi-ultrametric dissimilarities on E [Bandelt and Dress, 1994],
[Diatta, 1997], a class of multiway dissimilarities that, with their relative k-
balls, extend the fundamental in classification bijection between ultrametric
dissimilarities and indexed hierarchies [Johnson, 1967]. We also consider mul-
tiway dissimilarities agreeing with entity descriptions in a quite natural sense
called δ-meet compatibility. It turns out that there exists an integer k such
that any strictly δ-meet compatible k-way dissimilarity is quasi-ultrametric.
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On the other hand, any descriptor δ induces a Galois connection between the
powerset P(E) and D, which, in turn, induces a closure operator, say φδ, on
P(E) [Birkhoff, 1967]. It is proved that nonempty φδ-closed subsets of E are
the k-balls of some strictly δ-meet compatible multiway dissimilarities on E.

2 Multiway dissimilarities

Before introducing multiway dissimilarities, let us first recall the classical
pairwise ones. Let E be a finite nonempty set.

A (pairwise) dissimilarity on E is a map d : E × E → R satisfying re-
flexivity ((R2) d(x, x) = 0), non-negativity ((N2) d(x, y) ≥ 0) and symmetry
((S2) d(x, y) = d(y, x)).

Considering maps on E3, E4, . . . , Ek, with similar properties, naturally
leads to the notion of 3-way, 4-way,. . . , k-way dissimilarity. For instance,
a 3-way dissimilarity on E will be any map d : E3 → R satisfying:
(R3) d(x, x, x) = 0, (N3) d(x, y, z) ≥ 0 and (S3) d(x, y, z) = d(x, z, y) =
d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x). The term multiway dissimilar-
ity will be used to mean a k-way dissimilarity, for some k ≥ 2.

Of course, due to the tuple-based definition above, the complexity of
expressions related to k-way dissimilarities increases when k grows. Then,
for the sake of simplicity, we adopt in the present paper a set-based def-
inition based on the following observation: according to (R2) and (N2),
d(x, x) ≤ d(x, y) for all x, y. Thus, a dissimilarity on E can be defined
as being a nonnegative real valued map d on the set of singletons and pairs
of E, satisfying d({x}) = 0 and d({x}) ≤ d({x, y}). This set-based definition
makes the symmetry condition implicit. Moreover, for k ≥ 2, its generaliza-
tion to k-way dissimilarities involves shortest expressions.

For reasons explained in Remark 3 below, we will drop out the reflexivity
condition and thus be rather concerned with so-called (multiway) pseudo-
dissimilarities. However, we will still use the term dissimilarity, keeping in
mind that the condition d({x}) = 0 is not required.

For any set S and any integer k ≥ 1, S∗
≤k will denote the set of all

nonempty subsets of S with at most k elements. Then we formally define
multiway dissimilarities as follows.

Definition 1 A k-way dissimilarity on E will be any nonnegative real valued
and isotone map defined on the set of all nonempty subsets of E with at most
k elements, i.e., any map d : E∗

≤k → R+ such that d(X) ≤ d(Y ) when
X ⊆ Y .

Example 1 Table 2 presents a dataset, say D, about seven market baskets
and five items: bread (brd), butter (btr), cheese (chs), eggs (egg), milk (mlk);
for instance, the market basket labeled 1 contains bread and cheese. For any
k such that 2 ≤ k ≤ 5, a k-way dissimilarity on the set of items, can be
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defined by letting disk(X) be seven minus the number of baskets that con-
tain each of the items in X. Then, for instance, dis3({brd, chs}) = 4 and
dis3({brd, btr, chs}) = 7.

brd btr chs egg mlk

1 x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x
7 x x x

Table 1. Example dataset

Remark 1 For {x, y, z} ⊆ E, we will simply write d(x) or d(x, y) or
d(x, y, z) instead of d({x}) or d({x, y}) or d({x, y, z}), respectively. More-
over, as in the tuple-based setting, the notation d(x, y) or d(x, y, z) will not
require x, y and z be distinct.

3 Quasi-ultrametric multiway dissimilarities

Key notions in the definition of quasi-ultrametrics given below are those of a
d-ball, (d, k)-ball and d-diameter, where d is a k-way dissimilarity. To catch
their meaning, let us first cast them in the case of a pairwise dissimilarity,
say d2.

The d2-diameter of a nonempty subset Z of E is the maximum d2-
dissimilarity between elements of Z, i.e.: diamd2(Z) = max{d2(x, y) : x, y ∈
Z}.

Let now x and y be two distinct elements of E and r a nonnegative
real number. The d2-ball of center x and radius r is the set Bd2(x, r) of
elements of E whose d2-dissimilarity degree from x is at most r, i.e., formally,
Bd2(x, r) = {z ∈ E : d2(x, z) ≤ r}; the (d2, 2)-ball generated by {x} is the
set Bd2x = Bd2(x, d2(x)), and the (d2, 2)-ball generated by {x, y} is the set
Bd2xy = Bd2(x, d2(x, y)) ∩Bd2(y, d2(x, y)). If x = y, Bd2xy = Bd2x .

All these notions have been naturally generalized to multiway dissimilar-
ities in [Diatta, 1997]. For k ≥ 2, let dk denote a k-way dissimilarity on
E.

The dk-diameter (or, simply, diameter) of a nonempty subset Z of E is the
maximum dk-dissimilarity degree between elements of Z, i.e.: diamdk

(Z) =
max{dk(T ) : T ∈ Z∗

≤k}.
Let X ∈ E∗

≤k−1. The dk-ball (or, simply, ball) of center X and radius r

is the set Bdk(X, r) defined by Bdk(X, r) = {y ∈ E : dk(X ∪ {y}) ≤ r}. If
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X ∈ E∗
≤k, then the (dk, k)-ball (or, simply, k-ball relative to dk) generated

by X is the set Bdk

X defined by Bdk

X = Bdk(X, dk(X)) when |X | ≤ k − 1,

and Bdk

X = ∩
x∈X

Bdk(X \ {x}, dk(X)) otherwise. The superscript dk may be

omitted if there is no risk of confusion.
Before defining quasi-ultrametrics, let us recall a well-known particular

case of them, namely ultrametrics. A (2-way) dissimilarity d2 is said to be
ultrametric if for all x, y, z:

d2(x, y) ≤ max{d2(x, z), d2(y, z)}.

Next are some characterizations of ultrametric 2-way dissimilarities, which
may help in understanding the definition of quasi-ultrametrics given below.

Proposition 1 [Diatta and Fichet, 1998] For a 2-way dissimilarity d2 on
E, the following assertions are equivalent.

(i) d2 is ultrametric.
(ii) for all x, y, z: the greatest two values among d2(x, y), d2(x, z) and d2(y, z)

are equal.
(iii) for all x, y: diamd2(B(x, d2(x, y))) = d2(x, y) (diameter condition).
(iv) for all x, y, u, v: u, v ∈ B(x, d2(x, y)) implies B(u, d2(u, v)) ⊆

B(x, d2(x, y)) (inclusion condition).

Example 2 Figure 1 presents three dissimilarities d1, d
′
1 and d′′1 on the set

{i, j, k, l}. It is easily checked that d1 satisfies the diameter condition; but
d1 does not satisfy the inclusion condition because j, k ∈ Bd1jl whereas i ∈
Bd1jk and i /∈ Bd1jl . It is also easily checked that d′1 satisfies the inclusion;

but d′1 does not satisfy the diameter condition because i, j ∈ B
d′1
kl so that

diamd′1
(B

d′1
kl ) > d′1(k, l). The dissimilarity d′′1 is clearly quasi-ultrametric since

B
d′′1
i = B

d′′1
j = B

d′′1
ij = {i, j}, for x 6= i, j, B

d′′1
x = {x}, and for {x, y} 6= {i, j},

B
d′′1
xy = {i, j, k, l}.

i 0
j 1 0
k 1 1 0
l 3 2 1 0

i j k l

i 0
j 3 0
k 1 1 0
l 1 1 2 0

i j k l

i 0
j 0 0
k 1 1 0
l 1 1 1 0

i j k l
d1 d′1 d′′1

Fig. 1. Three pairwise dissimilarities on the set {i, j, k, l}: d1 satisfies the diameter
but not the inclusion condition; d′1 satisfies the inclusion but not the diameter
condition; d′′1 is quasi-ultrametric.



718 Diatta

Conditions (iii) and (iv) of Proposition 1 above can be extended to the case
of multiway dissimilarities by replacing balls with k-balls. The two extended
conditions define what we call the quasi-ultrametric multiway dissimilarities
[Diatta, 1997]:

Definition 2 A k-way dissimilarity dk on E is said to

(i) satisfy the inclusion condition if for all X,Y ∈ E∗
≤k, Y ⊆ Bdk

X implies

Bdk

Y ⊆ Bdk

X ;

(ii) satisfy the diameter condition if for all X ∈ E∗
≤k, diamdk

(Bdk

X ) = dk(X);

(iii) be quasi-ultrametric if it satisfies both of the inclusion and the diameter
conditions.

Example 3 The reader may check that the 3-way dissimilarity dis3 defined
in Example 1 is quasi-ultrametric. This can also be derived from Theorem 1
below (see Remark 4).

4 Description-meet compatibility

In this section, we place ourselves in a so-called meet-closed description con-
text. That is a context consisting of a finite nonempty entity set E whose
elements are described in a complete meet-semilattice D, by means of a de-
scriptor δ. We will denote such a context as a triple K = (E,D, δ) where E
stands for the entity set, D := (D,≤) the entity description space, and δ the
descriptor that associates to each entity x ∈ E its description δ(x) in D.

In all what follows, E will denote a finite nonempty entity set, D a com-
plete meet-semilattice, δ a descriptor that maps E into D, and K the meet-
closed description context (E,D, δ).

Example 4 Consider Table 4 presenting five visitors of a given Web site,
described by three attributes: LiLo, NoLi, ReSu, where LiLo(x) is the login-
logout time interval of visitor x within the interval [0, 24], NoLi(x) is the
number of times visitor x logs in at LiLo(x) interval during a given fixed pe-
riod, and ReSu(x) is the subjects requested by x during a session; requested
subjects are sets of subjects from: Arts & Humanities (AH), Business &
Economy (BE), Computers & Internet (CI), News & Media (NM), Recre-
ation & Sports (RS), Science & Health (SH), Society & Culture (SC).
Then Table 4 can be seen as representing a meet-closed description context
K2 := (E2, D2, δ2) where E2 is the set {1, 2, 3, 4, 5}, D2 the direct product of
three partially ordered sets (posets): the set (FUCI([0, 24]),⊆) of finite unions
of closed intervals of [0, 24] endowed with the set inclusion order, the set
(|[30; 40]|,≤) of integers from 30 to 40, endowed with the integer usual order,
and the powerset (P(S),⊆) of the set S = {AH,BE,CI,NM,RS, SC}, en-
dowed with the set inclusion order, and δ2(x) = (LiLo(x),NoLi(x),ReSu(x)).
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LiLo NoLi ReSu

1 0-2 30 CI,RS
2 21-24 35 AH,NM,SC
3 0-3 40 AH,BE,CI,RS
4 22-24 35 AH,SC
5 12-14 30 BE,NM

Table 2. Example meet-closed description context

The description-meet compatibility defined below has been introduced in
[Diatta and Ralambondrainy, 2002] in the case of pairwise dissimilarities. It
uses the notion of valuation on a poset.

A valuation on a poset (P,≤) is a map h : P → R+ such that h(x) ≤ h(y)
when x ≤ y. A strict valuation will then be a valuation h such that x < y
implies h(x) < h(y).

Before defining the description-meet compatibility, let us introduce a fur-
ther notation: for any X ⊆ E, δ(X) will denote the set of descriptions of
entities belonging to X .

A multiway dissimilarity d on E will be said to be δ-meet compatible if
there exists a valuation h on D with which it is δ-meet compatible, i.e., such
that

d(X) ≤ d(Y ) ⇐⇒ h(inf δ(X)) ≥ h(inf δ(Y )),

for X,Y ⊆ E. If h is a strict valuation, d will be said to be strictly δ-meet
compatible.

Remark 2 The reader may observe that when D is a complete join-
semilattice, a dual compatibility condition, say δ-join compatibility, can be
defined by reversing the right-hand side inequality in the above equivalence
and replacing meets by joins.

Description-meet compatibility is a kind of natural agreement expressing
the following fact: the lower the meet of descriptions of entities in X , the
larger the dissimilarity degree of X .

Remark 3 If d is a strictly δ-meet compatible (multiway) dissimilarity, then
δ(x) < δ(y) implies d(y) < d(x). This is why we drop out the condition
d(x) = 0, since it is very likely to happen that two entities x and y satisfy
δ(x) < δ(y).

Example 5 Consider the meet-closed description context K2 defined in Ex-
ample 4. Define a multiway dissimilarity on E2 by

dis′(X) = 47− (λ(∩x∈XLiLo(x)) + min
x∈X

NoLi(x) + | ∩x∈X ReSu(x)|),

where λ([α, β]) = β−α. For instance, dis′(1, 2, 3) = 47− (λ([0, 2]∩ [21, 24]∩
[0, 3])+min{30, 35, 40}+|{CI,RS}∩{AH,NM,SC}∩{AH,BE,CI,RS}|) =
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47 − (λ(∅) + 30 + |∅|) = 47 − (0 + 30 + 0) = 17. Then dis′ is strictly δ2-
meet compatible. Indeed, λ, x 7→ x and Y 7→ |Y | are strict valuations on
(FUCI([0, 24]),⊆), (|[30; 40]|,≤) and (P ,⊆), respectively. Thus h2 defined by

h2(u, v, w) = λ(u) + v + |w|

is a strict valuation on D2, and the fact that dis′ is δ2-meet compatible with
h2 follows from the fact that dis′(X) is decreasing w.r.t. h2(inf δ2(X)).

Before outlining the relationship between quasi-ultrametricity and
description-meet compatibility, let us recall the following technical notion:
the breadth of a meet-semilattice (P,≤) is the least positive integer k such
that the meet of any (k + 1) elements of P is always the meet of k elements
among these k + 1 [Birkhoff, 1967]. Having noticed this, we agree to say
that a subset Q of a meet-semilattice is of breadth k if k is the least positive
integer such that for any (k+1)-element subset W of Q there is w ∈W such
that inf(W \ {w}) ≤ w.

Example 6 Consider the dataset D given in Table 2 as presenting a meet-
closed description context K1 := (E1, D1, δ1), where E1 is the set of five items
and D1 the boolean lattice {0, 1}7; for instance δ1(brd) = (1, 0, 1, 0, 1, 1, 1).
Then δ1(E1) is of breadth at least 3 since

inf δ1({brd, chs,mlk}) = (0, 0, 0, 0, 0, 0, 1),

which is different from either of δ1(brd)∧δ1(chs) = (1, 0, 1, 0, 0, 0, 1), δ1(brd)∧
δ1(mlk) = (0, 0, 0, 0, 1, 0, 1) and δ1(chs) ∧ δ1(mlk) = (0, 1, 0, 0, 0, 0, 1). More-
over,

inf δ1({brd, btr, chs, egg}) = inf δ1({brd, btr, chs,mlk})
= inf δ1({brd, btr, chs}),

inf δ1({brd, btr, egg,mlk}) = inf δ1({brd, chs, egg,mlk})
= inf δ1({brd, egg,mlk}),

and inf δ1({btr, chs, egg,mlk}) = inf δ1({btr, chs, egg}), so that δ1(E1) is of
breadth 3.

We now go on stating the result showing the existence of an integer k ≥ 2
such that any strictly δ-meet compatible k-way dissimilarity on E is quasi-
ultrametric.

Theorem 1 (i) If δ(E) is of breadth one, then every strictly δ-meet com-
patible 2-way dissimilarity on E is ultrametric.

(ii) If δ(E) is of breadth k ≥ 2, then every strictly δ-meet compatible k-way
dissimilarity on E is quasi-ultrametric.
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The converse of Theorem 1 does clearly not hold since, for k ≥ 2, every
constant k-way dissimilarity on E is quasi-ultrametric but never strictly δ-
meet compatible, regardless of the descriptor δ. Indeed, otherwise, we would
have, for all x, y ∈ E, δ(x) = δ(y) so that δ(E) would be a singleton, hence
of breadth one.

Remark 4 As claimed in Example 3, it follows from Theorem 1 that the
3-way dissimilarity dis3 defined in Example 1 is quasi-ultrametric. Indeed,
on the one hand, as observed in Example 6, δ1(E1) is of breadth 3. On the
other hand, for each k such that 2 ≤ k ≤ 5, disk is strictly δ1-meet compatible
with the valuation h1 defined on D1 by letting h1(x) be the number of ones
occurring in x.

The entity set E being finite, there is an integer k ≥ 1 such that k is
the breadth of δ(E). Moreover, as any pairwise ultrametric dissimilarity is
quasi-ultrametric, we derive the following from Theorem 1.

Corollary 1 There is an integer k ≥ 2 such that any strictly δ-meet com-
patible k-way dissimilarity on E is quasi-ultrametric.

Following [Diatta, 1997], a k-way dissimilarity d will be said to be ultra-
metric if for all X ∈ E∗

≤k and x ∈ E:

d(X) ≤ max
Y ∈X∗

≤k−1

d(Y + x).

When δ(E) is of breadth one, Theorem 1 (i) extends to ultrametric mul-
tiway dissimilarities:

Theorem 2 If δ(E) is of breadth one, then for k ≥ 2, every strictly δ-meet
compatible k-way dissimilarity on E is ultrametric.

5 Characterization of Galois closed entity sets

Given the meet-closed description context K = (E,D, δ), the descriptor δ
induces a Galois connection between (P(E),⊆) and D by means of the maps

f : X 7→ inf {δ(x) : x ∈ X}

and
g : I 7→ {x ∈ E : I ≤ δ(x)},

for X ⊆ E and I ∈ D. Then it is well known that, in these conditions,
the map φδ := g ◦ f is a closure operator on P(E) [Birkhoff, 1967]. That
is φδ is extensive (X ⊆ φδ(X)), isotone (X ⊆ Y implies φδ(X) ⊆ φδ(Y ))
and idempotent (φδ(φδ(X)) = φδ(X)). A subset X of E is said to be φδ-
closed (or a Galois closed entity set of K, relative to φδ) when φδ(X) = X .
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Galois closed entity sets play an important role in classification because they
provide easy-to-interpret clusters [Domenach and Leclerc, 2002]. Indeed, if
X is a Galois closed entity set, then f(X) is the description of X .

When D is a complete join-semilattice, the descriptor δ induces a Galois
connection between (P(E),⊆) and the order-dual of D by means of the maps

f∂ : X 7→ sup {δ(x) : x ∈ X}

and
g∂ : I 7→ {x ∈ E : I ≥ δ(x)},

for X ⊆ E and I ∈ D. Similarly, this Galois connection induces the closure
operator φ∂δ := g∂ ◦ f∂ on P(E). Galois closed entity sets relative to φ∂δ have
been considered in the framework of symbolic data analysis [Bock and Diday,
2000].

Example 7 Consider the meet-closed description context K2 given in Ex-
ample 4. The pair {1, 3} is φδ-closed; but {1, 2, 3} is not φδ-closed because
inf δ2({1, 2, 3}) = (∅, 30, ∅) ≤ δ2(4). On the other hand, the pair {4, 5} is
φ∂δ -closed; but {1, 2, 3} is not φ∂δ -closed because

δ2(4) ≤ sup δ2({1, 2, 3}) = ([0, 3] ∪ [21, 24], 40, {AH,BE,CI,NM,RS, SC}).

The following proposition shows that the φδ-closure of any subset X ⊆ E
is contained in a ball centered in a subset of X and relative to some δ-meet
compatible multiway dissimilarity.

Proposition 1 Let d be a δ-meet compatible k-way dissimilarity measure on
E and let X ∈ E∗

≤k. Then for all Y ∈ X∗
≤k−1 and all y ∈ Bd(Y, d(X)),

φδ(Y + y) ⊆ Bd(Y, d(X)). Moreover, φδ(X) ⊆ Bd(Y, d(X)).

The next proposition gives a necessary and sufficient condition for the
φδ-closure of an entity subset X to be a ball (resp. k-ball) relative to some
δ-meet compatible multiway dissimilarity.

Proposition 2 Let d be a δ-meet compatible k-way dissimilarity measure on
E. Then, for all X ∈ E∗

≤k and all Y ∈ X∗
≤k−1:

(i) φδ(X) = Bd(Y, d(X)) if and only if inf δ(Bd(Y, d(X))) = inf δ(X).
(ii) φδ(X) = BdX if and only if inf δ(BdX) = inf δ(X).

We now go on stating the result showing the coincidence between
nonempty Galois closed entity sets of a meet-closed description context and
k-balls relative to some strictly description-meet compatible multiway dis-
similarity.

Theorem 3 For an integer p ≥ 2, let dp be a strictly δ-meet compatible
p-way dissimilarity on E.
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(i) If δ(E) is of breadth one, the set Fδ∗ of nonempty φδ-closed subsets of E
coincides with the set of (d2, 2)-balls generated by singletons of E.

(ii) If δ(E) is of breadth k ≥ 2, then Fδ∗ coincides with the set of (dk, k)-balls.

Finally, as observed above, E being finite, there is an integer k ≥ 1
such that k is the breadth of δ(E). Moreover, as any pairwise ultrametric
dissimilarity is quasi-ultrametric, we derive the following from theorems 1
and 3.

Corollary 2 There is an integer k ≥ 2 such that nonempty Galois closed en-
tity subsets of E coincide with k-balls relative to some k-way quasi-ultrametric
dissimilarity on E.

It may be noticed that, when D is a complete join-semilattice, similar
results hold for Galois closed entity sets relative to φ∂δ , using δ-join compatible
multiway dissimilarities.

Acknowledgements: The author is grateful to Boris Mirkin for helpful
advise.
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Abstract. Given a multiway data set, in several contexts it may be desirable to
obtain an overlapping clustering of one of the modes implied by the data. For this
purpose a one-mode additive clustering model has been proposed, which implies
a decomposition of the data into a binary membership matrix and a real-valued
centroid matrix. To fit this model to a data set, a least squares loss function can be
minimized. This can be achieved by means of a sequential fitting algorithm (SEFIT)
as developed by Mirkin. In this presentation we will propose a new algorithm for
the same model, based on an alternating least squares approach.
Keywords: Additive Clustering, Approximation Clustering, ALS algorithm.

1 Introduction

N -way N -mode data often show up in statistical practice. The simplest
instance is a two-way two-mode data set. In this paper we will focus on the
latter type of data, but everything can easily be extended to the N -way case.

For two-mode two-way data sets a one-mode additive clustering model
has been described by several authors, including [Mirkin, 1996]. The aim of
the associated data analysis is to fit this model to a data set under study (ei-
ther in a least squares or in a maximum likelihood classification sense). For
this purpose [Mirkin, 1990] proposed a sequential fitting (SEFIT) algorithm.
However, at this moment not much information is available about its per-
formance; moreover, as will be discussed below, this algorithm implies some
conceptual problems. As a possible way out, in this paper we will present a
new algorithm to estimate the same model.

The remainder of this paper is then structured as follows. In Section 2
we will describe the one-mode additive clustering model and in Section 3
we will explain the aim of the associated data analysis. In Section 4 the
SEFIT algorithm will be explained and in Section 5 we will present our new
algorithm. In Section 6 we present a few concluding remarks.
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2 Model

In one-mode additive clustering the data matrix X is approximated by a
model matrix. This model matrix M with entries mij (i = 1, . . . , I, j =
1, . . . , J) can be decomposed as

mij =

R∑

r=1

airgrj, (1)

with R denoting total number of clusters, with air taking values 1 or 0 and
with grj real-valued. A is called the cluster membership matrix with entries
air indicating whether entity i belongs to cluster r (air = 1) or not (air = 0).
One may note that apart from the binary nature, no further restrictions are
imposed on the values air , implying that the resulting clustering may be an
overlapping one. The vector gr = (grj)

J
j=1 is called the centroid of cluster

r and the entire matrix G with entries grj is called the centroid matrix.
Equation (1) then means that the ith row of M is obtained by summing up
the centroids of the clusters to which row i belongs. Note that (1) can also
be written in matrix form as

M = AG. (2)

In the past, this model has been described in [Mirkin, 1990] and [Mirkin,
1996].

To illustrate the conceptual meaningfulness of the one-mode additive clus-
tering model we may refer to the following hypothetical medical example.
Consider a patients by symptom data matrix, the entries of which indicate
the extent to which each of a set of patients suffers from each of a set of symp-
toms. In such a context, symptom strength may be attributed to underlying
diseases or syndromes, that correspond to clusters of patients. Given that
patients might suffer from more than one syndrome (a phenomenon called
syndrome co-morbidity), in such a case an overlapping patient clustering is
justified. The measured values of symptom strength can be considered addi-
tive combinations of the underlying syndrome profiles formalized by the rows
of the centroid matrix G of the additive clustering model (1).

3 Aim of the data analysis

A two-way two-mode data matrix X resulting from a real experiment can
always be represented by the model in (1). However, in most cases, a large
number of clusters R will be needed for this. Therefore one usually looks for
a model with a small value for R that fits the data well in some way.

A first way to do this is a deterministic one. In that case one assumes that
X ≈ M and the goal of the data analysis is then to find the model M with
R clusters that optimally approximates the data X according to some loss
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function. In this paper, the quality of the approximation will be expressed
in terms of a least squares loss function:

L2 =
∑

ij

(xij −
R∑

r=1

airgrj)
2, (3)

which needs to be minimized with respect to the unknown air and grj
(i = 1, . . . , I, r = 1, . . . , R, j = 1, . . . , J). Note that, if the matrix A is
given, then the optimal G according to (3) is the least squares multiple re-
gression estimator (A′A)−1A′X . Note that this implies, since we have only
2IR possible binary matrices A, that the solution space of (3) is finite and
that therefore in principle it is possible to find the global minimum enumer-
atively. However, as computation time is an exponential function of the size
of the data matrix, an enumerative search will quickly become infeasible.
Therefore, in practice suitable algorithms or heuristics need to be developed
to find the global optimum of (3).

A second approach to the data analysis is of a stochastic nature. We now
assume that:

xij =
R∑

r=1

airgrj + eij , (4)

where eij is an error term with eij
iid
simN(0, σ2). The goal of the data analysis

then is to estimate the air, grj and σ that maximize the log-likelihood:

log ` =
∑

ij

log f(xij |A,G, σ)

= −IJ log
√

2π − IJ log σ −
∑

ij(xij −
∑R
r=1 airgrj)

2

2σ2
(5)

This can be characterized as a classification likelihood problem. In the latter
type of problem, the binary entries of A are considered fixed parameters that
need to be estimated, rather than realisations of latent random variables
as in mixture-like models. For the estimation of air and grj we need to
minimize the sum in the numerator of the right most term in (5). This means
that the stochastic approach for estimating the memberships and centroids
is fully equivalent to the deterministic approach as explained above. For the
estimation of σ2 we have

σ̂2 =

∑
ij(xij −

∑R
r=1 âir ĝrj)

2

IJ
, (6)

where âir and ĝrj are the maximum likelihood estimators of air and grj
respectively.
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4 SEFIT

As explained in the previous section, the minimization of the loss function
(3) requires suitable algorithms. In this section we will explain a first such
algorithm that has been developed by [Mirkin, 1990] and that is a sequentially
fitting (SEFIT) algorithm. In this algorithm the membership matrix A is
estimated column-by-column meaning that one sequentially looks for new
clusters. Suppose m− 1 clusters have already been found, the mth cluster is
then estimated by making use of the residual data

xmij = xij −
∑

r<m

airgrj (7)

and by minimizing the function

∑

ij

(xmij − aimgmj)2. (8)

Given the memberships aim (i = 1, . . . , I) the least squares estimates for the
centroid values gmj (j = 1, . . . , R) are given by

gmj =

∑I
i=1 aimxij∑I
i=1 a

2
im

, (9)

which is the simple mean of the elements in the cluster.

The estimation of the memberships aim (i = 1, . . . , I) proceeds as follows.
We start with a zero memberships column (i.e., an empty cluster) and se-
quentially add elements of the first mode to the cluster in a greedy way, that
is, add that row that yields the biggest decrease in the loss function (8), and
continue until no further decrease is obtained.

A full loop of the algorithm then goes as follows. First estimate the
memberships aim (i = 1, . . . , I) using the residuals xmij by means of the
greedy procedure explained above and next estimate the centroid values gjm
(j = 1, . . . , R) by means of equation (9). Denote am = (aim) and gm = (gmj),
calculate the outer product amgm and subtract it from xmij yielding the resid-

uals xm+1
ij = xmij − amgm. This loop is repeated on xm+1

ij and the algorithm
terminates if the prespecified number of clusters R is reached.

One may note that this algorithm may only yield a local minimum rather
than the global optimum of the loss function. Moreover, SEFIT might also
have problems in recovering a true underlying model. We now will illustrate
this latter problem with a hypothetical example. Suppose the following true
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structure underlies the data X :

M = AG =




1 0
1 0
1 1
1 1
0 1
0 1




(
g11 g12 g13
g21 g22 g23

)
=




g11 g12 g13
g11 g12 g13

g11 + g21 g12 + g22 g13 + g23
g11 + g21 g12 + g22 g13 + g23
g21 g22 g23
g21 g22 g23



.

(10)
Suppose now that we estimate the first cluster and that the correct member-
ship vector a1 = (1, 1, 1, 1, 0, 0)′ has been recovered. Then according to (9)
the estimate of the corresponding centroid g1 reads

g1 = (g11 + g21/2, g12 + g22/2, g13 + g23/2), (11)

which is not equal to the true (g11, g12, g13). Clearly a bias has been intro-
duced due to the overlapping nature of the clusters and all further estimates
may be influenced by this wrong estimate since in the next step of the algo-
rithm the centroid will be subtracted from the data.

5 ALS algorithm

Our new approach to find the optimum of the loss function (3) is of the
alternating least squares (ALS) type: given a membership matrix A we will
look for an optimal G conditional upon the given A; given this G we will
subsequently look for a new and conditionally optimal A, and so on.

The easiest part is the search for G given the memberships A since this
comes down to an ordinary multivariate least squares regression problem,
with a closed form solution:

G = (A′A)−1A′X. (12)

For the estimation of A we can use a separability property of the loss
function (3), see also [Chaturvedi and Carroll, 1994]. This loss function
indeed can be rewritten as follows:

L2 =
∑

j

(x1j −
R∑

r=1

a1rgrj)
2

+ . . .

+
∑

j

(xIj −
R∑

r=1

aIrgrj)
2. (13)

The latter means that the contribution of the ith row of A has no influence
on the contributions of the other rows. As a consequence, A can be estimated
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row-by-row, which reduces the work to evaluating I 2R possible memberships
(instead of the full 2IR).

The alternating process is repeated until there is no more decrease in the
loss function. Since in each step the optimal conditional solution is found,
we create a decreasing row of positive loss function values. As a consequence,
this row has a limit which moreover will be reached after a finite number of it-
erations since there are only a finite number of possible membership matrices
A. The iterative process is to be started with some initial membership ma-
trix A, which can for instance be user specified or randomly drawn. Since in
the ALS approach entire matrices are estimated rather than single columns,
a bias as implied by the SEFIT strategy is avoided. Nevertheless, the ALS
algorithm could yield a local optimum of the loss function (3). The only
solution for this inconvenience is to use a large number of starts and retain
the best solution.

6 Concluding remark

In this paper we proposed a new algorithm for finding overlapping clusters
of one mode of a multiway data set. It involves an alternating least squares
approach and might overcome some limitations of Mirkin’s original SEFIT
algorithm. To justify the latter claim, however, an extensive simulation study
in which the performance of both algorithms would be compared, would be
needed.
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Abstract. Distance models for three-way proximity data, which consist of numer-
ical values assigned to triples of objects that indicate their joint (lack of) resem-
blance, require a generalization of the usual distance concept defined on pairs of
objets. An axiomatic framework is given for characterinzing three-way dissimilar-
ity, three-way similarity and three-way distance. The Minkowski-p or Mp model,
which includes the perimeter model, is studied and an Euclidean representation is
introduced. Finally, two monotonically convergent algorithms are described that
find weighted least squares representations under the EuclideanM1 andM2 mod-
els.
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1 Introduction

De nombreux domaines scientifiques utilisent le concept de distance dans des
contextes très différents. Le présent travail puise ses origines dans l’analyse
des données où les distances sont principalement utilisées pour modéliser des
jugements subjectifs de différence de façon à découvrir des structures latentes
de représentation.

Ce concept intervient aussi lorsqu’on cherche, comme en classification, à
transformer un tableau de données X en un tableau de distance D. Cette
transformation peut entrainer une perte d’information comme le montrent
les deux exemples suivants.

L’exemple 1, tiré de [Daws, 1996], concerne une expérience de libre classe-
ment. On demande à chacun des N sujets de produire une partition de n
objets reflétant leurs ressemblances perçues. Classiquement, on détermine à
partir de l’ensemble des partitions, un tableau de similarité de la manière
suivante : pour deux objets i et j, la similarité sij est définie comme étant le
nombre de sujets qui ont classé i et j ensemble. La distance entre i et j est
égale à δij = N − sij . Le tableau 1 donne, pour deux groupes différents de
sujets, les résultats d’un libre classement (la notation 12− 3− 4 signifie que
le sujet a produit trois classes : {1, 2}, {3} et {4}).
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partition groupe 1 groupe 2

1234 0 0
123− 4 5 1
124− 3 0 0
134− 2 0 0
1− 234 1 2
12− 34 0 1
13− 24 1 2
14− 23 0 0
12− 3− 4 1 4
13− 2− 4 0 3
1− 23− 4 1 4
14− 2− 3 0 0
1− 24− 3 2 0
1− 2− 34 2 0
1− 2− 3− 4 5 1

Total 18 18

Table 1.

Pour les deux groupes on obtient :

s12 = 6, s13 = 6, s23 = 7, s14 = 0, s24 = 4, s34 = 3

On voit donc que la similarité à deux voies s ne permet pas de distinguer les
deux groupes de sujets. Si, pour trois objets i, j et k, on définit la similarité
à trois voies sijk comme étant le nombre de sujets qui ont classé i, j et k
ensemble, alors on obtient :

• pour le groupe 1 :

s123 = 5, s124 = 0, s134 = 0, s234 = 1

• pour le groupe 2 :

s123 = 1, s124 = 0, s134 = 0, s234 = 2

La similarité à trois voies fait apparaitre clairement que les deux groupes
n’ont pas classé de la même manière les quatre objets.

Dans le second exemple, emprunté à [Cox et al., 1991], quatre individus sont
décrits par sept variables binaires de la manière décrite dans le tableau 2.

Calculons, à l’aide de l’indice de Jaccard les dissimilarités entre les quatre
individus :

δij =
qij

nij + qij
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v1 v2 v3 v4 v5 v6 v7
1 0 1 0 1 1 0 0
2 0 0 0 0 1 1 1
3 1 0 1 0 1 0 0
4 0 1 1 0 0 0 1

Table 2.

où nij (resp. qij) est le nombre de concordances positives (resp. nombre de
discordances) entre les individus i et j. On a :

δ12 = δ13 = δ14 = δ23 = δ24 = δ34 =
4

5

L’indice de Jaccard indique que ces quatre individus sont équidistants. Or, il
suffit de réordonner le tableau 2 selon la forme suivante pour voir que si les
individus 1,2 et 3 jouent des rôles symétriques il n’en est pas de même pour
l’individu 4 :

v2 v7 v3 v5 v4 v6 v1
1 1 0 0 1 1 0 0
2 0 1 0 1 0 1 0
3 0 0 1 1 0 0 1
4 1 1 1 0 0 0 0

Table 3.

Cette conclusion est confirmée par le calcul de l’indice de Jaccard à trois
voies (Bennani Dosse(1993)). En effet, cet indice donne :

δ123 =
6

7
, δ124 = δ134 = δ234 = 1

Les deux exemples ci-dessus montrent l’intérêt de généraliser les concepts de
similarité, dissimilarité et distances à trois (voire plusieurs) voies.

Dans la littérature, quelques auteurs se sont intéressés à ce problème. On
peut citer les travaux de [Hayashi, 1972, Hayashi, 1989], [Gower, 1984], [Cox
et al., 1991], [Pan and Harris, 1991], [Daws, 1996]. Les premiers auteurs
abordant les définitions axiomatiques et propriétés mathématiques sont [Joly
and Le Calvé, 1989, Joly and Le Calvé, 1995], [Bennani Dosse, 1993] et
[Heiser and Bennani Dosse, 1997]. Dans le paragraphe 2, nous allons faire
quelques rappels de ces notions puis nous abordons quelques problèmes de
représentations géométriques. Le dernier paragraphe traite un exemple réel
à l’aide du modèleM2.
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2 Définitions et propriétés

Soit E un ensemble fini non vide de cardinal n. On note ses éléments par
1, . . . , i, j, k, . . . , n. Une dissimilarité à trois voies sur E est une mesure de
dissemblance entre les éléments de E pris trois à trois. Plus la valeur de cette
dissimilarité est grande, plus les éléments sont considérés comme différents.

Définir une dissimilarité à trois voies δ sur E consiste à associer à chaque
triplet (i, j, k) de E3 un nombre réel positif ou nul, noté δijk. Formellement :

Définition 1 Une dissimilarité à 3 voies sur E est une application δ de E3

dans R+ telle que pour tout i, j, k ∈ E on a :

δiii = 0 (1)

δijk = δikj = δjik = δjki = δkij = δkji (2)

δiij = δijj (3)

Définition 2 Soit δ une dissimilarité à 3 voies sur E. On appelle restriction
de δ aux plans diagonaux l’application définie par :

ρij = δiij(= δijj)

Proposition 1 L’application définie ci-dessus est une dissimilarité à 2 voies
sur E.

De façon duale, on définit le concept de similarité à 3 voies comme étant
une mesure de ressemblance sur des triplets d’objets. Formellement :

Définition 3 Une similarité à 3 voies sur E est une application s de E3

dans R+ telle que pour tout i, j, k ∈ E on a :

siii = sjjj = skkk > sijk (4)

sijk = sikj = sjik = sjki = skij = skji (5)

siij = sijj (6)

Comme dans le cas ”2 voies” les notions de dissimilarité et de similarités
à 3 voies jouent des rôles opposés et on peut passer de l’une à l’autre par une
fonction décroissante.

La généralisation de l’inégalité triangulaire qui a été proposé par Joly-Le
Calvé(1989) est la suivante : pour tout i, j, k, ` ∈ E3

δijk 6 δik` + δjk` (7)
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Bennani Dosse(1993) propose l’inégalité suivante : pour tout i, j, k, ` ∈ E3

2 δijk 6 δik` + δjk` + δij` (8)

Proposition 2 L’inégalité (8) implique l’inégalité (7).

On peut facilement vérifier que l’inégalité (8) n’est pas suffisante pour
que ρ vérifie l’inégalité triangulaire. Par contre on montre (Heiser et Bennani
Dosse(1997)) que l’on a :

ρij 6
5

4
(ρik + ρjk)

Pour que ρ vérifie l’inégalité triangulaire, Joly & Le Calvé(1989) introduisent
la contrainte suivante :

δiij 6 δijk (9)

Définition 4 Une application qui vérifie les axiomes (1), (2), (3), (7) et (9)
est appelée distance à 3 voies.

Définition 5 Une application qui vérifie les axiomes (1), (2), (3), (8) est ap-
pelée distance triadique.

Proposition 3 Les indices de Daws et de Jaccard défnis dans le premier
paragraphe sont des dissimilarités à 3 voies qui vérifient les inégalités (8) et
(9).

Définition 6 une application δ de E3 dans R+ est dite distance à centre à
3 voies s’il existe un vecteur u ∈ Rn+ tel que :

δiii = 0

δiij = ui + uj

δijk = ui + uj + uk

3 Modèles de Minkowski d’ordre p

Étant donnée une dissimilarité à 2 voies d sur E, on peut construire de
nombreux modèles de dissimilarités à 3 voies. Les modèles de Minkowski
d’ordre p, p > 1, sont définis par :

δpijk = dpij + dpik + dpjk (10)
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Proposition 4 si d est une distance à 2 voies alors δ est une distance tri-
adique. De plus, la restriction de δ aux plans diagonaux est une distance à 2
voies.

Remarque 1 Si p = 1 on obtient le modèle périmètre; si p = 2 on obtient
le modèle M2 et si p =∞ on obtient le modèle max.

4 Représentations géométriques

Considérons le problème suivant : étant donnée une dissimilarité à trois voies
δ sur E, on cherche à représenter les éléments de E par des points dans un
espace de dimension finie de manière que les distances à 3 voies dans cet
espace approchent le plus possible les données initiales. Ce problème est une
extension du multidimensional scaling (voir [Borg and Groenen, 1998]).

4.1 Approximation par une distance périmètre

Le problème posé est de minimiser la fonction :

σ1 =
∑

i

∑

j

∑

k

wijk (δijk − dij − dik − djk)2

où d est une distance euclidienne dans un espace de dimension donnée p et
les wijk sont des poids positifs ou nuls donnés.

4.2 Approximation par une distance M2

Le problème posé est de minimiser la fonction :

σ2 =
∑

i

∑

j

∑

k

wijk

(
δijk −

√
d2
ij + d2

ik + d2
jk

)2

5 Application

Hayashi(1972) a collecté directement des données de dissimilarité à 3 voies
portant sur l’improductivité d’équipes formées de trois individus. Vu la taille
restreinte des données (n = 6), cet exemple présente surtout un caractère
pédagogique. Les données sont présentées dans le tableau 4 :

Hayashi propose, pour faire une représentation euclidienne de la dissim-
ilarité à 3 voies δ, d’utiliser le carré de la surface du triangle. La figure 1
présente le positionnement des 6 individus.

Nous avons analysé ces données à l’aide du modèleM2. La figure 2 montre
que ces données mettent en evidence deux groupes d’individus {1, 2, 3} et
{4, 5, 6}.
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δ123 = 1 δ124 = 7 δ125 = 6 δ126 = 9
δ134 = 7 δ234 = 8 δ135 = 6 δ235 = 7
δ136 = 9 δ236 = 9 δ145 = 4 δ245 = 6
δ345 = 3 δ146 = 9 δ246 = 8 δ346 = 5
δ156 = 6 δ256 = 7 δ356 = 3 δ456 = 1

Table 4.
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45

6

Fig. 1. données de Hayashi : modèle surface du triangle.

6 Conclusion

Ce travail montre qu’il est possible, grâce à quelques outils mathématiques
élémentaires, d’étendre à plusieurs voies les notions de dissimilarité, similarité
et distance. Nous avons choisi de mettre l’accent sur les représentations
Euclidiennes mais d’autres sont possibles (comme les représentations
hiérarchiques).

Un champ, particulièrement intéressant dans les applications, est celui
où l’on dispose d’un tableau à trois voies où la donnée exprime une dissimi-
larité entre les éléments de trois ensembles disjoints. Cette approche est une
généralisation du dépliage métrique (metric unfolding). Le lecteur intéréssé
peut consulter Bennani Dosse(1995)[Bennani Dosse, 1995].
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1 Introduction

Mutual information satisfies properties that make it an ideal measure of
stochastic dependence [Cover and Thomas, 1991, Darbellay, 1999, Joe, 1989b]
[Rényi, 1959]. Unlike Pearson’s linear correlation coefficient which accounts
only for linear relationships, or other well-known rank correlation coefficients
that can detect monotonic dependencies, the mutual information takes into
account all types of dependence.

In the first section, after introducing the notion of mutual information,
we present its best-known normalized versions and we show how less compu-
tationally expensive approximations of it can be obtained by means of the
concept of k-additive truncation. In the second section, its estimation is dis-
cussed both in a discrete and in a continuous context. The last section is
devoted to a brief overview of some applications of mutual information in
data analysis.

2 Mutual information

In the rest of the paper, random variables shall be denoted by uppercase
letters, e.g. X , and random vectors by uppercase black-board letters, e.g.−→
X . In order to unify the presentation of the mutual information in the
discrete and in the continuous case, we shall classically further assume that
the probability measures of the manipulated random vectors are absolutely
continuous (a.c) with respect to (w.r.t) a σ-finite measure µ being either
the counting measure in a discrete setting or the Lebesgue measure in a
continuous framework.
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2.1 Definition and properties

Let us consider a random vector (
−→
X ,
−→
Y ). The mutual information between−→

X and
−→
Y is defined as the distance from independence between

−→
X and

−→
Y

measured by the Kullback and Leibler divergence [Cover and Thomas, 1991]
[Kullback and Leibler, 1951, Kus, 1999, Ullah, 1996].
For two densities p and q w.r.t µ with same support, the Kullback and Leibler
divergence is defined by

KL(p, q) :=

∫
p log

(
p

q

)
dµ (1)

with the convention that 0 log 0
0 := 0.

Let us denote by p
(
−→
X ,

−→
Y )

, p−→
X

and p−→
Y

the joint and marginal densities of the

random vectors. The mutual information between
−→
X and

−→
Y is then defined

by

I(
−→
X ;
−→
Y ) := KL(p

(
−→
X ,

−→
Y )
, p−→

X
⊗ p−→

Y
), (2)

where p−→
X
⊗ p−→

Y
denotes the tensor product of p−→

X
and p−→

Y
. From the above

definition, we see that the mutual information is symmetric and, by applying
the Jensen inequality to the Kullback and Leibler divergence, we obtain that

the mutual information is always non negative and zero if and only if
−→
X and−→

Y are stochastically independent.
The mutual information can also be interpreted as the H-information ob-
tained from the Shannon entropy [DeGroot, 1962, Morales et al., 1996]. The
Shannon entropy of a density p w.r.t µ, when it exists, is defined by

H(p) := −
∫
p log(p) dµ

with the convention that 0 log 0 := 0. In the discrete case, H(p) always
exists, is positive and can be interpreted as an uncertainty or an information
measure [Rényi, 1965], whereas in the continuous case, when it exists, it can
be negative and should be only interpreted as a measure of the structure
contained in the density p.

With respect to the Shannon entropy, the mutual information between
−→
X

and
−→
Y can be easily rewritten as

I(
−→
X ;
−→
Y ) = H(p−→

X
)− Ep−→

Y

[H(p−→
X |−→Y =y

)] = H(p−→
Y

)− Ep−→
X

[H(p−→
Y |−→X =x

)]. (3)

Hence, the mutual information can be interpreted as the reduction in the

uncertainty of
−→
X (resp.

−→
Y ) due to the knowledge of

−→
Y (resp.

−→
X ) [Ullah,

1996]. Rewriting the expectation in Eq. (3), we obtain Ep−→
Y

[H(p−→
X |−→Y =y

)] =

H(p
(
−→
X ,

−→
Y )

)−H(p−→
Y

), and therefore

I(
−→
X ;
−→
Y ) = H(p−→

X
) +H(p−→

Y
)−H(p

(
−→
X ,

−→
Y )

). (4)
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2.2 Normalized versions of the mutual information in the
discrete case

Consider two discrete random vectors
−→
X and

−→
Y . Since the mutual infor-

mation can be interpreted as the H-information obtained from the Shannon
entropy, which is always non negative in the discrete case, a first normalized

version of I(
−→
X ;
−→
Y ) is given by

U(
−→
X ;
−→
Y ) =

H(p−→
X

)− Ep−→
Y

[H(p−→
X |−→Y =y

)]

H(p−→
X

)
=
I(
−→
X ;
−→
Y )

H(p−→
X

)
.

The quantity U(
−→
X ;
−→
Y ), known as the asymmetric uncertainty coefficient,

can be interpreted as the relative reduction of the uncertainty contained in−→
X given

−→
Y [Särndal, 1974]. The above quantity is clearly not symmetric. A

symmetric version of U(
−→
X ;
−→
Y ), known as the symmetric uncertainty coeffi-

cient [Särndal, 1974], is defined by

S(
−→
X ;
−→
Y ) :=

I(
−→
X ;
−→
Y )

1
2

[
H(p−→

X
) +H(p−→

Y
)
] .

Although the values of the latter quantity are in [0, 1], it does not necessarily

take the value 1 when there is a perfect functional dependence between
−→
X

and
−→
Y . This last observation led Joe [Joe, 1989b] to define a normalized

version of the mutual information as

I∗d (
−→
X ;
−→
Y ) :=

I(
−→
X ;
−→
Y )

min
[
H(p−→

X
), H(p−→

Y
)
] . (5)

The quantity I∗d (
−→
X ;
−→
Y ) clearly takes its values in [0, 1]. Furthermore,

I∗d (
−→
X ;
−→
Y ) = 1 if and only if

−→
X and

−→
Y are functionally dependent [Joe,

1989b, Theorem 2.3].

2.3 Normalized versions of the mutual information in the
continuous case

Let (X,Y ) be a normally distributed random vector with correlation co-
efficient ρ. The mutual information between X and Y is then given by
I(X ;Y ) = −1/2 log(1 − ρ2) [Cover and Thomas, 1991]. Starting from this
observation and by analogy with the way Pearson’s contingency coefficient
was obtained, Joe [Joe, 1989b] defined a normalized version of the mutual
information as

I∗c (X ;Y ) :=
√

1− exp[−2I(X ;Y )]. (6)

The quantity I∗c (X,Y ) clearly takes its values in [0, 1] and is equal to |ρ| if
(X,Y ) is normally distributed with correlation coefficient ρ.
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Let us now consider the case where X and Y are “approximately dependent”.
As in the case of the contingency coefficient, Joe [Joe, 1989b] conjectured that
the “more X and Y are functionally dependent”, the closer I∗c (X,Y ) to 1 ;
see also [Granger and Lin, 1994].
Note that the above quantity can immediately be generalized to random
vectors.

2.4 Generalizations of the mutual information

Starting from Eq. (4), Abramson proposed a natural extension of the mutual
information between more than two random vectors [Abramson, 1963]. The

mutual information among three random vectors
−→
X ,
−→
Y and

−→
Z having a joint

density w.r.t µ is defined by

I(
−→
X ;
−→
Y ;
−→
Z ) := H(p−→

X
) +H(p−→

Y
) +H(p−→

Z
)

−H(p
(
−→
X ,

−→
Y )

)−H(p
(
−→
X ,

−→
Z )

)−H(p
(
−→
Y ,

−→
Z )

) +H(p
(
−→
X ,

−→
Y ,

−→
Z )

).

More generally, for r ≥ 2 random vectors
−→
X 1,. . . ,

−→
X r having a joint density

w.r.t µ, the following definition was adopted by Abramson :

I(
−→
X 1; . . . ,

−→
X r) :=

r∑

k=1

∑

{i1,...,ik}⊆{1,...,r}
(−1)k+1H(p

(
−→
X i1 ,...,

−→
X ik

)
). (7)

The mutual information among r ≥ 2 random vectors
−→
X 1,. . . ,

−→
X r can be in-

terpreted as a measure of their simultaneous interaction [Kojadinovic, 2004b]
[Wienholt and Sendhoff, 1996]. It can equivalently be regarded as a sort of
multiway similarity measure among variables. Should it be zero, the r random
vectors do not simultaneously interact. Note that the mutual information be-
tween more than two random vectors is not necessarily non negative [Cover
and Thomas, 1991].
Another straightforward generalization of the mutual information is fre-
quently encountered in the literature under the name of redundancy. The
redundancy [Wienholt and Sendhoff, 1996] among r ≥ 2 random vectors−→
X 1,. . . ,

−→
X r having a joint density w.r.t µ is defined by

R(
−→
X 1; . . . ;

−→
X r) := KL(p

(
−→
X 1,...,

−→
X r)

, p−→
X 1
⊗ · · · ⊗ p−→

X r
),

which, in terms of the Shannon entropy, can be easily rewritten as

R(
−→
X 1; . . . ;

−→
X r) =

r∑

i=1

H(p−→
X i

)−H(p
(
−→
X 1,...,

−→
X r)

).

As previously, it is easy to verify that the redundancy is always positive and

equal to zero if and only
−→
X 1,. . . ,

−→
X r are stochastically mutually independent.

As for the mutual information, the higher the redundancy among the random
vectors, the “stronger” their functional dependency [Joe, 1989b].
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2.5 Approximations of the mutual information based on
k-additive truncation

Consider a finite set ℵ := {X1, . . . , Xm} of random variables. The subsets of
ℵ will be denoted by uppercase black-board letters, e.g. X. Given a subset

X ⊆ ℵ composed of r variables,
−→
X will denote an r-dimensional random

vector whose coordinates are distinct elements from X. We shall also assume
that the variables in ℵ have a joint density w.r.t µ.

Let h : 2ℵ → R and i : 2ℵ → R be set functions defined respectively by

h(X) :=

{
0, if X = ∅,
H(p−→

X
), if X 6= ∅,

and

i(X) :=

{
0, if X = ∅,
I(Xi1 ; . . . ;Xir ), if X = {Xi1 , . . . , Xir}.

Using concepts well-known in discrete mathematics such as the Möbius trans-
form [Rota, 1964], it is easy to verify that i is an equivalent representation of
h [Grabisch et al., 2000, Kojadinovic, 2002]. Practically, this means that the
numbers {h(X)}X⊆ℵ can be recovered from the coefficients {i(X)}X⊆ℵ, and
vice versa. More precisely, from Eq. (7) and using the zeta transform [Gra-
bisch et al., 2000], we have

i(X) =
∑

T⊆X

(−1)|T|+1h(T) and h(X) =
∑

T⊆X

(−1)|T|+1i(T), ∀X ⊆ ℵ.

From the latter equation, it follows that the entropy of random vector
−→
X

whose coordinates are denoted Xi1 , . . . , Xir can be rewritten as

H(p−→
X

) =
∑

Xj∈X

H(pXj )−
∑

{Xj ,Xk}⊆X

I(Xj ;Xk)

+
∑

{Xj ,Xk,Xl}⊆X

I(Xj ;Xk;Xl)− · · ·+ (−1)r+1I(Xi1 ; . . . ;Xir).

The entropy of p−→
X

is therefore calculated, first by summing the entropies
of the singletons contained in X, then by subtracting the sum of mutual
informations among pairs of variables contained in X, after by adding the
sum of mutual informations among variables of 3-element subsets contained
in X, etc. The sums of mutual informations that are added or subtracted can
be seen as corrective terms or higher order terms. In certain situations such as
variable selection [Kojadinovic, 2004b], it may interesting, for computational
reasons, to perform a k-additive truncation of H for a given k ∈ {1, . . . ,m},
that is to neglect corrective terms of order greater than k in the expression
of the entropy, which leads to an approximation of the mutual information
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between two random vectors. For instance, as shown in [Kojadinovic, 2002],
for k = 2 and k = 3, we have respectively

I(2)(
−→
X ;
−→
Y ) =

∑

X∈X

∑

Y ∈Y

I(X ;Y ) and

I(3)(
−→
X ;
−→
Y ) = I(2)(

−→
X ;
−→
Y )−

∑

X∈X

∑

{Y1,Y2}⊆Y

I(X ;Y1;Y2)

−
∑

{X1,X2}⊆X

∑

Y ∈Y

I(X1;X2;Y ).

Note that the lower the amount of interaction among random variables in a
set X, the closer the truncated entropy H(k)(p−→

X
) to H(p−→

X
), with equality if

there are no simultaneous interactions among more then k variables.

3 Estimation

3.1 In a discrete setting

Consider two discrete random vectors
−→
X and

−→
Y respectively taking their val-

ues in the sets {x1, . . . , xr} and {y1, . . . , ys}. From Eq. (2), we see that their
mutual information is clearly a function of their joint distribution p

(
−→
X ,

−→
Y )

,

which is classically estimated by its maximum likelihood estimator (sample
proportions). Using the well-know delta method [Agresti, 2002, Saporta,
1990], it can be shown that KL(p̂

(
−→
X ,

−→
Y )
, p̂−→

X
⊗ p̂−→

Y
) is asymptotically normally

distributed [Basharin, 1959, Menéndez et al., 1995] with expectation I(
−→
X ;
−→
Y )

and variance σ2
KL(p

(
−→
X ,

−→
Y )

)/n, where σ2
KL(p

(
−→
X ,

−→
Y )

) is

r∑

i=1

s∑

j=1

p
(
−→
X ,

−→
Y )

(xi, yj)

(
log

p
(
−→
X ,

−→
Y )

(xi, yj)

p−→
X

(xi)p−→Y (yj)

)2

− KL(p
(
−→
X ,

−→
Y )
, p−→

X
⊗ p−→

Y
)2.

This result can be used to obtain approximate confidence intervals for the

mutual information. When
−→
X and

−→
Y are stochastically independent, a clas-

sical calculation shows that the mutual information is asymptotically χ2 dis-
tributed with (r−1)(s−1) degrees of freedom [Menéndez et al., 1995]. More
details and further results can be found in [Fagen, 1978, Hutter and Zaffalon,
2005] [Roulston, 1999].

3.2 In a continuous setting

From Eqs. (4) and (7), we see that estimating mutual information amounts
to estimating Shannon entropies.

Consider a random vector
−→
X having a Lebesgue density. A point-wise es-

timation of the entropy of its density can be obtained in two steps : first,
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by substituting the density of
−→
X in the expression of the Shannon entropy

by an estimate computed from available independent realizations; then, by
computing the remaining integral by numerical quadrature [Granger and Lin,
1994] [Harvill and Ray, 2001, Joe, 1989b, Silverman, 1986].
The difficulties linked to numerical integration can however be avoided. Let

F−→
X

be the cumulative distribution function of
−→
X and let

−→
X 1, . . . ,

−→
Xn be a

random sample drawn from p−→
X

. The Shannon entropy of p−→
X

can then be
rewritten as

H(p−→
X

) = −
∫

log p−→
X
dF−→

X
.

Substituting F−→
X

by the empirical cumulative distribution function and p−→
X

by an estimate, we obtain a natural estimator of the Shannon entropy given
by

Ĥ(p−→
X

) = − 1

n

n∑

i=1

log p̂−→
X

(
−→
X i).

The above estimator was studied in [Hall and Morton, 1993, Joe, 1989a]

in the case where p−→
X

(
−→
X i) is estimated by kernel density estimation [Scott,

1992] [Silverman, 1986]. In that context, Hall and Morton showed that the

estimator Ĥ(p−→
X

) is consistent if the dimension of
−→
X is strictly inferior to 4

and if the density of
−→
X satisfies certain regularity conditions. A synthesis on

the estimation of the Shannon entropy in the continuous case can be found
in [Beirlant et al., 1997].
From a practical perspective, the use of two nonparametric density estimation
technique is encountered in the literature : kernel density estimation [Granger
and Lin, 1994, Harvill and Ray, 2001, Kojadinovic, 2004a] and projection
pursuit density estimation [Friedman et al., 1984, Kojadinovic, 2002].

Another approach to mutual information estimation is based on a prior
discretization of the random vectors by means of recursive partitioning algo-
rithms [Darbellay, 1999, Fraser, 1989]. The best studied and most promising
approach is probably that proposed by Darbellay.

4 Some applications of mutual information in data
analysis

In a discrete setting, unnormalized mutual information was used for discrete
variable clustering [Benzécri, 1976, Chap. 5] (although the symmetric uncer-
tainty coefficient or I∗d seem more appropriate). Note that the approximation
proposed in section 2.5 could be used to define new aggregation criteria. The
asymptotic results presented in section 3.1 make it even possible to use the
analysis of the link likelihood method [Lerman, 1981] in that context. The
symmetric uncertainty coefficient was used for feature selection (see e.g. [Yei
and Liu, 2003]), the use of the asymmetric version being even more natural
in that context.
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In a continuous setting, unnormalized mutual information was used for
lag identification in nonlinear time series [Fraser, 1989, Granger and Lin,
1994] [Harvill and Ray, 2001, Kantz and Schreiber, 1997] and k-additive ap-
proximations of it for variable selection in regression problems [Kojadinovic,
2004a]. The coefficient I∗c and redundancy was employed for continuous vari-
able clustering [Kojadinovic, 2004b]. Redundancy minimization is at the root
of some approaches to independent component analysis ; see e.g [Hyvärinen,
1999].
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Abstract. The main purpose of the study is to analyse and to model the percep-
tion of job related satisfaction. The survey of employee satisfaction was conducted
to gain an understanding of employee’s needs, opinions, concerns, skills, and per-
ception of the organization. Paper shows the application of the cluster analysis
framework for the employee classification in the organization. The classification
into three clusters was chosen. The k-means method has been used for classifi-
cation. According to the procedure proposed by Carmone, Kara, and Maxwell
([Carmone et al., 1999]) – in the first step, 20 variables were used as a base for
classification (selected out of complete list of 79 statements). The motivation for
those analyses was to improve the quality of human resources management and to
diversify the managerial approach towards distinctive groups of employees.
Keywords: Classification, Human Resources Management, Job Related Satisfac-
tion.

1 Introduction

The main purpose of the study is to analyse and to model the perception of
job related satisfaction. The level of employee satisfaction determines work
quality, loyalty, engagement and identification with company objectives. The
survey of employee satisfaction was conducted to gain an understanding of
employee’s needs, opinions, concerns, skills, and perception of the organiza-
tion. The motivation for those analyses was to improve the quality of human
resources management and to diversify the managerial approach towards dis-
tinctive groups of employees.

Analyses covered key areas of HR management – motivation and commu-
nication, evaluation of working conditions and working climate, measurement
of attitudes and opinions. Data collected with the use of various measure-
ments scales were analysed with the multivariate statistical techniques. Ad-
ditionally, the classification of employees has been done.

Job related satisfaction is defined as positive attitude of employee towards
the company, duties and co–workers (see [Levy Garboua and MontMarquette,
2001], and [Freeman, 1978]). The level of the perception of job related satis-
faction is strongly related with the difference between subjective evaluation
of the existing situation and the expectations. Employee’s satisfaction level
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does not always reflect real situation, more often is determined by working
conditions perception. It is assumed, that highly satisfied employee works
harder, more efficiently, and with less slack and waste than unhappy person.
He (she) is also more innovative and entrepreneurial, having the interest of
the company at heart, given that they see their own satisfaction intimately
and directly tied to the success of the company. Furthermore, it is often
assumed that employees’ satisfaction has a direct, positive impact on func-
tioning of whole organization. It cannot be denied, that ineffective human
resources management very often causes lack of job related satisfaction. It
can be result of bad compensations system, unfair motivation system, inef-
fective internal communication or bad working climate [Armstrong, 1996].
Thus, those areas should be constantly monitored.

Companies, in order to measure satisfaction level, often conduct a ques-
tionnaire survey. Employees’ opinion survey became an essential component
of organizational culture and provides a picture of organizations’ need for
managerial improvements. These surveys can be used to solicit employee
opinion on a variety of issues such as the company’s success in communicat-
ing its mission to employees, or local issues such as quality of the working
environment. A survey makes it possible to gather responses from individu-
als who would otherwise surely be hesitant to speak out their opinions and
suggestions.

The findings and recommendations from the employee satisfaction survey
enable human resources department to make essential improvements. Fur-
thermore, identification of strengths and weaknesses is possible. Addition-
ally, monitoring of job related satisfaction and identifying areas that need
improvement could result in retaining highly performing staff members. Ap-
propriate recommendations can help in eliminating of existing and potential
problems and threats. Moreover, the results of feedback process provide an
understanding how the employee perceives the organization along different
dimensions. The role of the feedback can be summarized as follow:

• Is essential in facilitating development and organizational change.
• Allows the organization to focus on needs and leverage its strengths.
• Informs the organization management on which actions could create prob-

lems for the employees.
• Provides management with employees’ feedback (both positive and neg-

ative) on the internal health of the organization.
• Measures the impact of current programs, policies and procedures.
• Can be used to motivate employees and improve job satisfaction.

Summing up, an employee satisfaction survey is essential source of informa-
tion about organization and enables recognition of the perception of the job
related satisfaction and employee happiness (in terms of every aspect in the
organization). Moreover, it gives the opportunity to identify most motivating
and de–motivating factors.
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2 Surveyed Organization

The analysed company, a branch of multinational group is one of the biggest
manufacturers of chassis systems on local market. Its products are sold to car
manufactures, such as Fiat, Ford and General Motors. In view of long tra-
dition and specific production profile, the company put special emphasis on
the quality, thus plant has ISO/TS 16949 and ISO 14001 quality certificates.

The plant has long tradition, but in the recent period several times has
been taken over by various multinational corporations. Hence, the organiza-
tion culture has been destabilized. Consequently, whole organization suffers
declining morale and motivation among employees. As a side effect, the
perception of job related satisfaction also declined. To tackle the negative
symptoms observed in the company, the least effective areas in the organi-
sation had to be identified. Therefore an employee satisfaction survey was
conducted.

3 Survey Questionnaire

The survey measures facets of the organization that employees feel satisfied
with, those which are viewed less favourably, and opportunities for improve-
ment. Hence, the survey questionnaire included items on the following areas:

• Motivation system.

• Internal communication and relation with superior.

• Job climate.

• Attitude to the company and duties.

To identify specific groups of employees, 568 people were surveyed. Over 216
responses were collected. This amounts to approximately 38% of employees.
Relatively high percentage of persons working in supportive production took
part in the survey, at the same time direct production employees participated
the least. Furthermore, comparatively many young employees (26 to 32 years
old) working between 2 and 5 years partake in survey. On the other hand,
employees with job seniority above 16 years and older than 47 years old,
did not respond in large numbers. Usually, this kind of survey is carried
out with use of questionnaires, interviews and simply by observations. A
questionnaire used for this employee opinion survey contained items that
were rated on a five–point scale. Respondents were asked to choose category
which best corresponds to their attitudes on a five point Likert scale: 1 –
Strongly disagree, 2 – Disagree, 3 – No opinion, 4 – Agree, 5 – Strongly
agree.

These items have been developed to measure different dimensions of the
organization – communication, motivation, job climate and leadership.
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Table 1. The survey’s questions concern four major issues, which have strong effect
on job satisfaction in organization. In order to find those factors, the survey covered
major issues, which presumably have negative influence on the level of satisfaction
perception.

Current employ-
ment

Surveyed employees

Employment category Number of
employees

Rate Number of
employees

Rate

1. Direct production 392 69% 123 57%

2. Indirect production 86 15% 64 30%

3. Administration 90 16% 29 13%

Job seniority

1. Up to 1 year 132 23% 41 19%

2. Between 2 and 5 years 73 13% 62 29%

3. Between 6 and 10 years 12 2% 6 3%

4. Between11 and 15 years 26 5% 6 3%

5. Between 16 and 20 years 77 14% 21 10%

6. Longer than 21 years 248 44% 80 37%

Sex

Female 103 18% 46 21%

Male 465 82% 170 79%

Age

1. Up to 25 years old 90 16% 43 20%

2. Between 26 and 32 years old 108 19% 59 27%

3. Between 33 and 39 years old 60 11% 23 11%

4. Between 40 and 46 years old 130 23% 45 21%

5. Between 47 and 53 years old 147 26% 41 19%

6. Older than 54 years 33 6% 5 2%

Position

1. Managerial 40 7% 17 8%

2. Blue–collar 528 93% 199 92%

Type of employment contract

1. Contracted worker 478 84% 178 82%

2. Temporary worker 90 16% 38 18%

Total 568 216

4 Classification of Employees

In the analysis it was highly important to identify, if there are groups of sim-
ilar employees and to distinguish differences between those identified groups.
As the criterion for clustering, the descriptive variables (questionnaire state-
ments), that expressed employees’ opinion about issues important for the
company were used. In accordance with the character of the variables, the
k-means technique was chosen for clustering. An extensive discussion on
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classification techniques may be found in several works dealing with k-means
clustering algorithm (see [Gatnar and Walesiak, 2004], [Gordon, 1999], [Wale-
siak, 1996])

Although it limits the usefulness of the survey and the analysis and ad-
ditionally limits the possibility of knowledge discovery – because of the ex-
plicitly expressed managerial needs formulated by the Human Resources De-
partment, the classification into three clusters has been chosen. In the survey
there were 79 variables. Not all were used for the analysis. The variables se-
lection was based on the Heuristic Identification of Noisy Variables (HINoV)
algorithm which uses Hubert and Arabie’s ([Hubert and Arabie, 1985]) ad-
justed Rand index and k-means method of classification. Carmone, Cara, and
Maxwell (1999, p. 507) demonstrate that using HINoV the results with sim-
ulated data helps identify noisy variables. Clustering objects based on only
the non-noisy variables give better cluster recovery. The HINoV algorithm
contains the following steps:

1. The starting point is data matrix for the analyzed objects A =
{A1, . . . , An} and for set of descriptive variables M = {M1, . . . ,Mm} .

2. For each variable j the k−means clustering is performed. The arbitral
(required) number of clusters is requested.

3. Hubert and Arabie’s adjusted Rand indices Rjl (j, l = 1, . . . , m) for
all j 6= l) are calculated. Since Rjl are symmetric – m(m− 1)/2 values are
to be calculated.

4. The (m×m) matrix of adjusted Rand indices Rjl (j, l = 1, . . . , m) is

constructed. Each row (or column) is summed up Rj• =
m∑
l=1

Rjl.

5. The measures (sums) R1•, R2•, . . . , Rm• are ranked. By analyzing
scree diagram (looking for a kink point) – the subset of hvariables with high-
est contribution to the cluster structure is selected. The value of the Rj•
indicate the contribution of that variable to the cluster structure. Relatively
low values of Rj• indicate noisy variables – those (m − h) variables with
insignificant contribution to the cluster structure are eliminated from the
further analysis.

6. Rerun the k−means clustering of the set of analyzed objects A =
{A1, . . . , An} using only hselected variables.

As a result of the HINoV algorithm application, out of the complete list
of 79 statements (variables), a sub–set of twenty variables was selected for
cluster analysis.

Resulting classification of employees into three groups gave classes with
68, 85 and 63 respondents respectively. Third class, the smallest contains
employees with somehow ambivalent opinions. One may notice that there is
slight under–representation of men (of –5,1%). Employees working in the ad-
ministration (white–collar) are overrepresented (14,9%). When job seniority
is considered, there is substantial under–representation of employees work-
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ing 11–15, and 16–20 years (–33,3% and –19,0% respectively). It receives
reflection in the age of the class members.

Very interesting is the character of the class number one and two, which
might be labeled satisfied and dissatisfied. In the class number one (satis-
fied) – the mean value in as many as 17 statements (out of twenty), reaches
maximal value. In contrast – all 20 variables has minimal average value in
the class number two (dissatisfied). The class, which is called satisfied has
the structure very similar to the structure of the whole sample with respect
to three characteristics – employment category, position and sex. There is
substantial overrepresentation (46,7%) of the oldest employees in this class.
When job seniority is considered, there is substantial overrepresentation of
employees working less than one year, 11–15, and 16–20 years (22,8%, 16,7%
and 9,5% respectively). Unexpectedly there is overrepresentation (of 8,8%)
of temporary employees in this class. The class, which is called dissatis-
fied has the structure considerably different from the structure of the whole
sample. There is substantial overrepresentation of direct and supportive pro-
duction workers (8,1% and 8,9%) in this class. Thus the male employees are
overrepresented by 7,3%.

5 Summary and Managerial Recommendations

The multivariate analysis and clustering of employees proved that there is
clear distinction into at least three categories of employees. There is interest-
ing impact resulting from the analysis for decision makers in the Enterprise.
The most important is the information that there is need for HR policy dif-
ferentiation. From the HR management point of view – the satisfied people
do not require as much attention as those dissatisfied. Therefore it is clear
that employees belonging to the class number two (dissatisfied) need spe-
cial consideration. In order to formulate managerial recommendation – the
analysis of the class number two (dissatisfied) is necessary. The lowest mean
values may be observed for statements 18, 13, 20, 19 (mean values: 1,26;
1,45; 1,56; 1,64 respectively). The statements analysis shows that the most
troublesome issues are connected with compensation and motivation system.
This conclusion may be strengthen by the fact, that also in the class num-
ber one (satisfied) respective mean values are also low (although the highest
in three classes). The corresponding values are: 2,96; 3,29; 3,19; and 3,51.
Mean values in this class for other statements reach up to 4,71 (statement
17), 4,54 (statement 8).
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Table 2. Characteristics of the clusters

Specification Class

I II III

Number of employees in each class 68 85 63

Statements Means

1 Internal communication in company
is functioning properly

3,69 2,60 2,68

2 I am always properly informed on
results of my job evaluation

3,72 2,13 2,65

3 There is no exaggeration in
assessing my behaviour

3,31 2,42 3,24

4 I could honestly recommend my company
to my acquaintances as a good place to work

4,18 2,29 3,22

5 I am aware on my company condition
and its future plans

3,65 2,15 3,78

6 My boss appreciates when I work well 3,84 2,08 2,48

7 In the company creative and
energetic people are being promoted

3,94 1,85 3,24

8 I care for my company image 4,54 3,65 4,00

9 I am informed on objectives and tasks
planed for my department for this year

4,01 2,52 3,29

10 I have never experienced not ethical behaviour 3,56 2,38 3,94

11 I consider my employment secure and stable 3,81 1,91 3,16

12 Our company cares for employees 3,90 1,76 2,40

13 I receive fair compensation for my efforts 3,29 1,45 1,97

14 In our department there is no unfair
rivalry between co–workers

3,75 2,86 3,84

15 In case of difficulties I can surely
count on my co–workers help

4,49 4,09 4,44

16 When I seek information for my work,
I know where I can find it

4,43 3,24 3,90

17 I know what is expected from me on my workplace 4,71 4,15 4,32

18 In my company employees are compensated
according to their achievements

2,96 1,26 2,11

19 I clearly understand compensation policy 3,51 1,64 2,10

20 The compensation system stimulates employees
involvement and efficiency

3,19 1,56 1,87
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1 An introduction to structural equation modeling

1.1 General considerations

Let p variables be observed upon n units. The p variables are partitioned
in J subsets or blocks of kj variables which are presumed to be pertinent
for describing the phenomenon. Each of these blocks is designed to describe
a theme of the general phenomenon. We shall designate these blocs by Xj

and we shall consider them as matrices with dimension (n × kj). In struc-
tural models the observed variables are called manifest variables. The latent
variables are not observable: they exist by the relations they have with the
manifest variables. In the following we shall always suppose that each block
is associated with only one latent variable (unidimensionality). Therefore we
can identify the blocks by the same name as their latent variable. The latent
variable corresponding to the Xj block will be designated by ξj . A structural
model needs 2 types of models: the measurement model (outer model) which
connects the manifest variables to the latent variables and the structural
model (inner model) which connects latent variables between them.

1.1.1 The measurement model (outer model) After having deter-
mined the blocks, we must specify the type of relationship between latent
variables and manifest variables which correspond to block Xj. There are 3
ways: the reflective way, the formative way, the MIMIC way (Multiple effect
Indicators for Multiple Causes).
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The reflective way In this way, the manifest variables are considered like
the “reflection” of their latent variables [Tenenhaus et al., 2005]. This
kind of situation exists for instance in models which analyse customer
satisfaction of a particular kind of service: a set of questions about the
image of the service which represents a latent variable in the model. Each
manifest variable is related to its latent variable, as follows:

xjh = π0
jh + πjhξj + εjh ∀h = 1 . . . kj

π0
jh = constant term; πjh = regression coefficient; εjh = residual term.

The formative way Here the latent variables represents the “reflection” of
the manifest variables which belong to block Xj , and are thus a result
of these [Tenenhaus and al., 2005]. In this type, the latent variable is a
linear function of the manifest variables which generate it:

ξj = Σ
kj

h=1$jhxjh+δj

;
$jh (h = 1 . . . hj)= multiple regression coefficients of ξj on ; δj = resid-
ual term.

1.1.2 The structural model (inner model) Opposite to the measure-
ment model, which deals with the relations between latent variables and their
manifest, the structural model concerns the mode of estimation of latent vari-
able between them. The relations between latent variables have the form:

ξj = β0
j +ΣJ

i=1,i6=jβjiξi + ζj ∀j = 1 . . . J (1)

β0
j = constant term; βji = regression coefficient; ζj = residual term.

Wold [Wold, 1966] formalized the concept of partial least squares. His al-
gorithm consists in estimating the latent variables (outer estimate and inner
estimate) and the structural equations by OLS (Ordinal Least Squares) mul-
tiple regression with an iterative process. The initial value of the coefficients
being equal to ±1, according to the sign of the correlation between latent
variables or between latent and manifest variables.

1.2 A comparison between PLS and LISREL

We will follow here [Jöreskog and Wold, 1982], [Chin, 2000] and [Vinzi, 2003].
In PLS approach, there are less probabilistic hypotheses, data are modeled
by a succession of simple or multiple regression and there is no identification
problem. On the contrary in LISREL, the estimation is done by maximum
likelihood, based on the hypothesis of multinormality and allows the mod-
elisation of the variance-covariance matrix. However, identification problems
and non-convergence of the algorithm are sometimes encountered. The differ-
ences between the estimations for a causal model using PLS and LISREL de-
pends on the order in which the parameters of the model and latent variables
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are computed. For PLS the estimated latent variables are first computed by
making them belong to the space spanned by their manifest variables. The
model parameters are computed by using OLS multiple regression. With
LISREL, one computes the model parameters by maximum likelihood and
impose some constraints on latent variables. Consequently, the structural
equations are more significant in LISREL than in PLS (the R2 are larger)
and the correlations between the manifest variables and their latent are larger
in PLS. In LISREL approach, each latent variable is estimated by multiple re-
gression, using all manifest variables. In PLS, latent variables are calculated
as a linear combination of the associated manifest variables. PLS favours the
outer model and LISREL the inner model. The table 1 summarizes criteria
for choosing between PLS and LISREL.

Table 1. Criteria for choosing between PLS and LISREL.

2 Practical application

2.1 Satisfaction in automobile market

Taking into account that the PLS approach is less used than LISREL in
marketing research, even though it is more advantageous than the latter,
our objective was to introduce how PLS works and to show its’ capacities.
To reach this goal, we used data provided by the PSA Company (Peugeot
Citroën) on customers’ satisfaction. We used the experimental PLSX module
of the SPAD software, which has been developed within the framework of the
ESIS project about the construction of a tool to analyze European customer
satisfaction.
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2.2 The questionnaire

The data obtained by questionnaire (which is confidential) represents sat-
isfaction scores (with the scale of 1 to 10) on about thirty services. 2922
customers participated. Manifest variables are the followings (table 2):

Table 2. Manifest variables.

Since we are interested in the relationships between variables, and not in
their values, it was not necessary to rescale the answers, despite the fact that
customers do not use the scale in the same way.

3 The analysis

3.1 Blocks building

We first had to partition the manifest variables (MV) into homogenous blocks,
each one being explicitly associated with only one latent variable. After many
trials and with the help of experts, we considered the following division of
the 32 variables into 6 blocks (table 3):

3.2 The causality scheme

The measurement model has been established in the previous paragraph.

3.2.1 The structural model (inner model) Supposing that the themes
reflect correctly the characteristics of the satisfaction, we must then propose
relations between these themes, so as to explain the latent variable “general
satisfaction”. In the figure 1 we can visualize the structural model which
shows the relations between the latent variables:
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Table 3. The 6 blocks of manifest variables.

Fig. 1. The causality scheme with correlations values between latent variables.

3.3 Results and interpretations

We see that the variable “construction quality” is the most important variable
for the “general satisfaction” (the correlation coefficient is 0,4339) and the
less important is the “driving quality” (the correlation coefficient is 0,2683).
Consequently, in order to increase the general satisfaction of the client, the
producer should concentrate firstly on the “construction quality” and then
on the “solidity”, “costs”, “internal comfort” and “driving quality”. Let us
now interpret the results in detail.

3.3.1 The measurement model After convergence of the PLS algorithm,
one obtains the final weights which allow us to link the manifest variables
with the latent variables:
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Gsat = 0, 2188× S01 + 0, 5746× S02 + 0, 4850× S03
Soli = 0, 4682× S08 + 0, 4242× S09 + 0, 4151× S33
Conq = 0, 2103× S04 + 0, 2730× S05 + 0, 3396× S06 + 0, 3930× S28

+0, 3787× S29
Drivq = 0, 1962× S20 + 0, 1595× S21 + 0, 1415× S22 + 0, 1615× S23

+0, 1775× S24 + 0, 1658× S25 + 0, 1728× S26 + 0, 1805× S27
Comf = 0, 1492× S11 + 0, 1795× S12 + 0, 1756× S13 + 0, 1542× S14

+0, 1667× S15 + 0, 1424× S16 + 0, 1282× S17 + 0, 1457× S18
+0, 1092× S19 + 0, 1513× S34

Costs = 0, 2396× S30 + 0, 5707× S31 + 0, 5042× S32

Table 4 presents only correlations larger than the mean of the absolute
values (0,3723):

We observe that all latent variables are well correlated with their own
manifest. So, the manifest variables “describe” their latent appropriately
and the blocks are therefore validated. We see also that the largest correla-
tion (0,8692) is between “general satisfaction” and their manifest “quality in
general”.

The R2 coefficients between connected latent variables are:

R2(Conq;Soli) = 0, 2889

R2(Comf ; (Soli, Conq)) = 0, 3468

R2(Drivq; (Conq, Comf)) = 0, 5286

R2(Gsat; (Soli, Conq, Comf,Drivq, Costs)) = 0, 2516

In this table the most interesting relation concerns the “general satis-
faction”. For this variable, the R2 coefficient generated by the other latent
variables is 25%, and we consider that as satisfactory because there are 2922
individuals. The correlations between the latent variables are given below in
table 5.

We can see that to improve “internal comfort”, the producer should con-
centrate on “solidity” (correlation coefficient = 0,5353) and on the “construc-
tion quality” (0,4948). The producer?s efforts for improving “construction
quality” also greatly affect the variable “leading quality” (0,5764). In order
to obtain a good “construction quality” the producer could concentrate on
“solidity” (0,5375).

We also observe an important correlation between “solidity” and “driv-
ing quality”. We have chosen not to establish a relation between these two
because this relation does not in any way influence the model. Given the
causality scheme the determination of “general satisfaction” is a complex
procedure in which almost all the latent variables are directly involved. The
equation is as follows:

Gsat = 0, 2721× Conq + 0, 1678× Soli+ 0, 198× Costs
+0, 082× Comf + 0, 095×Drivq
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Table 4. Correlations between manifest and latent variables.

Table 5. Correlations between latent variables.

The negative coefficient for “driving quality” can be explained by the fact
that this variable increases with “construction quality” and the regression co-
efficient between “construction quality” and “general satisfaction” is 0,2721.
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This multiplication coefficient is without doubt corrected by the negative
coefficient on the “driving quality”.

4 Conclusions

Firstly it must be underlined that this study did not follow the logical se-
quence of steps of the PLS approach: the construction of a model by experts,
the construction of a questionnaire using this model, and the collection of
customer data using this questionnaire. In our case, we have inverted the
process: we have tried to build a model using data that had already been
collected with a questionnaire. This fact has obviously effects on the final re-
sults which cannot be precisely measured. A hierarchy of the influence of the
latent variables on general satisfaction can be established using the structural
model: I. Construction quality; II. Solidity; III. Costs; IV. Internal comfort;
V. Driving quality. The results obtained for general satisfaction are satis-
factory: R2 = 25% which is a good result for a large sample of almost 3000
respondents.
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Abstract. In the context of a practical case study regarding an environment appli-
cation, a methodology for river water quality assessment and prediction was devel-
oped. Such a methodology consists of calculating a quality index by correspondence
analysis and predicting its value at non-sampled locations by spatial statistics.
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1 Introduction

When a river is submitted to anthropic environmental stress, e.g., an indus-
trial discharge, a variety of physical-chemical-biological variables are to be
monitored in a series of downstream stations in order to guarantee the quality
of its water.
For the sake of control by Environment concerned agencies (both official and
NGOs), this disparate set of variables should be summarized in some kind of
a global straightforward quality index, easy to be appreciated by public opin-
ion and regulatory institutions. On the other hand, this summary measure
should also account for all the available information related to the influence of
the discharge onto the river water. Once calculated this index, an assessment
can be made on the river water quality. But, obviously, if no modelling pro-
cedure is applied in order to provide some sort of prediction, this assessment
refers only to the sampled points (the stations where the basic measurements
are made).
Since no dispersion deterministic model is prone to be applied to the qual-
ity index (no mechanism can be assigned to the dynamics of such a hybrid
combination of parameters), a stochastic forecasting methodology should be
devised in order to predict the index at any non-sampled point (or domain),
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as required by the above mentioned Environment concerned agencies. Aim-
ing at approaching this issue from the standpoint of spatial statistics, the
standard estimation methodology should be adjusted in order to cope with
the specific characteristics of such a problem, where geometry and dynam-
ics play a determinant role. This entails the calculation of a non-Euclidean
distance along the river and the development of a non-stationary estimation
approach, adjusted to the river flow characteristics.

2 Methodology

The proposed methodology to address this two-fold problem consists of two
steps:
In the first step, the barycentric affectation procedure put forward by
Benzécri [Benzécri, 1980], and modified by Pereira [Pereira, 1988], was
applied in order to produce a comprehensive quality index, ranging from
-1 to +1, and accounting for the entire set of variables available at all
monitoring stations. For this end, it is required that a panel of experts
scrutinizes all measured parameters, split their range into p significant
classes, and create two vectors in the variable classes space, designated
by the ’GOOD’ and ’BAD’ poles. These poles represent, respectively, the
’ideal’ water quality in its two extremes: pure and polluted water (according
to the expert panel). These two ’ideal’ vectors are arranged in a 2 x p
matrix and submitted to Correspondence Analysis, providing an axis, onto
the empirical samples (coded in complete disjunctive form) are projected
as supplementary lines. The co-ordinate of each sample in this axis is the
required index.
In the second step, the kriging technique, developed in [Matheron, 1965] for
the case of space-stationary random functions, was adjusted to the specific
features of river water flow according to the guidelines provided in Pereira
et al. [Pereira et al., 2000]. In particular, the lag for calculation of spatial
auto-correlation function - Matheron’s variogram - was not measured as
an Euclidean distance, but as a ’meandric’ one, which is the analogue,
for the case of rivers, of the well known ’block distance’, used in urban
applications. Also, the variogram function and the resultant kriging system
were modified to account for the fact that the index at a given point of
space along the river depends only on the corresponding upstream values.
Hence, a new auto-correlation tool - the cumulative variogram, as proposed
by Sen [Sen, 1989] in a different context - was developed in order to avoid
any stationarity assumption. This tool - which stands for the Probability
Cumulative Function, as the ”usual” variogram stands for the Probability
Density Function, is defined by:
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a
wγ [d(i)] =

m∑

i=1

(zw − zi)2 (1)

where d(i) is the ”meandric” distance between w and the station
i (i = 1, ...,m) and zw is the index at the point w, to which the cu-
mulative variogram refers. This tool allows to respect the practical order
relationships between stations and points (or domains) to be predicted, as
given by the river flow. Based on its auto-correlation with upstream values,
the proposed index, viewed as a Regionalized Variable, can be estimated at
any downstream non-sampled domain by the modified kriging system given
below:
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(2)

where w is the central point of the domain to be estimated on the grounds
of i upstream stations (i = 1, ...,m), λ are the kriging weights to be assigned
to each sample value to predict the average index in the required domain, γ
is the usual variogram deduced from the cumulative one by differentiation,
and µ is the Lagrange parameter.
Details of the methodological framework where this step relies are given in
Ribeiro [Ribeiro, 1999].

3 Case Study

In order to illustrate the above proposed methodology, a case study referring
to the Oeiras River (south of Portugal, Fig. 1) is presented. The river
is submitted to an industrial discharge and the non-sampled domain of
concern on its water quality is located just before the junction with the main
Guadiana River (domain W in Fig. 1). Along Oeiras River, water quality
is monitored in a series of sampling stations (Fig. 1), for the variables given
in the first column of Table 1. The second column of Table 1 contains the
classes constructed by the panel of experts for each one of the variables, in
order to define the ’Good’ and ’Bad’ poles, on which the index calculation
relies. In the third and forth columns of Table 1, the weights assigned by
experts to each variable modality are given.
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Variables Classes Good Pole Bad Pole

1 0.00 0.80
Biotic diversity 2 0.01 0.14

based on 3 0.05 0.05
macro-invertebrate 4 0.14 0.01

taxa 5 0.80 0.00
[ 0 ; 50 ] 0.00 0.91

Dissolved Oxygen ] 50 ; 90 ] 0.09 0.09
(%) > 90 0.91 0.00

Temperature (oC) [ 0 ; 20 ] 0.50 0.02
] 20 ; 30 ] 0.50 0.98
[ 0 ; 6 ] 0.00 0.50

pH ] 6 ; 9 ] 1.00 0.00
] 9 ; 14 ] 0.00 0.50
[ 0 ; 400 ] 0.95 0.00

Conductivity ] 400 ; 1500 ] 0.05 0.05
(µS/cm) > 1500 0.00 0.95
Chemical [ 0 ; 10 ] 0.90 0.00

Oxygen Deficiency ] 10 ; 40 ] 0.10 0.10
(mg/l) > 40 0.00 0.90

Sulphates (mg/l) [ 0 ; 400 ] 0.99 0.01
] 400 ; 3200 ] 0.01 0.99

[ 0 ; 25 ] 0.97 0.01
Nitrates (mg/l) ] 25 ; 50 ] 0.02 0.02

> 50 0.01 0.97
[ 0 ; 0.54 ] 0.96 0.01

Phosphates (mg/l) ] 0.54 ; 0.94 ] 0.03 0.03
> 0.94 0.01 0.96

Cu (mg/l) [ 0 ; 0.005 ] 0.98 0.03
> 0.005 0.02 0.97

Fe (mg/l) [ 0 ; 0.3 ] 0.96 0.03
> 0.3 0.04 0.97

Table 1. Weights defining the ’GOOD’ and ’BAD’ poles for river water quality.
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Fig. 1. Location of Oeiras River, sampling stations and domain of concern.

The results of the index calculation for each station according to the first
step of the above described methodology are summarized in the histogram of
Fig. 2.

Fig. 2. Histogram summarizing the assignment of the index to the stations.

Since pluviometry can influence the dispersion of pollutants, the index
was arranged in each station for the ”wet” and ”dry” months. The evolution
of the average index along the river is shown in Fig. 3.
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Fig. 3. Schematic representation of the average index for each station (a)-Dry,
(b)-Wet months.

Regarding the second step of the methodology, the first point is to calcu-
late the cumulative variogram for each sampling station according to equation
1, as given in Fig. 4.

Fig. 4. Cumulative variogram for (a)-Dry and (b)-Wet months.
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Differentiating the functions fitted to the curves of Fig. 4, the usual
variogram is obtained per station and the system 2 is solved for obtaining
the set of λ that permit to predict the value of the index in the non-sampled
domain W of Fig. 1 by summing, for all stations, the product of for each λ
by the corresponding average index (for dry and wet months).
The results of this calculation are given in Table 2, where the average value
of the index in the domain W is compared with the corresponding values in
the upstream A-B domain (before the effluent discharge, see Fig. 1).

Average Index in the Domain W Average Index in the Domain A-B

Wet Months 0.641 0.788

Dry Months 0.535 0.601

Table 2. Prediction of the Index after and before the effluent discharge.

Table 2 shows that, even though a small decrease in the quality index
occurs from A-B to W, the contamination does not reach the Guadiana
River, especially in the wet months.

4 Conclusions and Further Work

The proposed methodology allows the estimation of a river water quality
index in a non-sampled spatial domain, using all upstream available infor-
mation.
The point to be developed at this regard is the automatic selection of
positive definite functions for the used variogram, obtained by differentiation
of the empirical cumulative variogram.
In what concerns the forecasting of the index in time, the length of the
available time series (7 years, two samples by year) does not allow any
deeper approach than the split into ”wet” and ”dry” months. Never-
theless, when the time series will have some statistical significance, the
parameters of their fitted models can be identified. Then, the same spatial
estimation methodology can be applied to these parameters, allowing to
predict their values in a non-sampled domain. Finally, the time series at this
domain is simulated for future values and a space-time estimation is provided.
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Abstract. This paper is devoted to a short presentation of the use we did of
nonparametric estimation theory for the estimation, filtering and control of un-
certain dynamic systems. The fundamental advantage of this approach is its low
dependence from any a priori modeling assumptions about uncertain dynamic com-
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processes, and in particular biotechnological processes, which are emblematic of
nonlinear uncertain and partially observed systems.
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1 Introduction

This paper is devoted to a survey of the use of nonparametric estimation
theory for the estimation, filtering and control of uncertain dynamic systems.
It relies on a set of works we have been developing for more than ten years
and which emphasizes the efficiency of these nonparametric tools in functional
estimation as well as in probability density estimation.

The frame of these developments is that of the control of general discrete-
time processes, and in particular biotechnological processes, which are em-
blematic of nonlinear uncertain and partially observed systems. The field of
bioprocess modeling and control offers typical examples of structural time-
variations problems which cannot be handled by classic control methods: the
dependence of the kinetic coefficients on biomass and substrate state vari-
ables is affected by functional fluctuations and not merely parametric ones.
In that case, a more appropriate approach would be robust control, in which
uncertainty is explicitly accounted for at the beginning of the control de-
sign through numerical or functional bounds. However, the performance of
the related controllers can be sensitive to settings that are too much con-
servative or too much optimistic. The nonparametric approach is free from
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these prior assumptions: through a stochastic learning process, uncertain
functional components are progressively and automatically estimated as de-
terministic or random functions of the measured quantities, in accordance
with their actual but unknown and possibly time-varying structures. The
use of this functional estimation procedure, compared with the usual and
more or less arbitrary choice of these model components, contributes to the
reduction of one source of model inadequacy. Moreover, the stochastic frame
in which these nonparametric models are designed allows some uncontrolled
disturbances such as measurement errors and parameter variations to be ac-
counted for.

In the following we shall present successively application of this nonpara-
metric approach to identification, filtering and control of dynamic systems.

2 Identification and estimation of nonlinear stochastic
processes

The uncertain processes under consideration belong to the general class of
controlled Markov chains.

They are represented by discrete-time autoregressive models of the fol-
lowing type:

Xt+1 = Ft(Xt, Ut, εt+1), (1)

whereXt ∈ Rs, Ut ∈ Rm and εt are the output, input and noise of the system,
respectively. Driving function Ft may be completely or partly unknown,
according to the degree of uncertainty in the analytical knowledge of the
process. This function may be deterministic or stochastic and is supposed to
obey some regularity conditions (see §2.1). Moreover, when the state variable
Xt is not observed, an observation model is supposed to be available, of the
general form

Yt = Gt(Xt, Ut, ηt) (2)

where Yt ∈ Rq and Gt is a known function and ηt an observation noise.

Estimating function Ft in model (1) may be intricate. The following
particular case with an additive noise is more frequently met in practice:

Xt+1 = ft(Xt, Ut) + εt+1, (3)

in which function ft, from Rs × Rm to Rs, may be completely or partly
unknown. We are specifically interested in a type of non-linear models where
the control variable Un acts in a known part of function ft. They are models
of the field of bioprocess modeling and control, and are of form:

Xt+1 = At(Xt)gt(Xt) +Bt(Xt, Ut) + εt+1, (4)
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where At and Bt are known functions and gt is unknown. Function gt is for
example the growth rate of some microorganism population whose concen-
tration is a component of the state variable Xt. The control variable Ut is
for example a dilution rate of a polluted water into a bioreactor.

Other examples of model (3) are for instance the evolution models of
bacteria populations in food under the influence of environment covariates
(Ut), or, in another field, models that describe the position of a space craft
under control.

The following subsection is dedicated to the identification of model (3)
when unknown (or partially unknown), with state Xt completely observed.
The well-known convolution kernel method is applied to estimate function ft
(or only a subpart of it).

In subsection 2.2 state variables Xt are not supposed to be observed any-
more and the issue considered is now that of their estimation, i.e. filtering,
from knowledge of the observed variables Yt and assuming knowledge of model
Ft.

2.1 Identification of the model with convolution kernel
estimators

Kernel smoothing methods are among the most reknown nonparametric es-
timation and prediction methods. They belong to the family of smoothing
methods (orthogonal polynomials, splines,. . . ) and are based on a local av-
eraging procedure. They are widely used to estimate probability density
functions and regression functions, see [Bosq, 1996].

When the whole function ft is unknown in model (3), we can consider the
following recursive kernel estimator, for all x ∈ Rs and u ∈ Rm:

f̂t(x, u) =

∑t−1
i=0 δ

−s
1,i δ

−m
2,i K1(

x−Xi

δ1,i
)K2(

u−Ui

δ2,i
)Xi+1

∑t−1
i=0 δ

−s
1,i δ

−m
2,i K1(

x−Xi

δ1,i
)K2(

u−Ui

δ2,i
)

, (5)

The functions K1 and K2 are two kernel functions. They are real positive
symmetric functions integrating to one.
The sequences (δ1,i) and (δ2,i), called the bandwidths, have to be positive
and decreasing. See [Georgiev, 1984] for the case of an i.i.d. sequence (Ut),
and [Wagner and Vila, 2001] for a more general situation.

In the case of biotechnological processes, the partially known model (4)
is the most frequently met. In that case, the kernel estimation of gt is given
by:

ĝt(x) =

∑t−1
i=0 δ

−s
i K(x−Xi

δi
)A−

i (Xi)(Xi+1 −Bi(Xi, Ui))
∑t−1

i=0 δ
−s
i K(x−Xi

δi
)

. (6)

for all x ∈ Rs. A−
i is a general inverse of matrix Ai and K is the kernel

function and (δi) the bandwidth.
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The statistical convergence properties of kernel estimators (5) or (6) have
been established under various assumptions about

• the probability distribution of the noise ε,
• the existence of admissible control strategies (Ut)t≥1 able to stabilize the

model (Xt)
• the behaviour of the unknown set of stochastic functions ft (respectively
gt), which must be quite “stable”, corresponding to a convergent sequence
ft (resp. gt) or an i.i.d. functional sequence ft (resp. gt).

As regard the bandwidth parameters, the form δi = γi−α is one for which
convergence results have been established [Duflo, 1997], [Portier and Oulidi,
2000], [Hilgert et al., 2000]. In some cases, an optimal choice of the bandwidth
parameters can be determined by cross validation procedures, see [Vieu, 1991]
for instance. From a theoretical point of view, we may distinguish between

• the a.s. uniform convergence on compact sets, which requires kernel
functions with compact support, as the Epanechnikov kernel for example.
• the stronger a.s. convergence on dilated compact sets, which requires

positive kernel functions, as the Gaussian kernel for example.

2.2 Estimation of state variables with convolution particle filters

Besides its efficiency in functional estimation of uncertain models as seen in
the previous section, the nonparametric approach as proved to be useful as
well in probability density estimation of unobserved state variables, i.e. in
filtering problems.

The objective is now to estimate the unobserved state variable Xt from
the analytical knowledge of state model Ft (1) and the observed variables
Y1:t = (Y1, · · · , Yt). When Ft and Gt correspond to linear functions of Xt

and Ut with additive noises, the well-known Kalman filter provides an optimal
estimate of the probability distribution ofXt conditionally to Y1:t, P (Xt|Y1:t).
In the other cases, only the so-called Monte Carlo filters or particle filters
(see [Doucet et al., 2001] or [Del Moral, 2004]) provide consistent estimates
of P (Xt|Y1:t). The main principle of these filters is to build an estimate
of P (Xt|Y1:t) through the simulation of a large number N of random state
particles {xi} which are then weighted according to their likelihoods with
respect to the observed variables up to time t.

However the usual particle filters require, in practice, the function Gt to
be additive in the observation noise ηt, and the analytic form of the density
of ηt to be known.

This last assumption really reduces the applicative potential of these par-
ticle filters. The convolution particle filters we proposed in [Rossi, 2004] and
[Rossi and Vila, 2004] drop this assumption thanks to the use of convolution
kernels to estimate the conditional density p(Xt|Y1:t) supposed to exist. The
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following algorithm shows the implementation of the Resampled-Convolution
Filter, one of the filters we developed [Rossi, 2004]:

Starting from a given initial probability density p0(X0) and N simulated
state values (X̃1

0 , . . . , X̃
N
0 ))simp0(X0),

At time t:

(i) Sampling Step:
(X̃1

t , . . . , X̃
N
t )simpNt where pNt is the last estimated state conditional den-

sity.
(ii) Evolving Step: for i = 1..N , (X̃ i

t ) −→ (X̃ i
t+1, Ỹ

i
t+1) by simulation of

model (1)-(2).
(iii) Approximation Step:

pNt+1(Xt+1|Y1:t+1) =

∑N
i=1K2,δN (Yt+1 − Ỹ it+1)K1,δN (Xt+1 − X̃ i

t+1)∑N
i=1K2,δN (Yt+1 − Ỹ it+1)

with K1,δN (x) = δ−sN K1

(
x
δN

)
, x ∈ Rs and KδN (y) = δ−qN K2

(
y
δN

)
, y ∈

Rq.

This algorithm ensures to get an ”on line” L1-convergent estimate of the
density pt(Xt|Y1:t) when the particles number N tends to infinity ([Rossi,
2004] or [Rossi and Vila, 2004]).

3 Nonparametric adaptive and predictive control

The objective considered in this section is to find a control sequence (Ut)t≥1

which forces the state variables (Xt)t≥1, to follow as best as possible a given
bounded trajectory (X∗

t )t≥1. The state variable Xt is now again supposed to
be observed and to evolve according to model (3), with function ft completely
or partly unknown.

Two control strategies are considered in the following according to the
immediate or anticipative trajectory fitness considered, the second one being
furthermore a generalization of the first.

3.1 Adaptive tracking control

Consider the particular case of model (4) particularly convenient for the
biotechnological systems, in which gt is unknown. An adaptive control stra-
tegy has to be built from the nonparametric estimate (6), which ensures the
stochastic closed-loop stability. This last property is indeed necessary to
ensure the convergence properties of the kernel estimator ĝt. When Bt is
supposed to be invertible with respect to Ut, let us consider a solution Ut
such that

Bt(Xt, Ut) = X∗
t+1 −At(Xt)ĝt(Xt)1lEt(Xt)−At(Xt)g

∗(Xt)1lEc
t
(Xt)
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where Et is a subset of the state space, depending on the kernel estimate ĝt
and on g∗, an a priori knowledge of gt.

It has been shown that this strategy is asymptotically optimal:

1
t

t∑

i=1

‖Xi −X∗
i ‖2

a.s.−→ trace(Γ ) as t→∞,

where Γ denotes the covariance matrix of the noise εt.
See [Portier and Oulidi, 2000] and [Hilgert, 1997] for more details.

3.2 Optimal predictive control

Let us consider again state model (3) with unknown function ft and still the
assumption of observed Xt.

The principle of the so-called predictive control is now well-known among
control theorists (see for example [Camacho and Bordons, 1995]). The speci-
ficity of predictive control is to consider the future values to be followed by
the state system in a near forward horizon of given length H . More precisely
at each time step the future values of the state variables on the horizon are
predicted conditionally to intermediary control values. These control values
are then optimized in order to minimize some discrepancy function between
the predicted state values and that of the trajectory on the same horizon.
The first of these optimal values of the control variable is then applied to the
system which enters then the following time step and the predictive horizon
is translated. Such an anticipating strategy confers to predictive control a
significant advantage among on-line tracking control strategies, and is par-
ticularly adapted to the control of processes with slow dynamic such as the
biotechnological processes. The main question raised by the predictive con-
trol algorithms is that of the stability of the closed loop. For deterministic
systems several constraint conditions have been designed to ensure this sta-
bility (see [Mayne et al., 2000] for a recent survey). For stochastic system this
issue is still open for the general case. We consider it in the nonparametric
approach to follow and solve it in a simple case.

A nonparametric predictive control algorithm for uncertain system:

At step t,

• let

Jt =

j=H∑

j=1

‖X∗
t+j − f jt+j−1

(
u1, . . . , uj |Xi, i≤t ; Ui, i≤t−1

)
‖2

where

◦ H is the chosen length of the receding horizon
◦ X̂t+j = f jt+j−1

(
u1, . . . , uj | Xi, i≤t ; Ui, i≤t−1

)
is a consistent esti-

mate to be looked for E [Xt+j |Xi, i≤t ; Ui, i≤t−1 ; Ut=u
1, . . . ,

Ut+j−1 = uj ] which is itself the minimum variance predictor of the
state value Xt+j .
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• Find
Ūt = (U1

t , . . . , U
H
t )

= argmin‖u1‖≤M,...,‖uH‖≤M Jt

with M : upper bound constraint in the control values.
• take Ut = U1

t

• t = t+ 1

A j-step-ahead nonparametric state predictor:
Let Zjt = (Xt, Ut, . . . , Ut+j−1)

t

Let us consider as estimate of E(Xt+j | Zjt = z)

X̂t+j = Ê(Xt+j | Zjt = z) =

∑t−j
t=1 |det(δ−1

t )|K
(
z−Zj

t

ht

)
Xt+j

∑t−j
t=1 |det(δ−1

t )|K
(
z−Zj

t

ht

)

where K is a kernel of dimension (s+ jm) and the matrix δt, of same dimen-
sion, is the bandwidth parameter of K.
For uncontrolled process, the asymptotic behaviour of X̂t+j has been charac-
terized under mixing conditions and stationarity assumptions [Bosq, 1996].
These results are not applicable for the controlled processes we consider in
this paper since the applied control values are state dependent. However for
the simplest case, H = 1, stability of the closed loop, almost sure uniform
dilated convergence of the kernel predictor and suboptimality of the con-
trol strategy has been established under regular conditions ([Wagner, 2001],
[Wagner and Vila, 2001]) in both cases of interest for the ft sequence (see
section 2.1).

Remark 1: the minimization of the criterion function Jt at step t with respect
to the constrained control variables (u1, · · · , uH), can be done by standard
descent algorithm. We developed also a more efficient neural network-based
minimization procedure and applied it online on a real biotechnological de-
pollution process [Vila and Wagner, 2003].

Remark 2: the choice of the length of the predictive horizon H must result
from a case by case compromise between long term optimality of the predic-
tive control (high values for H) and the quality of the kernel predictors (low
values).

4 Conclusion and perspectives: towards the
nonparametric supervision of uncertain systems

When dealing with process control, an unavoidable issue is that of supervi-
sion. Supervision consists in being able to detect any default in the process
(e.g. pump clogging in a bioprocess), locating the default and remedying it
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(by an appropriate sequence of actions). From a statistical point of view, the
problems of detection and isolation of a default are equivalent to detecting
abrupt changes in a stochastic process, and testing multiple hypotheses to
determine the faulty scenario among a number of possible scenarii of defaults
[Dubuisson, 2001].

There exist many statistical procedures to answer such questions, see
[Basseville and Nikiforov, 1993]. A well-known one is the CuSum test. It is
based on a comparison, at each time instant, of the difference between the
log-likelihood ratio value and its current minimal value, with respect to a
fixed threshold. Most of these techniques require knowledge of both state
and observation models.

When the state model is uncertain, the question is still open. However
combining nonparametric estimates as (5) or (6) with classical test proce-
dures gave us encouraging results on real experimental data issued from a
depollution process.

Moreover, introducing filtering methods such as the one proposed above,
will allow to generalize these nonparametric detection procedures to the most
frequent situation of indirectly observed systems described by models (1) and
(2).
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Abstract. This paper proposes a probabilistic framework for efficiency and pro-
ductivity analysis in a complete multivariate setup (multiple inputs and multiple
outputs). Properties of the Farrell’s efficiency scores are derived in terms of the
characteristics of the probability distribution of the data generating process. This
allows to introduce a notion of α-quantile efficiency scores related to a non-standard
conditional α-quantile frontier and nonparametric robust estimators are provided.
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1 Introduction and Basic Concepts

Foundations of the economic theory on productivity and efficiency analysis
date back to the works of [Koopmans, 1951] and [Debreu, 1951] on activity
analysis. We consider a production technology where the activity of the
production units is characterized by a set of inputs x ∈ IRp+ used to produce
a set of outputs y ∈ IRq+. The production set is the set of technically feasible
combinations of (x, y):

Ψ = {(x, y) ∈ IRp+q+ | x can produce y}. (1)

Assumptions are usually done on this set, such as free disposability of inputs
and outputs, meaning that if (x, y) ∈ Ψ , then (x′, y′) ∈ Ψ , as soon as x′ ≥ x
and y′ ≤ y.

The Farrell-Debreu efficiency scores for a given production scenario
(x, y) ∈ Ψ , are defined as:

Input oriented : θ(x, y) = inf{θ | (θx, y) ∈ Ψ} (2)

Output oriented : λ(x, y) = sup{λ | (x, λy) ∈ Ψ} (3)
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In practice Ψ is unknown and so has to be estimated from a random sample
of production units X = {(Xi, Yi) | i = 1, . . . , n}, where we assume that
Prob((Xi, Yi) ∈ Ψ) = 1 (called deterministic frontier models). So the problem
is related to the problem of estimating the support of the random variable
(X,Y ) where Ψ is supposed to be compact. The most popular nonparametric
estimators are based on the envelopment ideas (see e.g. [Simar and Wilson,
2000], for a recent survey).

The Free Disposal Hull (FDH) estimator ([Deprins et al., 1984]) is pro-
vided by the free disposal hull of the sample points X :

Ψ̂FDH =
{
(x, y) ∈ IRp+q+ | y ≤ Yi, x ≥ Xi, i = 1, . . . , n

}
. (4)

The FDH efficiency scores are obtained by plugging Ψ̂FDH in equations (2)
and (3) in place of the unknown Ψ . The asymptotic properties of the resulting
estimators are provided by [Park et al., 2000]. In summary, the error of
estimation converges at a rate n1/(p+q) to a limiting Weibull distribution.

The FDH estimators envelop all the data points and so are very sensitive
to outliers and/or to extreme values. [Cazals et al., 2002] have introduced
the concept of partial frontiers (order-m frontiers) with a nonparametric es-
timator which does not envelop all the data points. The value of m may be
considered as a trimming parameter and as m→∞ the partial order-m fron-
tier converges to the full-frontier. It is shown that by selecting the value of m
as an appropriate function of n, the non-parametric estimator of the order-m
efficiency scores provides a robust estimator of the corresponding efficiency
scores sharing the same asymptotic properties as the FDH estimators but
being less sensitive to outliers and/or extreme values.

Recently [Aragon et al., 2002] have proposed an alternative to order-m
partial frontiers by introducing quantile based partial frontiers. The idea is
to replace this concept of “discrete” order-m partial frontier by a “continu-
ous” order-α partial frontier where α ∈ [0, 1] corresponds to the level of an
appropriate non-standard conditional quantile frontier. Unlike the order-m
partial frontiers, due to the absence of natural ordering of Euclidean spaces
for dimension greater than one, the α-quantile approach is limited to one-
dimensional input for the input oriented frontier and to one-dimensional out-
put for the output oriented frontier.

In this paper, we overcome this difficulty and we propose an extension
to the full multivariate case, introducing the concept of α-quantile efficiency
scores and the corresponding α-quantile frontier set.

2 Probabilistic Formulation and Nonparametric
Estimation

[Daraio and Simar, 2002] propose a probabilistic formulation of efficiency
concepts. The Data Generating Process (DGP) of (X,Y ) is completely char-
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acterized by

HXY (x, y) = Prob(X ≤ x, Y ≥ y). (5)

The support of HXY (·, ·) is Ψ and HXY (x, y) can be interpreted as the prob-
ability for a unit operating at the level (x, y) to be dominated. This joint
probability can be decomposed as follows:

HXY (x, y) = Prob(X ≤ x |Y ≥ y) Prob(Y ≥ y) = FX|Y (x|y)SY (y) (6)

= Prob(Y ≥ y |X ≤ x) Prob(X ≤ x) = SY |X(y|x)FX(x), (7)

where we suppose the conditional probabilities exit (i.e., when needed, FX(x)
> 0 or SY (y) > 0).

An input oriented efficiency score θ̃(x, y) for (x, y) ∈ Ψ is defined for all
y with SY (y) > 0 as

θ̃(x, y) = inf{θ |FX|Y (θx|y) > 0} = inf{θ |HXY (θx, y) > 0}. (8)

For the output oriented case, for all x such that FX(x) > 0, we define the
output efficiency score as

λ̃(x, y) = sup{λ |SY |X(λy|x) > 0} = sup{λ |HXY (x, λy) > 0}. (9)

This input (resp. output) efficiency score can be interpreted as the propor-
tionate reduction (resp. increase) of inputs (resp. outputs) a unit working
at the level (x, y) should perform to be dominated with probability zero.

If Ψ is free disposal (a minimal assumption), it can be shown that:

θ̃(x, y) ≡ θ(x, y) and λ̃(x, y) ≡ λ(x, y).
Natural nonparametric estimators of θ(x, y) and of λ(x, y) are obtained by

plugging the empirical distribution ĤXY,n in place of HXY in the definition
of the efficiency scores, where

ĤXY,n(x, y) =
1

n

n∑

i=1

1I(Xi ≤ x, Yi ≥ y), (10)

As pointed out in [Daraio and Simar, 2002], these estimators are the FDH
estimators of the Farrell-Debreu efficiency scores.

3 Conditional Quantile Based Efficiency Scores

[Aragon et al., 2002] have introduced the conditional quantile frontier func-
tion for a production (output) function when the output is unidimensional
and for a cost (input) function when the input is one dimensional. We extend
the ideas to a full multivariate setup. Since a natural ordering of Euclidean
spaces of dimension greater than one does not exist, we overcome the diffi-
culty by defining α-quantile efficiency scores as follows.
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Definition 1 For all y such that SY (y) > 0 and for α ∈]0, 1], the α-quantile
input efficiency score for the unit (x, y) ∈ Ψ is defined as

θα(x, y) = inf{θ |FX|Y (θx|y) > 1− α} (11)

For all x such that FX(x) > 0 and for α ∈]0, 1], the α-quantile output effi-
ciency score for the unit (x, y) ∈ Ψ is defined as

λα(x, y) = sup{λ |SY |X(λy|x) > 1− α} (12)

For instance, in the input case, θα(x, y) is the proportionate reduction (if
< 1) or increase (if > 1) of inputs, a unit working at the level (x, y) should
perform to be dominated by firms producing more than the output level y
with probability 1 − α. If θα(x, y) = 1, we will say that the unit is input
efficient at the level α × 100%. Clearly when α = 1, this is, under free
disposability of Ψ , the Farrell-Debreu input efficiency score. In a certain
sense, we can say that θα(x, y) is the input efficiency of (x, y) at the level
α × 100%. The same is true in the output direction. We define Ψ∗ as being
the interior of Ψ .

Proposition 1 Assume that FX|Y is continuous and monotone increasing
in x and that SY |X is continuous and monotone decreasing in y. Then, for
all (x, y) ∈ Ψ∗, there exist α and β in ]0, 1] such that

θα(x, y) = 1, where α = 1− FX|Y (x|y) (13)

λβ(x, y) = 1, where β = 1− SY |X(y|x). (14)

Proposition 1 shows that any point (x, y) in the interior of Ψ , belongs to an
appropriate α-quantile efficient frontier in both directions (input and output).
When α → 1, the α-quantile efficient scores converge monotonically to the
Farrell-Debreu efficiency scores:

Proposition 2 For all y such that SY (y) > 0, we have limα→1 ↘ θα(x, y) =
θ(x, y) and for all x such that FX(x) > 0, limα→1 ↗ λα(x, y) = λ(x, y).

The α-quantile input efficiency score θα(x, y) is clearly monotone nonincreas-
ing with x but it is in general not monotone in y, unless we add an assumption
on FX|Y :

Proposition 3 Assume that FX|Y (·|y) is continuous for any y. Then, the
two following properties are equivalent.

FX|Y (x|y) is monotone nonincreasing with y (15)

θα(x, y) is monotone nondecreasing with y for all α. (16)

Points (x, y) here are such that FX|Y (x|y) < 1.

Proposition 4 The two following properties are equivalent.

SY |X(y|x) is monotone nondecreasing with x (17)

λα(x, y) is monotone nondecreasing with x for all α. (18)

Points (x, y) here are such that SY |X(y|x) < 1.
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4 Nonparametric Estimator

A natural nonparametric estimator of the α-quantile efficiency scores is ob-
tained by plugging the empirical ĤXY,n(x, y) in the above formulas

θ̂α,n(x, y) = inf{θ | F̂X|Y,n(θx|y) > 1− α}, (19)

λ̂α,n(x, y) = sup{λ | ŜY |X,n(λy|x) > 1− α}, (20)

These nonparametric estimators can be computed very easily. When α→ 1,
the estimators converge monotonically to the FDH efficiency scores θ̂n(x, y)

and λ̂n(x, y), respectively:

Proposition 5 For all y such that ĤXY,n(∞, y) > 0, we have limα→1 ↘
θ̂α,n(x, y) = θ̂n(x, y) and for all x such that ĤXY,n(x, 0) > 0, limα→1 ↗
λ̂α,n(x, y) = λ̂n(x, y).

The asymptotic behavior of our estimator is given by the following theorems
(only presented for the output direction: we have the same results for the
input oriented case).

Theorem 1 Let (x, y) ∈ Ψ be such that FX(x) > 0 and let 0 < α < 1.
Assume that λ 7→ SY |X(λy|x) is decreasing in a neighborhood of λα(x, y).
Then, for every ε > 0,

Prob(|λ̂α,n(x, y)− λα(x, y)| > ε) ≤ 2e−2nδ2ε,x,y , for all n ≥ 1,

where

δε,x,y =
FX(x)

(2 − α)
min

{
(1− α)− SY |X((λα(x, y) + ε)y|x)

;SY |X((λα(x, y)− ε)y|x)− (1− α)
}
.

Theorem 2 Let 0 < α < 1 be a fixed order and let (x, y) ∈ Ψ be a fixed unit
such that FX(x) > 0. Assume that G(λ) = SY |X(λy|x) is differentiable at
λα(x, y) with negative derivative G′(λα(x, y)) =< 5SY |X(λα(x, y)y|x), y >.
Then,

√
n
(
λ̂α,n(x, y)− λα(x, y)

) L−→ N
(
0, σ2

α(x, y)
)

as n→∞,

where

σ2
α(x, y) =

α(1 − α)

[G′(λα(x, y))]2FX(x)
.

A more robust estimator of the Farrell-Debreu efficiency scores λ(x, y)

than the standard FDH estimator λ̂n(x, y), which however shares similar
asymptotic properties with this latter one, can be derived as follows.
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Lemma 1 Assume that the support of Y is bounded. Then, for any (x, y) ∈
Ψ ,

n1/(p+q)
(
λ̂n(x, y)− λ̂α(n),n(x, y)

)
a.s.−→ 0 as n→∞,

where the order α(n) > 0 is such that

n(p+q+1)/(p+q) (1− α(n)) −→ 0 as n→∞.

Making use of this lemma and the following decomposition

n1/(p+q)(λ(x, y)− λ̂α(n),n(x, y)) = n1/(p+q)(λ(x, y) − λ̂n(x, y))
+n1/(p+q)(λ̂n(x, y)− λ̂α(n),n(x, y))

we get immediately from Corollary 3.2 of [Park et al., 2000] the following
result:

Theorem 3 Under Assumptions AI-AIII of [Park et al., 2000], we have for
any (x, y) interior to Ψ ,

n1/(p+q)
(
λ(x, y) − λ̂α(n),n(x, y)

) L−→Weibull(µp+qNW,0, p+ q) as n→∞,

where µNW,0 is a constant (see [Park et al., 2000]) .

The latter results show that with an appropriate choice of α, we obtain a non-
parametric estimator of the Farrell-Debreu efficiency score λ(x, y) sharing the
same properties than the FDH estimator, but since it does not envelop all the
data points, it will be more robust to extreme and/or outlying observations.

5 Numerical Illustrations

We illustrate the α-quantile efficiency scores and their estimation by using
some of simulated data set used in [Daraio and Simar, 2002] with multi-input
(p = 2) and multi-output (q = 2) and Z is favorable to output production.
The results are displayed in Figure 1. We see that all the ratios allow to
detect the favorable effect of Z on the production process. The α-quantile
measures being less sensitive to extreme values, give a better picture.

In order to appreciate the robustness to outliers, and compare the per-
formance of the order-m and of the α-quantile measures, we introduce in the
same data set 5 outliers by projecting, in the Y coordinates 5 points in a
radial expansion by a factor 1/0.6. The results of this data set with n = 105
points are shown in Figure 2. It is clear that the full frontier approach is
unable to detect the favorable effect of Z, at least for values larger than the
mean of Z (2.5), the order-m does better but again fails for large values of
Z. On the contrary, the order-α quantile frontier are much more robust to
the 5 outliers and we obtain similar results as in Figure 1, where no outliers
where introduced.
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Fig. 1. Simulated example, n = 100: ”positive” effect of Z on production effi-
ciency (output oriented framework). Scatterplot and smoothed regression of the
ratios λ̂n(x, y | z)/λ̂n(x, y) on Z (top left), of λ̂m,n(x, y | z)/λ̂m,n(x, y) on Z (top
right, with m = 25) and of λ̂α,n(x, y | z)/λ̂α,n(x, y)on Z (bottom panel, left α = 0.80
and right α = 0.90). Here k-NN=17.
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Fig. 2. Simulated example, n = 105 including 5 outliers: ”positive” effect of Z on
production efficiency (output oriented framework). Scatterplot and smoothed regres-
sion of the ratios λ̂n(x, y | z)/λ̂n(x, y) on Z (top left), of λ̂m,n(x, y | z)/λ̂m,n(x, y)
on Z (top right, with m = 25) and of λ̂α,n(x, y | z)/λ̂α,n(x, y)on Z (bottom panel,
left α = 0.80 and right α = 0.90). Here k-NN=20.
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Abstract. Standard empirical likelihood for U -statistics is too computationally
expensive. To overcome this computational difficulty, we reformulate the empirical
likelihood for non-degenerate U -statistics in terms of “pseudo” mean in this paper,
and show that the empirical log-likelihood ratio has an asymptotic chi-squared
distribution under second moment condition. The method is extremely simple to
use, and yet provide better coverage accuracy in general than other alternative
methods from our simulation studies.
Keywords: U -statistics, empirical likelihood, confidence interval.

1 Introduction

The empirical likelihood method was first introduced by [Owen, 1988] for
constructing confidence intervals and [Owen, 1990] for confidence regions.
[Hall and LaScala, 1990] has summarized its advantages over the bootstrap:
the empirical likelihood regions are shaped “automatically” by the sample,
Bartlett correctable, range preserving and transformation respecting. For
these reasons, the empirical likelihood has found lots of applications such as
in smooth functions of means [DiCiccio et al., 1989], in nonparametric density
[Chen, 1996], in regression function estimation [Owen, 1991] [Chen and Qin,
2000] and so on. For a more thorough review of the empirical likelihood
method and its applications, the reader is referred to the recent monograph
by [Owen, 2001].

In this paper, we are interested in applying the empirical likelihood
method to U -statistics. LetX,X1, · · · , Xn, n ≥ 2, be independent and identi-
cally distributed (i.i.d) random variables with common distribution function
F (x). A U -statistic of degree m ≥ 2 with a symmetric kernel h is defined to
be

Un =

(
n

m

)−1 ∑

1≤i1<...<im≤n
h(Xi1 , ..., Xim) (1)
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where θ = Eh(X1, ..., Xm) is a parameter of interest. Under very weak
conditions, Un is a Minimum Variance Unbiased Estimator of θ. On the
other hand, U -statistics have many applications in hypothesis testing. For
further details on U -statistic see [Lee, 1990]. Define

g(x) = Eh(x,X1, ..., Xm−1)− θ, σ2
g = var(g(X)). (2)

Throughout this paper, we shall assume that σ2
g > 0.

The straightforward application of Owen’s empirical likelihood in this con-
text can be described as follows. Denote Fq to be the empirical distribution
function which assigns probability qi to observation Xi. Then, the empirical
likelihood, evaluated at the true parameter value θ, can be defined by

L̃(θ) = max
eθ(Fq)=θ,

P
qi=1

n∏

i=1

qi, (3)

where

θ̃(Fq) =

(
n

m

)−1 ∑

1≤i1<...,<im≤n
nmqi1 ...qimh(Xi1 , ..., Xim).

Note that
∏n
i=1 qi, subject to

∑n
i=1 qi = 1, attains its maximum n−n at

qi = n−1. Then, the empirical likelihood ratio at θ is given by

R̃(θ) = L̃(θ)/n−n = max
eθ(Fq)=θ,

P
qi=1

n∏

i=1

(nqi). (4)

As mentioned in [Wood et al., 1996], Wilks’s theorem holds under mild con-

ditions in this case, i.e., −2 log R̃(θ)
d−→ χ2

1, where
d−→ means converges in

distribution as n →∞, and χ2
1 denotes the chi square distribution with one

degree of freedom. This can be used to construct confidence intervals for the
parameter θ. We shall refer to this procedure as Owen’s direct or “exact”
empirical likelihood method to U -statistics.

The major drawback of Owen’s direct empirical likelihood method is its
computational difficulty due to the presence of nonlinear constraints in the
underlying optimization problem. [Wood et al., 1996] proposed a so-called
sequential linerization method for empirical likelihood methods with nonlin-
ear constraints, and applied it to U -statistics. They found in their simula-
tion studies that a single iteration of the linearization procedure may not be
enough to achieve reliable coverage probabilities, and suggested to employ
multiple (three to ten) iterations of the linearization procedure or bootstrap
calibration in practice in order to improve coverage probabilities.

In this paper, we propose a new empirical likelihood method to U -
statistics. The key idea of our method is to turn the U -statistic into a “sample
mean” based on some “pseudo” observations, and then simply apply Owen’s
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empirical likelihood to that “sample mean”. As will be seen from the next
section, those “pseudo” observations are in fact dependent random variables.
Wilks’s theorem will be established under mild conditions, which can then be
used to construct confidence intervals for the parameter θ. The most attrac-
tive feature of our approach is its simplicity. Furthermore, our simulations
results show that the coverage probabilities of our approach are in general
better than alternative methods.

The paper is organized as follows. In Section 2, we introduce a new
empirical likelihood method for U -statistics, and presents some theoretical
results. Some simulation studies are conducted in Section 3 to compare
the performances of the empirical likelihood and other methods. Proofs are
deferred to Section 4.

2 Methodology and main results

First we rewrite Un as

Un =
1

n

n∑

i=1

Vi,

where the “components” of Un, defined by [Sen, 1960]

Vi =

(
n− 1

m− 1

)−1 ∑

1≤j1<...<jm−1≤n

jr 6=i,1≤r≤m−1

h(Xi, Xj1 , ..., Xjm−1) (5)

are treated as “pseudo” observations. Note that Vi’s are dependent.
To employ empirical likelihood, let p = (p1, · · · , pn) be a probability vec-

tor, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for 1 ≤ i ≤ n. Let Gp be the distribution
function which assigns probability pi at the ith pseudo observation Vi, and
hence θ(Gp) =

∑n
i=1 piVi. Then, the empirical likelihood ratio, evaluated at

θ, is given by

L(θ) = max
θ(Gp)=θ,

P
pi=1

n∏

i=1

pi. (6)

Note that
∏n
i=1 pi, subject to

∑n
i=1 pi = 1, attains its maximum n−n at

pi = n−1. So we define the empirical likelihood ratio at θ by

R(θ) = L(θ)/n−n = max
θ(Gp)=θ,

P
pi=1

n∏

i=1

(npi). (7)

Using Lagrange multipliers, we have

pi =
1

n

1

1 + λ(Vi − θ)
, (8)
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where λ satisfies

g(λ) :=
1

n

n∑

i=1

Vi − θ
1 + λ(Vi − θ)

= 0. (9)

After plugging the pi’s back into (7) and taking the logarithm of R(θ), we
get the nonparametric log-likelihood ratio

logR(θ) = −
n∑

i=1

log{1 + λ(Vi − θ)}.

The next theorem shows that Wilks’s theorem holds here under a mild con-
dition.

Theorem 1 Assume that Eh2(X1, ..., Xm) <∞ and σ2
g > 0, then

− 2

m2
logR(θ)

d−→ χ2
1.

The proof of Theorem 1 will be given in Section 4.

Remark 1 Wilks’s theorem, stated in Theorem 1, is slightly different from
the ones we normally encounter. For example, for the Owen’s direct empirical
likelihood method, one has

−2 log R̃(θ)
d−→ χ2

1.

However, in our case here, we have

− 2

m2
logR(θ)

d−→ χ2
1.

Remark 2 An approximate 1−α level confidence interval for θ can be defined
as

<c = {θ : − 2

m2
logR(θ) ≤ c},

where c is chosen to satisfy P (χ2
1 ≥ c) = α. From Theorem 1, we have

lim
n→∞

P{θ ∈ <c} = P (χ2
1 ≤ c) = 1− α.

In other words, the interval <c gives asymptotic correct coverage probability.

3 Simulation results

In this section, we shall conduct some simulation studies to investigate the
coverage accuracy of the empirical likelihood method proposed in this pa-
per. Comparisons will be made with some alternative methods such as the
normal approximation method, Owen’s direct or “exact” empirical likelihood
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method, and the sequential linerization method proposed by [Wood et al.,
1996]. Three examples will be used for illustration: population variance,
probability weighted moments, and Gini’s mean difference as special cases of
U -statistics. All the simulation results are based on 1,000 repetitions.

Example 1: population variance σ2 = var(X). In this case, the
sample variance is a U -statistic with the kernel h(x, y) = (x−y)2/2. For this
example, it is also rather easy to apply Owen’s empirical likelihood method
directly by placing probability weight pi on Xi and maximizing the empirical
likelihood subject to

n∑

i=1

pi(Xi − µX)2 = σ2 with µX =
∑n
i=1 piXi.

Therefore, it would be interesting to compare this direct approach with the
one proposed in this paper. For illustrative purposes, we shall include the
normal approximation method as well for comparison. The underlying pop-
ulation is selected as standard Normal, then the actual value θ = 1. The
results are summarized in Table 1.

Table 1. Coverage accuracy for the variance

nominal level 0.80 0.90 0.95

n=15 Normal Appr. 0.655 0.751 0.816
Owen’s EL 0.668 0.782 0.847

Our EL 0.708 0.806 0.868

n=40 Normal Appr. 0.723 0.828 0.878
Owen’s EL 0.758 0.855 0.918

Our EL 0.748 0.845 0.898

n=100 Normal Appr. 0.772 0.872 0.917
Owen’s EL 0.804 0.906 0.949

Our EL 0.789 0.884 0.931

Example 2: probability weighted moment E [XF (X)]. In this case,
the sample probability weighted moment is a U -statistic with the kernel
h(x, y) = max{x, y}/2. Coverage probabilities of the “exact” empirical like-
lihood method, described in the Introduction, were given in table 4 of [Wood
et al., 1996], which will be used for comparison with our own approach in this
paper. Two underlying distributions are considered: the standard Normal
and the exponential with mean 1. For these distributions, the population
values are 0.282 and 0.75 respectively. Table 2 records the simulation results,
with those in parentheses for the latter distribution.

Example 3: Gini’s mean difference E|X1 − X2|. Gini’s mean dif-
ference is an attractive measure for describing the population concentration.
Its sample version is a U -statistics with the kernel h(x, y) = |x − y|. This
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Table 2. Coverage accuracy for the probability weighted moment

nominal level 0.80 0.90 0.95

n=15 “Exact” EL 0.745 (0.705) 0.844 (0.801) 0.896 (0.882)
Our EL 0.746 (0.740) 0.845 (0.830) 0.912 (0.888)

n=40 “Exact” EL 0.742 (0.741) 0.849 (0.844) 0.922 (0.899)
Our EL 0.768 (0.761) 0.866 (0.857) 0.923 (0.910)

n=100 “Exact” EL 0.787 (0.783) 0.895 (0.864) 0.944 (0.929)
Our EL 0.821 (0.771) 0.904 (0.873) 0.941 (0.924)

example was also studied by [Wood et al., 1996], who used their sequential
linearization approach in this case. The comparisons with our method is
presented in Table 3, where Wood et al.(r) denotes the sequential lineariza-
tion approach with r iterations. For the underlying distribution, we use a
standard Normal, so θ = 1.1284.

Table 3. Coverage accuracy for Gini’s mean difference

nominal level 0.80 0.90 0.95

n=15 Wood et al.(1) 0.693 0.799 0.859
Wood et al.(3) 0.737 0.864 0.932

Our EL 0.741 0.846 0.889

n=40 Wood et al.(1) 0.756 0.862 0.919
Wood et al.(3) 0.751 0.862 0.924

Our EL 0.772 0.864 0.917

n=100 Wood et al.(1) 0.782 0.884 0.935
Wood et al.(3) 0.780 0.887 0.939

Our EL 0.787 0.889 0.936

The following observations can be made from our simulation studies:

(1) As expected, all methods improve as the sample size n increases.
(2) From Table 1, we see that, our method outperforms Normal Ap-
proximation method. Comparing with Owen’s empirical likelihood
method, our’s looks better for small sample size.
(3) From Table 2, our method seems to perform slightly better than
the “exact” empirical likelihood, mentioned in the Introduction. But
our method is much simpler to use.
(4) From Table 3, we see that, overall, our method performs equally
well as Wood et al’s sequential linearization approach with 3 itera-
tions, and both are better than Wood et al’s approach with only 1
iteration. However, our method is the simplest amongst the three.

In summary, our empirical likelihood method for U -statistics in general
performs better or as well as all other alternative methods such as normal
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approximation, exact empirical likelihood and sequential linearization pro-
cedure. Furthermore, our approach is the simplest one to use. For these
reasons, our method should always be preferred.

4 Proof of main results

For notational simplicity, we shall prove our main results for U -statistics of
order m = 2 only. The case for the general orderm ≥ 2 can be done similarly.
But first we shall list several simple lemmas for easy reference later in the
section.

Lemma 1 [Hoeffding, 1948] Suppose Eh2(X1, X2) <∞, then

√
n(Un − θ)

2σg

d−→ N(0, 1).

Corollary 1 Assuming Eh2(X1, X2) <∞, then Un − θ = Op(n
−1/2).

Proof. This is a direct consequence of Lemma 1.

Lemma 2 Let S = n−1
∑n

i=1(Vi − θ)2, if Eh2(X1, X2) <∞, then

S = σ2
g + o(1) a.s.

Proof. Note that

S =
1

n

n∑

i=1

(Vi − θ)2 =
1

n

n∑

i=1

(Vi − Un)2 + (Un − θ)2.

Let σ2 = var{h(X1, X2)} <∞, since Eh2(X1, X2) <∞, thus

var(Un) =
4(n− 2)

n(n− 1)
σ2
g +

2

n(n− 1)
σ2.

Denote the jackknife estimate of var(Un) by v̂ar(JACK), Lee (1990) identi-
fied that (page 223-4)

1

n

n∑

i=1

(Vi − Un)2 =
(n− 2)2

4(n− 1)
v̂ar(JACK).

Since v̂ar(JACK) is a consistent estimator of var(Un) in the sense that

n{v̂ar(JACK)− var(Un)} → 0, a.s.
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then as n→∞, we have

1

n

n∑

i=1

(Vi − Un)2 =
(n− 2)2

4(n− 1)

(
var(Un) + o(n−1)

)

=
(n− 2)2

4(n− 1)

(
4(n− 2)

n(n− 1)
σ2
g +

2

n(n− 1)
σ2 + o(n−1)

)

= σ2
g + o(1), a.s.

In addition, the strong law of large number for U -statistics results in Un =
θ + o(1) a.s. Therefore, S = σ2

g + o(1) a.s., which ends the proof.

Lemma 3 Let Yn = max
1≤i6=j≤n

|h(Xi, Xj)|, if Eh2(X1, X2) <∞, then

Yn = o(n1/2) a.s.

Proof. Since Eh2(X1, X2) <∞, we have

∞∑

n=1

P
(
h2(X1, X2) > n

)
<∞,

which implies that

∞∑

n=1

P
(
h2(Xi, Xj) > n

)
<∞, for any 1 ≤ i 6= j ≤ n.

And hence by the Borel-Cantelli Lemma, with probability 1,

|h(Xi, Xj)| > n1/2, for any 1 ≤ i 6= j ≤ n

finitely often. Thus with probability 1, Yn > n1/2 occurs finitely often. By
the same argument Yn > An1/2 finitely often with probability 1 for any
A > 0. Consequently,

lim sup
n→∞

Yn
n1/2

≤ A a.s. (10)

Inequality (10) holds simultaneously with probability 1 for any countable set
of values for A. Therefore Yn = o(n1/2) a.s.

Corollary 2 Let Zn = max1≤i≤n |Vi − θ|, if Eh2(X1, X2) <∞, then

Zn = o(n1/2) a.s., (11)

and
1

n

n∑

i=1

|Vi − θ|3 = o(n1/2) a.s. (12)
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Proof. Note that

|Vi − θ| ≤
1

n− 1

n∑

j=1

j 6=i

|h(Xi, Xj)|+ |θ| ≤ Yn + |θ|

for any 1 ≤ i ≤ n. By Lemma 3, Zn = o(n1/2) a.s.
For the second assertion, by (11) and Lemma 2, with probability 1

1

n

n∑

i=1

|Vi − θ|3 ≤ Zn ×
1

n

n∑

i=1

(Vi − θ)2 = o(n1/2)

as has to be shown.

Proof of Theorem 1. We first show that the root of (9) satisfies
|λ| = Op(n

−1/2). Note that

0 = |g(λ)| = 1

n

∣∣∣∣∣
n∑

i=1

(Vi − θ)− λ
n∑

i=1

(Vi − θ)2
1 + λ(Vi − θ)

∣∣∣∣∣

≥ |λ|
n

n∑

i=1

(Vi − θ)2
1 + λ(Vi − θ)

− 1

n

∣∣∣∣∣
n∑

i=1

(Vi − θ)
∣∣∣∣∣

≥ |λ|S
1 + |λ|Zn

−
∣∣∣∣∣
1

n

n∑

i=1

(Vi − θ)
∣∣∣∣∣ .

By Corollary 1, the second term is Op(n
−1/2). Recalling Lemma 2, S =

σ2
g + o(1) a.s., it follows that |λ|

1+|λ|Zn
= Op(n

−1/2), and hence by (11),

|λ| = Op(n
−1/2). (13)

For convenience, let γi = λ(Vi − θ) where λ is the root of (9). Then by
(11) and (13),

max
1≤i≤n

|γi| = Op(n
−1/2)o(n1/2) = op(1). (14)

Expanding (9),

0 = g(λ) =
1

n

n∑

i=1

(Vi − θ)
(
1− γi + γ2

i /(1 + γi)
)

=
1

n

n∑

i=1

Vi − θ − Sλ+
1

n

n∑

i=1

(Vi − θ)γ2
i /(1 + γi), (15)

The final term in (15) is bounded by

1

n

n∑

i=1

|Vi − θ|3λ2|1 + γi|−1 = o(n1/2)Op(n
−1)Op(1) = op(n

−1/2) (16)
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using (12), (13) and (14). Therefore, we may write

λ = S−1

(
1

n

n∑

i=1

Vi − θ
)

+ β = S−1(Un − θ) + β, (17)

where |β| = op(n
−1/2). By Taylor’s expansion,

−1

2
logR(θ) =

1

2

n∑

i=1

γi −
1

4

n∑

i=1

γ2
i +

1

2

n∑

i=1

ηi

=
1

2
nλ(Un − θ) −

1

4
nSλ2 +

1

2

n∑

i=1

ηi

=
n(Un − θ)2

4S
− 1

4
nSβ2 +

1

2

n∑

i=1

ηi,

where ηi = O(|γi|3) a.s.. The first term has an asymptotic distribution χ2
1

by Lemma 1 and 2. By Lemma 2 and (17), the second term is bounded by

∣∣∣∣−
1

4
nSβ2

∣∣∣∣ = n(σ2
g + o(1))op(n

−1) = op(1).

From (12) and (13), the final term is bounded by op(1). Therefore applying
Slutsky theorem completes the proof.
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Abstract. Two recent advances in statistical decision and estimation theory are
presented. These results concern the detection of signals whose amplitudes are
above or equal to some bound and that are less present than absent in a background
of white Gaussian noise. The first result describes the non parametric detection of
such signals when the noise standard deviation is known whereas the second result
affords to perform the detection when this standard deviation is unknown. For both
results, the role played by thresholding tests on the observation norms is crucial.
The detection of radar targets is a typical field of application of these results.
Keywords: Estimation theory, Likelihood theory, Limit theorem, Non parametric
decision, Thresholding test.

1 A sharp upper-bound for the probability of error of
the MPE decision scheme and the MPE suboptimal
test.

Albeit simple, a reasonable model for observations performed by sensors is
that of signals randomly present or absent in additive and independent white
Gaussian noise (WGN). In contrast with the simplicity of this model, the
detection of such signals on the basis of a set of observations can be intri-
cate. Actually, in many applications of most importance, very little is known
about the observations or most of their parameters ([Kailath and Poor, 1998,
section I]). In such situations, the detection of signals of interest cannot be
achieved by standard likelihood theory based on the usual Bayes, minimax
and Neyman-Pearson criteria for these ones require full knowledge of the sig-
nal distributions. Nonparametric and robust detection ([Poor, 1994, section
III.E]), as well as Generalized Likelihood Ratio Tests ([Kay, 1998]), are then
alternative formulations affording to deal with such cases. For instance, Con-
stant False Alarm Rate (CFAR) systems standardly used in radar processing
for detecting targets with a specified false alarm rate typically derive from
such alternative approaches ([Minkler and Minkler, 1990]).
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In [Pastor et al., 2002], we investigate how far we can get if we assume
only two hypotheses on the signal to detect. First, the signal is supposed to
be less present than absent in the sense that its prior is less than or equal to
one half; second, the norm of this same signal is assumed to be larger than or
equal to some positive real number A. The purpose of such assumptions is to
bound our lack of prior knowledge. The following theorem is then established
in [Pastor et al., 2002]. In the statement of this theorem, In stands for the
identity matrix with size n × n; by thresholding test with threshold height
T , we mean the binary hypothesis test whose decision is that some signal is
present if the observation norm exceeds T and whose decision is that noise
only is present otherwise; finally, we remind the reader that the so-called
MPE decision scheme is basically the likelihood ratio test that yields the
least probability of error amongst all possible binary hypothesis tests ([Poor,
1994]).

Theorem 1 Let U,Λ,X : Ω → Rn be three random vectors and let ε : Ω →
{0, 1} be a random variable defined on the same probability space (Ω,B, P )
such that Λ, X and ε are independent, X ∈ N (0, σ2

0In) and U = εΛ+X.
Let V (ρ) be the function of the positive real variable ρ

V (ρ) =
e−ρ

2/2

2n/2Γ (n/2)

∫ ξ(ρ)

0

e−t
2/2tn−1

0F1(n/2 ; ρ2t2/4)dt

+
1

2

[
1− 21−n/2

Γ (n/2)

∫ ξ(ρ)

0

e−t
2/2tn−1dt

]
. (1)

where ξ(ρ) is the unique positive solution for x in the equation

0F1(n/2; ρ2x2/4) = eρ
2/2. (2)

Then, given any positive real number A > 0, for any Λ less present than
absent with norm almost surely larger than or equal to A, V (A/σ0) is an
upper-bound for the probability of error of both the MPE decision scheme and
the threshold test with threshold height σ0ξ(A/σ0). This bound is reached by
both tests when the prior P ({ε = 1}) equals 1/2 and Λ is uniformly distributed
on the sphere with radius A centred at the origin.

The thresholding test with threshold height σ0ξ(A/σ0) is hereafter called
the MPE suboptimal test. It is basically nonparametric in the sense given
by [Poor, 1994] since V (A/σ0) is the constant performance measurement this
test guarantees over the whole class of those signals less present than absent
with norms larger than or equal to A.

2 Detection of relatively big signals in WGN with
unknown level: the Essential Supremum Test.

The thresholding test introduced by theorem 1 is workable in practice only if
the noise standard deviation is known. On the basis of theorem 2 stated in
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subsection 2.2 below, subsection 2.3 then introduces an algorithm named the
Essential Supremum Test (EST) and aimed at detecting signals of interest
even if the noise standard deviation is unknown. Beforehand, we need some
appropriate notations and pieces of terminology.

2.1 Some notations.

The characteristic function of a set K will be denoted by XK : XK(x) = 1
if x ∈ K and XK(x) = 0 otherwise. A real number x (resp. an integer k)
is said to be positive if x > 0 (resp. k > 0). The real number x (resp. the
integer k) is said to be non negative if x ≥ 0 (resp. k ≥ 0).

Only one probability space (Ω,M, P ) is considered in what follows.
Given any positive integer n, ‖ · ‖ : Rn → [0,∞) will stand for the usual

euclidean norm on Rn. Given any n-dimensional random vector Y : Ω → Rn,
‖Y ‖ will stand for the random variable ‖Y ‖ : Ω → [0,∞) that assigns the
non negative real number ‖Y (ω)‖ to every given ω ∈ Ω.

Let S henceforth stands for the set of all the sequences of n-dimensional
real random vectors defined on Ω. Given some positive real number σ0 and
some natural number n, an element X = (Xk)k∈N of S will be called an
n-dimensional WGN with standard deviation σ0 if the random vectors Xk,
k ∈ N, are mutually independent and identically Gaussian distributed with
null mean vector and covariance matrix σ2

0In (XksimN (0, σ2
0In)).

As usual, we denote by L2(Ω,Rn) the Hilbert space of those n-
dimensional real random vectors Y : Ω → Rn such that E[‖Y ‖2] < ∞. We
will hereafter deal with the set of those elements Λ = (Λk)k∈N of S such that
Λk ∈ L2(Ω,Rn) for every k ∈ N and supk∈N E[‖Λk‖2] is finite. According
to standard notations, we denote this subset of S by `∞(N, L2(Ω,Rn)).

2.2 A limit theorem

The subsequent theorem derives from a more general result established in
[Pastor, 2004] and suffices for achieving our purpose, that is introducing the
EST.

Theorem 2 Let U = (Uk)k∈N be some element of S such that U = εΛ+X
where Λ = (Λk)k∈N, X = (Xk)k∈N and ε = (εk)k∈N are respectively an
element of S, some n-dimensional WGN with standard deviation σ0 and a
sequence of random variables valued in {0, 1} .

Assume that

(H1) for every k ∈ N, Λk, Xk and εk are mutually independent;

(H2) the random vectors Uk, k ∈ N, are mutually independent;

(H3) the set of priors {{P ({εk = 1}) : k ∈ N} has a maximum p in [0, 1)
and the random variables εk, k ∈ N, are mutually independent;
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(H4) Λ ∈ `∞(N, L2(Ω,Rn)) and there exists A ∈ (0,∞) such that, for every
k ∈ N, ‖Λk‖ ≥ A almost surely.

Then, σ0 is the only strictly positive real number σ, such that, for every
β0 ∈ (0, 1],

lim
A→∞

∥∥∥∥∥∥∥∥∥∥

lim
m

∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk‖X[0,βσξ(A/σ)](‖Uk‖)

m∑

k=1

X[0,βσξ(A/σ)](‖Uk‖)
− σGn (βξ(A/σ))

∣∣∣∣∣∣∣∣∣∣

∥∥∥∥∥∥∥∥∥∥
∞

= 0 (3)

uniformly in β ∈ [β0, 1] where, for every non negative real value x,

Gn(x) =

∫ x

0

tne−t
2/2dt

∫ x

0

tn−1e−t
2/2dt

.

2.3 The Essential Supremum Test

Let L be some natural number and set β` = `/L for every ` ∈ {1, . . . , L}. On
the basis of theorem 2, given some elementary event ω ∈ Ω and m vectors
U1(ω), . . . , Um(ω), the idea is then to estimate σ0 by an eventually local
minimum σ̂0(m,ω) of

sup
`∈{1,...,L}





∣∣∣∣∣∣∣∣∣∣

m∑

k=1

‖Uk(ω)‖X[0,β`σξ(A/σ)](‖Uk(ω)‖)

m∑

k=1

X[0,β`σξ(A/σ)](‖Uk(ω)‖)
− σGn (β`ξ(A/σ))

∣∣∣∣∣∣∣∣∣∣




, (4)

when σ runs through the search interval (0, σmax(m,ω)] where

σmax(m,ω) = sup
k∈{1,...,m}

{‖Uk(ω)‖}/√n.

When σ runs through the search interval proposed above, the discrete cost
(4) is a scalar bounded nonlinear function of σ. We thus seek an eventual
local minimum of the discrete cost (4) by means of a standard minimiza-
tion routine such as the golden section search and parabolic interpolation
([Forsythe et al., 1976] and [Press et al., 1992]). Given k ∈ N, the deci-
sion on the value of εk is then achieved by replacing, in the expression of
the MPE suboptimal test, the exact value of σ0 by its estimate. The re-
sulting binary hypothesis test is then the map of Ω into {0, 1} defined by
T̂k = X[0,∞) (‖Uk‖ − σ̂0(m,ω)ξ(A/σ̂0(m,ω))) .
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Our choice for the search interval upper bound is then justified as follows.
If σ̂0(m,ω) might be larger than σmax(m,ω), we would take the risk to get
an estimate larger than every ratio ‖Uk(ω)‖/ξ(A/σmax(m,ω)), when k ∈
{1, . . . ,m}. Indeed, ξ(ρ) ≥ √n ([Pastor et al., 2002]) for all non negative
real value ρ. Thereby, the outcome of the test T̂k could be that no signal is
present whereas the full absence of signals of interest amongstm observations
is hardly probable when m is large.

2.4 Some experimental results

The performance of the EST should be less than that of the MPE subop-
timal test. However, when m and A increase, we also can expect that the
performance measurements of these two tests become close to each other. If
so, above which values for m and A can the essential supremum test be con-
sidered as workable in practice? Till now, we have no theoretical answer to
this question and it seems hardly feasible to get an experimental answer to it
because we simply do not known which priors and distributions to choose for
such experiments? Therefore, in this section, we will be satisfied with some
experimental results concerning the following basic case.

With the same notations as those used so far, we suppose that for every
given k ∈ N, Uk, Λk and Xk are two-dimensional random vectors (n = 2)
where Λk is uniformly distributed on the circle centred at the origin with
radius A. We further assume that P (εk = 1}) = 1/2. Given k ∈ N, the
two components of Λk can be regarded as the in-phase and quadrature com-
ponents of a sinusoidal carrier with amplitude A and phase uniformly dis-
tributed in [0, 2π]. Thereby, deciding whether εk equals 0 or 1 is the standard
“Non coherent Detection of a Modulated Sinusoidal Carrier” problem ([Poor,
1994, Example III.B.5, p. 65]). The MPE decision scheme for making a deci-
sion on the value of εk is the thresholding test whose threshold height is the
unique solution in x to the equation I0 (A/σ0x) = eA

2/2σ2
0 , where I0 is the

zeroth order modified Bessel function of the first kind ([Poor, 1994, Example
II.E.1, p. 34]). Since I0(x) = 0F1(1;x2/4), the reader will easily verify that
the result is also a straighforward consequence of theorem 1.

Suppose now that the noise standard deviation is unknown. If we dispose
of m observations Uk, k = 1, . . . ,m, we can estimate this standard deviation
by minimizing the discrete cost (4) on the basis of those m references. This
estimate can then be used for tuning the EST and, on the basis of the (m+
1)th observation Um+1, make a decision on the value of εk+1. This decision
making has a certain probability of error V̂m(A/σ0). If m and A are large
enough, V̂m(A/σ0) and V (A/σ0) are expected to draw near to each other. In
other words, whenm and ρ ∈ (0,∞) are large enough, V̂m(ρ) and V (ρ) should
be close to each other. We thus carry out simulations so as to experimentally
verify this intuitive claim.

In these simulations, σ0 = 1 for this choice induces no loss of gener-
ality; given ρ ∈ (0,∞), V̂m(ρ) is computed by choosing signals uniformly
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distributed on the sphere centred at the origin with radius ρ. We mini-
mize the discrete cost (4) with L = m as a trade-off between accuracy of
the estimate and computational cost. Given m ∈ N and ρ ∈ (0,∞), we
approximate Vm(ρ) by the EST Binary Error Rate (BER), computed as fol-
lows. Given j ∈ N, the EST estimates σ0 on the basis of the m observations
U(j−1)(m+1)+k, k = 1, 2, . . . ,m and makes a decision on the value of εj(m+1).
If Ij stands for the indicator variable defined by Ij = 1 if the EST makes
the wrong decision on the value of εj(m+1) and by Ij = 0 otherwise, the
random variables Ij , j ∈ N, are mutually independent because of the mutual

independence of the trials. It turns out that estimating V̂m(ρ) by the sample

proportion Sk/k, where Sk =
∑k
j=1 Ij and k is some specified number of

trials, is not suitable with respect to our purpose. Indeed, V̂m(ρ) is expected
to approximate reasonably well V (ρ) for large values of m and ρ; now, V (ρ)
rapidly decreases with ρ; hence, the accuracy of the sample proportion Sk/k
may significantly depend on the value of V̂m(ρ). Thence, we resort to inverse
binomial sampling as practitioners in telecommunication systems usually do
since error probabilities also decrease rapidly with input signal to noise ratios.
The BER is thus defined as the ratio i/K where K = inf{k ∈ N : Sk = i} is
the minimum number of trials experimentally required for achieving a pre-
defined number of errors equal to i.

Figures 1 to 3 present experimental results obtained for different val-
ues for m. Each figure displays V (ρ) and the BERs of the EST for
ρ = 0.5, 1, 1.5, . . . , 5 and a pre-specified number of errors i equal to 400,
which is a reasonable choice according to practitioners in telecommunication
systems. As expected, the larger m and ρ, the closer V (ρ) and V̂m(ρ).

Consider now the case of sinusoidal carriers with amplitudes all equal to
Cρ with C > 1. According to theorem 2, the least we can expect is that the
larger C, the better the performance of the EST. For instance, the results
displayed in figure 4 were obtained for m = 300 and signals of interest with
amplitude A one dB larger than the value ρ, that is A = 1.2589ρ. These
results strongly suggest that the asymptotic conditions of theorem 2 are not
so constraining in practice and can probably be relaxed.

3 Perspectives and extensions

Forthcoming work should address the respective influence of the EST various
parameters, analyse how the asymptotic conditions of theorem 2 can actually
be relaxed and assess the quality of EST estimate of the noise standard
deviation.

A natural application of the approach presented in this paper is the design
of Constant False Alarm Rate (CFAR) systems used in radar processing for
detecting targets. Our intention is then to study to what extent theorems 1
and 2 are complementary to standard results and algorithms such as those
described in [Minkler and Minkler, 1990].
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Fig. 1. Performance of the EST with L = 100 and m = 100 references for the non
coherent detection of modulated sinusoidal carriers .
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Fig. 2. Performance of the EST with L = 200 and m = 200 references for the non
coherent detection of modulated sinusoidal carriers.
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Fig. 3. Performance of the EST with L = 300 and m = 300 references for the non
coherent detection of modulated sinusoidal carriers.



Two results in statistical decision theory. 811

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

ρ

V(ρ)
BER of the EST

Fig. 4. Performance of the EST with L = 300 and m = 300 references for the non
coherent detection of modulated sinusoidal carriers with amplitudes A[dB] equal
to ρ[dB] + 1.
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Abstract. Consider a process that jumps back and forth between two states, with
random times spent in between. Suppose the durations of subsequent on and off
states are i.i.d. and that the process has started far in the past, so it has achieved
stationarity. We estimate the sojourn distributions through maximum likelihood
when data consist of several realizations observed over windows of fixed length. For
discrete and continuous time Markov chains, we also examine if there is any loss of
efficiency when ignoring the stationarity structure in the estimation.
Keywords: Alternating renewal process, Asymptotic efficiency, Window censor-
ing.

1 Introduction

Consider a machine which periodically fails, undergoes technical service, and
is put to work again, so that the working and out-of-service times form an
alternating renewal process (ARP). Suppose further that the machine was
placed in service in the indefinite past, so that the process may be regarded
as stationary. Our interest here is to estimate the distribution of the on and
off times when several such processes are observed over a time interval, or
when the same process is observed over several “well separated” windows.

Such alternating renewal processes have been taken as models for diverse
phenomena such as system availability and reliability in engineering [Pham-
Gia and Turkkan, 1999], or the behavior of healthy-sick cycles in actuarial
and insurance mathematics [Ramsay, 1984]. They have also been of inter-
est as building blocks for other processes where the cumulative count from
many alternating renewal processes whose inter-arrival times have high or in-
finite variance can produce aggregate network traffic that exhibits long range
dependence [Murad S. Taqqu and Sherman, 1997].

The present study is concerned with estimating the distribution of the
time spent in each of the states with maximum likelihood methods, when the
data consist of “windows” from several stationary ARPs.
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2 Construction and stationarity of ARPs

Consider a set of pairs of positive random variables {(Z∗, Y∗), (Z1, Y1), . . .}
with the property that the first pair (Z∗, Y∗)simQ0 and it is independent

from the remaining (Zi;Yi)
iid

sim Q. That kind of arrangement constitutes an
alternating renewal sequence with inter-arrival times X∗ = Z∗ + Y∗, Xi :=
Zi + Yi, and renewal times S0 := X∗ and Sn := S0 +

∑n
1 Xi for n > 0.

Consider the counting process N(t) :=
∑∞

0 I{Sn ∈ [0; t]} and in order to
record the state of the process at each time, introduce W (t) := I{SN(t)−1 +
ZN(t) > t}, which is the alternating renewal process associated with the
renewal sequence. Thus the distribution of W := {W (t), t ≥ 0} is determined
by Q0 and Q; call the process pure if X∗ ≡ 0 or delayed otherwise. Think
of the Z’s and Y ’s denoting durations of on and off times respectively; and
for identifiability assume throughout that P (Zi = 0) = P (Yi = 0) = 0 for all
i ∈ ZZ+.

Note also that the initial random vector (Z∗, Y∗) can be thought of as
resulting from an ordinary pair (Z0, Y0)simQ through truncation, as

Z∗ = (X∗ − Y0)
+

and Y∗ = X∗ ∧ Y0. (1)

In particular, situations with Z∗ = 0 correspond to paths beginning in the
off-state.

In this study we are concerned not with pure but with delayed alternative
renewal processes, the importance of which is that with an appropriate choice
of Q0 the process W is stationary, in a sense to be defined shortly. Figure 1
shows a typical sample path observed over the “window” of time [0, T ].

1

0
|×

z∗

y∗ ×
s0

z1

y1 ×
s1

zN(T )

|
T

Fig. 1. A Sample Path from a Delayed ARP over [0, T ]

2.0.0.1 Stationarity Choose any t ∈ IR+ (deterministically or randomly but
independent of the process) and construct a new alternating renewal sequence
{(Zti , Y ti ), i ≥ 0} by censoring everything to the left of t. This is, the new
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sequence has an initial pair

Zt∗ = (SN(t)−1 + ZN(t) − t)+,
Y t∗ = YN(t) − (t− SN(t)−1 − ZN(t))

+;

and subsequently Zti = ZN(t)+i and Y ti = YN(t)+i, for i ≥ 1. Notice that
because this construction implies that Zt∗ = 0 on the event C := {SN(t)−1 +
ZN(t) ≤ t}, the distribution of the random variable Zt∗ has a point mass at
zero whenever C has positive probability.

Definition 1 Call the ARP stationary if and only if the two sequences
{(Z∗, Y∗), (Zi, Yi), i ≥ 1} and {(Zt∗, Y t∗ ), (Zti , Y

t
i ), i ≥ 1} are equal in dis-

tribution for every t ∈ [0,∞).

Assume that X := X1 has finite expectation µX and denote Z := Z1,
Y := Y1.

Theorem 21 If the distribution of the initial pair (Z∗, Y∗) is given by

Q0(z, y) =
1

µX
EQ {(z ∧ Z) 1 [Y ≤ y] + (y ∧ Y ) } , (2)

then process {W (t), t ≥ 0} is stationary in the sense of definition 1.

See [4]. In the special case when the on-time ZsimH is independent of the
off-time Y simG this gives

Q0 (z, y) =
µY
µX

∫ y

0

1−G(u)

µY
du+

µZ
µX

G (y)

∫ z

0

1−H(u)

µZ
du. (3)

3 A two-states Markov chain

The simplest example of a window censored alternating renewal process is a
pair of consecutive observations from a Markov chain on {0,1}. When the
transition probabilities are π0 := P (Wt+1 = 1|Wt = 0) and π1 := P (Wt+1 =
1|Wt = 1), the stationary distribution is given by

q := P{Wt = 0} = 1−π1

1−π1+π0
, p := P{Wt = 1} = π0

1−π1+π0
.

The joint density of a pair of consecutive observations is

P (Wt = xi;Wt+1 = yi) =
π0(1− π1)

1− π1 + π0

(
π1

1− π1

)xiyi
(

1− π0

π0

)(1−xi)(1−yi)

.

(4)
This is of exponential family form with complete sufficient statistic T , and
canonical parameter η given respectively by

T =

(
XiYi

(1 −Xi)(1 − Yi)

)
and η =

(
lnπ1 − ln(1− π1)
ln(1− π0)− lnπ0)

)
.
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By standard results in exponential families theory [11], the maximum
likelihood estimators are

π̂0 =
Pn

i=1(Xi−Yi)
2

2n−Pn
i=1Xi−

Pn
i=1 Yi

and π̂1 =
2

Pn
i=1XiYiPn

i=1Xi+
Pn

i=1 Yi
;

and
√
n(π̂ − π)⇒ N(0; Σ̂), where

Σ̂ =
1

2
(1− π1 + π0)

(
π0 (1− π0)

1+π0

1−π1
−π1 (1− π0)

−π1 (1− π0) π1
2−π1

π0
(1− π1)

)
.

Alternatively, we could ignore stationarity in order to estimate π0 and π1

by the sample proportion of transitions into each state, i.e.

π̃0 =
Pn

i=1(1−Xi)YiPn
i=1(1−Xi)

and π̃1 =
Pn

i=1XiYiPn
i=1Xi

.

By the multivariate central limit theorem and the delta method,
√
n(π̃−π)⇒

N(0; Σ̃), with

Σ̃ = (1− π1 + π0)

(
π0(1−π0)

1−π1
0

0 π1(1−π1)
π0

)
.

At this point, it is natural to ask what is lost in terms of efficiency by
ignoring stationarity in the estimation. To address this question, consider
the difference matrix Σ̂ − Σ̃ =: (1− π1 + π0) ∆. It is easy to check that
the diagonal entries of ∆ are strictly negative and that the cross-products
are equal. Therefore, the matrix difference (Σ̂− Σ̃) has one eigenvalue which
is negative and the other is zero. This result is surprising, because it implies
that there exist functions of the transition probabilities for which ignoring
stationarity is of no consequence asymptotically. Essentially, any function of
(π0, π1) with gradient proportional to the eigenvector corresponding to the
null eigenvalue of ∆ will have that property. This will be explored further
for continuous time Markov chains in section 4.

4 A continuous time Markov chain

When the on and off times follow independent exponential distributions
Zi sim Qz = exp (λ1) and YisimQy = exp(λ2), the process {W (t), t ≥ 0}
is a continuous time Markov chain. At any given time, the excess life is
independent of the history of the process.

The stationary distribution is, according to equation (3):

Q0(z, y) =
λ2

λ1 + λ2
(1− e−zλ1)

(
1− e−λ2y

)
+

λ1

λ1 + λ2
(1− e−yλ2), (5)

with marginal distributions

Q0(∞, y) = (1− e−yλ2) and Q0(z,∞) = λ2

λ1+λ2
(1− e−zλ1) + λ1

λ1+λ2
.
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Notice that Z0 is independent of Y0, since Q0(z, y) = Q0(∞, y)Q0(z,∞).
Reference [Alvarez, 2003] investigates how to obtain a likelihood for a

sample path of an ARP observed on a window [0, T ], as a Radon-Nykodym
derivative with respect to an appropriately chosen dominating measure and
restricted to a filtration that corresponds to the censoring mechanism. The
main result is that the window-censored likelihood ratio is a product of three
types of factors:

i ) In a typical sample path where at least one transition in observed, we
multiply
(a) the value of initial density
(b) the values of the densities at all non-censored on and off times
(c) the survival function for the duration of the last state in the window

ii ) Secondly, if the window [0, T ] contains no jumps, the likelihood equals
the survival function of the excess life in either state.

Using the above recipe, after some algebra we obtain the likelihood over
a window [0, T ] as

l(T ) =
λ1
τ+1{W (T )=0}λ2

τ+1{W (0)=1}

λ1 + λ2
exp [−λ1on(T )− λ2off(T )] , (6)

where on(t) :=
∫ t
0
W (t)dt =: t−off(t). This additive property is characteristic

to the Markov chain and it is fairly intuitive. Because of the memoryless
property of the exponential distribution, the break up of the total on or off
times into subperiods does not provide any additional information on their
distribution. When we observe m windows independently up to a same time
T , the log-likelihood over the sample is the sum of the corresponding path
likelihoods.

4.1 Asymptotic normality

Following standard theorems in asymptotic statistics it is established that
the likelihood equation has a unique root with probability tending to 1 as

m→∞ and that
√
n
(
λ̂n − λ0

)
⇒ N(0, Σ̂) with

Σ̂ =
(λ1 + λ2)

(λ1T + λ2T + 2)

(
λ1

λ1T+λ2T+1
λ2T

1/T

1/T λ2
λ1T+λ2T+1

λ1T

)
.

Notice that while the main diagonal entries are O(1/T ), the off-diagonal
entries are O(1/T 2) as T → ∞. This is intuitive, since the only reason why
the estimators of λ1 and λ2 are dependent is the presence in the data of the
initial (left censored) observations. As the observation window enlarges, the
information provided by the first two observations becomes negligible and
the estimators closer to being independent.
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4.2 Comparison with classic estimators

As in the discrete Markov chain example of Section 3, it is natural to ask if
there is any loss in efficiency by ignoring stationarity in the estimation.

Suppose that we “condition away” the initial states. That is, we seek a
log-likelihood function conditioned on σ {Z01(Z0 > 0), Y01(Z0 = 0)}. This is
given over a single window by

ln lc(T ) = [τ + r1 + d0 − 1] (lnλ1) + τ (lnλ2)− λ1on(T )− λ2off(T ),

and its gradient is

∇ ln lc(T ) =

(
(τ + r1 + d0 − 1)/λ1 − on(T )

τ/λ2 − off(T )

)
.

The conditional maximum likelihood estimators can be easily found over m
windows to be

λ̃1 = τ+r1+d0−m
on(T ) and λ̃2 = τ

off(T ) .

It is easy to check that

E
[
−∇2 ln lc(T )

]−1
=
λ1 + λ2

T

(
λ1

λ2
0

0 λ2

λ1

)
.

Therefore,
√
m(λ̃− λ)⇒ N(0; Σ̃) with

Σ̃ =
λ1 + λ2

T

(
λ1

λ2
0

0 λ2

λ1

)
,

which coincides with the approximation for the unconditional m.l.e’s for large
T ’s. To compare the two methods asymptotically let

Σ̂ − Σ̃ =: λ1+λ2

T
1

λ1T+λ2T+2∆ with ∆ =

(
−λ1

λ2
1

1 −λ2

λ1

)
.

As in the discrete chain, ∆ is negative semidefinite since tr(∆) < 0 and
|∆| = 0. The m.l.e. is then better than its conditional version, with a gain
in efficiency that depends inversely on the truncation time and which is also
affected by the relative means of the on and off times.

On the other hand, ∆ has eigenpairs

[
0, (λ2, λ1)

′] and
[(
−λ1

λ2
− λ2

λ1

)
, (−λ1, λ2)

′
]
,

which can be used to decompose ∆ = PDP ′, with

P =
1√

λ2
1 + λ2

2

(
λ2 −λ1

λ1 λ2

)
and D =

(
0 0

0 −λ1

λ2
− λ2

λ1

)
.
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This suggests the definition of a new parameter η = η (λ) by

(
η1 (λ1, λ2)
η2 (λ1, λ2)

)
:=

(
λ1λ2

1
2λ

2
2 − 1

2λ
2
1

)
.

This map is continuous and has the Jacobian matrix

Dη =

( ∂
∂λ1

η1 (λ1, λ2)
∂
∂λ2

η1 (λ1, λ2)
∂
∂λ1

η2 (λ1, λ2)
∂
∂λ2

η2 (λ1, λ2)

)
=

(
λ2 λ1

−λ1 λ2

)
.

By the delta method, the estimators η̂ = η
(
λ̂
)

and η̃ = η
(
λ̃
)

are asymp-

totically normal and the difference in covariance matrices is

Dη

(
Σ̂ − Σ̃

)
D′
η =

1

T

λ1 + λ2

λ2λ1

1

λ1T + λ2T + 2

(
0 0

0 −
(
λ2

1 + λ2
2

)2
)
.

The product of the hazard rates is estimated equally efficiently by the two
methods, asymptotically, but for estimation of the difference in the square
of the hazard rates the unconditional m.l.e. is better. As before, the gain in
efficiency depends inversely on the truncation time.

For the parameter η2(λ1, λ2) = 1
2λ

2
2 − 1

2λ
2
1 the asymptotic relative effi-

ciency (ARE) of η̃2 w.r.t. η̂2 is given by

A.R.E.(η̃2, η̂2) = 1− (λ2
1 + λ2

2)
2

2(λ4
1 + λ4

2)

/[
1 +

1

2
(λ1 + λ2)T

]
.

The fraction in the numerator varies between 0 when λ1 → 0 and 1 when
λ1 = λ2. When T is small the gains in efficiency could be substantial. As an
example, Table 1 quantifies these gains for a few combination of parameters
values.

Case: i ii iii iv v

λ1 0.5 0.5 0.5 0.5 0.5

λ2 1 1 0.5 0.5 0.5

T 4 20 2 1 0.5

A.R.E.(η̃2, η̂2) 0.82 0.95 0.50 0.33 0.20

.

Table 1. A.R.E. of η̃2 w.r.t. η̂2
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Asymptotic results for the MPL estimators

of the Contact Process
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Abstract. Let X be a discrete time contact process (CP) on Z2 as defined by
Durrett and Levin (1994). We study the estimation of the model based on space-
time evolution of X, that is, T+1 successive observations of X on a finite subset S of
sites. We consider the maximum marginal pseudo-likelihood (MPL) estimator and
show that, when T → ∞, this estimator is consistent and asymptotically normal
for a non vanishing supercritical CP. Numerical studies confirm the theoretical
results and compare the MPL estimators with coding method estimators. Finally
we present some results on CP of order d.
Keywords: Contact process, supercritical process, marginal pseudo-likelihood,
identifiability of a model, consistency, asymptotic normality.

1 Introduction and description of the model

Consider a simple model of spread of a single species population evolving in
Z2. Depending on some biological parameters, the dynamics is determined
by specifying, for each site s ∈ Z2, the conditional probability that site s will
be in state Xt+1(s) = y ∈ {0, 1} at time t + 1 given Xt, the configuration
at time t. State 1 (respectively 0) means that there is a (respectively no)
plant in s. In this paper we propose an estimator for the parameters of the
model, based on observations of X at instants t = 0, . . . , T on a finite and
fixed subset S of Z2 and study the asymptotic properties of the estimator
when the process is non vanishing on S. Fiocco and Zwet considered the
estimation problem based on one observation at time t, when t is sufficiently
large ([Fiocco and Zwet, 2003]).

We consider the discrete time version of the Contact Process (CP) as
defined by Durrett & Levin [Durrett and Levin, 1994]. Suppose that the
transition probability at a site s and at time t is stationary in space and time
and depends locally on xt−1(N1(s)), the first order neighbourhood of the site
s at time t− 1, where Nd(s) = {u ∈ Z2 : ‖s− u‖1 ≤ d}.

The system evolves as follows:

a. Each plant alive at time t dies with a probability γ at time t+ 1,
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b. If the plant in s survives, then it produces an offspring that is dispersed
to u ∈ ∂s, where ∂s = N1(s) \ {s}, with probability λ; the reproduction
events for different values of s and different u ∈ ∂s are independent,

c. If one or more plants are dispersed to s, or if there is a plant at s that
survives between t and t+ 1, then Xt+1(s) = 1; otherwise Xt+1(s) = 0.

Furthermore, events defined on (a) and (b) are independent in time.
This model depends on the parameter θ = (γ, λ) and we suppose that

θ ∈ (0, 1)2. Other models are possible by defining different rules of evolution
(cf. [Mollison, 1977] for example). Finally, some of the methods developed
in our paper can be generalized for non stationary processes in space and/or
in time.

The ‘all 0’ in Z2 state is an absorbing state. So, to make sense, for the
asymptotic study, we need a condition (I), verified with probability 1 con-
ditionally to the non-extinction of X on S, the fixed domain of observation.
Note that a CP survives with positive probability for a supercritical process
that is CP such that P (τ = +∞) > 0 where τ gives the extinction time of
the process ([Durrett and Levin, 1994]).

The paper is organized as follows. In section 2 we define the marginal
pseudo-likelihood (MPL) estimator of θ. The identifiability of MPL is pre-
sented in section 3 and asymptotic results of MPL estimator in section 4.
In section 5 we consider some simulations studies and compare numerically
MLP estimators with coding method estimators proposed by Besag ([Besag,
1972]). A brief discussion on CP of order d is given in section 6.

Proofs of results are to be found in [Guyon and Pumo, 2004].

2 Marginal pseudo-likelihood (MPL)

Let x(T) = (x0, x1, · · · , xT) be (T + 1) successive configurations of X , S a
finite subset of Z2 and S1 = {u ∈ Z2 : ∃v ∈ S such that ‖u− v‖1 ≤ 1}.
The estimator of θ we choose is a value which maximize a MPL of x(T )
observed on S1. The idea of pseudo-likelihood is classic in statistic: gaussian
pseudo-likelihood for stationary field on Zd ([Whittle, 1963]), conditional
pseudo-likelihood for a Markov field on a lattice ([Besag, 1974]).

For a subset A ⊂ S, let denote PA(xt, xt+1; θ) the transition-probability
P (Xt+1(A) = xt+1(A) | Xt(S1) = xt(S1)). As the transition-probability for
A = S is analytically intractable, as #(S), the number of sites of S, is
important, we will use the following marginal pseudo-transition probability
MS(xt, xt+1; θ) on S, in order to estimate θ. MS(xt, xt+1; θ) is the product
of P{s}(xt, xt+1; θ) for s ∈ I(xt), where:

I(xt, S) = {s ∈ S : ∃xt+1 s.t. P{s}(xt, xt+1; θ) > 0}

The product of these marginal pseudo-transitions at consecutive instants de-
fine the MPL. For s ∈ S and A a finite subset of Z2, denote m(xt, A) =
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∑
s∈A xt(s), the number of sites ofA occupied by xt. As the model is isotropic

in space, the law of Xt+1(s) given xt depends only on c(xt, s):

c(xt, s) = (xt(s),m(xt, ∂s)) ∈ C1 = {0, 1} × {0, 1, 2, 3, 4}. (1)

More precisely, Xt+1(s) conditionally on xt is a Bernoulli random variable:

P{s}(xt, xt+1; θ) = p(xt, s; θ)
1−xt+1(s)(1− p(xt, s; θ))xt+1(s),

where p(xt, s; θ) = γxt(s)δm(xt,∂s) and δ = γ + (1 − γ)(1 − λ) controls non-
proliferation at time (t + 1) in a site s′ ∈ ∂s of a plant present in s at time
t. Since Xt+1(s) = 0 if c(xt, s) = (0, 0), only sites s ∈ I(xt) are informative
in the transition t 7→ t+ 1. So:

MS(xt, xt+1; θ) =
∏

s∈I(xt)

p(xt, s; θ)
1−xt+1(s)(1 − p(xt, s; θ))xt+1(s) (2)

with convention M(0, 0; θ) = 1 if I(xt) = ∅. Denote η = γ + (1− γ)(1− λ)2:
η controls non-proliferation at time (t+1) in the set {s, s′} of a plant present
in u ∈ ∂s ∩ ∂s′ at time t.

By a direct calculation it follows that:

Cov(Xt+1(s), Xt+1(s
′) | xt) = p(xt, s; θ) p(xt, s

′; θ) [b(xt, s, s
′; θ)− 1]

where

b(xt, s, s
′; θ) =




δ−m(xt,{s,s′}) if s′ ∈ N1(s) \ {s}
δ−2m(xt,∂s∩∂s′)ηm(xt,∂s∩∂s′) if s′ ∈ N2(s) \ N1(s)
1 if s′ 6∈ N2(s).

(3)

In particular if s′ 6∈ N2(s), (Xt+1(s) | xt) and (Xt+1(s
′) | xt) are independent.

Using (2) for t = 0, · · · , T − 1, let us give the explicit expression of MPL
based on observation of x(T) on S1. Denote n(xt) (respectively n(xt, c)) the
number of informative sites of the configuration xt on S (respectively with
configuration c ∈ C1) and:

n(T ) =
∑T−1

t=0
n(xt), n(T, c) =

∑T−1

t=0
n(xt, c).

Clearly n(T ) =
∑
c 6=(0,0) n(T, c). The normalized log-marginal pseudo-

likelihood of x(T) observed on S1 is:

lT (θ) =
1

n(T )

T−1∑

t=0

∑

s∈I(xt)

{log[p(xt, s; θ)]
x̄t+1(s) + log[p̄(xt, s; θ)]

xt+1(s)} (4)

where x̄t+1(s) = 1− xt+1(s), p̄(xt, s; θ) = 1− p(xt, s; θ). The maximum MPL
estimator of θ (or MPLE) is a value which maximize the MPL,

θ̂T = argθ max lT (θ).
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3 MPL allows identification of θ

In order to prove that MPL allows identification of θ, we need to show that
πc is strictly positive for two linearly independent configurations, where:

πc = limT→∞
n(T, c)

n(T )
.

The positivity of πc > 0 for c ∈ C∗1 , the set of configurations on N1(0) such
that x(0) = 1, is obtained by the following Lemma under the condition (I)
of non-extinction of X on S :

(I) : I∞ = {x = (xt, t ≥ 0) such n(x(T))→∞ as T→∞}.

Lemma 1 Let C∗1 be the set of configurations on N1(0) such that x(0) = 1.
Then there exists α > 0 such that, ∀c ∈ C∗

1 , and ∀x ∈ I∞, we have πc ≥ α.

From the positivity of πc, it follows that under (I) and for large T , θ →
lT (θ) allows identification of θ. Indeed:

• if x(T ) realizes two linearly independent configurations ca = (ua, va) and
cb = (ub, vb), then θ 7→ lT (θ) is an injective function;

• under (I), the probability that each configuration c of C∗1 appears on S
converges to 1 when T →∞.

In conclusion let as make two important remarks:

i ) As X∞ is spatially translation-invariant and ergodic, [Durrett, 1995], it

follows that limT→∞
n(T,c)
n(T ) exists and is strictly positive for c ∈ C1.

ii ) Space and/or time invariance of the model is not crucial on the proof of
the subergodicity result: a similar result can be proved for non transla-
tion invariant models under the supplementary condition that transition
probabilities are uniformly positive.

4 Consistency and normality of the MPL estimator

Let f : U → R be a real function twice continuously differentiable on an open
subset U of Rd and f (1)(θ) the vector of first derivatives. The following result

sets up the consistency and asymptotic normality of the maximum MPLE θ̂T
associated to (4). The proofs are based on Theorem 3.4.3 and 3.4.5 of Guyon
([Guyon, 1995]). In order to prove the positivity of JT (θo) we used an idea of
Jensen and Künsch ([Jensen and Künsch, 1994]) and a subergodicity result
which generalize Lemma 1.
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Let I2 be the 2× 2 identity matrix, AT (θo), BT (θo) the 2× 2 matrices:

AT (θo) =
1

n(T )

T−1∑

t=0

∑

s∈I(xt)

p(1)t[p(1)]

p(1− p) (xt, s; θo) (5)

BT (θo) =
1

n(T )

T−1∑

t=0

∑

s,s′∈I(xt)

[b(xt, s, s
′; θo)−1]

p(1)(xt, s; θo)
t[p(1)(xt, s

′; θo)]
[p̄(xt, s; θo)] [p̄(xt, s′; θo)]

(6)

with b(xt, s, s
′; θo) given by (3).

Theorem 1 Let us suppose that θo = (γo, λo), the true unknown value of
the parameter, is an interior point of a compact Θ ⊂]0, 1[2. Then, under
condition (I) the maximum MPL estimator is consistent:

lim
T→∞

θ̂T
a.s.
= θo.

and asymptotically normal:

√
n(T ) [AT (θo) +BT (θo)]

−1/2
AT (θo)(θ̂T − θo) d→ G2(0, I2).

5 Numerical studies

In this section we give some empirical results with S the 64×64 square lattice
and initial configuration ‘all sites occupied’. To avoid boundary effects we
have used periodic boundary conditions. In Fig. 1 we present the evolution
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Fig. 1. Evolution of the bias (solid lines) and standard deviation (multiplied by
100, dotted lines) for the estimators of γo (left) and λo (right) for the supercritical
CP with parameters γo = 0.35, λo = 0.25.

of the bias and the standard deviation of γ̂T and λ̂T for T = 1, . . . , 99 for the
supercritical CP with parameters γo = 0.35, λo = 0.25.
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Fig. 2. Histograms of 100 estimations of γo (left) and λo (right) for the supercritical
CP with parameters γo = 0.35, λo = 0.25.

Empirical study of asymptotic normality of estimators for a supercritical
CP is based in 100 simulations with T = 99. Histograms are presented in Fig.
2. Asymptotic normality is checked by using a chi-squared test at level 5%
and defining 9 equiprobable classes. Normality is accepted for γ̂ (respectively

λ̂) since χ2 = 1.7 (respectively χ2 = 4.4) and χ2
0.95(6) = 12.59.

We also compared the estimated standard errors σ̂γ̂ , σ̂λ̂ and empirical
standard errors sγ̂ , sλ̂ for the supercritical CP with parameter γo = 0.35,
λo = 0.25. The values σ̂γ̂4 , σ̂λ̂4

are obtained from a single simulation with
T = 4 by applying Theorem 1 where A4(θo) (respectively B4(θo)) are ap-

proximated by A4(θ̂4) (respectively B4(θ̂4)). The empirical standard errors
sγ̂4 , sλ̂4

are obtained from 100 estimations for the 100 simulations. The re-
sults are presented in Table 1. As expected, there are few differences be-
tween estimated standard errors and empirical standard errors. Finally, Ta-

σ̂γ̂4 sγ̂4 σ̂λ̂4
sλ̂4

MPL estimations 0.0074 0.0074 0.0063 0.0058

Table 1. Comparison of estimated and empirical standard deviation

ble 2 gives the estimations of γo and λo for six CP with parameters (γo, λo)
∈ (0.2, 0.4, 0.6) × (0.1, 0.2). In these simulations, T = 4 and 40% of sites,
randomly chosen, were occupied at time t = 0. We compare MPL estimators
with coding method of estimation introduced by Besag ([Besag, 1972]). Let
K = 3× Z2 ∩ S, a strong-coding subset that is ∂s ∩ ∂s′ = ∅ for s 6= s′ of K.
As variables {(Xt+1(s) | Xt = x), s ∈ K} are independent, the normalized
log-conditional likelihood of the CP restricted on sites s of K is given by:

lT,K(θ) =
1

nK(T )

T−1∑

t=0

∑

s∈IK(xt)

{log[p(xt, s; θ)]
x̄t+1(s) + log[p̄(xt, s; θ)]

xt+1(s)}
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λ = 0.1 λ = 0.2

γ γ̂4 σ̂γ̂4 λ̂4 σ̂λ̂4
n(4) γ̂4 σ̂γ̂4 λ̂4 σ̂λ̂4

n(4)

0.2 0.210 0.006 0.104 0.003 14600 0.189 0.006 0.193 0.004 15285
0.4 0.391 0.008 0.106 0.004 12406 0.399 0.008 0.188 0.005 13573
0.6 0.597 0.009 0.100 0.005 9223 0.607 0.009 0.206 0.008 10457

Table 2. Estimation of the parameters and their standard deviation.

where IK(xt) gives the set of informative sites of K, nK(xt) = ](IK(xt))

and nK(T ) =
∑T−1

t=0 nK(xt). The K-coding estimator of θ is a value which
maximize lT,K(θ). By applying this method of estimation for six CP we
obtained the results presented in Table 3.

λ = 0.1 λ = 0.2

γ γ̂4 σ̂γ̂4 λ̂4 σ̂λ̂4
n(4) γ̂4 σ̂γ̂4 λ̂4 σ̂λ̂4

n(4)

0.2 0.217 0.014 0.100 0.008 2442 0.183 0.013 0.170 0.010 2568
0.4 0.400 0.019 0.113 0.011 2106 0.400 0.019 0.184 0.014 2256
0.6 0.590 0.022 0.084 0.013 1542 0.602 0.022 0.198 0.023 1766

Table 3. Estimation of the parameters and their standard deviation obtained by
K-coding method

6 Estimation of parameters of CP of order d

In this section we briefly present results for the CP of order d presented also
in [Pumo and Le Corff, 2001] and which generalize the standard CP defined
in the introduction. Denote ∂s a general neighbourhood of s. In order to
define the CP of order d we only substitute b in the definition of the standard
CP with b’:

b’. If the plant in s survives, then it produces an offspring that is dispersed
to u = z + s ∈ ∂s with probability g(z); the reproduction events for
different values of s and different u ∈ ∂s are independent,

Denote λ = (λ1, . . . , λd)
′ the vector of different values of g(z), z ∈ ∂0\{0}.

Then we call d the order of the CP. The unknown parameter θ is defined now
by θ = (γ, λ′). It can be shown that similar results remains valid for the CP
of order d. Furthermore, by applying Theorem 3.4.6 in [Guyon, 1995] we can
do tests on parameters λ in order to determine the optimal neighbourhood for
the definition of the model. In Table 4 we give estimations of six CP of order 2
with parameters θo = (γo, λ1o, λ2o) where (γo, λ1o) ∈ (0.2, 0.4, 0.6)×(0.1, 0.2)
and λ2o = λ1o/

√
2 . In these simulations we considered a 100 × 100 lattice

and at time t = 0 all sites were occupied.
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λ1 = 0.1, λ2 = 0.0707 λ1 = 0.2, λ2 = 0.1414

γ γ̂ λ̂1 λ̂2 γ̂ λ̂1 λ̂2

0.2 0.199 0.098 0.072 0.200 0.197 0.144
0.4 0.399 0.101 0.072 0.399 0.200 0.141
0.6 0.597 0.102 0.065 0.598 0.199 0.135

Table 4. Estimation of parameters of CP of order 2.
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Abstract. This article, mainly targeted to practitioners, illustrates practical issues
that may arise when applying MCMC technics to a mixture of distributions model
on real data. This data is provided by coffee manufacturer to determine specifica-
tions for soluble coffee. Assuming a known number of components, parameters of
each component are estimated using the Gibbs sampler and specifications are de-
rived as the 99% quantile of the first distribution. Convergence and label-switching
are discussed. Determination of the number of components is also considered, via
model selection using the Bayes Factors.
Keywords: MCMC, Mixture, Gibbs Sampler, Label switching, Bayes factors.

1 The Problem and its Modelling

Following an international agreement, a commercial product sold as pure sol-
uble coffee must have been manufactured using green coffee only. However, in
a minority of cases, economic adulteration of soluble coffee has been observed
in some countries. As a matter of fact, few commercial soluble coffees have
been shown to be adulterated with coffee husks/parchments, cereals, and
some other plant extracts. In such cases, glucose and xylose contents have
proven to be the most discriminant indicators to detect the adulteration. For
pure soluble coffee, their concentration are low whereas they become high
in case of adulteration. Provided a set of 1002 soluble coffee samples, on
which both glucose and xylose concentrations have been measured, we are
interested in determining:



A Practical Implementation of the Gibbs Sampler... 829

• the number K of kinds of production, and their parameters (mean, stan-
dard deviation) : (K − 1) different frauds, plus one for pure coffee;
• the proportion of each population;
• from the first population and its corresponding characteristics, the spec-

ifications within which a soluble coffee can be considered as pure coffee ?

In this article, we only consider the univariate case. Therefore, glucose
and xylose concentrations are considered as separate quantities. The ap-
proach could, in a further work, be generalised to the bivariate case.

In the univariate case, the observed distribution of the glucose (resp. the
xylose) measured on the 1002 coffee samples is modeled as a mixture of
normal distributions. We consider that the T = 1002 observations from the
sample come from K distinct populations (1 pure and (K − 1) adulterated),
each population k ∈ {1, . . . ,K} following a normal distribution of density fk
and of parameters θk = (µk, σ

2
k).

Therefore, the likelihood of an observation xi, 1 ≤ i ≤ T is:

[xi|θ,π] =

K∑

k=1

πkfk(xi|θk),

where fk(•|θk) is the probability density function (pdf) of a normal distribu-
tion with parameters θk and πk is the probability of belonging to population
k, such that

∑K
k=1 πk = 1. The parameters of interest are θ = (θ1, . . . , θK)

and π = (π1, . . . , πK). The choice of the value of K will be mentioned in
section 6.

Other parametrisations for mixtures of normal distributions have been
published: interested readers can refer to Robert in [Droesbeke et al., 2002],
or in [Marin et al., to appear]. However, this parametrization lacks the
natural physical interpretation of the parameters achieved with the actual
one.

In the bayesian paradigm, parameters θk of each distribution are consid-
ered as random variables, having their own distribution. Starting from an
initial knowledge about a phenomena described in the prior distribution of
the parameters (θ,π), the Bayes formula enables to update this information
by adding the information brought by the data provided the model defini-
tion. The prior distribution, and its parameters, called hyperparameters, are
a way to take mathematically into account prior knowledge of the experts of
the field, if available (f.i., the potential informations held by the chemists).

To ease the reading, we use throughout the article the notation [.] intro-
duced by [Gelfand et al., 1990] to denote any pdf. In this notation, [θ,π]
denotes the prior distribution for (θ,π), [y|θ,π] the likelihood and [θ|π, x]
is the conditional pdf of θ.

Finally, the eventual goal of this application is to estimate a function
of the parameters F (θ,π) where F can be either the identity function
for each parameter or a quantile function. This is generally assessed by
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E[F (θ,π)|x] =
∫
F (θ,π)[θ,π|x]d(θ,π), where [θ,π|x] is the pdf of the pos-

terior distribution, i.e. the distribution of the parameters conditionnaly to
the observations x = (x1, . . . , xT ). This pdf is computed via the Bayes for-
mula : [θ,π|x] = [x|θ,π][θ,π]/[x], where [x] is the prior distribution of the
observations, which can be taken as constant and thus ignored.

The first question is therefore to choose the prior distribution of the
parameters, [θ,π].

Before going any further, we have to mention that a hidden variable
zi, i ∈ {1, . . . , T} has been introduced in the model mentioned above to
ease its Bayesian analysis (see below). This variable is not observed and thus
named latent variable. zi ∈ {1, . . . ,K} indicates the original population of the
observation xi, and z = (z1, . . . , zT ). The zi are i.i.d, with [zi = k|π] = πk,
[xi|θ,π, zi = k] = N (x|µk, σ2

k), where N (•|µ, σ2) denotes the univariate nor-
mal pdf. Analysis of mixture distributions by MCMC methods have been
the subject of many publications, for example [Diebolt and Robert, 1990],
[Richardson and Green, 1997], [Stephens, 1997], [Marin et al., to appear].

2 Choosing the Prior and its Hyperparameters

As part of the Bayesian analysis, prior definition is the first step to go
through. Several cases may arise:

• either the experts of the field have valuable information about the distri-
bution of the parameters that should be taken into account : for example,
they approximately know what the mean of each component should be.
• or they do not have any information at all - or this information should

be ignored, in order to check their results by an objective analysis. Two
approaches can be chosen by the statistician :
– using empirical prior, i.e. hyperparameters built upon the data.
– using non-informative prior, i.e. prior carrying no information at all.

This is somewhat hard to achieve, because purely non-informative
prior can be improper (for example, uniform distribution on the
whole space) and cause troubles. We can also use poorly informa-
tive prior, for example very dispersed normal distributions.

Moreover, the prior is often chosen in a closed-by-sampling or conjugate prior
family, i.e. such that conditionning by the sample (passing from the prior
to the posterior distribution) only result in a change of the hyperparameters,
not in a change of family. This simplifies implementation.

Here we have chosen the following model, that often arises, because each
distribution belongs to a closed-by-sampling family :

π = (π1, . . . , πK) sim Di(a1, . . . , aK)
µk|σ2

k sim N (mk, σ
2
k/ck)

σ−2
k sim IG(αk, βk)
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where Di is a Dirichlet distribution, and IG an Inverse Gamma. Thus,
the hyperparameters are ak,mk, ck, αk, and βk, k ∈ {1, . . . ,K}. For non-
informative prior, we should have a Uniform distribution for π, which can be
obtained with a1 = . . . = aK = 1, a Dirac pdf for σ2

k, which can be obtained
with limit values for αk and βk, and a unary density on R for each µk, which
is more difficult to implement with limit values on ck.

In practice, non-informative prior is not so easy to deal with : for instance,
when programming the algorithm with Matlab, it is not always possible to
deal with infinite values of the parameters, of with such particular densities.
Therefore, poorly informative prior, or even empirical prior, should be used.
This is what we have done here.

We have chosen : ∀ k ∈ {1, . . . ,K}, πk = 1, ck = 1, mk = x̄ (empirical

mean), αk = K, and βk = (T (K − 1))−1
∑T

i=1(xi − x̄)2. Thus, the propor-
tions of each component are non-informative, the means of the µk are equal
to the empirical mean of the sample, and the means of σ2

k is equal to the
empirical variance (E[σ2

k] = (αk−1)βk for Inverse Gamma). For reasons that
should become clear further (related to label-switching problems and Bayes
factors), we have chosen the same hyperparameters for each components: this
maintains the symmetry of the density (and therefore of the likelihood).

This part of the Bayesian analysis is certainly the most subjective. The
choice of prior is clearly the weakest point of the analysis, and the more
arguable and argued. Many discussions exist about it, and each approach
has its pros and cons. The approach chosen here is neither the most rigorous
one, nor the purest, but allows easy implementation. In order to overcome
these discussions, a sensitivity analysis needs to be done after the study.
Further discussions about the choice of the prior can be found in almost any
reference: see for example [Droesbeke et al., 2002], [Gelman et al., 2003].

3 Gibbs Sampling, Complete Conditionnal
distributions

The evaluation of the expectation is hard to achieve, either analitically or
numerically (due either to its complex expression or to its highly multidi-
mensional nature). MCMC methods are a good way to solve this problem.
We recall that the principle of Monte-Carlo methods is to generate N in-
dependent realizations (θ(i),π(i)) of random variables following the poste-
rior distribution [θ,π|x], and to approximate :

∫
F (θ,π)[θ,π|x]d(θ,π) ≈∑N

i=1 F (θ(i),π(i))/N. Here the function F is either the identity function to
estimate the parameters or the 99%-quantile function of the first component
of the mixture (i.e. the component corresponding to pure coffee powder, with-
out any kind of fraud). In this last case, in order to be the most conservative

possible, the empirical 95%-quantile of the sampled values F (θ(i),π(i)), in-
stead of their empirical mean, has been used.
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Given the conditional structure of the model of interest, the Gibbs sam-
pler has been used to generate a N-sample from the posterior distribution.
Quite straightforward to implement, it relies on the availability of all complete
conditional distributions. Let θ = (θ1, . . . , θn) the vector of the parameters
of the model. Here, we have θ = (θ,π) = (µ1, σ

2
1 , . . . , µK , σ

2
K , π1, . . . , πK).

Let θ(i) = (θ1, . . . , θi−1, θi+1, . . . , θn) the vector θ without its ith component.
The density of the complete conditional distribution of θi is [θi|θ(i),x]. Let
us assume that we know its closed form for all i ∈ {1, . . . , n}, wich is often

the case. Let us also take arbitrary initial values θ(0) = (θ
(0)
1 , . . . , θ

(0)
n ). The

Gibbs sampler’s algorithm consists in successively sampling:

• θ(i)1 from
[
θ1|θ(i−1)

2 , θ
(i−1)
3 , θ

(i−1)
4 , . . . , θ

(i−1)
n

]

• θ(i)2 from
[
θ2|θ(i)1 , θ

(i−1)
3 , θ

(i−1)
4 , . . . , θ

(i−1)
n

]

• · · ·
• θ(i)n from

[
θn|θ(i)1 , θ

(i)
2 , θ

(i)
3 , . . . , θ

(i)
n−1

]

for i ∈ {1, . . . , N + M}, where M is a number of iterations that will be
discarded. They are called “burn-in” iterations, and correspond to the time

before convergence. It can be shown that θ(M) = (θ
(M)
1 , . . . , θ

(M)
n ) converges

in distribution to the posterior joint distribution [θ1, . . . , θn|x]. The following
N values are then considered as a sample from this distribution, and can be
used to approximate F (θ) by empirical mean, as mentioned above.

In our model with the above assumptions, we have the following complete
conditional distributions (in order to simplify the notations, the list of all
parameters but θ are figured by (θ)):

zi|(zi),x sim Mu(π1, . . . πK)
π|(π),x sim Di(a1 + n1, . . . , aK + nK), where nk =

∑
i:zi=k

1

µk|(µk),x sim N (mkck+sk

ck+nk
,

σ2
k

nk+ck
)

σ−2
k |(σ2

k),x sim IG
(
αk + nk+1

2 , βk + 1
2

(
ck(µk −mk)

2 +
∑

i:zi=k
(xk − µk)2

))

We actually run the sampler with M = 5000 and N = 5000. Convergence
issues and choice of M are discussed in the next section. Metropolis Hastings
algorithm details, as well as variants of the Gibbs Sampler can be found
in [Droesbeke et al., 2002], or in [Richardson and Green, 1997] or also in
[Marin et al., to appear] for an approach more directly linked to mixture of
distributions.

4 Convergence Issues

Since the first historically convergence diagnosis (known as the “thick pen”
one, [Gelfand et al., 1990]), there exist two main kinds of methods to de-
termine whether the sampler has reached convergence or not, i.e. whether
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the values from the current generation can be considered as a sample of the
target distribution. Two kinds of diagnoses can be considered depending on
the number of chains run for carrying out the diagnosis: we consider either
the single or multi-chain, where the single ones are rejected by [Gelman and
Rubin, 1992b]. We then consider only the multi-chain procedure.

The principle of muti-chains diagnoses is to run multiple independent
chains from very different starting points, and to test whether the last values
of each chain come from the same distribution or not. If that is the case, we
can assume that convergence has been reached. [Gelman and Rubin, 1992a]
and [Gelman and Rubin, 1992b], have proposed a method which is often
used, based on the comparison of within and between-chains variances. At
the beginning of the sampling, the chains are much influenced by the starting
point, and the between-chains variance is high above the within-chain one.
When each chain has reached the target distribution, the ratio between within
and between-chain variance should be around 1. This method has been much
improved since then, and some more subtel tests are avalaible, though not
implemented here.

If we note xi,j the ith value of chain j, i ∈ {1, . . . ,M+N}, j ∈ {1, . . . , J},
we compute the empirical within-chain and between-chain (respectively W
and B) as follows

W = 1
m

∑m
j=1

1
n−1

∑n
i=1 (xi,j − x.,j)2

B = n
m−1

∑m
j=1 (x.,j − x.,.)2

with
x.,j = 1

n

∑n
i=1 xi,j

x.,. = 1
m

∑m
j=1 x.,j .

.

The quantity σ̂2
+ = n−1

n W + 1
nB can be interpreted as an estimate of the

variance of the target distribution. Gelman and Rubin show that, when the
initial values of the J chains are chosen “sufficiently different”, σ̂2

+ systemat-
ically overestimates the variance while chains have not reached convergence.

Convergence diagnosis is thus based on the statistic
√
R̂GR =

√
σ̂2

+/W which

tends to 1 when n→ +∞. Practically, convergence is considered as achieved

when
√
R̂GR < 1, 2. In a multiple parameters case, this diagnosis must

be carried out for each parameter separately, the overall convergence being
attained when all parameters have converged to its target distribution.

This method, quite straightforward to implement, has proven to be effi-
cient in many cases. However, due to the label-switching issue (see below),
this method appeared to be inefficient in our case. Future developments of
this study will see this point worked through.

5 The Label Switching Problem

A particularity of the mixture of distributions is that the likelihood and the
joint posterior pdf (which is the target distribution of the Gibbs Sampler)
is symmetrical, i.e. invariant by permutation of the components. Therefore,
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this last pdf has up to K! duplications of each mode, and the sampler can
move from one mode to another freely, thus permuting the components.

The absence of label-switching means that the sampler is stuck in a local
mode, maybe because modes are well separated (e.g. when K is very low).
The space of parameters is thus not completely explored, which is dangerous.

When estimating a function F (θ,π) which is also invariant by permu-
tation of the components (e.g. estimating the pdf at a given point), label-
switching is not a problem. But when trying to estimate the parameters of
each component, this label-switching has to be undone ([Stephens, 2000b]).
Two approaches can be foreseen: imposing an identification constraint dur-
ing the sampling, or post-processing the generated N-sample to undo the
permutation.

The first solution consists of constraining the exploration of the space
of parameters by the sampler, which alters the results, see [Celeux et al.,
2000], [Marin et al., to appear], [Stephens, 2000b]. Forcing the prior to be
highly separable (using much different hyperparameters for components) is
not a good idea neither : label-switching arises anyway, and the resulting
lack of correspondance between the prior and the component would corrupt
any further use of the prior (such as Bayes factor).

We applied here the second solution, i.e. the post-processing. Ordering
on µk, or on σ2

k, or on πk is not a good idea. Some components may be
close in mean but not in variance, and vice-versa. Some methods use the
Kullback-Leibler “distance” and clustering algorithms (e.g. K-means with
K! classes) to determine to which mode (i.e. permutation) belongs each of
the sampled vectors of parameters. The reader is invited to read the three
references above for more details.

It has to be noted that label-switching is incompatible with convergence
diagnoses mentionned in section 4 : comparing the variance between chains is
meaningless when components can swap ! Moreover, clustering assumes that
convergence has been reached, it would thus be non-sense to use variance-
based diagnoses on post-processed samples.

6 Choosing a model : Bayes Factors

Until now, we have worked with a given number K of components. The
question is now to choose between different models. LetM = {M1, . . . ,MK}
be a finite ensemble of possible models (each one with k components, up to
K, K = 7 in our application) to explain the observations xi, parametrized by
θ. The best model within the K possible is the one with the highest posterior
probability.

The posterior probability of model Mk is calculated via Bayes formula
as follows: [Mk|x] = ([Mk][x|Mk]) /

(∑
Mk∈M[Mk][x|Mk]

)
, where [Mk] is

an prior probability of Mk, with
∑

Mk∈M[Mk] = 1 (e.g. ∀ k, [Mk] =
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1/K), and [x|Mk], defined by [x|Mk] =
∫
[x|θk][θk] dθk is the prior predictive

distribution of x under model Mk.
Let us consider M1 and M2. The ratio between posterior probabilities

[M2|x]/[M1|x] = ([M2][x|M2]) / ([M1][x|M1]) is a posterior bet in favor of
M2 compared to M1. The ratio B21 = [x|M2]/[x|M1], modifying the prior
bet [M2]/[M1] is called Bayes factor of model M2 relatively to model M1.

Bayes factors are the basis of bayesian model selection. A ratio close to 1
means that both models equivalently explain the observations, whereas much
higher than 1 indicate that the model in the numerator is preferable. [Kass
and Raftery, 1995] suggest a scale based on 2 ln(B21), which can be valid for
a first indication, but is far from being general.

The evaluation of Bayes factors, and specially of [x] = [x|Mk] =
∫
[x|θk]×

[θk] dθk, relies on the Gibbs outputs. [x] could be estimated by Monte-Carlo
sum on the likelihood with values sampled from the prior distribution of
θ. Nevertheless, prior distributions are often very flat, much more than the
posterior ones, and such method would not be much significant. Newton and
Raftery advises to use another method, based on samples from the posterior
distribution [θ|x]. Bayes formula gives: [θ]/[x] = [θ|x]/[x|θ]. By integration
on θ, we have: [x]−1 =

∫
([θ|x]/[x|θ]) dθ, and thus can estimate [x]−1 by

Monte-Carlo methods, sampling from [θ|x], or more precisely continuing the
Gibbs Sampler, setting each parameter one after the other to its estimate, as
described in [Chib, 1995] and [Carlin and Chib, 1995].

Again, label-switching is a problem: the estimation by Monte-Carlo meth-
od involves here a function which is not invariant by permutation of the
component, so permutations have to be undone. That’s why, in such cases,
other methods such as reversible jump or birth-death processes are preferred
(see [Stephens, 2000a]).

7 Possible Improvements, Future Work

This study is an illustration of practical issues encountered when applying
MCMC technics for the Bayesian Analysis of the mixture of distribution
model. Some issues have already addressed in the literature (label-switching)
but without clear and straightforward solutions and some others are pend-
ing (prior definition). Even though, the methods presented here are quite
straightforward to implement, and thus can be easily used in a first approach
of the problem.

The following conclusions were attained: due to the recurrent problem of
label-switching (caused by the intrisic structure of the dataset), immediate
interpretation and efficient model selection (we can not actually choose be-
tween 3, 4, or 5 components) were not carried out. Further work in terms of
model selection must be definitely done. EM algorithm (using Mixmod soft-
ware, developed by INRIA’s IS2 team) has been used but gave completely
different results, incoherent with chemists’ interpretations: the algorithm
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seems trapped in local optimum. MCMC methods are therefore concluded
more satisfactory: they at least give meaningfull results.

The following points have to be worked further: the hypothesis of normal-
ity of the components (log-normality would seem more coherent), the choice
of the prior (less informative prior, maybe with a learning sub-sample in
order to create more informative prior that can be used in Bayes factor). A
sensitivity analysis is therefore needed to further validate the approach and
assess the influence of each assumptions. The question of the convergence
is a tricky point to address, provided the label-swistching issue. No rigor-
ous diagnosis has been envisaged: birth-death processes or reversible jump
methods need to be considered.

This is an illustration of the difficulties that praticians may face before
benefiting from the powerful tools tha are MCMC Bayesian methods.
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LSTA, Université Paris VI, 1990.

[Droesbeke et al., 2002]J.J. Droesbeke, J. Fine, and G. Saporta, editors. Méthodes
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Abstract. In this article we survey recent results on the development of nonpara-
metric repeated significance tests for distributions with heavy tails. The imple-
mentation of these tests depends on the invariance theorem for partial sums of
truncated independent and identically distributed random variables. We also dis-
cuss a method for evaluating the power function and the expected stopping times
associated with these testing procedures.
Keywords: Repeated Significance Test, Heavy Tails, Invariance Principle.

1 Introduction

Repeated significance tests were introduced in [Armitage, 1958]. Major de-
velopments in the theory and applications of repeated significance tests have
been reported among others in: [Dias and Garsia, 1999], [Hu, 1988], [Jen-
nison and Turnbull, 2000], [Lai and Siegmund, 1977, 1979], [Lalley, 1983],
[Lerche, 1986], [Sellke and Siegmund, 1983], [Sen, 1981, 1985, 2002],
[Siegmund, 1982, 1985], [Takahashi, 1990], [Whitehead, 1997], [Woodroofe,
1979, 1982], and [Woodroofe and Takahashi, 1982]. Sequential tests and
repeated significance tests have been developed mostly for normal or a t-
distribution models ([Siegmund, 1985] and [Takahashi, 1990]. For indepen-
dent and identically distributed (iid) observations from a distribution with a
finite mean nonparametric repeated significance tests have been discussed in
[Sen, 1981, 1985, 2002].

In this article we review recent results in [Glaz and Pozdnyakov, 2005] and
[Pozdnyakov and Glaz, 2005] for repeated significance tests for iid observa-
tions from a continuous symmetric distribution with heavy tails and infinite
variance and possibly no mean, as in the case of the Cauchy distribution.
The repeated significance test developed in [Glaz and Pozdnyakov, 2005] is
nonparametric in nature and is applicable to a class of stable distributions
with a specified tail behavior. The method used in deriving this repeated
significance extends the approach in [Sen, 1981] and [Sen, 1985]. It is based
on the invariance principle for partial sums of truncated random variables
([Pozdnyakov, 2003]). Pozdnyakov and Glaz ([Pozdnyakov and Glaz, 2005])
introduce a sequential test that is a repeated significance test with a random
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target sample size. It depends on the gross rate of the sample variance of
the tests statistics used in the repeated significance test. This test is fully
nonparametric and its implementation does not depend on the asymptotic
tail behavior of the underlying model for the observed data.

The article is organized as follows. In Section 2, we describe the repeated
significance test for the median of a continuous symmetric distribution with
heavy tails in a class of stable distributions with a specified tail behavior. We
discuss how one selects a continuation region associated with this repeated
significance test for specified significance level, initial sample size and target
sample size. Power calculations and evaluation of expected stopping times
are discussed in [Glaz and Pozdnyakov, 2005].

In Section 3 we describe a repeated significance test with a random target
sample size. An application of this repeated significance test for a shift model
is presented along with evaluation its performance. Concluding results are
presented in Section 4.

2 A Repeated Significance Test for a Median

Let {X,Xi; i ≥ 1} be iid observations from a continuous distribution F sym-
metric about −∞ < θ < ∞. Assume that E(X2) = ∞. We present below a
repeated significance test with initial sample size n0 and target sample size
N for testing

H0 : θ = 0 vs Ha : θ 6= 0. (1)

Assume that H0 : θ = 0 and F belongs to the domain of attraction of a stable
distribution with exponent 0 < γ < 2, i.e.

E
(
X2I(|X≤t|

)
∼ t2−γL(t),

where L is a slowly varying function. Here and in what follows we denote
by u(t) ∼ v(t) the asymptotic equivalence of two functions u(t) and v(t),
in the sense that limt→∞ [u(t)/v(t)] = 1. The classical repeated significance
test is based on a sequence of partial sums ([Siegmund, 1985]). The problem
we encounter here is that the sequence of partial sums from a distribution
with an infinite second moment does not converge to a Brownian motion.
To overcome this difficulty we employ partial sums of truncated random
variables. Let {dn;n ≥ 1} be an increasing sequence of positive numbers
such that

nP (|X | > dn) ∼ γn,

where γn ↗∞, as n→∞. Define the truncated partial sums:

Sn =

n∑

i=1

XiI(|Xi|≤dn). (2)

Denote by
Bn = V ar(Sn).
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The classical invariance principle (Donsker Theorem, [Billingsley, 1995, p.
520]) is not applicable here as the sequence of truncated partial sums,
{Sn;n ≥ 1}, does not have independent increments . Let {W (t); 0 ≤ t <∞}
be the standard Brownian motion. The following invariance principle will be
used to construct the continuation region for the repeated significance test:

Theorem 1 (Pozdnyakov 2003) If the random variable X belongs to the
Feller class, i.e.

lim sup
t→∞

t2P(|X | > t)

E
(
X2I|X|≤t

) <∞,

the average number of the excluded variables

nP
(
|X | > dn

)
simγn ↗∞

and limn→∞Bn/Bn+1 = 1, then Sn(t) −→d W (t) in the sense (C[0, 1], ρ),
where Sn(t) is the linear interpolation between points

(
0, 0
)
,
(B1

Bn
,
S1√
Bn

)
, ...,

(
1,

Sn√
Bn

)
.

Since Bn is unknown, following Sen ([Sen, 1981, p. 249]), we replace it
with an almost sure equivalent sequence of sample variances:

An =

n∑

i=1

X2
i I(|Xi|≤dn) −

S2
n∑n

i=1 I(|Xi|≤dn)
. (3)

Let
τ = min

{
n0 ≤ n ≤ N ; |Sn| ≥ b

√
An

}

be the stopping time associated with the repeated significance test, where n0

is the initial sample size and N is the target sample size. This test stops and
rejects H0, given in Equation (1), if and only if τ ≤ N. Its power function is
given by:

π(θ) = Pθ (τ ≤ N) = 1− β(θ),

where
β(θ) = Pθ

(
|Sn| < b

√
An;n0 ≤ n ≤ N

)
,

is the probability of type II error function and
{
bn = b

√
An;n0 ≤ n ≤ N

}
is a

sequence of constants that determine its continuation region. The significance
level of this repeated significance test is given by:

α = π(0) = P0 (τ ≤ N) = 1− β(0)

= P0

{
max

n0≤n≤N

( |Sn|√
An

)
≥ b
}
.

To implement this test an accurate approximation for b = b(α, n0, N) is
needed. The following result is central for achieving this goal.
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Proposition 1 (Glaz and Pozdnyakov 2005) Assume that F belongs to the
domain of attraction of a continuous symmetric stable distribution with ex-
ponent 0 < γ < 2. Then the following results are true:
1) F belongs to the Feller class.
2) The average number of the excluded terms nP(|X | > dnδ)↗∞ whenever
1− γδ > 0. In particular, any 0 < δ < 1/2 guarantees it for all 0 < γ < 2.
3) If 1− γδ > 0 and limn0,N→∞(n0/N) = c < 1, then

max
n0≤n≤N

|Sn|√
An
−→d sup

[t0≤t≤1]

|W (t)|√
t
,

where
t0 = c1+(2−γ)δ. (4)

In view of this result, let the truncating levels dn = dnδ, where d > 0 and
0 < δ < 1/2. Let c = n0/N, be the ratio of the initial and target sample sizes
of the repeated significance test. Then, b = b(α, n0, N) can be approximated
by bt0(α) by solving

P

(
sup
[t0,1]

|W (t)|√
t

> bt0(α)

)
= α,

where t0 is given in Equation (4). The algorithm in [De Long, 1981] is used
to evaluate bt0(α).

Example 1 Domain of attraction of a Cauchy distribution with location pa-
rameter θ and scale parameter 1.

Let {Xi; i ≥ 1} be a sequence of iid observations from a distribution F in
the class of distributions with a domain of attraction of a Cauchy distribution
with location parameter θ and scale parameter 1. Assume that H0 : θ = 0
is true. We consider here truncation levels dn = n1/4, n0 ≤ n ≤ N. In Table
1, the performance of the proposed repeated significance test is evaluated in
terms of accuracy of achieving an assigned significance level α, for given values
of n0 and N. The theoretical critical values bt0(α) and the corresponding
targeted significance levels have been obtained from [De Long, 1981]. The
achieved significance levels were evaluated from a simulation with 10, 000
trials.

Table 1 . Simulated Significance Levels

n0 N t0 bt0(α) targeted α simulated α

100 303 1/4 2.7 .0503 .0541
100 303 1/4 3.3 .0098 .0094
100 754 1/12.5 2.6 .0989 .1012
30 91 1/4 2.7 .0503 .0638
30 91 1/4 3.3 .0098 .0167
30 226 1/12.5 2.6 .0989 .1119
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For small values, the achieved significance levels are close to targeted
significance levels even for a moderate value of n0 = 30. For larger significance
levels one has to use higher initial values to get accurate approximations. A
value of n0 = 100 produced accurate results even for α = .10.

3 A Repeated Significance Test with Adaptive Target
Sample Size

The implementation of the repeated significance test in the previous section
requires specification of the asymptotic tail behavior of the distribution un-
der the null hypothesis. In some applications this might not be known. To
address this issue, in ([Pozdnyakov and Glaz, 2005]) we introduced a non-
parametric repeated significance test with adaptive target sample size.

Let Tn be a sequence of test statistics associated with a repeated signif-
icance test. Let An be a sample variances of Tn. Define a stopping time N
by

N = inf{k ≥ n0 :
Ak
An0

≥ 1

t0
}, (5)

where 0 < t0 < 1 is a design parameter. A repeated significance test with
adaptive target sample size is defined as follows. At time k ≥ n0 observe Tk.
Stop and reject H0, if k is the smallest integer such that Ak/An0 < 1/t0 and
|Tk| ≥ b

√
Ak. Otherwise, we stop monitoring at time N and accept Ha. The

following result is central to the implementation of the repeated significance
test with adaptive target sample size.

Theorem 2 (Pozdnyakov and Glaz 2005) Assume that the functional central
limit theorem for the sequence {Tn} holds, and there exists a sequence of
numbers Bn ↗ ∞ and Bn/V ar(Tn) → 1 as n → ∞. If the sample variance
An satisfies

An
Bn
→ 1 a.s.,

then

P

(
max

n0≤k≤N

∣∣∣∣
Tk√
Ak

∣∣∣∣ > b

)
−→ α(t0, b) as n0 →∞.

Theorem 2 is applied to a functional central limit theorem for a sequence
of truncated partial sums to develop a repeated significance test with random
sample size for the shift model. In what follows we describe this test and
present a simulation study to evaluate its performance.

Let {X,Xi; i ≥ 1} be iid observations from a continuous distribution F
symmetric about −∞ < θ <∞. We are interested in testing sequentially

H0 : θ = 0 vs Ha : θ 6= 0.
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Define the sequence of truncated partial sums Sn as in Section 2, Equations
(2). Note that the variances of the truncated partial sums satisfy the mono-
tonicity condition needed in Theorem 2 and that one can employ the version
of the sample variances given in Equation (3). It was shown in [Glaz and
Pozdnyakov, 2005], that the conditions of Theorem ?? along with

lim
n→∞

nP
(
|X | > dn

)

ln ln(n)
=∞ (6)

and
ln ln(Bn) = o(n), (7)

imply that An is almost sure equivalent to the population variance Bn. Note
that conditions (6) and (7) are not restrictive from the practical point of
view.

Based on these results, the following repeated significance test with adap-
tive target sample size is developed. Let

τ = inf
{
k ≥ n0 : |Sk| ≥ b

√
Ak

}

be a stopping time, where n0 is the initial sample size, and N is the adaptive
target sample size defined by (5). The repeated significance test stops and
rejects H0 if and only if τ ≤ N . Hence, τ ∧N is the stopping time associated
with this repeated significance test.

The following class of heavy tail distributions will be used in evaluating
the performance of this repeated significance test. We say that a random
variable X has a Cauchyp distribution iff

X =d sign(Y )|Y |p,

where p > 0 and Y has a standard Cauchy distribution. If X has a Cauchyp

distribution, then it is symmetric and belongs to the Feller class for any p > 0.
Moreover, E(|X |q) <∞, if q < 1/p.

To evaluate the performance of the proposed repeated significance test,
we consider the following four distributions: Normal, Cauchy1/2, Cauchy, and
Cauchy2. These distributions have different tail behaviors and it is impossi-
ble to specify a deterministic target sample size in the repeated significance
test based on the truncated sums Sn, discussed in [Glaz and Pozdnyakov,
2005], that guarantees a correct significance level α for all four distributions.
Numerical results presented in Table 1 show that the introduction of an adap-
tive target sample size successfully addresses this problem. The truncation
level dn = n1/4 was used. The design parameters corresponding to targeted
values of α = .01 and .05 were evaluated from the tables in [De Long, 1981].
The simulated significance levels are presented as top values in the table.
The simulated values of E(τ ∧ N ) are rounded to whole numbers and are
presented as the bottom values in the table. These values are based on a
simulation with 10000 trials.
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Table 2. Simulated Significance Levels and Expected Stopping Times,
n0 = 100, dn = n1/4

t−1
0 b Normal Cauchy1/2 Cauchy Cauchy2

4 3.3 .0097 .0104 .0093 .0076
391 319 276 260

2.7 .0508 .0465 .0473 .0463
382 313 272 256

7.5 3.4 .0099 .0117 .0099 .0085
729 544 439 397

2.8 .0511 .0484 .0480 .0447
711 533 429 391

4 Concluding Remarks

In this article we reviewed two recently developed repeated significance tests
for distributions with heavy tails. For additional results and discussion
the readers are referred to the articles [Glaz and Pozdnyakov, 2005] and
[Pozdnyakov and Glaz, 2005]. We would like to note that currently the appli-
cations of these results are restricted to symmetric distributions. To extend
these results to non symmetric distributions presents new challenges. The
first step in this direction is to extend the invariance theorem that has been
established in [Pozdnyakov, 2003]. The development of inference procedures
following these repeated significance tests are also of great interest in appli-
cations.
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Abstract. The State of Connecticut bought 10, 000 computers/servers from a con-
tracted supplier. These were supposed to include some special internal hardware.
The technology department inspected 4, 000 pieces from the delivered batch and
found only 58 “good” ones! It is shown that the inspection protocol that allowed
checking 4, 000 computers was at best outrageously wasteful. An appropriately de-
signed strategy with fewer than 10% inspections could conclude with near certainty
that the batch was far below expectation.
Keywords: Inspection protocol, Inspection sampling, Percentage saving, Sampling
strategy.

1 Introduction

On Tuesday, June 8, 2004, the Hartford Courant’s Connecticut section’s
headline read “Woman Accused of Bilking State” which drew my immediate
attention. I became intrigued as I read the story, “... In March 2001, the
Computer Plus Center won a $17.2 million state contract, making it the ex-
clusive vendor of Dell computers and servers for all state agencies, the arrest
affidavit states. In January 2003, the state Department of Information Tech-
nology filed a complaint about the company, ... announcing the arrest. The
servers would not work, according to the affidavit.” The article quoted Chief
State’s Attorney Christopher Morano saying, “The servers that were deliv-
ered did not have the amount of memory, or the quality memory, in them,
that was required.” The article then went on to report, “... The state’s
technology department took apart 4, 000 of the 10, 000 (computers/servers)
delivered by the said company. Of those, Morano said, only 58 contained the
required network interface cards, ... . ”

This note is not about allegations or legal posturing. I was struck by the
fact that Connecticut’s technology department took apart 4, 000 from 10, 000
computers/servers delivered by the said company whereas only 58 good items
were found! Given this batch, a moot question is this: Was it possible to
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come to the conclusion of alleged fraud by inspecting a small fraction of
10, 000 items? The answer is, ‘of course, yes’. I will substantiate this with
appropriately designed random sampling strategies to gather just the right
amount of information much sooner.

Now, suppose that the State’s technology department could come to the
same conclusion of alleged fraud by inspecting n items (computers) where n
was decisively “small” compared with 4, 000. Also, suppose that the inspec-
tion per computer takes x minutes and a skilled technologist charges $a per x
minutes of inspection. When an item is checked out, it is out of commission
so that the State loses $b per piece per inspection. A technologist will prob-
ably be paid $c for the mileage and per diem on an average per inspection
assuming that these 10,000 computers are scattered in different locations.
Then, we have:

Savings: SV = $(a+ b+ c)(4000− n),

Percentage Savings: PSV =
(
1− n

4000

)
× 100.

%tag1 (1)

Let us throw in some realistic numbers. For example, suppose that a =
150, b = 50, c = 10 and the savings would amount to $735, 000 or $420, 000
if one could arrive at the conclusion of alleged fraud by inspecting only 500
or 2, 000 computers respectively. These savings could be in cash or kind, for
example, in the form of savings from cost-share or overtime payments.

There are other expenses too when a computer is inspected. For example,
there is cost for electricity and for storage of non-functioning computers.
Also, the supplier was already paid and the State “lost” interest income
from that fund! Then, waiting for a year or more to bring lawsuits against
supplier(s) drains the State’s resources even further. The term SV in (1)
may not take into account all kinds of costs borne by the State. Yet, one
cannot deny that the term PSV from (1) portrays a realistic quantification
of percentage savings regardless of the magnitudes of a, b, c and other costs
involved.

2 A statistical formulation

We face a large population of 10, 000(= R) items where each item is either
‘good’ or ‘bad’. When an item is randomly selected, suppose that the prob-
ability that it is good (or bad) is p (or q = 1− p), 0 < p < 1. The percentage
of good items (= 100p%) is assumed unknown.

Clearly, I can set the following lower and upper bounds for p:

0.0058 ≈ 58
10000 ≤ p ≤ 6058

10000 ≈ 0.6058 (2)

The lower (upper) bound for p in (2) is obtained by assuming that there were
no (all) good items among 6, 000 remaining uninspected items. On the other
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hand, it appears that p should be closer to 58
4000 ≈ 0.0145 rather than the

most pessimistic value 0.0058 or the overly optimistic value 0.6058.
To estimate p, one would inspect n items selected randomly from the batch

to check how many items (= X) out of n items are indeed good. Having a
large population on hand, I treat X as an approximately binomial random
variable with n and p. An estimator of p is

p̂n =
# good items in the random sample

n . (3)

This p̂n has the following variance and estimated variance:

V ar (p̂n) = p(1− p)/n, ̂V ar (p̂n) = p̂n (1− p̂n) /n, (4)

by disregarding the finite population correction factor 1 − nR−1. See
Sukhatme et al. (1984, p. 43).

Now, how many items (that is, n) should one inspect so that the standard
confidence interval p̂n ± E for p would have 100(1 − α)% confidence? By
appealing to the central limit theorem, the required sample size n is then
approximately given by

n ≡ n(p) =
(
zα/2/E

)2
p(1− p). (5)

Since p is unknown, one may opt for the maximum possible value of n(p)
that would work for all possible values of p, 0 < p < 1. This maximum occurs
when p = 1

2 which motivates the following expression for n:

n ≡ nmax = 1
4

(
zα/2/E

)2
. (6)

α
zα/2

E

0.10 0.08 0.05 0.02 0.016 0.012 0.01
nmax values:

0.10
1.645

68 108 271 1692 3007 4699 6766

n(p) values:
p = 0.2 43.3 67.7 173.2 1082.4 1691.3 3006.7 4329.6
p = 0.1 24.4 38.1 97.4 608.9 951.3 1691.3 2435.4

p = 0.0145 3. 87 6.04 15.5 96.7 151.1 268.5 386.7
nmax values:

0.05
1.96

97 151 385 2401 4269 6670 9604

n(p) values:
p = 0.2 61.5 96.0 245.9 1536.6 24010 4268.4 6146.6
p = 0.1 34.6 54.0 138.3 864.4 1350.6 2401.0 3457.4

p = 0.0145 5.49 8.58 22.0 137.2 214.4 381.2 549.0

Table 1. Sample size n(p) from (5) and nmax from (6).
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The recommended expression nmax is used in many practical problems.
For example, one may refer to Chase and Bown (2000, p. 330). But, nmax

is rather conservative because it works for all p values across the board. In
fact, nmax may be viewed as a minimax choice for the required sample size.

In table 1, the first (second) block corresponds to 90% (95%) confidence
intervals with a particular E value. First, nmax values are provided and then
for each fixed E, I provide n(p) values for p = 0.2, 0.1, 0.0145. Note that
p = 0.0145 corresponds to 58

4000 . From this table, I immediately summarize
some features, namely:

(1) n(p) goes up for fixed p if E ↓;
(2) n(p) goes down for fixed E if p ↓;
(3) n(p) goes down significantly compared with nmax for fixed E if p ↓.

3 Two-stage sampling to determine sample size

Recall that p̂n ± E would have approximately 100(1− α)% confidence when
the required sample size n ≡ n(p) is approximated by the expression from
(5). But, this expression involves unknown p to begin with! Hence, one
must inspect items at least in two steps. This is called two-stage or dou-
ble sampling strategy. See Stein (1945,1949), Ghosh et al. ( 1997, Chapter
6), and Mukhopadhyay and Solanky (1994, Chapter 2). Robbins and Sieg-
mund (1974) and Mukhopadhyay and Cicconetti (2004) respectively proposed
purely sequential and two-stage estimation strategies for p under various
kinds of loss functions. One may also take a look at Corneliussen and Ladd
(1970), Ghosh (1970), Wald (1947), and other sources.

I propose to inspect m(≥ 2) pilot items and obtain only a preliminary
estimate p̂m in the first stage. Here, < u > stands for the largest integer
< u. Now, I let

N = max

{
m,

{(
tm−1,α/2

E

)2 (
p̂m +m−1

) (
1− p̂m −m−1

)}
+ 1

}
(7)

where tm−1,α/2 is the upper 50α% point of the Student’s t distribution
with m − 1 degrees of freedom. If one believes that p is rather small, then
p̂m may be zero and hence p̂m is replaced by p̂m +m−1 in (7).

If N = m, there will be no need for more inspections beyond the pilot
stage. But, if N > m, then I propose to inspect N −m additional items and
record the number of good items in the second stage. The final confidence
interval estimator for p is going to be p̂N ± E where

p̂N =
# good items in the combined random sample from both stages

N .
(8)
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p
58r
4000

Observed sample sizes
in ten replications

% Savings PSV

100
(
1− Ave N

4000

)
%

r = 1

378, 620, 620, 254, 378,
128, 500, 254, 254, 128

N = 351.4, SN = 181.4, Ñ = 316

91.22%

r = 2

620, 966, 853, 620, 254,
620, 378, 378, 254, 620

N = 556.3, SN = 240.0, Ñ = 620

86.1%

r = 3

737, 966, 500, 500, 128,
853, 378, 853, 853, 620

N = 638.8, SN = 262.9,Ñ = 678.5

84. 0%

r = 10

2165, 1986, 2251, 2251, 1893,
1893, 2498, 2251, 2417, 2165

N = 2177.0, SN = 204.2, Ñ = 2208.0

45. 6%

r = 41.779

3896, 3896, 3850, 3974, 3541,
3663, 3824, 3796, 3734, 3963

N = 3813.7, SN = 136.1, Ñ = 3837

4. 7%

Table 2. Values of N using (7) from ten replications with 2% over-sampling

on an average compared with n(p) from (5) and α = 0.05, m = 124.

By the way, Mukhopadhyay (2004) gave a practical way to determine the
pilot sample size m as follows:

m = smallest positive integer such that t2m−1,α/2/z
2
α/2 ≤ 1 + ε, (9)

assuming that one can comfortably entertain 100ε% over-sampling on an
average compared with n(p) from (5). Then, one arrives at the following
choice for the pilot sample size m depending upon ε:

m =

〈
1
2ε

(
1
2 (z2

α/2 + 1) +
{

2
[

1
3z

4
α/2 + 23

12z
2
α/2 + 5

4

]
ε
}1/2

)〉
+ 1. (10)

Now, in order to have a feel for what one may face in practice, I decided
to generate a Bernoulli population where p = 58r

4000 with r = 1, 2, 3, 10, and
41.779. The case “r = 1” simulates the situation on hand where we are
told that 58 good items have been observed among 4000 inspected items and
no more. The cases “r = 2, 3, 10” respectively simulate situations where we
may expect to see good items at the rate (p) of two, three or ten times the
rate of what we have been told to have happened. The case “r = 41.779”
simulated a situation where one may expect to see good items at the most
optimistic rate given what has happened in the situation on hand, that is
with p = 0.6058(≡ 6058

10000 ). We fixed α = 0.05, ε = 0.02 and hence (10)
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suggested a pilot sample size m = 124. I determined N ten separate times
from independent replications in each situation. Table 2 provides all ten
observed N values along with their average N , standard deviation S N ,
and the median Ñ , in each case. The last column provides the estimated
average percentage savings compared with n = 4000. One sees unbelievable
percentage savings in sample size on an average when r = 1, 2, 3 and 10.
Even in the most optimistic situation (r = 41.779) described in the last
block of table 2, we note 4.7% average savings in sample size compared with
n = 4000. This saving may appear insignificant, but then one should consider
this: After observing only 58 good items among 4000 inspected items, what
is the likelihood that all remaining 6000 uninspected items would be judged
good if inspected? The point is that even under such rarest of rare occurrence,
the present sampling strategy could have saved us by inspecting nearly 3800
items on an average instead of 4000 items!

4 Sequential testing to determine a sample size

I continue with random sampling from a Bernoulli(p) population where p is
the fraction of good items in a very large population having R(= 10, 000)
items. The inspection team must have certain high value p0, 0 < p0 < 1, in
mind that it expects the vendor to comply with in good faith. The State
may hope that p0 ≈ 1.0. Obviously, a small percentage of items may turn
out bad, but those bad items would be expected to be properly ‘corrected’
by the supplier. So, the inspection team could set up a sampling strategy for
the following testing problem:

H0: p ≥ p0 versus H1: p < p0 (11)

Suppose that one fixes p0 = 0.95 or 0.99 and it means that the State
considers 9500 or 9900 good items found among 10, 000 items is within reason.
But, if p < p0 where p0 is a set number, then the inspection team will ‘raise a
flag’ in favor of possible suspicion of receiving lesser than expected quality. I
would like to clear one important point. The number p0 ought to be specified
by the State. Such specification may take into consideration the inspection
team’s mindset that is consistent with the State’s budgetary constraints plus
other protocols as required.

One may feel tempted to use customary normal approximation to a bi-
nomial distribution and hence having n(≥ 30) observations, one would reject
the null hypothesis H0 if and only if

p̂n < p0 − zα
√

p0(1−p0)
n , (12)

with the level of significance, α = P { RejectingH0 | H0 is true}.
But, what should be the appropriate sample size, n? Now, suppose that

one asks that the power of the test (12) when p = p1(< p0) be at least 1− β
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where 0 < β < 1 is a small and fixed number. In many investigations, one
fixes power 80% (that is, β = 0.20 to detect a certain “effect size” (that is,
p1 − p0). Let me denote σi =

√
pi(1− pi), i = 0, 1. For large n, the power of

the test (12) when p = p1(< p0) can be expressed as

P {Rejecting H0 | p = p1} ≈ P
{
Z <

√
n(p0−p1)
σ1

− zα σ0

σ1

}
. (13)

Now, it ought to be clear that the power given in (13) would be at least 1−β
provided that the sample size n is chosen as follows:

n ≥ (zασ0 + zβσ1)
2

(p1 − p0)2
= n∗(p0, p1).

I define

n ≡ n(p0, p1) = max {30, 〈n∗(p0, p1)〉+ 1} , (14)

so that customary normal approximation to a binomial distribution will be
expected to work (since n ≥ 30).

In table 3, I provide values of 〈n∗(p0, p1)〉 + 1 for p0 = 0.95, 0.99 with
α = 0.05 and β = 0.05, 0.10, 0.20. When the null hypothesis tests a large p0

value, naturally the required sample size becomes rather too small in order
to detect p1 far away from p0 whether the power is set at 80%, 90% or 95%.
It is clear that one needs to inspect nearly 30 or so items while testing a
null hypothesis with large p0(= 0.95, 0.99) when the true fraction of good
items is indeed only 0.0145(≈ 58

4000 ) or close to the most optimistic value
0.6058(≈ 6058

10000 ).

p0 β p1

0.90 0.80 0.60 0.50 0.25 0.0145
0.99 0.20 22 7 3 2 1 1

0.10 38 13 5 3 1 1
0.05 54 19 7 5 2 1

p1

0.90 0.80 0.60 0.50 0.25 0.0145
0.95 0.20 150 22 5 3 2 1

0.10 221 34 8 5 2 1
0.05 291 46 12 7 3 1

Table 3. Values of 〈n∗(p0, p1)〉+ 1 from (14) with 5%
level and power 1− β with β = 0.05, 0.10, and 0.20.

Sample size n is max{table entry,30}.

It is obvious that the best fixed-sample-size test (12) could arrive at a
decision with very few inspections if p was indeed as small as it was in the
supplied batch. It is also well known, however, that the test (12) is not re-
ally ‘optimal’ in a larger class of sequential tests. Wald’s (1947) sequential
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probability ratio test (SPRT) which is optimal [Wald, 1947; Wald and Wol-
fowitz, 1948] would have required the least number of inspections N on an
average with comparable error rates α and β for testing H0: p = p0 versus
H1: p = p1(< p0).

In table 4, I summarize some findings obtained from 1000 indepen-
dently run simulations in each case. I generated Bernoulli populations with
p = 0.1045 and 0.6058, the most pessimistic and optimistic values of p respec-
tively, that are possible for the supplied batch of computers. In no situation,
I ended up accepting H0 which postulated a higher p than that under H1

as indicated by the entry ‘#H0 = 0’. The entries N,SN, Nmin, Nmax re-
spectively stand for the average, standard deviation, the minimum and the
maximum obtained from 1000 iterations. Even Nmax ranged from merely 9
to 385! The rest of the numbers speak for themselves.

p0 = 0.90, p1 = 0.80 p0 = 0.75, p1 = 0.70

p = 0.0145 #H0 = 0, N = 7.11, SN = 0.34 #H0 = 0, N = 26.37, SN = 0.64
Nmin = 7, Nmax = 9 Nmin = 26, Nmax = 30

p = 0.6058 #H0 = 0, N = 23.39, SN = 9.49 #H0 = 0, N = 152.95, SN = 49.09
Nmin = 7, Nmax = 66 Nmin = 57, Nmax = 385

Table 4. Summary from 1000 simulations in each case

for Wald’s SPRT with α = β = 0.01.

5 Concluding thoughts

It is clear that the protocol that allowed inspecting 4, 000 computers to de-
tect only 58 good ones was at best outrageously wasteful. This is a stunning
example of the fleecing of taxpayer’s money! An appropriately designed sam-
pling strategy could conclude with near certainty (that is, α = β = 0.01) that
the supplied batch was far below any expected standard with fewer than 10%
inspections. Hiring a qualified statistical consultant at the right time would
have saved the State of Connecticut much wasted resources amounting to
hundreds of thousands of dollars in this one project alone.
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Abstract. Distributions of the first-exit times from a region with non-linear upper
boundary are discussed for ordinary and compound Poisson processes. Explicit for-
mulae are developed for the case of ordinary Poisson processes. Recursive formulae
are given for the compound Poisson case, where the jumps are positive, having con-
tinuous distributions with finite means. Applications to sequential point estimation
are illustrated.
Keywords: Stopping times, sequential estimation, non-linear boundaries, com-
pound Poisson processes.

1 Introduction

The distributions of stopping times for ordinary or compound Poisson pro-
cesses when the boundaries are linear were studied in a series of papers by
[Perry et al., 1999a] [Perry et al., 1999b] [Perry et al., 2002a], [Perry et al.,
2002b], [Stadje and Zacks, 2003], [Zacks, 1991], [Zacks, 1997] and [Zacks
et al., 1999]. In particular, see the survey paper of [Zacks, 2005]. In the
present paper we discuss the problem when the boundaries are non-linear.
[Picard and Lefevre, 1996] studied crossing times of counting processes with
non-linear lower boundaries, using pseudo-polynomials. We are developing
a different approach for ordinary or compound Poisson processes with up-
per non-linear boundaries. In a recent paper by [Zacks and Mukhopadhyay,
2005], the theory presented here was applied to find the exact risk of se-
quential point estimators of the mean of an exponential distribution. Five
different stopping rules with corresponding estimators were considered. By
converting the problems to stopping times of an ordinary Poisson process, the
boundaries were of two types: concave B(t) = γtα, 0 < α < 1, and convex
B(t) = γtα, α > 1. Explicit solutions were given there for the distributions
of the estimators and their moments. When the distributions of the observed
random variables are not exponential the situation is much more difficult.
We assume that the observed random variables X1, X2, ... are i.i.d. positive
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and that, for each n ≥ 1, the sequence (n, Sn), where Sn =
n∑

i=1

Xi, is tran-

sitively sufficient. We apply the Poissonization method (see [Cesaroli, 1983],
[Zacks, 1994]) to approximate the distribution of the stopping variable M in
the sequential estimation by the distribution of a stopping time T . Here T is
the first time that the compound Poisson Process X(t) = SN(t) crosses above
an increasing boundary B(t), where lim

t→∞
B(t) =∞ and lim

t→∞
B(t)/t = 0.

While the derivation of the distributions of stopping times in the ordinary
Poisson case is immediate, that for the compound Poisson process is compli-
cated. We outline a solution by solving a sequence of related problems. In
Section 2 we derive the distribution of a stopping time T , where an ordinary
Poisson process {N(t), t ≥ 0} crosses an upper boundary B(t). In Section
3 we discuss the problem when a compound Poisson process X(t) crosses
B(t). In Section 4 we present an application to sequential estimation and
some numerical results from [Zacks and Mukhopadhyay, 2005]. All lemmas
and theorems are presented without formal proofs.

2 The Distribution of The First Crossing Time Of An
Ordinary Poisson Process

Consider an ordinary Poisson process (OPP) {N(t), t ≥ 0} with N(0) = 0.
This is a homogeneous process with intensity λ, 0 < λ <∞. For the proper-
ties of an OPP see [Kao, 1977].

Let B(t) be strictly increasing, non-linear function of t, with B(0) = 0,
B(t) ↗ ∞ and B(t)/t → 0 as t → ∞. We are interested in the distribution
of the stopping time

T = inf{t ≥ tk : N(t) ≥ B(t)}, (1)

where for l ≥ k tl = B−1(l). Since B(t) is strictly increasing, tk < tk+1 <
tk+2 < .... Notice that the distribution of N(tk) is Poisson(λtk). Accordingly,

P (T = tk) = 1− P (k − 1;λtk), (2)

where P (·;µ) is the cdf of Poisson(µ). We denote by p(·;µ) the pdf of
Poisson(µ).

Lemma 1 For each λ, 0 < λ <∞,

Pλ{T <∞} = 1.

�

Define the defective probability function

gλ(j; t) = P{N(t) = j, T > t}, j = 0, 1, ... (3)
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for t ≥ tk. Since T ≥ tk with probability one,

gλ(j; tk) = p(j;λtk), j = 0, ..., k − 1
= 0, j ≥ k. (4)

Furthermore we have, for tl−1 < t ≤ tl, l ≥ k, and j = 0, ..., l− 1

gλ(j; t) =

j∧(l−2)∑

i=0

gλ(i; tl−1)p(j − i;λ(t− tl−1)), (5)

where j ∧ (l − 2) = min(j, l − 2). Thus, according to (5),

Pλ{T > t} =

∞∑

l=k+1

I(tl−1 < t ≤ tl)
l−1∑

j=0

gλ(j; t)

=

∞∑

l=k+1

I(tl−1 < t ≤ tl)
l−2∑

j=0

gλ(j; tl−1)P (l − 1− j;λ(t− tl−1)).

(6)

Theorem 1 The distribution function of T is absolutely continuous on
(tk,∞) with density

ΨT (t;λ) = λ

∞∑

l=k+1

I(tl−1 < t < tl)·
l−2∑

j=0

gλ(j; tl−1)·p(l−1−j;λ(t−tl−1)). (7)

�

Theorem 2 The r-th moment of T , (r ≥ 1), is

Eλ{T r} = trk(1− P (k − 1;λtk))

+r!

∞∑

l=k+1

trl−1

l−2∑

j=0

gλ(j; tl−1)

r∑

i=0

1

(r − i)!

(
l − 1− j + i

i

)
·

· 1
(λtl−1)i (1 − P (l − 1− j + i;λ∆l)),

(8)

where ∆l = tl − tl−1. �

3 The Distribution of The First Crossing Time of a
Compound Poisson Process

We consider here a compound Poisson process (CPP) with positive jumps.
Accordingly, let X0 ≡ 0, X1, X2, ... be i.i.d. positive random variables having
a common absolutely continuous distribution F , with density f . We assume
that F (0) = 0.
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Let {N(t), t ≥ 0} be an OPP, with intensity λ. We assume that
{N(t), t ≥ 0} and {Xn, n ≥ 1} are independent. The CPP is {X(t), t ≥ 0},
where

X(t) =

N(t)∑

n=0

Xn. (9)

The distribution function of X(t), at time t, is

H(x; t) =

∞∑

n=0

p(n;λt)F (n)(x), (10)

where F (0)(x) ≡ 1 and F (n)(x) for n ≥ 1 is the n-fold convolution

F (n)(x) =

∫ x

0

f(y)F (n−1)(x − y)dy. (11)

The density of H(x; t) for x > 0 is

h(x; t) =

∞∑

n=1

p(n;λt)f (n)(x), (12)

where f (n) is the n-fold convolution of f . For some t > 0 we are interested
in the distribution of the stopping time

Tc = inf{t ≥ t∗ : X(t) ≥ B(t)}, (13)

where B(t) is the non-linear increasing boundary, as in Section 2. The dis-
tribution of Tc has an atom at t = tk, given by

P{Tc = t∗} = 1−H(B(t∗); t∗), (14)

and
P{Tc > t∗} = H(B(t∗); t∗). (15)

Moreover, see [Gut, 1988],

lim
t→∞

X(t)

t
= µt,

where µ = E{X1}. Hence since
B(t)

t
→ 0 as t→∞ we obtain

Lemma 2 For a CPP {X(t), t ≥ 0}

P{Tc <∞} = 1. (16)

�
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Define the defective distribution

G(x; t) = P{X(t) ≤ x, Tc > t}. (17)

Clearly,
P{Tc > t} = G(B(t); t). (18)

Let g(x; t) denote the defective density of G(x; t). An explicit formula of
g(x; t) was derived by [Stadje and Zacks, 2003] for the case of a linear bound-
ary B(T ) = β+t. In the case of a non-linear boundary we follow the following
steps.

First, define a sequence {B(m)(t),m ≥ 1} of step-functions, such that
B(m)(t) ≤ B(m+1)(t) for allm ≥ 1, all 0 ≤ t <∞, and such that lim

m→∞
B(m)(t)

= B(t).
Second, define the stopping time

T (m)
c = inf{t ≥ t∗ : X(t) ≥ B(m)(t)}, (19)

and correspondingly

G(m)(x; t) = P{X(t) ≤ x, T (m)
c > t}. (20)

Notice that {T (m)
c > t} ⊂ {T (m+1)

c > t}, for all m ≥ 1. Hence, by monotone
convergence

lim
m→∞

G(m)(x; t) = G(x; t). (21)

Thus, we approximate G(B(t); t) by G(m)(B(m)(t); t) for m sufficiently large.

For m ≥ 1, let {t(m)
l , l ≥ 0} be the end points of partition intervals of [t∗,∞),

where

t
(m)
l = B−1

(
B(t∗) +

l

m

)
, l ≥ 0. (22)

The corresponding boundary B(m)(t) is given by the step-function

B(m)(t) =

∞∑

l=1

I{t(m)
l−1 ≤ t < t

(m)
l }

(
B(t∗) +

l− 1

m

)
. (23)

We develop now recursive formula forG(m)(x; t), t ≥ t∗. Notice that t
(m)
0 = t∗

for all m ≥ 1.
Since T

(m)
c ≥ t∗ for all m ≥ 1,

G(m)(x; t
(m)
0 ) = I{x < B(t∗))H(x; t∗) + I(x ≥ B(t∗))H(B(t∗), t∗). (24)

Furthermore, since B(m)(t) ≥ B(t∗) for all t ≥ t∗ and m ≥ 1,

G(m)(x; t) = H(x; t), x ≤ B(t∗), (25)
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for all t > t∗. In addition, for all l ≥ 1,

G(m)(x; t
(m)
l ) = G(m)(B(m)(t

(m)
l−1); t

(m)
l ), all x ≥ B(m)(t

(m−1)
l−1 ). (26)

Finally, for every l ≥ 1, t
(m)
l−1 < t ≤ t(m)

l and x ≤ B(m)(t
(m)
l−1),

G(m)(x; t) =

∫ x

0

G(m)(y; t
(m)
l−1)h(x− y; t− t(m)

l−1)dy. (27)

Thus, for each m ≥ 1,

P{T (m)
c > t} =

∞∑

l=1

I{t(m)
l−1 ≤ t < t

(m)
l } ·G(m)(B(m)(t

(m)
l−1); t). (28)

Functionals of the distribution of T
(m)
c can be derived from (28).

4 Application In Sequential Estimation: The
Exponential Case.

Let X1, X2, ... be i.i.d. random variables having an exponential distribution
with mean β, 0 < β <∞. For estimating β consider the sequential stopping
variable

M = min{m ≥ k : m ≥ (A/c)1/2X̄m}, (29)

where A, c are positive constants and X̄m =
1

m

m∑

i=1

Xi. For background infor-

mation on this stopping rule and references see [Zacks and Mukhopadhyay,
2005]. At stopping we estimate β with the estimator X̄M . The corresponding
risk is

R(X̄M , β) = A ·E{(X̄M − β)2}+ cE{M}. (30)

[Zacks and Mukhopadhyay, 2005] applied the theory of Section 2 to evaluate
exactly the functionals E{X̄M} and R(X̄M , β). This was done by considering
the OPP {N(t), t ≥ 0} with intensity λ = 1/β. If we replace m and mX̄m,
respectively, with N(t) and t we obtain from (29) the related stopping time

T = inf{t ≥ tk : N(t) ≥ γt1/2}, (31)

where γ = (A/c)1/4 and tk = (k/γ)2. Here we have M = N(T ) and X̄M =
T/N(T ). By slight modification of equation (8) we get the moments of X̄M .
In Table 1 we present some exact values of E{M}, E{X̄M} and R(X̄M , β).
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β = 1 β = 1.25

c E{M} E{X̄M} R(X̄M , β) E{M} E{X̄M} R(X̄M , β)

0.5 4.712 0.8663 4.1318 5.584 1.0739 5.4454
0.1 9.482 0.8757 2.2889 11.867 1.1145 2.9793
0.05 13.472 0.0915 1.7079 16.987 1.1500 2.1487
0.01 31.892 0.9597 0.7207 39.076 1.2124 0.8687
0.005 44.305 0.9742 0.4834 55.515 1.2249 0.5931

Table 1. Exact Values of E{M}, E{X̄M} and R(X̄m, β) for A = 10, k = 3.
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1 Introduction

Rates of convergence for statistical estimators usually focus of asymptotic
equivalents for the distance between the estimate and the parameter it intends
to approximate. When the estimate is strongly consistent, which is to say
that it converges almost surely, then the time which is necessary in order
that it stays in some neighborhood of the true value of the parameter from
then on is a well defined random variable, which bears a very intuitive sense
and which, sometimes, can be evaluated, at least for small neighborhoods
of the parameter. In this context, the situation is quite similar to the case
when we consider a deterministic sequence xn converging to x in a metric
space: given some (small) ε, which is the order of magnitude of the integer
N(ε) such that, for all n larger than N(ε) , the distance between xn and x
remains forever smaller than ε? This class of problems is usually referred to
as “last exit times” problems, considering that the terms of the sequence of
estimates may stay outside the ε-neighborhood of its limit only when when
n is smaller than N(ε). This notion has been presented for sequences of M-
estimates by [Stute, 1983], and has been extended to the last exit time for the
Glivenko-Cantelli statistics by [Hjort and Fenstad, 1992]; extensions for the
case when the sample is drawn from a Markov chain or from a strongly mixing

? Work partly supported by Ateneo di Padova, n. CPDAO23415, Italy
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sequence have been studied by [Barbe et al., 1999], and some extensions
for U-statistics have recently been proposed by [Bose and Chatterjee, 2001].
The present paper follows this chain of works and provides some insight
in the range of adaptive semi parametric estimates; it also provides some
information on the tail of the distribution of last exit times for those types
of estimates. The main tool to be imported for the obtention of the law of
N(ε) for such estimates is uniformity with respect to the nuisance parameter.
This is achieved through Gaussian approximations for the so-called sequential
empirical process, a device which has been proposed in the form which is to
be used here by [Sheehy and Wellner, 1992].

The structure of the paper is as follows: The first section is devoted to
the obtention of a general result on last exit times for the Glivenko-Cantelli
statistics indexed by a class of functions, following the line defined by [Stute,
1983]. The second section specializes this result for various situations, with
an emphasis towards semi parametric adaptive estimators in the spirit of
[Klaassen, 1987].

2 Last exit time for the functional Glivenko-Cantelli
Statistics

A sample (X1, ..., Xn) is given , with i.i.d. components following a common
distribution P on some space X . For f a real valued measurable function on
X we denote Pf the expectation of f with respect to P , i.e. Pf :=

∫
fdP.

Denote Pn the empirical measure pertaining to the sample, Pn := 1
n

∑n
i=1 δXi

where δx is the Dirac mass at point x. In the sequel F denotes a subclass of
functions in L2(P ) for which we assume that for all x in X , the condition

sup
f∈F
|f(x)− Pf | is finite (1)

holds. Define

Nε := sup

{
n ≥ 1 : sup

f∈F
|(Pn − P )(f)| ≥ ε

}
,

which denotes the last exit time for the Glivenko–Cantelli statistics indexed
by F . Since F is a Donsker class, it satisfies the Glivenko–Cantelli property,
namely

lim
n→∞

sup
f∈F
|(Pn − P )f | = 0 a.s.,

which implies that Nε is a.s. finite. We consider the limiting distribution of
ε2Nε when ε tends to 0.

Following [Stute, 1983], with Nε(f) := sup {n ≥ 1 : |Pnf − Pf | > ε}, we
have, for fixed f in F ,

Proposition 1 Let f belongs to L2(P ) . Then
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(i) lim
ε→0

ε2Nε(f)
d
= W 2

max(f) := σ2(f) sup
0≤s≤1

W 2(s),

where σ2(f) = Pf2 − (PF )2, and W (s) is the standard Wiener process.

(ii) lim
λ→∞

lim
ε→0

P{ε2Nε(f) > λ}
ψ
( √

λ
σ(f)

) = 1, where ψ denotes the upper tail of the

standard normal distribution ψ(λ) := P [N(0, 1) > λ].

We obtain an information pertaining to the moments of the r.v. ε2Nε(f)
for small ε.

A sequence of r.v.’s Yn is r-quick convergent to 0 whenever, for all ε > 0,
E(N r

ε ) := E(sup{n ≥ 1 : |Xn| ≥ ε})r is finite.
This property has been used by [Lai, 1981] in order to assess optimality

properties of probability ratio tests in sequential analysis.
As a consequence of Proposition 1 we have

Corollary Let f belong to L2(P ). The sequence (Pn − P )(f) is r-quick
convergent to 0 for all r > 0.
Proof of Proposition 1

(i) for all f ∈ L2(P ), it holds Nε(f) =
sup

{
n ≥ 1 : 1

n |
∑n
i=1(f(Xi)− Pf)| ≥ ε

}

= sup
{
n ≥ 1 : νn(f)√

n
≥ ε
}
.

Let y be a positive number. Then P
{
ε2Nε(f) ≥ y

}
= P

{
Nε(f) ≥ y

ε2

}
.

Define m :=< y/ε2 >, the smallest integer larger or equal y/ε2. Then

P{ε2Nε(f) ≥ y} = P{Nε(f) ≥ m}

= P

(
sup

(
n ≥ 1 :

1

n

˛̨
˛̨
˛

nX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥ ε

)
≥ m

)

= P

(
sup
n≥m

1

n

˛̨
˛̨
˛

nX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥

r
y0
m

)
,

where y0 := mε2. We thus have 0 ≤ y0 − y ≤ ε2, which entails that y0
tends to y as ε tends to 0.
For all f in L2(P ), we therefore have

P{ε2Nε(f) ≥ y} ≤ P
(
√
m sup

n≥m

1

n

˛̨
˛̨
˛

nX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥
√
y0

)

= P

(
√
m sup

t≥1

1

tm

˛̨
˛̨
˛

mtX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥
√
y0

)

= P

(
σ(f) sup

t≥1

1

t

˛̨
˛̨
˛

1

σ(f)
√
m

mtX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥
√
y0

)

=: P (Em).
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For all r > 1, set

Am(r) :=

(
σ(f) sup

1≤t≤r

1

t

˛̨
˛̨
˛

1

σ(f)
√
m

mtX

i=1

f(Xi)− Pf)

˛̨
˛̨
˛ ≥
√
y0

)

and

Bm(r) :=

(
σ(f) sup

t>r

1

t

˛̨
˛̨
˛

1

σ(f)
√
m

mtX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥
√
y0

)
.

For all r > 1,
P (Em) = P (Am(r) ∪Bm(r)),

and therefore

lim
ε→0

P
(
ε2Nε(f) ≥ y

)
= lim

m→∞
P (Em) = lim

r→∞
lim
m→∞

P (Am(r) ∪Bm(r))

= lim
r→∞

lim
m→∞

P (Am(r)) + P (Bm(r)) − P (Am(r) ∩Bm(r)).

If
lim
r→∞

lim
m→∞

P (Bm(r)) = 0, (2)

then
lim
m→∞

P (Em) = lim
r→∞

lim
m→∞

P (Am(r)).

The proof of (2) is easy.
Following Donsker Invariance Principle, the processes

(
1

σ(f)
√
m

mt∑

i=1

(f(Xi)− Pf); t ∈ [1, r]

)

m≥1

converge in distribution in D[1, r] to the Brownian process W (t). By
continuity of the supremum it therefore holds

lim
m→∞

sup
1≤t≤r

1

tσ(f)
√
m

∣∣∣∣∣
mt∑

i=1

(f(Xi)− Pf)

∣∣∣∣∣
d
= sup

1≤t≤r

∣∣∣∣
W (t)

t

∣∣∣∣ .

For all t ∈ [1, r], the process W ∗(1
t ) = W (t)

t is also a Brownian process.
Therefore

sup
1≤t≤r

∣∣∣∣
W (t)

t

∣∣∣∣
d
= sup

1
r ≤s≤1

|W ∗(s)|.

Hence whenever (2) holds, we have

lim
ε→0

P (ε2Nε(f) ≥ y) = P

 
σ(f) lim

r→∞
sup

1
r
≤s≤1

|W (s)| ≥ √y
!

= P


σ(f) sup

0≤s≤1
|W (s)| ≥ √y

ff

= P
˘
W 2

max(f) ≥ y
¯
,

where W 2
max(f) = σ2(f) sup0≤s≤1W

2(s).
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(ii) The maximal variance of σ(f)W (s) equals σ2(f) and is obtained when
s = 1.

Let

Ih := {s ∈ [0, 1] : sσ2(f) ≥ σ2(f)− h2} =

[
1− h2

σ2(f)
, 1

]
,

and note that E(σ2(f)W (1)) = σ2(f).

The uniform a.s. continuity of σ(f)W (s) on [0, 1] entails that

lim
h→0

1

h
E

{
sup
s∈Ih

σ(f)|W (s)−W (1)|
}

= 0,

which proves that the conditions in [Adler, 1990], Theorem 5.5 are ful-
filled, proving the claim.

Let us turn to the uniform case, that is, consider the limiting distribution
of ε2Nε, ε→ 0. We will assume

H1: F is a Donsker class

H2: For all x ∈ X , supf∈F |f(x)− P (f)| is finite

H3: F is a permissible class of function, implying that supf∈F |Pnf − Pf | is
measurable.

Define a Gaussian process ZP defined on [0, 1]×F , a version of which has
uniformly bounded sample paths which are uniformly continuous on [0, 1]×
F when equipped with the ρ̃P pseudo-metric defined on [0, 1] × F defined
through ρ̃P ((s, f), (t, g)) := |s− t|+P (f−g)2. The existence of such process
is a consequence of hypothesis (H1) above (see [Sheehy and Wellner, 1992]).
The Kiefer-Müller process ZP is centered for any s and f , and its covariance
operator is given by

cov [ZP (s, f), ZP (t, g)] = (s ∧ t)(Pfg − PfPg).

We then have

Proposition 2 When F satisfies (H1), (H2) and (H3),

lim
ε→0

ε2Nε
d
= sup

(s,f)∈F ′

|ZP (s, f)|2,

where F ′ := [0, 1]×F .

Proof
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Let y be some positive number, and m :=< y/ε2 >. It holds, setting y0 =
mε2,

P (ε2Nε ≥ y) = P (Nε ≥ m)

= P

 
√
m sup

n≥m
sup
f∈F

1

n

˛̨
˛̨
˛

nX

i=1

(f(Xi)− P (f)

˛̨
˛̨
˛ ≥
√
y0

!

= P

 
sup
f∈F

sup
t≥1

1

t

˛̨
˛̨
˛

1√
m

mtX

i=1

(f(Xi)− Pf)

˛̨
˛̨
˛ ≥
√
y0

!

= P

„
sup
f∈F

sup
t≥1

1

t
|Zm(t, f)| ≥ √y0

«
,

where Zm is the sequential empirical process, an element of `∞([0,∞)×F)
defined through Zm(t, f) := 1√

m

∑mt
i=1(f(Xi)−Pf). Note that for all fixed t,

by (1), Zm(t, .) belongs to l∞(F) , the set of all bounded sequences defined
from F onto R.

Following [Sheehy and Wellner, 1992], Theorem 11, for any r > 0, Zm
converges in distribution in `∞([0, r]×F) to ZP . For all r ≥ 1, it thus holds

lim
m→∞

sup
f∈F

sup
1≤t≤r

∣∣∣∣
Zm(t, f)

t

∣∣∣∣
d
= sup

f∈F
sup

1≤t≤r

∣∣∣∣
ZP (t, f)

t

∣∣∣∣ .

Define Z∗(1
t , f) := ZP (t,f)

t , for t ∈ [1, r] and f ∈ F . The centered Gaus-
sian process Z∗ is a Kiefer-Müller process indexed by [1, r] × L2(X ); its
covariance operator is defined, for f, g in L2(X ) and s, t in [1, r], by

E

(
Z∗
(

1

s
, f

)
Z∗
(

1

t
, g

))
=

(
1

s
∧ 1

t

)
(Pfg − (Pf)(Pg)),

whence

sup
1≤t≤r

∣∣∣∣
ZP (t, f)

t

∣∣∣∣
d
= sup

1≤t≤r

∣∣∣∣Z∗
(

1

t
, f

)∣∣∣∣
d
= sup

1
r ≤s≤1

|Z∗(s, f)|.

It follows by continuity that for any r ≥ 1,

lim
m→∞

P

(
sup
f∈F

sup
1≤t≤r

1

t
Zm(t, f) ≥ √y0

)
= P

(
sup

1
r ≤s≤1

|Z∗(s, f)| ≥ √y0
)
,

which, since y tends to 0 as m→∞ equals P
(
sup 1

r ≤s≤1 |Z∗(s, f)|2 ≥ y
)
.

In order to prove Proposition 2, it remains to prove that

lim
r→∞

lim
m→∞

P

(
sup
f∈F

sup
t≥r

1

tm

∣∣∣∣∣
mt∑

i=1

(f(Xi)− Pf)

∣∣∣∣∣ ≥
√
y0

)
= 0.

This follows , as (2), selecting some f in F and noting that

supf∈F supt≥r
1
tm

∣∣∣
∑mt
i=1(f(Xi)− Pf)

∣∣∣ ≥ 1
[rm]

∣∣∣
∑[rm]

i=1 (f(Xi)− Pf)
∣∣∣ .
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3 Last exit times for adaptive estimates

Let Xn
1 := (X1, . . . , Xn) be an i.i.d. sample with X1 distributed by Pθ,g on

Rk. The parameter of interest is θ, with θ ∈ Θ, an open set, an g ∈ G, the
set of nuisance parameters. A locally asymptotically linear estimator Tn of θ
satisfies

√
n

(
Tn − θn −

1

n

n∑

i=1

J(Xi, θn, g)

)
= oθn,g(1). (3)

In (3) (θn) is any sequence such that
√
n(θn − θ) = O(1) (4)

and J satisfies ∫
J(x, θ, g)dPθ,g(x) = 0 (5)

together with ∫
|J(x, θ, g)|2dPθ,g(x) <∞, (6)

for all θ ∈ Θ and g ∈ G.
All the o and O notation are meant ”in probability” where random vari-

ables are involved.
The function J in (3) is the influence function for Tn. An estimate Sn

of θ is adaptive and efficient whenever there exists a function J(x, θ, g) such
that, for all sequence (θn) satisfying (4), it holds

lim
n→∞

√
n(Sn − θn) d

= N
(
0, Σ−1

θ,g

)
(7)

where Σθ,g is the covariance matrix of J(X, θ, g) for fixed regular θ and

g. When the J function coincides with the usual score function ḟ(x,θ,g)
f(x,θ,g)

with f the density of Pθ,g, (7) is the classical normal limit behavior for ML
estimates under contiguity of the sequence of measures Pθn,g to Pθ,g for all
(θn) satisfying (7) and g ∈ G, which we will assume from now on. Regularity
of θ and g is defined in [Bickel, 1982].

Adaptive estimates are efficient for all g ∈ G, even though the knowledge
of g may not be used in the construction of the estimates. Under the above
setting, constructions of efficient adaptive estimates have been proposed in
[Beran, 1978], [Schick, 1986] and [Klaassen, 1987] among others. We will
follow Klaassen’s approach based on influence functions and provide some
insight on last exit times for his estimates, strenghtening his assumptions
when needed. We just need some kind of uniformity with respect to g as
stated now.

Assume that there exists a sequence of functions Jn(x, θn, X
n
1 ) defined on

(Rk, Θ,Rkn) and a function J(x, θ, g) defined on (Rk, Θ,G), such that

sup
g∈G

∫
Jn(x, θn, X

n
1 )dPθn,g(x) = oθn(1) (8)
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and

sup
g∈G

√
n

∫
[Jn(x, θn, X

n
1 )− J(x, θn, g)]

2dfθng(x) = oθn(1). (9)

Assume further that we can construct a sequence of preliminary estimates
Sn of θ such that √

n(Sn − θ) = Oθ(1). (10)

Then we can construct a uniformly locally asymptotically linear adaptive
estimate Tn of θ, satisfying therefore

sup
g∈G

√
n

(
Tn − θn −

1

n

n∑

i=1

J(Xi, θn, g)

)
= oθn(1) (11)

for all sequence (θn) satisfying (4). Display (11) proves that the estimate
Jn of the Influence function J , together with an initial estimate of θ, pro-
vides explicit estimates of θ enjoying asymptotic normality and second order
efficiency in the sense of Rao.

We now state additional conditions which entail some knowledge n the
last exit time for the above adaptive estimate Tn. We assume that J(x, θ, g) is
regular on a bounded open subset S of the image of X1, say ImX1, uniformly
upon θ and g. Also J is assumed to be constant outside S. Such conditions
entail robustness for Tn. Precisely, assume

(H1) There exists q > k/2 such that supθ,g ‖J(·, θ, g)‖W q
2
< ∞, where ‖ · ‖W q

2

is the L2–Sobolev norm of order q on S.
(H2) There exists K > 0 such that for all a in Im X1 \ S, for all (θ, g),

J(a, θ, g) = K.
(H3) Im X1 is convex or is a countable union of convex sets with non inter-

secting closures.

Under (H1), (H2) and (H3) the class J of functions J(·, θ, g) is Donsker.
When ImX1 = [0, 1]k, Theorem 7.7.1 in [Dudley, 1982], entails that for some
K1 > 0, for any ε > 0, the entropy number of J satisfies

logN(ε,W q
2 ,J ) ≤ K1e

−k/q.

Denote Nε := sup{n ≥ 1 : |Tn − θ| > ε} where | · | is the Euclidian norm.
Applying Proposition 3 yields

Corollary Under all the above assumptions, plus (H1), (H2) and (H3),

(i) lim
ε→0

ε2Nε
d
= sup

θ,g
sup

0≤s≤1
|Z(s, J(·, θ, g))|2 where Z(s, f) is the functional

Kiefer-Müller Process as defined in Section 1.
(ii) When ImX1 = [0, 1]k, then there exists some positive constant K such

that for all λ > 0,

lim
ε→0

P (ε2Nε > λ) ≤ 2K(
√
λ)1+k/qψ(

√
λ/σy)

where σ2
y := supθ,g

∫
J2(x, θ, g)dPθ,g(x).
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Abstract. Robust covariance estimates are required in many applications. Here,
a promising adaptive robust scale estimator is extended to this problem and com-
pared to other robust estimators. Often the performance analysis of covariance
estimators is performed from the perspective of the final application. However, dif-
ferent applications have different requirements, hence we make a comparison based
on some general metrics. Results show that the adaptive scheme shows good per-
formance under the nominal case and graceful degradation in performance with
increasing levels of contamination.
Keywords: robust estimation, covariance, M-estimators.

1 Introduction

Numerous problems in signal processing require estimates of covariance. This
occurs, e.g., in array processing where the objective is to either detect the
number of sources impinging on an array or their directions of arrival (DOA).
Unfortunately, the sample covariance estimator has poor performance when
there are model deviations or outliers in the observations [Williams and John-
son, 1993].

Robust estimators protect against this, usually for only a small decrease in
performance at the nominal model. Robustness is recognised as a favourable
property since, in practice, it is more the norm than the exception that such
disturbances exist.

Here we concentrate on robust covariance estimation for multi-
dimensional observations. In the context of robust estimation, the covari-
ance matrix is also referred to as the association or scatter matrix to allow
for nonexistence of the second order moments. Several approaches have been
suggested including:

i ) FLOM (Fractional Lower Order Moment) estimators based on covariation
[Shao and Nikias, 1993, Tsakalides and Nikias, 1996, Liu and Mendel,
2001].

ii ) Nonparametric estimators using signs or ranks [Visuri et al., 2001,
Kendall and Gibbons, 1990].
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iii ) Expectation maximisation (EM) applied to Gaussian mixture mod-
els [Kozick and Sadler, 2000].

iv ) Ellipsoidal trimming [Cook et al., 1993]
v ) Huber’s robust M-estimators [Huber, 1981, Williams and Johnson, 1993].

The first two methods are computationally inexpensive, however they
may sacrifice too much performance degradation under nominal conditions
in order to be robust. The ellipsoidal trimming procedure and the iterative
nature of the EM algorithm make their computational complexity an issue
when considering implementation. The last is arguably the method of choice
but is difficult to use in practice due to the multi-dimensional optimisation
it requires.

To avoid these issues, the simplest class of estimators applies a one-
dimensional scale estimator to robustly estimate each element of the covari-
ance matrix. The problem then reduces to one of finding robust estimators
of scale. To this end, we will investigate a number of robust scale estimators,
including an adaptive M-estimator1 which was shown to improve upon the
existing robust estimators of scale [Brcich et al., 2004].

This paper is organised as follows: in Section 2 we define the signal model
and describe the scale estimators to be used for element-wise covariance ma-
trix estimation. These methods will be compared with the covariance estima-
tors to be described in Section 3. The final application, e.g. DOA, for these
covariance estimates will determine the best metric to be used. However,
since we do not wish to restrict our study to one application, we must con-
sider general metrics. Hence, for the simulation results shown in Section 4,
comparisons are made using a number of metrics. Finally, conclusions are
drawn and directions for future work described.

2 Robust covariance estimation using scale estimators

One approach to the estimation of covariance matrices is to estimate individ-
ual matrix elements using robust estimators of scale. Consider the following
signal model

x(n) = Au(n) , n = 1, . . . , N (1)

where x(n) = [x1(n), x2(n), . . . , xM (n)]T is the observation vector, u(n) =
[u1(n), u2(n), . . . , uP (n)]T is a vector of independent and identically dis-
tributed (iid) standard (zero mean and unit variance) random variables and
A is the M×P mixing matrix. The true covariance matrix is C = E

[
xxH

]
=

AAH and each matrix element is

C(i, k) = E [xix
∗
k] . (2)

1 In this paper, the term “adaptive” will be used to refer to techniques that are
data-dependent, i.e. parameters used in the procedure are set based on the values
of the observations
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However, rather than simply replacing the expectation operation in (2) with
the sample average to estimate matrix elements, a more robust operation is
to use [Huber, 1981]

Ĉ∗
σ(i, k) =

σ̂2(xi + xk)− σ̂2(xi − xk)
σ̂2(xi + xk) + σ̂2(xi − xk)

σ̂(xi)σ̂(xk) (3)

where σ̂(·) is a robust scale estimator. We will now investigate a number of
possible robust scale estimators for this procedure.

2.1 Sample estimator

The sample estimator of standard deviation is known [Huber, 1981] to have
poor resistance to outliers. Despite this, we will include it in this study to
provide a frame of reference.

2.2 Median absolute deviation

The median absolute deviation (MAD)

MAD(x) = median(|x−median(x)|) (4)

has been described as a ‘candidate for being the “most robust estimate of
scale” ’[Huber, 1981]. For symmetric distributions, this is approximately
half the interquartile range. Hence, to convert this measure to a true scale
estimate, it must be normalised. For nominally Gaussian distributions, a

MAD-scale estimator is given by σ̂MAD(x) = MAD(x)
Φ−1(0.75) where Φ−1(·) is the

inverse Gaussian cdf.

2.3 M-estimators of scale

The ML estimate of scale may be found by solving the log-likelihood equation,

N∑

n=1

ψ

(
x(n)

σ

)
= 0 (5)

for σ where

ψ(x) = −1− xḟX(x)

fX(x)
(6)

is the scale score function associated with the density fX(x) and ḟX(x) de-
notes the derivative of fX(x). By contrast, an M-estimator [Huber, 1981]
replaces the nominal score function ψ(x) with a similarly behaved function
ϕ(x) chosen to confer robustness on the estimator under deviations from the
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assumed density. With this in mind, Huber proposed that a clipped quadratic
score function

ϕH(x; k) = min(x2, k2)− δ =

{
x2 − δ, |x| ≤ k
k2 − δ, |x| > k,

(7)

be used in the M-estimator for scale as it minimises the maximum relative
asymptotic variance of the scale estimate in the case of a contaminated Gaus-
sian distribution. δ is determined such that the estimator is unbiased for the
nominal Gaussian distribution. The parameter k controls the sensitivity of
the estimator to the contamination and should decrease as the proportion of
outliers increases.

2.4 Adaptive M-estimators of scale

One of the drawbacks of the M-estimators described above is that the best
value of the cut-off parameter k is dependent on the degree of contamina-
tion [Brcich and Zoubir, 2002, Brown et al., 2003]. In [Brcich et al., 2004], an
adaptive scheme was presented that sought to relieve this restriction. There,
the score function is composed of a family of basis functions, the weights of
which are chosen adaptively from the data. By using bases that were ap-
propriate for a range of levels of contamination, the adaptive scheme was
able to maintain high performance for a wider range of scenarios than the
“static” M-estimators. Of course, as well as finite sample performance, the
asymptotic performance of the adaptive scheme will also be dependent on
selecting appropriate bases that can adequately represent the optimum score
function. For a full description of the adaptive algorithm, see [Brcich et al.,
2004].

3 Alternative Robust Covariance Estimators

Together with the element-wise scale estimation based approaches described
in the previous section, we will also consider FLOM and sign covariance
matrix (SCM) methods.

3.1 FLOM based estimator

The use of FLOMs has been shown to have strong motivation and impres-
sive performance when impulsive noise exists [Shao and Nikias, 1993]. They
estimate the covariation of α-stable random processes – analogous to the
covariance of Gaussian random variables. Recognising this, FLOM based
measures of association were proposed in [Tsakalides and Nikias, 1996] for
the purpose of determining DOA. The “covariation” matrices are found by

ĈFLOM(i, k; p) =

N∑

n=1

xi(n)|xk(n)|p−2x∗k(n)

N
. (8)
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The parameter p is the order of the moments. Setting p = 2 reduces
(8) to a sample covariance – appropriate under the condition of Gaussianity.
However, as contamination occurs, to prevent estimator breakdown, p should
be set to a lower value. The lower the value, the greater the degree of
robustness, at the cost of less accuracy under the nominal case.

The form of (8) is very similar to that used in ROC-MUSIC [Liu and
Mendel, 2001] differing only by the normalisation factor of each column.
Further, for identically distributed observations, this normalisation factor
will be approximately equal for all columns. Here, only the FLOM-based
method will be considered. To ensure Hermitian matrices, the estimated
matrix is averaged with its Hermitian, as in [Tsakalides and Nikias, 1996].

3.2 Sign covariance matrix

The SCM was suggested as a robust estimate of covariance in [Visuri et
al., 2001]. The concept is to take the sample covariance of some function,
x̃ = S(x), of the multi-variate observations. In [Visuri et al., 2001] S(·) was
the spatial sign function which normalises each observation to a unit vector.
Hence, the spatial sign function can be viewed as the multi-dimensional ver-
sion of the sign function and from this interpretation the robust behaviour of
the SCM is clear. Due to the normalisation of the observations, scale infor-
mation is lost. However, it was also shown that the subspace estimates from
the sample SCM converge to the true subspace.

When more than just a good subspace estimate is required, results in
[Visuri et al., 2001] showed that for small samples it is better to whiten the
observations using the eigenvectors of the sample SCM and then estimate
the eigenvalues as the marginal variances of the transformed observations.
To estimate the marginal variances the MAD was used.

4 Results

Herein, and without loss of generality, we only consider real random variables.
In the results shown here, iid samples of u(t) for P = 4 and N = 100 were
drawn from the selected distribution. The first six distributions were Gaus-
sian mixtures where the nominal distribution was N (0, 1) distribution and
the contaminating distribution was N (0, 100). The probability of contami-
nation took values ε = 0, 0.01, 0.02, 0.05, 0.1, 0.2. The last two distributions
were the t3 and t4 distributions respectively.

A number of mixing matrices were considered, however, due to space
limitations, results are only shown for two representative cases

Ã1(i, k) = 0.4|i−k| and Ã2(i, k) =

{
1 i = k
1
4 i 6= k

.
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The mixing matrices are then standardised so that the true covariance ma-
trices have unit diagonals,

A(i, k) =
Ã(i, k)√∑P
j=1 Ã

2(i, j)
. (9)

Our objective here is to compare the static and adaptive M-estimators of
scale with existing methods for the purposes of covariance matrix estimation.
The comparison is not straightforward as it can either depend on the final
application, i.e., mean squared error (MSE) of DOA estimates, or on more
general metrics, such as the Frobenius norm. The former approach is popular
in signal processing, however, good performance in one application does not
necessarily imply similar performance in others. Hence, we now study the
performance of the estimators using three different metrics: the Frobenius
norm, relative MSE of the eigenvalues and the sphericity statistic. Average
values for the metrics over 500 Monte Carlo runs were calculated.

Frobenius norm: The element-wise sum of squared differences between
Ĉ and C

LF (Ĉ, C) = trace{(Ĉ − C)(Ĉ − C)H}. (10)

This measures the MSE. Results using the Frobenius norm are shown in
Table 1 and Table 2 for A1 and A2 mixing matrices respectively for the
following methods: sample scale estimator, adaptive scale M-estimator with
basis functions ϕH(x; k), k = 1.5, 2, 2.5, static scale M-estimator (Huber) with
basis functions ϕH(x; k), k = 1, 1.5, 2, 2.5, MAD, FLOM based estimator with
p = 1, 1.5, 1.8 and the SCM in its original (SCM1) and whitened (SCM2)
forms.

Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.45 3.4 5.8 15 29 55 6.2 3

Adaptive 0.47 0.6 0.82 1.6 3.8 15 2.5 1.9

Huber 1.0 0.64 0.71 0.8 1.3 2.7 8.8 1.9 1.5
Huber 1.5 0.53 0.64 0.74 1.5 3.9 15 2.3 1.5
Huber 2.0 0.48 0.59 0.79 2.1 6.2 24 2.8 1.8
Huber 2.5 0.46 0.66 1.1 3.4 10 35 3.2 2

MAD 0.72 0.78 0.85 1.2 2.7 7.9 2 1.4

FLOM 1.0 0.61 0.47 0.57 1.5 3.2 6.2 0.82 0.46
FLOM 1.5 0.5 1 1.8 4.5 9 18 2.2 1.2
FLOM 1.8 0.43 1.9 3.8 9.3 18 35 3.9 2

SCM1 2.2 2.2 2.2 2.2 2.2 2.1 2.2 2.2
SCM2 0.73 0.74 0.87 1.5 3.6 14 2.6 1.9

Table 1. Estimator performance using the Frobenius norm and the A1 mixing
matrix.
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Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.46 3.2 6.2 14 28 53 5.5 2.9

Adaptive 0.47 0.59 0.84 1.8 4.7 16 2.5 1.7

Huber 1.0 0.64 0.69 0.83 1.5 3.3 11 2 1.4
Huber 1.5 0.52 0.61 0.79 1.7 4.5 16 2.2 1.5
Huber 2.0 0.48 0.6 0.91 2.3 7.1 23 2.7 1.8
Huber 2.5 0.44 0.68 1.2 3.6 10 31 3.1 2

MAD 0.72 0.79 0.88 1.4 3.1 9.9 1.9 1.3

FLOM 1.0 0.61 0.48 0.61 1.6 3.4 6.6 0.85 0.49
FLOM 1.5 0.51 1 1.8 4.7 9.2 18 2.2 1.2
FLOM 1.8 0.43 2 3.7 9.4 18 34 3.9 2

SCM1 2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1
SCM2 0.67 0.75 0.85 1.5 3.6 14 2.6 1.8

Table 2. Estimator performance using the Frobenius norm and the A2 mixing
matrix.

Though not shown here, when considering the robust scale estimator
based techniques as described in Section 2, investigations showed that the
use of (3) did indeed improve robustness considerably. No change was ob-
served in the case of the sample estimator. Therefore, all results shown here
for these scale estimator based techniques utilised this procedure.

Inspecting the two tables, similar observations can be made,

• The performance when using the sample scale estimator quickly breaks
down with contamination.
• Comparing the adaptive and static M-estimators shows that the adaptive

scheme tends to follow the best performance of the static schemes – i.e. for
low contamination levels, the adaptive scheme shows similar performance
to the static case with high k and for high contamination levels it is similar
to the static estimator with low k.
• MAD is indeed showing very robust performance, with little deteriora-

tion in performance, however, the SCM techniques show themselves to be
insensitive to contamination, especially SCM1. In both cases, however,
poor performance relative to some of the other techniques is observed
in the nominal case (Gaussianity) – as expected of nonparametric tech-
niques.
• Both static M-estimator and FLOM techniques can be “tuned” through

parameters k and p respectively. For low contamination, high parameter
values are best, while for high contamination, low parameter settings are
best.

Note that incorporation of additional bases with smaller k can increase
the robustness of the adaptive scheme. This comes at the expense of a slightly
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higher computational burden and reduction in performance for the nominal
and lightly contaminated cases.

Relative MSE of eigenvalues: Let λi,Ĉ , λi,C , i = 1, . . . ,M be the

ordered eigenvalues of Ĉ and C. This metric measures the relative squared
difference between the eigenvalues λi,Ĉ and λi,C

LE(Ĉ, C) =

M∑

i=1

(
λi,Ĉ − λi,C

λi,C

)2

. (11)

Results are shown in Table 3 and similar qualitative conclusions could be
drawn as those from Tables 1 and 2. This confirms that an estimator with
good performance in a Frobenius norm sense will also produce good eigen-
value estimates. In particular, relevant to this investigation, it confirms that
the adaptive M-estimator scheme exhibits good performance compared to
static schemes. However, for high contamination levels, again, the MAD and
SCM1 methods gain strong justification for their use.

Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.078 5.5 16 1e+02 4.1e+02 1.5e+03 33 5.2

Adaptive 0.089 0.15 0.33 1.3 7.4 1e+02 3.2 1.7

Huber 1.0 0.2 0.24 0.28 0.81 3.6 36 1.9 1.1
Huber 1.5 0.12 0.17 0.25 1.2 7.5 1e+02 2.6 1.2
Huber 2.0 0.096 0.17 0.34 2.4 20 2.8e+02 3.9 1.6
Huber 2.5 0.086 0.22 0.63 6.2 51 5.9e+02 5.4 2.2

MAD 0.31 0.34 0.37 0.83 3.3 27 1.8 0.99

FLOM 1.0 0.27 0.27 0.32 0.73 2.2 7.2 0.35 0.22
FLOM 1.5 0.16 0.31 0.85 5.1 21 92 1.5 0.47
FLOM 1.8 0.093 1.4 5.1 30 1.2e+02 4.9e+02 6.4 1.7

SCM1 1.8 1.8 1.8 1.8 1.9 1.9 1.8 1.8
SCM2 0.22 0.25 0.38 1.3 6.3 89 3.5 1.7

Table 3. Estimator performance using the relative MSE of the eigenvalues and the
A1 mixing matrix.

Sphericity statistic: The ratio of the geometric mean to the arithmetic
mean of the eigenvalues,

LSS(Ĉ) =

(∏
i λi,Ĉ

)1/M

1
M

∑
i λi,Ĉ

. (12)

A normalised sphericity metric is then obtained as LS(Ĉ, C) =
LSS(Ĉ)/LSS(C). The sphericity statistic indicates the shape of the dis-
tribution. If C has equal eigenvalues the scale is equal in all directions. It
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also appears in the likelihood function of model selection criteria, such as the
MDL, for source detection with Gaussian observations. Hence an LS nears
1 would indicate good performance of model selection criteria when using
robust eigenvalue estimates. Results are shown in Table 4 for A2.

• The M-estimator based techniques, both static and adaptive, show steady
degeneration with increasing contamination.
• Encouraging results are found for SCM2 and for the higher order FLOMs.
• Results for the sample estimator are seen to be excellent.

Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.98 0.89 0.87 0.89 0.93 0.96 0.95 0.97

Adaptive 0.99 0.96 0.95 0.9 0.79 0.67 0.94 0.96

Huber 1.0 0.97 0.95 0.93 0.89 0.82 0.68 0.92 0.93
Huber 1.5 0.97 0.96 0.94 0.89 0.79 0.68 0.94 0.95
Huber 2.0 0.98 0.96 0.94 0.87 0.76 0.81 0.95 0.96
Huber 2.5 0.99 0.96 0.92 0.83 0.79 0.9 0.95 0.97

MAD 0.94 0.93 0.91 0.88 0.81 0.67 0.9 0.92

FLOM 1.0 0.98 0.89 0.83 0.69 0.56 0.49 0.84 0.88
FLOM 1.5 0.99 0.89 0.84 0.78 0.76 0.79 0.9 0.93
FLOM 1.8 0.98 0.89 0.85 0.82 0.85 0.89 0.92 0.95

SCM1 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.2
SCM2 0.97 0.96 0.97 0.95 0.91 0.82 0.92 0.94

Table 4. Estimator performance using the sphericity ratio and the A2 mixing
matrix

This can be explained as follows. Both the nominal and contaminating
components have the same correlation matrix, differing only in their rel-
ative powers. Hence large amounts of contamination do not significantly
affect this statistic. However, with only small amounts of contamination the
sample subspace can be perturbed. If the nominal and contaminating com-
ponents possessed different correlation structures, we would expect a steady
deterioration in performance with respect to the amount of contamination.

5 Conclusions

The proposed adaptive scheme shows significant advantages over the static
M-estimator. In particular, when considering the possibility of an unknown
degree of contamination, performance follows the properties of the appro-
priate static estimator. When compared to other estimators, the adaptive
scheme shows good performance in the nominal case, while also showing
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graceful degradation as contamination increases. Other schemes were shown
to have either poor nominal performance (e.g. M-estimator with small k,
MAD, SCM, FLOM with small p) or more rapid breakdown (e.g. M-estimator
with large k and FLOM with large p).

It is observed that SCM2, i.e. the whitened SCM, shows considerable
improvement across all metrics for light contamination when compared to the
unmodified SCM1. This motivates future investigation into the application
of a similar transformation for other estimators.
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Abstract. We consider semiparametric regression problems for which the response
function is known up to some vector of parameters θ and the errors have an un-
known density f , treated as an infinite-dimensional nuisance parameter for the
estimation of θ. The maximum likelihood (ML) estimator is clearly unapplicable
in this context, and classical approaches like least squares or M-estimation may
perform poorly. Since the results of Stein in 1956, a large amount of work was ded-
icated to the construction of adaptive estimators that have the same asymptotic
behavior as the ML estimator (asymptotic efficiency). The focus has been mainly
set on the asymptotic theory and the practical results seem to be restricted to the
case of scalar observations.

We presented in [Pronzato et al., 2004] an estimator that minimizes the entropy
of the symmetrized sample of the residuals. In [Wolsztynski et al., 2005] we show
the link between this Minimum Entropy (ME) estimator, the ML estimator, and
the two-stage adaptive estimator of [Bickel, 1982]. Also, we show that the shift-
invariance property of entropy confers some robustness to ME estimation.

Adaptive estimation has important applications in Signal and Image Process-
ing. The present paper summarizes the theoretical aspects of the ME approach
and focuses on such applications. Although asymptotic properties are commonly
the main concern, we illustrate the performances of estimators for finite samples
through simulations, including multidimensional situations. The examples we con-
sider also illustrate the robustness of ME estimation.
Keywords: Adaptivity, efficiency, entropy estimation, multivariate regression,
semiparametric estimation.

1 Introduction

We consider nonlinear regression models that we assume to be known up
to some vector of parameters θ ∈ Θ ⊂ Rp. We denote η(θ̄, x) the model
response, where θ̄ ∈ int(Θ) is the true unknown value of θ and x ∈ X ⊂ Rq

are the design variables. In what follows the design can be randomized or
fixed. The observations Yi ∈ Rd, d ≥ 1, are given by

Yi = η(θ̄, Xi) + εi , i = 1, . . . , n , (1)

with (εi) a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with probability density function (p.d.f.) f with respect to the



Minimum Entropy Semiparametric Estimation 883

Lebesgue measure. For a given measure µ on the design variable x we suppose
that the identifiability condition

[∫
X [η(θ, x) − η(θ̄, x)]2µ(dx) = 0 ⇒ θ = θ̄

]

is satisfied. The only assumptions that we make on f , along with some
usual regularity conditions, are that it is (centrally) symmetric about 0
and has unbounded support. The density of the noise then corresponds
to an infinite-dimensional nuisance parameter for the estimation of θ,
and an estimator that remains asymptotically efficient in this context is
termed adaptive (whenever it exists). [Bickel, 1982] and then [Manski, 1984]
established that adaptivity was possible for nonlinear regression models.

Consider the residuals ei(θ) obtained from the observations (1),

ei(θ) = Yi − η(θ,Xi) = εi + η(θ̄, Xi)− η(θ,Xi), i = 1, . . . , n. (2)

We suggest in [Pronzato et al., 2004] an estimator of θ that minimizes an
estimate of the entropy of the residuals in the univariate case. Since entropy
is shift-invariant, we use the 2n symmetrized residuals ±ei(θ) with density
given Xi

fse,Xi
(u) =

1

2

[
f(u− η(θ̄, Xi) + η(θ,Xi)) + f(u+ η(θ̄, Xi)− η(θ,Xi))

]
. (3)

Using classical results of Information Theory, we show in [Wolsztynski et al.,
2005] that the (Shannon) entropy H(fse ) = −

∫
fse (e) log fse (e)µ(de) of the

marginal distribution of the symmetrized residuals, fse (u) =
∫
X f

s
e, x(u)µ(dx),

is minimum for θ = θ̄ when the identifiability condition given above is satis-
fied. When f is unknown, an estimator of H(fse ) thus provides a criterion
for the estimation of θ. Moreover, we shall see that the shift-invariance
property of the entropy makes minimum entropy (ME) estimation robust
with respect to the presence of outlying data.

In [Wolsztynski et al., 2005] we show the link between a two-step ME
estimation procedure and the adaptive Stone-Bickel approach for univari-
ate observations. The construction involves data splitting, which allows for
the estimate of the density to be independent of that of the entropy, and
the application of a single Newton step onto a preliminary locally sufficient
estimator then provides an asymptotically efficient estimator of θ.

In the next section we consider two direct ME estimation procedures
(without data splitting) for multidimensional data samples. Two examples
illustrate the performance of our technique in Section 3.

2 Direct Minimum Entropy estimation procedures

The direct ME estimator that we proposed for univariate data is constructed
by plugging a kernel density estimate f̂θn of fse based on the 2n symmetrized
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residuals ±ei(θ) in an empirical expression of the entropy. The density esti-
mate we use is given by

f̂θn(u) =
1

2nhn

n∑

i=1

[
K

(
u− ei(θ)

hn

)
+K

(
u+ ei(θ)

hn

)]
,

with hn a smoothing parameter, and is used to construct the Ahmad-type
plug-in entropy estimator

Ĥn(θ) = − 1

n

n∑

i=1

log f̂θn(ei(θ)) . (4)

This provides a fully non parametric estimate that can be used for the
estimation of θ without data splitting. An alternative entropy estimator
can also be constructed by using a truncated integral of f̂ log f̂ instead
of the sum in (4), but in practice the two estimators turn out to be
quite close in performance (although the results might vary in function
of the selected bandwidth and of the nature of the problem). For the
simple case of the location model we give in [Pronzato et al., 2004] a
justification for this method and in [Wolsztynski et al., 2004] we show that

Ĥn(θ)
p→H(fse ) ≥ H(f) uniformly in θ, n → ∞, with H(fse ) = H(f) for

θ = θ̄, provided that the kernel bandwidth hn decreases slowly enough
and f and K satisfy some regularity conditions. Under slightly stronger

conditions, we also prove that ∇2Ĥn(θ)
p→∇2H(fse ) uniformly in θ, n → ∞,

with ∇2H(fse ) = ∇2H(f) = I(f) for θ = θ̄. However, proving adaptivity of
this direct approach remains an open challenge.

Consider now multidimensional observations. In the case of independent
components, the entropy of the residuals is the sum of the entropies of each
component (i.e. H(fse ) =

∑d
j=1H(fsej )). The construction used in (4) is

therefore suitable to obtain the entropy of the residuals as the sum of the
entropies of each marginal distribution.

In the general situation where independence of components does not nec-
essarily hold, we can extend the procedure above by simply using techniques
of multivariate density estimation. For small dimensions (2 or 3), techniques
based on products of univariate kernels are computationally efficient, see for
instance [Scott, 1992]. Given K(.) a univariate density that is symmetric
about zero, we thus propose to use

f̂θn(u) =
1

2n




n∑

i=1

d∏

j=1

1

hj
K

(
uj − eji (θ)

hj

)
+

n∑

i=1

d∏

j=1

1

hj
K

(
uj + eji (θ)

hj

)
 ,

(5)
where hj = hj(±ej1(θ), . . . ,±ejn(θ),K) is the bandwidth of the univariate
kernel K based on the j-th component of the symmetrized sample of
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residuals, with K satisfying common regularity conditions. One can choose,
e.g., K as the standard normal, in which case the optimal bandwidth (in
the sense of the asymptotic mean integrated squared error) is given by

h? = (4/(d+ 2))
1/(d+4)

σin
−1/(d+4), see [Scott, 1992]. Plugging (5) into an

Ahmad-type estimate of the entropy similar to (4), we obtain a criterion
for estimating θ from multidimensional data. In practice, one can define a
data-driven selection of h by substituting the estimated standard deviation
of the residuals on each component for its exact value into the expression
of h?. Notice that Ĥn(θ) is two times continuously differentiable w.r.t.
θ ∈ int(Θ) when η(θ, x) is smooth enough.

In higher dimensions, however, kernel estimation techniques rapidly
become inefficient. The major limitation comes from the choice of the
bandwidth h(±e1(θ), . . . ,±en(θ),K): due to the curse of dimensionality,
the bandwidth for each kernel must be large enough to take a sufficient
number of data points into account, which causes oversmoothing. The main
alternatives involve kernels that are not positive everywhere [Härdle and
Linton, 1994], which is not suitable for computing entropy, non-differentiable
density estimates, see for instance [Türlach, 1994], and kernel methods with
variable bandwidth [Scott, 1992, Devroye and Lugosi, 2000]. We consider
now a special case of the latter.

We suggest here a simple alternative that uses the k-nearest neighbor
(kNN) entropy estimator as introduced by [Kozachenko and Leonenko, 1987]
for k = 1 and extended to k > 1 in [Goria et al., 2005], where its consistency
is proved for general dimension d under very weak conditions on f .

Consider the open ball v(x, r) centered on x ∈ Rd with radius r > 0;
its volume is given by |v(x, r)| = rdc1(d), where c1(d) = 2πd/2/(dΓ (d/2)).
Denote the Euclidean distance from ei(θ) to its k-th nearest neighbor by
ρi, k(θ). For the symmetrized residuals ±ej(θ), the kNN-ME estimator of θ
then minimizes

Hk, n(θ) = d log ρ̄k(θ) + T (n, k) , (6)

where ρ̄k(θ) =
(
Π2n
i=1ρi, k(θ)

)1/2n
is the geometric mean of the kNN distances

and T (n, k) = log (n− 1) − ψ(k) + log c1(d) does not depend on θ, with
ψ(k) = Γ ′(k)/Γ (k), the digamma function.

The parameter k can be chosen so that k/n → 0, k → ∞ when n → ∞;
a typical choice is k =

√
n. We shall take k > p where p = dim(θ) to avoid

singularities. Notice that (6) is not differentiable in θ.

Although asymptotic results are not yet available for this procedure, we
present it here as a simple computational alternative. In the next section we
present two examples in image processing for 3-dimensional data.
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Note that one could consider the estimate (6) of the entropy as another
plug-in entropy estimate, that is, as a generalization of the method of kernels
(but avoiding the tricky problem of bandwidth selection). Indeed, consider
the ball v(x, ρk) mentioned above, where ρk = ρk(x) is the distance from
x ∈ Rd to its k-th closest point; [Devroye and Wagner, 1977] proved the

strong consistency of the kNN p.d.f. estimate f̂n(x) = k
[
n (ρk(x))

d c1(d)
]−1

.
The ME estimator based on (6) can thus be written as a multivariate plug-in
estimator (with a different bias correction term).

3 Examples

We present some simulation results obtained on images, where the estimator
of θ is obtained through an exhaustive search on a finite grid. In this context,
entropy is a very natural criterion given its key role in coding theory for
the definition of maximum compression rates (or equivalently of minimum
description lengthes). Minimizing the entropy of the errors between two
signals or two images is equivalent to choosing the parameters for which we
achieve the maximum compression rate.

We take a 176×144 png picture for the first example (scalar residuals),
and a 352×288 jpg one for the second example, which gives 3-dimensional
residuals. Here the observations correspond to a bloc A of an image that is
contaminated with additive noise. The problem is to locate the corresponding
bloc in a copy X of the original image, also contaminated with noise. We
suppose that this copy has not suffered from any nonlinear transformation.
The coordinates θ̄ of A are measured from the top-left corner of the original
image, and θ is therefore a two-dimensional vector. The dimension of the
observations corresponds to the number of channels that make each pixel: 1
channel describes the gray level in the black and white png file, whereas 3
channels (RGB) contain the levels of coloring in the color jpg file. Figure 1
shows, clockwise from top left, (a) the 15×15 bloc A, within the small square,
to be identified in (b), the working image, that contains 2× 6 outliers (white
patch); (c) the 30×30 bloc A to be located in the color image (d). (a) and
(b) are black and white pictures contaminated by gaussian noise of variance
6; (c) and (d) are in color and are contaminated by salt and pepper noise,
where 6% of pixel values are replaced by the maximum or minimum possible
values and contaminated pixels are randomly distributed on the image.

In the first example, images (a) and (b), we compare the LS estimator,
the Least Absolute Values (LAV) estimator (which minimizes the sum of
the absolute values of the residuals), the plug-in ME (piME) estimator
given by (4) and the kNN-ME estimator given by (6). The bandwidth h for
piME is set to .2345 σ (2n)−1/5 (which is optimal in the sense of minimal
mean integrated squared error for gaussian kernels, see e.g. [Berlinet and
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Fig. 1. Images a, b (black and white, top), c, d (color, bottom).

Devroye, 1994]) and the value k for the kNN estimator is set to 5. The
true value of the parameters of interest is (80, 70). Table 1 contains the
means of the estimates obtained for 100 runs of the experiment described
above. The two ME estimators estimate θ̄ without error in 100% of the
runs and thus appear insensitive to the presence of outliers (the white patch).

In the second example, images (c) and (d), we compare the kNN-ME
estimator (6) with a piME-o estimator using the optimal bandwidth h?, a

second piME-e estimator using the estimated bandwidth ĥ defined by ĥj =
σ̂j(2n)−1/(d+4) for each component of the observations (with σ̂j = σ̂j(θ) the

estimated value of the standard deviation of the eji (θ), i = 1, . . . , n), see
[Scott, 1992], and the standard LS estimator. Figure 2 shows (clockwise
from top left) a typical plot of the respective criteria as functions of θ; here
θ̄ = (140, 170). Note the good behavior of the kNN and piME-o estimators,
and the loss of accuracy due to the estimation of the smoothing parameter
h for piME-e. The LS criterion gives θ̂LS = (136, 173) and its shape suggests
that it is not suitable for such problems. The value of the entropy of the
symmetrized residuals estimated by (6) is 9.99 for θ̂LS, as opposed to -0.23

for θ̂kNN = θ̄.
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Table 1. Mean values of the estimates for 100 runs on a black and white picture;
θ̄ = (80, 70).

LS LAV kNN piME
(94.25, 67.51) (94.17, 68.26) (80.00, 70.00) (80.00, 70.00)
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Fig. 2. criteria vs θ in Example 2, clockwise from top-left : kNN, piME-o, piME-e,
LS. θ̄ = (140, 170).
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Abstract. The paper focuses on the fair valuation of the stochastic reserve of a life
policy portfolio. The method, presented for life annuities because of their particular
importance in the life insurance market, substantially fits any kind of life policy
portfolio. The quantitative approach starts from regulatory and managerial outlines
aimed to indicate the reserve quantification as a mark-to-market valuation of the
outstanding liabilities. Numerical examples clarify the valuation scheme, comparing
the current values of projected cash-flows and the corresponding ones calculated at
the contractual rate.
Keywords: Life insurance, Reserve, Fair valuation, Financial risk, Demographic
risk.

1 Introduction

The international accounting standards for insurance have been partly de-
fined during 2004 and are partly in course of definitive settlement after revi-
sion. Life insurance companies in EU have to follow the new standards and
consequently the consolidated financial statements will have to be drawn up
in conformity with them (cf. [Jorgensen, 2004]).

The basic idea emerging from the new instructions is to depict the firm as
much as possible in its realistic economic profile. In particular, as regards the
solvency assessment, the guidance takes shape in the request of the reserve
quantification as a mark-to-market valuation of the outstanding liabilities,
the so called fair value. Several definitions of fair value have been proposed,
the strongest line converging toward ”the market value, if a sufficiently active
market exists, or an estimated market value otherwise” (cf. [CAS, 2002]) and
the following ([FASB, 2004]): ”the price at which an asset or a liability could
be exchanged in a current transaction between knowledgeable unrelated willing
persons”.
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It’s evident that the traditional priciple basing the accounting system
on historical cost is now substituted by a new standard founded on current
values. The evolution of the international accounting standards reveals that
the insurance business is inside the market and no more ”preferred” rules
will make possible to write out no troubled balance sheets.

The valuation techniques established in [FASB, 2004] are classified in a
fair value hierarchy, in which the strenght of the connection of insurance cash
flows to products traded in active markets is the ordering criterium.

As a consequence, it becomes necessary at the same time to satisfy the fair
value principle, imposing the use of the market inputs as much as possible,
and to overcome the lack of financial product identical to insurance assets
and liabilities traded in a market.

Great importance Buhlmann’s idea assumes in this question (cf. [Buhl-
mann, 2002]): he proposes to measure the liabilities of the insurer resulting
from a single policy or a portfolio of policies, as a portfolio of financial instru-
ments, so introducing the Valuation Portfolio (VaPo). The tool originates by
the question of the stochastic discounting factor characterization, usable to
price securities in arbitrage free markets, analysed by Long (cf. [Long,1990]):
in that paper the author introduces the numeraire portfolio, defining it as
a self financing trading strategy with positive value such that, if prices and
cash flows are expressed in its units, the current net cash flow prices are
the best prediction of the next period cash-flow prices. Buhlmann observes
that the simple circumstance that the insurer sells the insurance contract or
the portfolio of insurance contracts, involves that the financial instruments
composing the VaPo exist in the economic reality, even if not traded on an
existing market, in this way posing in evidence the character of ”fair valu-
ation” of the procedure (cf. [Buhlmann, 2004]). The financial component
in Buhlmann’s valuation process is properly faced by a numeraire approach,
considering the cash flow generated by the policy or the portfolio of policies
as expressed in ”units” of Zero Coupon Bonds, since this methodology makes
the valuations comparable each other.

Therefore, the current valuations, if connected with relatively simple in-
surance liabilities, can be estimated using prices for similar liabilities traded
in active markets, in this case being in part of level two of the hierarchy
proposed by [FASB, 2004].

The case we want to focus refers to a portfolio of life annuities, the interest
in this kind of policies being due to their diffusion in the general life insurance
outline and in the theoretical implications they have in the pension field.
Moreover, this contractual case turns up characterised by a composite risk
identity, being affected by the longevity risk, besides the technical (mortality)
risk component and the financial risk one (cf. [Coppola et al., 2002]).

In this paper we study the valuation of the stochastic reserve in the case
of a portfolio of life annuities by means of a stochastic pricing model based on
the no-arbitrage principle applied to the cash flow structure of future assets
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and liabilities. The valuation technique for estimating fair value will consist in
expected valuation connected to cash flows discounted taking in account the
systematic financial risk (cf. [FASB, 2004]) together with the demographic
risk in its two displays, the accidental and the systematic components. In
particular, to capture the effects of the systematic component due to the bet-
terment of the mortality trend, we will use an opportune projected mortality
table.

A comparison between a fair valuation and a classical procedure based
on fixed valuation rates is presented.

2 The valuation scheme

Let us introduce two probability spaces (Ω,F′, P ′), (Ω,F′′, P ′′), where F’
and F” are the σ-algebras containing, respectively, the financial events and
the life duration events (referring to the unsystematic aspect of mortality).
We assume that the randomness in mortality is independent on the fluc-
tuations of interest rates. Let us consider the probability space (Ω,F, P )
generated by the preceding two by means of canonical procedures; F con-
tains the information flow about mortality and financial history, represented
by the filtration {Fk} ⊂ F, with Fk = F

′
k ∪ F

′′
k and {F′

k} ⊂ F
′, {Fk}′′ ⊂ F

′′.
Let us denote by Nj the number of claims (survivors or dieds according to
the kind of life contract) at time j within a portfolio of identical policies.
We are interested in evaluating at time t the stochastic stream of cash-flows
X̂t = Nt+1Xt+1, Nt+2Xt+2, . . . , NnXn , that is the stochastic loss at time t,
referring to a portfolio perspective. In a fair valuation framework, we assume
a frictionless market with continuous trading, no restrictions on borrowing
or short-sales, the zero-bonds and the stocks are both infinitely divisible. In
a risk-neutral valuation, the fair value at time t is given by

Vt = E


∑

j>t

NjXjv(t, j)|Ft


 (1)

where v(t, j) is the present value at time t of one monetary unit due at time j,
and E represents the expectation under the risk-neutral probability measure,
whose existence derives by well known results, based on the completeness of
the market. For a deeper understanding, it is necessary to remark that the
demographic valuation is not supported by the hypotesis of the complete-
ness of the market. In any case it is possible to introduce an appropriate
probability measure, as suggested in [De Felice and Moriconi, 2004].

Equivalently, indicating by c the number of policies at time 0, in the
specific case of surviving benefits, we can write

Vt = E


∑

j>t

c1{Kx,t>j}Xjv(t, j)|Ft


 (2)
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where the indicator function 1{Kx,t>j} takes the value 1 if the curtate future
lifetime of the insured, aged x at issue, takes values greater than t+ j (j =
1, 2, . . .), that is if the insured aged x + t survives up to the time t + j, 0
otherwise. By virtue of the basic assumptions on the risk sources, we get

Vt =
∑

j>t

cXjE[1{Kx,t>j}|Ft]E[v(t, j)|Ft] (3)

=
∑

j>t

cXj tpx jpx+tE[v(t, j)|Ft]

where kpy denotes the probability that an insured aged y survives until the
age y + k. The terms on the right hand side clearly show that the expected
discounted value of the stochastic stream can be regarded as the valuation of
a portfolio of zero coupon bonds with maturities in j. The price in t of such
portfolio, in a fair valuation approach, can be regarded as the market price
of the zero coupon bonds portfolio, and therefore the current value of it.

In order to provide a more concrete application, we consider a portfolio
of c insureds aged x, each of whom having a deferred life annuity policy with
premiums payable at the beginning of the first T years and benefits payable
at the beginning of each year after T if the insured is alive.

According to the notations in [Cocozza et al., 2004], we assume

• Bs=benefit payable to each insured at time s,

• Ps=premium payable by each insured at time s,

• X̂s= the flow at time s related to each insured, with the generic element
represented by the following scheme:

Xs =

{
−Ps if s < T

Bs if s ≥ T

According to Buhlmann, we’ll valuate the financial component of the risk
neutral expected value accordingly with a numeraire approach: we determine
the value of each flow using a market based discount factor, expressing the
current price of the default free unit discount bond issued at time t and
maturing at time j (j ≥ t) .

A representation of the portfolio of financial instruments at time 0 we
refer to, that is the Valuation Portfolio, is here reported, having indicated by
Z(t, j) the Zero Coupon Bond issued at time t and maturing at time j and
considering constant premiums and benefits
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(V aPo)0 =





unit number of units

Z(0, 0) −cP
Z(0, 1) −N1P

. . . . . .

Z(0, T − 1) −NT−1P

Z(0, T ) NTB

. . . . . .

while the generic element of the (V aPo)t results:

Z(t, j) =

{
−Nt+j/tP if j < T

Nt+j/tB if j ≥ T

with Nt+j/t the number of survivors at time t+ j belonging to the group of
those, among the c initial insured at time 0, are living at time t.

The calculations in (3) can be replicated also for a non-homogeneous
portfolio of life annuities. In fact (cf. [Parker, 1997]) in this case we can divide
the porfolio in homogeneous sub-portfolios, say m their number, identified
by common characteristics, such as age at issue, policy duration, and so on.
Let us assume

• ni = policy duration for the i-th group
• ci= number of policies in the i-th group (

∑n
i=1 = c)

• xi = age at issue of the insureds of the i-th group
• X̂i,j= the stochastic flow at time j related to the i-th group
• n = maxi ni
• Ni,j = number of survivors in the i-th group at time j

Now we can write the value in t for the entire portfolio

Vt = E



m∑

i=1

∑

j>t

Ni,jXi,jv(t, j)|Ft


 = (4)

= E



m∑

i=1

∑

j>t

Xi,jci1{Kxi,t>j}v(t, j)|Ft


 =

=

m∑

i=1

∑

j>t

ciXi,j tpxi jpxi+tE[v(t, j)|Ft]

with obvious meaning of the symbol Ft in this context.
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3 Applications

We present an application of formula (3) for the case of an homogeneus port-
folio of 100 immediate 10-years temporary unitary annuities, for policyholders
aged 40 at issue. We assume a term structure of interest rates based on the
Cox-Ingersoll-Ross square root process

drt = −k(rt − γ)dt+ σ
√
rtdBt (5)

with k and σ positive constants, γ the long term mean and Bt a Brownian
motion. In Fig.1 we report the fair values of the reserves and compare them
with the corresponding values calculated at the contractual rate 0.04. In par-
ticular we assume for the CIR process γ=0,0452, σ=0,0053 and the initial
value r0 = 0, 0279 (cf. [Cocozza et al., 2004]). We use the survival proba-
bilities deduced by the Italian Male Mortality called RG48, which take into
account also the phenomenon concerning the improvement in the mortality
trend.
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Fig. 1. Reserves of life annuities
(t=0,1,. . . ,10)

In Fig.2 we present the results obtained, under the above hypotheses
about survival and rates, for a portfolio of deferred (T=3 years) life annuities
with the same characteristics mentioned above, but periodic premiums are
paid at the beginning of each year of the deferment period. In t = 0 we have
considered also the first premium paid. Since the premiums are calculated at
4%, in t = 0 the equity condition is obviously realized only for the contractual
rate.



Fair valuation schemes 899

-200,00

-100,00

0,00

100,00

200,00

300,00

400,00

500,00

600,00

700,00

Evaluation time (years)

Cir based -83,74 124,457 342,741 571,392 501,391 427,744 350,313 268,964 183,557 93,9507 0
Fixed 4% 0 189,352 387,673 595,165 519,386 440,704 359,017 274,22 186,199 94,8351 0

0 1 2 3 4 5 6 7 8 9 10

Fig. 2. Reserves of deferred life annuities
(t=0,1,. . . ,10)

We can observe that the current values of the stochastic loss are always
smaller than the corresponding calculated at the contractual rate; these dif-
ferences decrease when the evaluation time increases.

This phenomenon is due to the relation between the impact on the reserve
of the variations of the interest rate and the residual time of the policies (cf.
[Cocozza et al., 2004]). The above factors directly influence the reserve vari-
ation: it depends on the reserve amount and the reserve duration, and both
these parameters decrease when the policy residual time decreases, so the
impact of the fluctuations of the interest rates are stronger at the beginning
of the evaluation time interval.

4 Concluding remarks

According to the general guide-lines provided by the international institu-
tions, the reserve quantification will consist in a mark-to-market valuation
of the outstanding liabilities, or, in other words, in its fair value. In this
framework in the paper the fair value of the losses of a life annuity portfolio
is analysed, on the basis of a risk-neutral valuation. The new appraisal will
be beneficial to the transparency and for giving the actual economic profile of
a life insurance business. More and clearer information will reach the policy
holders and the investors, and a higher degree of comparison will be in force
among EU life insurance companies (cf [Jorgensen 2004]).

From the point of view of actuarial valuations, the strong aspect of the
question will disclose in a bigger volatility of the results, certainly very much
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greater than that ones gushing from the traditional historical cost based
method.

A further development will be a sensitivity analysis concerning the param-
eters connected to the market fluctuations; moreover it could be interesting
to implement simulation procedures aimed to determine the distribution of
the stochastic loss as the evaluation time varies and this would provide useful
information about solvency assessment.
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Abstract. This paper analyses the role of the term structure of interest and mor-
tality rates for life insurance participating policies. In particular, aim of this work
is to determine the fair valuation of such a policy by modelling mortality risk by
means of a Lee Carter type methodology. Numerical results are investigated in
order to determine the fair value accounting impact on reserve evaluations.
Keywords: Participating policies, Fair pricing, Lee Carter Methodology,
CIR-Black and Scholes framework.

1 Introduction

In life insurance, actuaries have traditionally valued premiums and reserves
using deterministic mortality intensity, which is a function of the age of the
insured only, and some hypothesis on the dynamics of interest rates. However,
since neither the interest rates nor the mortality intensity is deterministic,
life insurance companies are essentially exposed to three kinds of risk: the
financial risk, the systematic mortality risk, referring to the future develop-
ment of the underlying mortality intensity, and unsystematic mortality risk,
referring to a possible adverse development of the policyholders mortality. It
must be pointed out that only the third kind of risk can be controlled by
means of portfolio diversification. Since insurance contracts often run for a
very long time, a mortality intensity which seems to be prudential at the time
of issue, might turn out not to be so. An analogous phenomenon has been
observed for the interest rates in the last two decades where we have expe-
rienced large drops in the stock prices and low returns on bonds. However,
the systematic mortality risk is of different character than the financial risk.
While the assets on the financial markets are very volatile, changes in the
mortality intensity seems to occur more slowly. Thus, the financial market
poses an immediate problem, whereas the level of mortality intensity poses a
more long term, but also more permanent problem. This difference could be
the reason why emphasis so far has been on the financial markets. In recent
years, some of this attention has shifted towards valuation models that fully
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capture the interest and mortality rates dynamics. In this context, the con-
tribute of the International Accounting standard Board was very important.
It defines the Fair Value as ”An estimate of an exit price determined by mar-
ket interactions”. At this proposal, it must be remembered that IASB allows
for using stochastic models in order to estimate future cash flows. In practice,
the problem of determine the market value of insurance liabilities is posed. In
this field, it must be remembered the papers of Grosen-Jorgensen [Grosen and
Jorgensen, 2000], Bacinello [Bacinello, 2001], Milevsky-Promislow [Milevsky
and Promislow, 2001], Ballotta-Haberman [Ballotta and Haberman, 2003].
Here we analyse, in a Lee Carter mortality context, one of the most com-
mon life fe insurance policies present on the Italian insurance market, the so
called revaluable policy. This policy, of endowment type, has the peculiarity
that the insurance company, at the end of each year, grants a bonus which is
credited to the mathematical reserve and depends on the performance of an
investment portfolio. This bonus is determined in such a way that the total
interest credited to the insured is equal to a give percentage of the annual
return of the reference portfolio and anyway does not fall below the minimum
interest rate guaranteed. Thus, the revaluable policy is of participating type.
The paper is organised as follows: section 2 develops the framework for the
valuation of the policy. in section 3, the Lee Carter model for the mortality
risk is introduced, in section 4 the financial market model is presented. A
numerical evidence is offered in section 5.

2 The Model

Let us consider an endowment policy issued at time 0 and maturing at time
ξ, with initial sum insured C0. Moreover, let us define {rt; t = 1, ..., ξ} and
{µx+t; t = 1, ..., ξ} the random spot rate process and the mortality process
respectively, both of them measurable with respect to the filtrations Fr and
Fµ. The above mentioned processes are defined on a unique probability space
(Ω,Fr,µ, P ) such that Fr,µ = Fr∪Fµ. For the revaluable endowment policy,
we assume that, in case of single premium, at the end of the t-th year, if the
contract is still in force the mathematical reserve is adjusted at a rate ρt
defined as follows [Bacinello, 2001]

ρt = max

{
ηSt − i
1 + i

, 0

}
t = 1, ...ξ (1)

The parameter η, 0 ≤ η ≤ 1, denotes the constant partecipating level,
and St indicates the annual return of the reference portfolio. The relation
(1) explains the fact that the total interest rate credited to the mathematical
reserve during the t-th year, is the maximum between ηSt and i, where i is
the minimum rate guaranteed to the policyholder. Since we are dealing with
a single premium contract, the bonus credited to the mathematical reserve
implies a proportional adjustment at the rate ρt, also of the sum insured.
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Denoting by Ct, t = 1, ..., ξ, the benefit paid at time t if the insured dies
between ages x+t-1, x+t or, in case of survival, for t = ξ, the following
recursive relation holds for the benefits of successive years

Ct = Ct−1 (1 + ρt) t = 1, ..., ξ

The iterative expression for them is instead

Ct = C0

t∏

j=1

(1 + ρj) t = 1, ..., ξ

where we have indicated by φt the readjustment factor

φt =

t∏

j=1

(1 + ρj) t = 1, ..., ξ

In this context, as the elimination of the policyholder can happen in case
of death in the year t ∈ [0, ξ [ or in case of survival t = ξ the liability borne
out by the insurance company can be expressed in this manner

WL
0 =

ξ∑

t=0

Ct t−1/1Yx + Cξ ξJx (2)

where

t−1/1Yx =

{
e−∆(t) if t− 1 < Tx ≤ t

0 otherwise ξJx =

{
0 if 0 < Tx < ξ

e−∆(ξ) Tx ≥ ξ

In the previous expression Tx is a random variable which represents the
remaining lifetime of a insured aged x, ∆(t) =

∫ t
0 rudu is the accumulation

function of the spot rate.

3 Mortality Risk modeling

for the dynamics of the process {µx+t; t = 1, 2, ...}, we propose to choose a
model based on the Lee Carter methodology. According to the traditional
actuarial approach, the survival function of the random variable Tx is given
by [Milevsky and Promislow, 2001]

ξpx = P (Tx > ξ/Fµ0 )

where Fµ0 represents the mortality informative structure available at time
0. If we make the hypothesis of the time dependence of the mortality inten-
sity and we define µx+t:t the mortality intensity for an individual aged x+t,
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observed in the year t, it is possible to express the previous formula as follows
[Ballotta and Haberman, 2003]

ξpx = E

(
exp

{
−
∫ ξ

0

µx+t:tdt

}
/Fµ0

)
(3)

A widely used actuarial model for projecting mortality rates is the reduc-
tion factor model. This model has traditionally been formulated with respect
to the conditional probability of dying in a year

q (y, t) = q (y, 0)RF (y, t)

where q (y, 0) represents the probability that a person aged y will die in
the next year, based on the mortality experience for the base year 0 and
correspondingly q (y, t) relates to the future year t. Given the form of (3), it
is considered a reduction factor approach for the mortality intensity so that

µy:t = µy:0RF (y, t) (4)

where µy:0 is the mortality intensity of a person aged y in the base year
0, µy:t is the mortality intensity for a person attaining age y in the future
year t, and the reduction factor is the ratio of the mortality intensity. It
is possible to target RF, in a Lee Carter approach, µy:0 being completely
specified. Thus, µy:0 is estimated

µ̂y:0 =
∑

t

dy:t/
∑

t

ey:t

where dy:t denotes the number of deaths at age y and time t and ey:t
indicates the matching person years of exposure to the risk of death. Taking
the logarithm of equation (4) and defining

αy = log (µy:0) log {RF (y, t)} = βykt

the Lee Carter structure is reproduced [Renshaw and Haberman, 2003].
In fact the Lee Carter model for death rates is given by

ln (myt) = αy + βykt + εyt (5)

where myt denotes the central mortality rate for age y at time t, αy
describes the shape of the age profile averaged over time, kt is an index of
the general level of mortality while βy describes the tendency of mortality at
age y to change when the general level of mortality kt changes. εyt denotes
the error. For this model, the strategy is to estimate the values for αy,
βy, kt on the historical data for the population in question, the difficulty
concerns the fact that the quantities on the right hand of (5) are not directly
observable. therefore, denoting by n the number of observable periods and
t = t1, t2, ..., tn, the parameters are normalized requiring that [Lee, 2000]
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∑

t

kt = 0
∑

y

βy = 1

so that

α̂y = ln



(∏

t

µ̂yt

) 1
n


 k̂t =

ω∑

y=0

[ln (m̂yt)− α̂x]

The parameter βy can be estimated by an ordinary regression between k̂t
and ln (m̂yt) In this framework, for our purposes, with y = x+ t, one can use
the following model for the time evolution of the hazard rate

µx+t:t = µx+t:0 e
βx+tkt

4 Financial Risk modeling

For the process {rt; t = 1, 2, ...}, we assume a mean reverting square root
dynamics

drt = f r (rt, t) dt+ lr (rt, t) dZ
r
t

where f r (rt, t) is the drift of the process, lr (rt, t) is the diffusion coeffi-
cient, Zrt is a standard Brownian Motion; in particular, in the CIR model the
drift function and the diffusion coefficient are defined respectively as [Cox et
al., 1985]

f r (rt, t) = k (θ − rt) lr (rt, t) = σr
√
rt

where k is the mean reverting coefficient, θ the long term period “normal”
rate, σr the spot rate volatility. It must be pointed out that for pricing
interest rate derivatives the Vasicek model is widely used. Nevertheless, this
model assigns positive probability to negative values of the spot rate; for
long maturities, this can have relevant effects and therefore the vasicek model
appears inadequate to value life insurance policies. Clearly on the fair pricing
of our policy, it is very important the specification of the reference portfolio
dynamics. The diffusion process for this dynamics is given by the stochastic
differential equation

dSt = fS (St, t) + gS (St, t) dZ
S
t

where St denotes the price at time t of the reference portfolio ZSt is a
Standard Brownian Motion with the property

Cov
(
dZrt , dZ

S
t

)
= ϕdt ϕ ∈ R

Since we assume a BS type model [Black and Scholes, 1973], we have
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fS (St, t) = µSSt gS (St, t) = σSSt

where µS is the continously compounded market rate, assumed to be
deterministic and constant and σS is the constant volatility paremeter.

In this context, for the policy under consideration, the unit price in t with
maturity ξ is given by

u (t, ξ) = E

[
(exp

{
−
∫ ξ

t

rudu

}
φt/Frt

]

where Frt represents the financial informative structure available on the
market at time t.

5 Some Applications

The described model has been applied in order to analyse the temporal profile
of the insurance liability. The next table compares the value of the mathe-
matical reserve using, for an insured aged 40 with time to maturity 20 years,
a technical basis given by a constant interest rate of 3% and the life table
SIM92 (Statistics Italian Males 1992) with the values obtained in a fair value
context using the mortality Italian data for the period 1947-1999 for evaluate
the projection of the mortality factor. Moreover we use the 3 month T-bill
January 1996 - January 2004 for determine the interest rate factor, the pa-
rameters µS = 0.03 σS = 0.20 for the stochastic evolution of the reference
fund. For the correlation coefficient ϕ, we have adopted a slightly negative
value (ϕ = −0.06) coherently with the literature for the Italian stock market.

The table 1 puts in evidence that the introduction of a fair value account-
ing system determines a reduction in the level of the liability borne out by
the fund specially in the first years. This is mainly caused by the historical
trend of the bond market where we have experienced a continuous decrease
of interest rates. About the influence of the demographic factor, we have
performed a comparison of the reserve value using the fair value hypothesis
for the financial factors, and the life tables SIM92, RG48 (projected General
Accountancy 1948) and the one obtained with the LC methodology for the
mortality rates.

The fourth column of table 2 puts in evidence that the life table SIM92
underestimates the reserve values and don’t capture the improvements of
the human life. The life table RG48 accomplishes the second function but
slightly overestimates the reserve value with respect to LC forecasts (i.e fifth
column of table 2). Finally, we have calculated the variation coefficient of the
contract value (column six of table 2), depending on demographic component
in order to offer a measure of riskiness in reference to the problem to calculate
an adequate margin for mortality risk in a fair value context.
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Year WtL FVWtL ∆ WtL ∆ WtL/WtL
0 0,00 0,00 0,00 0,00%
1 1168,66 987,29 181,37 15,52%
2 1199,34 1028,77 170,57 14,22%
3 1231,14 1072,07 159,07 12,92%
4 1264,11 1117,28 146,83 11,62%
5 1295,36 1164,48 130,88 10,10%
6 1333,78 1213,73 120,05 9,00%
7 1370,64 1265,10 105,54 7,70%
8 1408,94 1318,64 90,30 6,41%
9 1448,92 1374,38 74,54 5,14%
10 1490,69 1432,30 58,39 3,92%
11 1534,02 1492,36 41,66 2,72%
12 1579,38 1554,45 24,93 1,58%
13 1620,72 1618,32 2,40 0,15%
14 1683,43 1683,43 0,00 0,00%
15 1735,89 1749,78 -13,89 -0,80%
16 1791,20 1815,98 -24,78 -1,38%
17 1879,40 1880,91 -1,51 -0,08%
18 1911,16 1942,83 -31,67 -1,66%
19 1976,96 1992,16 -15,20 -0,77%
20 2047,04 2047,04 0,00 0,00%

Table 1. Reserves temporal profile

Year SIM92 RG48 LC LC vs. SIM92 LC vs. RG48 CV
0 0,00 0,00 0,00 0,00% 0,00% 0,00000
1 991,75 986,80 987,29 -0,45% 0,05% 0,00276
2 1031,16 1028,78 1028,77 -0,23% 0,00% 0,00134
3 1072,35 1072,63 1072,07 -0,03% -0,05% 0,00026
4 1115,43 1118,44 1117,28 0,17% -0,10% 0,00136
5 1160,48 1166,29 1164,48 0,34% -0,16% 0,00255
6 1207,59 1216,23 1213,73 0,51% -0,21% 0,00367
7 1256,84 1268,36 1265,10 0,66% -0,26% 0,00470
8 1308,28 1322,69 1318,64 0,79% -0,31% 0,00564
9 1362,09 1379,23 1374,38 0,90% -0,35% 0,00644
10 1418,32 1437,94 1432,30 0,99% -0,39% 0,00707
11 1476,97 1498,74 1492,36 1,04% -0,43% 0,00751
12 1537,32 1561,47 1554,45 1,11% -0,45% 0,00801
13 1600,02 1625,86 1618,32 1,14% -0,46% 0,00823
14 1664,60 1691,48 1683,43 1,13% -0,48% 0,00821
15 1730,66 1757,71 1749,78 1,10% -0,45% 0,00796
16 1797,43 1823,66 1815,98 1,03% -0,42% 0,00744
17 1863,52 1888,04 1880,91 0,93% -0,38% 0,00672
18 1927,68 1950,99 1942,83 0,79% -0,42% 0,00610
19 1980,64 1996,91 1992,16 0,58% -0,24% 0,00420
20 2047,04 2047,04 2047,04 0,00% 0,00% 0,00000

Table 2. Reserves mortality profile
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Abstract. Since the theory establishes a relationship between stock market returns
and inflation rate, this study examines whether this holds for Greece, over the
period 1985 - 2000. Taking a step further, we re-examine the above relationship
taking into account the existence of possible structural breaks over the considered
time horizon. The empirical methodology uses ARDL cointegration technique in
conjunction with Granger causality tests to detect possible long-run and short-run
effects between the involved variables as well as the direction of these effects. The
results provide evidence in favour of a negative long-run causal relationship between
the considered series after 1992.
Keywords: Inflation, stock market returns, ARDL cointegration, causality.

1 Intoduction

The Greek economy suffered from high inflation rates since the late 70’s.
During the 80’s the government followed a loose monetary policy which in-
creased inflation even more. In 1992, a tight monetary policy was introduced,
and Greece attempted to decrease the level of inflation in order to achieve the
Maastricht criteria. On the other hand, the Greek stock market followed an
upward trend from 1985 to 2000, with some fluctuations. According to the
generalized Fisher hypothesis, equity stocks, which represent claims against
the real assets of a business, may serve as a hedge against inflation. Conse-
quently, investors would sell financial assets in exchange for real assets when
expected inflation is pronounced. In such a case, stock prices in nominal terms
should fully reflect expected inflation and the relationship between these two
variables should be found positively correlated ex ante. According to [Bodie,
1976], equities are a hedge against the increase of the price level due to the
fact that they represent a claim to real assets and, hence, the real change on
the price of the equities should not be affected. If we consider that firms are
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in a position to predict their profit margins and since equities are claims on
current and future earnings, it also follows that the stock market operates
as a hedge against inflation, at least in the long run. The earnings should
be consistent with the inflation rate, and hence the real value of the stock
market should remain unaltered in the long run. The argument that stock
market serves as a hedge against inflation, implies that investors are fully
compensated for increases in the general price level through corresponding
increases in nominal stock market returns and thus the real returns remain
unaffected. In other words the argument is that the real value of the stock
market is immune to inflation pressures. This has been tested in the litera-
ture numerous times. The hedge hypothesis has been examined extensively in
the literature. Empirical evidence is rather mixed and could be classified into
the following three categories: a) Research findings which provide support in
favor of a positive relationship between inflation and stock market returns.
[Firth, 1979], and [Gultekin, 1983], conclude that the relationship between
nominal stock returns and inflation in the United Kingdom is relative posi-
tive, a finding consistent with the generalized Fisher hypothesis. [Boudhouch
and Richarson, 1993], employed data sets covering the period from 1802 to
1990 for the U.S and from 1820 to 1988 for Britain. The results that they
obtained suggest a positive relationship between inflation and nominal stock
returns over long horizons. [Ioannidis et al., 2004], found evidence of positive
correlation between inflation and stock market returns in Greece between
1985 and 2003. [Kessel, 1956], suggests that unexpected inflation increases
the firm’s equity values if the firm is a net debtor. b) Studies which provide
evidence of a negative relationship between the inflation rate and the stock
market returns. [Fama, 1981], suggests that there is a negative correlation
between stock returns and the level of inflation. The negative relationship
exists due to the correlation between inflation and future output. In partic-
ular, since stock prices reflect firms’ future earnings potential, an economic
downturn predicted by a rise in inflation will depress stock prices. [Spyrou,
2001], suggests that there is a negative relationship between stock market
returns and inflation in Greece for the period 1990 to 1995. c) Studies which
provide mixed results. [Pearce and Roley, 1988], found mixed empirical evi-
dence on the subject. [Anari and Kolari, 2001], report negative correlations
between stock prices and inflation in the short run which are followed by
positive correlations in the long run.

Our research focuses on the relationship between inflation and stock mar-
ket returns. The question we attempt to answer through the investigation
of the above relationship is whether the stock market has been a safe place
for investors in Greece. The empirical analysis is carried out by means of an
ARDL cointegration, which permits the detection of long run as well as short
run [Granger, 1969] causal effects. The remainder of the paper is organized
as follows. Section 2 presents the methodology followed, section 3 presents
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the data and reports the empirical findings. Finally, section 4 presents a brief
summary with some concluding remarks.

2 Methodological Issues

The autoregressive distributed lag approach to cointegration (ARDL) follow-
ing the methodology outlined in [Pesaran and Shin, 1995] is employed in this
paper. The main advantage of this procedure is that it can be applied re-
gardless of the stationary properties of the variables in the sample and allows
for inferences on long-run estimates, which is not possible under alternative
cointegration procedures. In other words this strategy may applied irrespec-
tive of whether the series are I(0) or I(1), and this avoids the pre-testing in
the model may be large. It is worth mentioning that the VAR models are
not in position to allow for large number variables. The ARDL model in the
[Pesaran and Shin, 1995] context is defined as:

Φ(L)yt = α0 + α1w + β′(L)xI + ut (1)

where Φ(L) = 1−∑∞
i=1 ΦiL

i,
β(L) =

∑∞
j=1 βjL

j

and Lis the lag operator and wt is a vector of deterministic variables such
as the intercept term, seasonal dummies, time trends or exogenous variables
with fixed lags. Most of the standard model specifications can be easily de-
rived by imposing restrictions on the parameters. The standard static model
can be obtained by imposing the restriction β1 = φ1 = 0. The restric-
tions β1 = 0and φ1 6= 1, on the other hand, implies the partial adjustment
mechanism. The corresponding long run solution to equation (1) adjustment
mechanism. The corresponding long run solution to equation (1)

δ = α1/ϕ(1), θ = β/ϕ(1) (2)

is invalid but they provide an alternative method, which yields consistent
estimates of the parameters and their standard errors. There are three steps
that must be followed for the ARDL approach to cointegration. In particular
in the first step the existence of a long run relationship between the variables
is established by testing for the significance of lagged variables in an error
correction mechanism regression. In this paper the regression estimated in
this step is defined as:

DLSN = α0 +

p∑

i=0

cDLSNt−1 +

p∑

i=0

cDLSNt−1 + ei (3)

Where DLSN is the first log difference of the stock market index and DLP
is the first log difference of the consumer price index (inflation)

In this step, the first lag of the levels of each variable are added to the
equation to create the error correction mechanism equation and a variable
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addition test is performed by computing an f-test on the significance of all
the added lagged variables.

DLSN = α0 +

p∑

i=0

cDLSNt−i +
p∑

i=0

cDLSNt−i + δ1LSNt−1 + δ2LPt−1 + ei

(4)
The null hypothesis of non-existence of a long-run relationship is defined

by
H0 : δ1 = δ2 = 0 while H1 : δ1 6= 0, δ2neq0
The relevant statistic is the F -statistic for the joint significance of 1 and

2. The tests are distributed according to a non-standard F -statistic irrespec-
tive of whether the explanatory variables are stationary or non-stationary.
The critical value bounds for these tests were computed by [Pesaran et al.,
1996]. In the case where the F -statistic lies below the lower bound, the long
run relationship may be rejected. On the other hand if the F -statistic is
higher than the upper bound of the critical value band the null of no long
run relationship between the variables can be rejected irrespective of their
order integration. In the case that the F -statistic is between the two bounds
then a unit root test should be applied. The second step of this approach in-
volves estimating the ARDL form of 1 where the optimal lag length is chosen
according to one of the standard criteria such as the Akaike Information Cri-
terion (AIC) or the Schwartz Bayesian Criterion (SBC). Then the restricted
version of the equation is solved for the long run solution. The third step
involves the estimation of the error correction equation using the differences
of the variables and the lagged long run solution and determines the speed
of adjustment of employment equilibrium.

3 Data and Empirical Results

Data

For the empirical analysis we use monthly data collected from the
OECD data bank and covering the period between 1/1985 and 1/2000. In
particular, we use the General Index of the Greek stock market (S) and the
Consumer Price Index (P). The inflation rate (DLP) and the stock market
returns (DLSN) were calculated as the first differences of the logarithmic
price levels of the respective series. We do not expand the data sample
beyond 1/2000 since after that date Greece joined the EMU.

Empirical Results

Since the ARDL methodology does not require pre-testing for the inte-
gration properties of the individual series used in the empirical analysis, we
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proceed by applying the bounds testing-ARDL procedure to equation (4).
The joint significance of the lagged levels of the variables in (4) was next
tested by computing an F-test and comparing it with the appropriate criti-
cal value tabulated by [Pesaran et al., 1996]. The findings of the empirical
analysis are reported in tables 1,2 and 3 in the appendix. Initially the anal-
ysis covered the period 1/985 to 1/2000. The results suggested cointegration
with long run causality running from inflation to stock market returns. Nev-
ertheless, the application of CUSUM and CUSUMSQ test, indicated lack of
stability of the coefficients for the sample period. Based on the respective
graphs, presented in the appendix, as well as the LS ([Lee and Strazicich,
1999a] and [Lee and Strazicich, 1999b]) stationarity test which accounts for
possible structural breaks, we split the sample period into two sub-periods
(1/1985-5/1992 and 6/1992-1/2000). The date of the break suggested by the
above tests coincides with the 1992 Athens Stock Market Crisis. The results
of the bounds test are reported in Table 1. For the shake of robustness,
we report the f -tests for p = q = 6 and 12. The evidence is in favor of
the existence of cointegration between the stock market returns and inflation
only over the second sub-period. With regard to the whole period, as was
mentioned earlier, the evidence is unreliable. The empirical findings from the
application of the ARDL cointegration methodology is presented in Table 2
in the appendix. Considering only the results obtained from the examination
of the two sub-periods the evidence is as follows. Over the first sub-period
there is evidence of a long run relationship running from LP towards LSN.
In the second sub-period the results indicate bidirectional long-run causality.
Finally, the paper addresses the issue of possible short-run causal relation-
ships by means of Granger causality tests. The results reported in table 3 in
the appendix indicate that over the first sub-period there is a causal effect
running from returns to inflation while over the second sub-period we found
evidence of a causal effect running from inflation to returns. The results
regarding the whole period are ignored as it was explained earlier.

4 Concluding Remarks

In this paper we have examined the relationship between inflation and stock
market returns in Greece. The causal effects among the considered variables
were explored by means of ARDL cointegration and Granger causality tests.
The evidence is in favor of a bidirectional negative long-run causal relation-
ship which is consistent with [Fama, 1981] and [Spyrou, 2001]. Besides, we
report short run causal effects running from returns to inflation for the pe-
riod between 1/1985 and 5/1992, while for the period 6/1992 to 1/2000 the
direction is from inflation towards returns.
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5 Appendix

In this section we present our numerical results.

Period: 1/1985 - 1/2000

Dependent Variable lag length (p=q) F-values

DLSN 6 6.78

12 7.45

DLP 6 3.28

12 4.76

Period: 1/1985 - 5/1992

Dependent Variable lag length (p=q) F-values

DLSN 6 2.45

12 3.26

DLP 6 2.25

12 2.87

Period: 6/1992 - 1/2000

Dependent Variable lag length (p=q) F-values

DLSN 6 6.65

12 6.93

DLP 6 7.15

12 7.85

Table 1. Table 1. Critical values bounds testing-ARDL, for 0.05 significance levels
(4.94 - 5.73)

Period: 1/1985 - 1/2000

LSN LP P-value

1 1.8677 0.06

Period: 6/1992 - 1/2000

LSN LP P-value

1 -6.2965 0.00

-0.1 1 0.005

Table 2. Table 2. Long-Run Causality based on ARDL selected model
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Abstract. We prove a result for the solvability of linear forward-backward stochas-
tic differential equations of McShane type. The motivation for the study is a similar
Black-Scholes type model in mathematical finance.
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1 Introduction

One of the most remarkable applications of stocahstic analysis is in math-
ematical finance. In particular, the Black-Scholes model enjoys great popu-
larity (see, for example, [Musiela and Rutkowski, 1997]). Recently (see [Ma
and Yong, 1999]), this model was derived by means of the theory of forward-
backward stochastic differential equations of Itô type a setting appropriate
for the case in which the filtration of the undelying probability space is given
by Brownian motion. It appears that for a filtration induced by a finite varia-
tion process with a.s. continous sample paths, the Itô type stochastic integral
is no longer appropriate. In this case one can use a McShane type integral
(introduced by McShane in [McShane, 1969], [McShane, 1974] and further
developed by Srinivasan in [Srinivasan, 1978] and, from a different point of
wiev, by Protter in [Protter, 1992]; so a stochastic calculus could be called
”unified calculus” since it includes ordinary calculus as a special case and
also Itô Calculus) to construct a suitable model. This leads us to forward-
backward stochastic differential equations of McShane type. Despite many
investigation related to McShane type stochastic differential equations (see
[Angulo Ibanez and Gutierrez Jaimez, 1988], [Constantin, 1998], [Ladde and
Seikkala, 1986], [McShane, 1974] for theoretical approaches and [Srinivasan,
1978], [Srinivasan, 1984], [Hangii, 1980] for applications of McShane stochas-
tic calculus to problems in physics) a study of forward-backward stochastic
differential equations of McShane type has not been undertaken, to the best
of our knowledge.

Stochastic calculus appears to be one of the natural tools for the study
of models of those phenomena having some non-deterministic elements. For
example, in the description of brownian motion the stochastic nature is ad-
equately described by a linear differential equation with a random forcing
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term which is identified as a white noise process or has a formal derivative of
the Wiener process.

However, when the results of the stochastic calculus were applied to other
types phenomena, certain difficulties arose in the process of interpretation of
stochastic differentials and approximation process. In many models, white
noise process is explicitly introduced and the basic physical process in ques-
tion is visualised as an approximation. Hence it is reasonable to expect some
kind of a stability in the sense that the solutions that are obtained by approx-
imating the white noise process should themselves approximate the process
in question.

Ito stochastic calculus failed to satisfy this requirement of stability (see
[McShane, 1974]). Moreover, in choosing the type of stochastic processes
that we shall use us models of the noises we meet a dilema. On the one
hand, there is no physical bases for considering an example considering any
simple functions Wj(t) exccept those of a rather simple structure. In fact, the
noise input Wj(t)−Wj(s) is measured be some sort of indicator and if this is
mechanical it cannot move faster than the velocity of light, if it is electrical, it
cannot suport more than some limited current or voltage difference without
destruction and also some similiraties are in the financial modeling case.

In McShane’s Calculus, the standard equations

(I) X i(t, ω) = X i(0, ω)+

t∫

0

f i(s,X(s, ω))ds+

r∑

j=1

t∫

0

gij(s,X(s, ω))dWj(s, ω)

are replaced by what he calls a canonical extension (or canonical form or
canonical system) of equation (I):

(II) X i(t, ω) = X i(0, ω) +

t∫

0

f i(s,X(s, ω))ds+

r∑

j=1

t∫

0

gij(s,X(s, ω))dWj(s, ω) +
1

2

r∑

j,k=1

t∫

0

gij,k(s,X(s, ω))dWj(s, ω)dWk(s, ω)

in which

gij,k(t, x, ω) =
n∑

m=1

[∂gij(t, x, ω)/∂xm]gmk (t, x, ω)

i = 1, 2, ..., n; j, k = 1, 2, ..., r; t ∈ [0, a]; x ∈ Rn.
We are now able to describe the method by which we shall construct

stochastic models of physical systems which in the physically realizable case
of lipschitzian noises are known to satisfy the integral equation (I).

If gij,k(t, x, ω) are functions defined for t ∈ [0, a] and x ∈ Rn and bounded

on bounded sets of (t, x), then the solution X i(t, ω) of (I) is also a solution
of (II) since the last integral vanishes for lipschitzian noises.
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The McShane Calculus is better suited modeling dynamical phenomena
described typically by McShane systems where Wj(t, ω) are noises processes.

McShane stochastic integral systems enjoy the following three important
properties:

(i) The property of inclusiveness: the model must apply to systems in
which the permitted noises are processes belonging to some family large
enough to include processes with sample paths having lipschitzian property,
all brownian motion processes, and such modifications as have proved conve-
nient in applications;

(ii) The property of consistency: for lipschitzian noises, the solutions of
the equations should coincide with the solutions of the equations that are
normally believed to be applicable to physical systems;

(iii) The property of stability: the model must be such that if the noise
process Wj(t, ω) is replaced by another permissible process W 0

j (t, ω) close

to it, then the corresponding solutions X i(t, ω), X i
0(t, ω) are also close to

each other (in the sense that an extreme degree of closeness corresponds
to practical imposibility of distinguishing the process by means of available
experimental procedures).

In section 2 we pursue the study of the solvability of a class of linear
forward-backward stochastic differential equations of McShane type and we
point out some drastic differences from the case of Itô type stochastic equa-
tions.

The approach developed in Section 2 is applied in Section 3 to a similar
Black-Scholes type model in mathematical finance.

2 The main result

Consider the following forward-backward stochastic differential equations
on [0, T ],




dX(t) = [a(t)X(t) + b(t)]dt+ [c(t)X(t) + d(t)]dW (t)
dY (t) = [f(t)X(t) + g(t)Y (t) + h(t)Z(t) + k(t)]dt+ Z(t)dW (t)
X(0) = x0, Y (T ) = α(X(T ))

(1)

where T > 0, x0 ∈ R and a, b, c, d, f, g, h, k : [0, T ]→ R are continuous func-
tions, while α : R → R is a function of class C1. In (1), (X(t), Y (t), Z(t))
is a triplet of adapted stochastic processes on a complete filtered probabil-
ity space (Ω,F , {Ft}t∈[0,T ],P) such that {Ft}t∈[0,T ] is the natural filtration

of a given stochastic process {W (t)}t∈[0,T ], augmented with all P-null sets.
Throughout this paper, the process {W (t)}t∈[0,T ] inducing the filtration is a
finite variation process with continuous paths i.e. for almost all ω ∈ Ω the
sample path t → W (t, ω) is continuous and of finite variation on [0, T ] as a
particular noise of McShane type. For example, a process satisfying a.s. a
Lipschitz condition

W (t, ω)−W (s, ω)| ≤ L|t− s|, 0 ≤ s ≤ t ≤ T
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for some constant L > 0, is admissible. Let CF [0, T ] be the set of all
{Ft}t∈[0,T ]-progresively measurable continuous processes X : [0, T ]×Ω → R
(that is, for almost all ω ∈ Ω the sample paths t→ X(t, ω) is continuous on
[0, T ]), such that E sup

t∈[0,T ]

|X(t)|2 <∞. Observe that the space

MF [0, T ] = CF [0, T ]× CF [0, T ]× CF [0, T ]

is a Banach space under the norm

‖(X,Y, Z)‖ = {E sup
t∈[0,T ]

|X(t)|2 + E sup
t∈[0,T ]

|Y (t)|2 + E sup
t∈[0,T ]

|Z(t)|2} 1
2 .

Given a, b, c, d, f, g, h, k ∈ C([0, T ],R), α ∈ C1(R,R), x0 ∈ R, and the
finite variation continuous process {W (t)}t∈[0,T ] inducing the filtration on
the probability space, a process (X,Y, Z) ∈ MF [0, T ] is called an adapted
solution of (1) if the following holds for any t ∈ [0, T ], almost surely:





X(t) = x0 +
t∫
0

[a(s)X(s) + b(s)]ds+
t

ınt
0

[c(s)X(s) + d(s)]dW (s),

Y (t) = α(X(T ))−
T∫
t

[f(s)X(s) + g(s)Y (s) + h(s)Z(s) + k(s)]ds−

−
T∫
t

Z(s)dW (s),

(2)

where the stochastic integrals are McShane type integrals (see [Protter, 1992]
for an approach to this integral close in spirit to the original one by McShane
[McShane, 1969]). In Section 3 we will give an example in mathematical fi-
nance that motivates the study of (1). Let us now prove the solvability of (1).

Theorem. The system (1) admits an adapted solution (X,Y, Z) ∈
MF [0, T ].

Proof. To show the existence of a solution we introduce a direct
method, similar to the scheme developed in [Ma et al., 1994] for Itô type
forward-backward stochastic differential equations. We will prove that the
following three-step scheme is realizable:

(A) let θ : [0, T ]×R→ R be the C1-solution of the following first-order
linear partial differential equation




θt + ([a(t) − c(t)h(t)]x+ b(t)− d(t)h(t))θx =
= g(t)θ + f(t)x+ k(t), t ∈ [0, T ], x ∈ R,
θ(T, x) = α(x), x ∈ R;

(3)
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(B) let X ∈ CF [0, T ] be the solution of the following forward stochastic
differential equation of McShane type:




dX(t) = [a(t)X(t) + b(t)]dt+

+[c(t)X(t) + d(t)]dW (t), t ∈ [0, T ],
X(0) = x0;

(4)

(C) then X together with

Y (t) = θ(t,X(t)), Z(t) = θx(t,X(t))(c(t)X(t) + d(t)), t ∈ [0, T ] (5)

is an adapted solution to (1).

The special relations (5) among the components of the adapted solution
(X,Y, Z) ∈MF [0, T ] to (1) are suggested by the change of variables formula
for McShane type stochastic integrals (see [McShane, 1974], p.146): if X ∈
CF [0, T ] solves (4), then

dθ(t,X(t)) = [θt(t,X(t)) + θx(t,X(t))(a(t)X(t) + b(t))]dt+
+θx(t,X(t))(c(t)X(t) + d(t))dW (t)

and a comparison with the backward stochastic equation (for Y ) in (2) con-
firms that the problem (3) for θ is precisely what is needed for the effectiveness
of the solution scheme. Therefore, the existence part is proved if we show
that steps (A) and (B) can be performed. Both problems can be explicitely
solved. Indeed, the solution of (4) is (see [McShane, 1974], p.129-130)

X(t) = [x0 + Ψ(t)]eΦ(t), t ∈ [0, T ], (6)

with

Φ(t) =

t∫

0

a(s)ds+

t∫

0

c(s)dW (s), t ∈ [0, T ],

and

Ψ =

t∫

0

e−φ(s)b(s)ds+

t∫

0

e−φ(s)dsdW (s), t ∈ [0, T ].

On the other hand, the method of characteristics enables us [John, 1962]
to write down the explicit C1-solution of the Cauchy problem (3). However,
taking into account the intricacy of the resulting formula, we refrain from
further details- we shall do the full details of the solution in Section 3 for
the choice of coefficients in (1) dictated by a model in mathematical finance.
The proof of the theorem is completed.

The statement of the theorem leaves open the question of uniqueness. Our
solution scheme was constructed in analogy with the four step scheme (see
[Ma et al., 1994]) for the Itô type problem (2)- case in which {W (t)}t∈[0,T ] is
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Brownian motion (a process with a.s. continuous sample paths but a.s. the
sample paths are of unbounded variation functions [Protter, 1992]) and all
stochastic integrals in (2) are of Itô type.

For the Itô type problem (2), uniqueness holds (see [Ma and Yong, 1999],
p.82) so that it is not unreasonable to expect uniqueness in the McShane
type problem (2) that we are investigating. However, let us note an essen-
tial difference in the two solution schemes (the four step scheme from [Ma
and Yong, 1999] and our three step scheme) which indicates that the Mc-
Shane type problem is not a perfect replicate to the Itô type problem. In
both problems the forward stochastic differential equation are replaced by a
forward stochastic differential equation coupled with a Cauchy problem for
a partial differential equation: in the Itô type problem we have a parabolic
partial differential equation while in the McShane scheme type problem we
have a linear first order partial differential equation. For parabolic partial
differential equations, time-reversibility is not to be expected whereas for lin-
ear first-order partial differential equations this is not an issue. Here lies an
essential difference between the schemes adapted in the Itô type case, respec-
tively in the McShane type case. An example illustrates that the uniqueness
for the McShane type case isn’t assured.

3 Applications

In this section we analyse a model in mathematical finance that motivates
the study of forward-backward stochastic differential equations of McShane
type.

Consider a market that contains one bond and one stock. Their prices
at time t are denoted by P (t) and X(t), respectively. An investor trades
continuously, the wealth of the investor at time t being denoted by Y (t) and
the amount of money invested into the stock at time t is denoted by π(t),
called portfolio, while the rest of the money at time t, Y (t) − π(t), is put
into the bond. In a stochastic model (model with uncertainly) one assumes
that both prices are stochastic processes, defined on some filtered probability
space (Ω,F , {Ft}t≥0,P). The fact that both prices can only be determined
by the information up to time t is expressed mathematically by requiring the
processes P (t), X(t) to be both adapted to the filtration {Ft}t≥0. We assume
that the filtration is generated by a given continuous process {W (t)}t≥0 with
sample paths of bounded variation on compact intervals. If the market is
assumed to be Markovian, that is, the interes rate r(t) of the bond and the
appreciation rate and volatility of the stock b(t), respectively σ, are deter-
ministic (the time-dependence is assumed to be continuous), then the prices
are subject to the following system of stochastic differential equations




dP (t) = r(t)P (t)dt, (bond)
dX(t) = X(t)b(t)dt+ σX(t)dW (t), (stock)
P (0) = 1, X(0) = x0,

(7)
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where x0 > 0 is a constant. The change of wealth dY (t) follows therefore the
dynamics

dY (t) =
π(t)

X(t)
dX(t) +

Y (t)− π(t)

P (t)
dP (t). (8)

An option with maturity date T > 0 is an FT -measurable random variable
α(X(T )), where α : R → R is a function of class C1. Let us rewrite (7)-(8)
as 




P (t) = e

tR
0

r(s)ds
,

X(t) = x0 +
t∫
0

b(s)X(s)ds+ σ
t
∈ t
0
X(s)dW (s),

dY (t) = [π(t)b(t) + r(t)(Y (t)− π(t))]dt+ σπ(t)dW (t),

for t ∈ [0, T ]. The interaction between the investor’s wealth/strategy and
the stock price is described by the following forward-backward stochastic
differential equations of McShane type





X(t) = x0 +
t∫
0

b(s)X(s)ds+ σ
t
∈ t
0
X(s)dW (s); t ∈ [0, T ],

Y (t) = α(X(T ))−
T∫
t

[r(s)Y (s) + (b(s)− r(s))π(s)]ds−

−σ
T∫
t

π(s)dW (s), t ∈ [0, T ].

(9)

The purpose of the investor is to find an adapted solution (X,Y, π) to (9);
this amounts to choosing a strategy π allowing the realization of the option
Y (T ) = α(X(T )).

The problem (9) is of type (2) so that we may apply our three step scheme
developed in Section 2 to find an explicit solution. Relation (6) ensures that
the solution of the equation for X in (9) is precisely

X(t) = x0e
σ[W (t)−W (0)]+

tR
0

b(s)ds
, t ∈ [0, T ]. (10)

To find the explicit formula for the wealth Y (t), we have to solve the
problem (3), i.e.

{
θt + r(t)xθx = r(t)θ, t ∈ [0, T ], x ∈ R,
θ(T, x) = α(x) x ∈ R.

(11)

In accordance to the study pursued in Section 2, we apply the method
of characteristics to solve (11). The characteristic curves are given by the
system of ordinary differential equations (with parameter s)





dt

ds
= 1,

dx

ds
= r(t)x,

dθ

ds
= r(t)θ,

(12)
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and the Cauchy data corresponds to (at s = 0)

t = T, x = ξ, θ = α(ξ). (13)

The solution to (12)-(13) has the parametric representation

t = s+ T, x = ξe

sR
0

r(τ+T )dτ
, θ = α(ξ)e

sR
0

r(τ+T )dτ
,

as it can be easily verified. Eliminating s, ξ we find for the C1-solution of
the Cauchy problem (11) the representation

θ(t, x) = α(xe

TR
t

r(τ)dτ
)e−

R
limitsT

t r(τ)dτ (14)

since

s = t− T, ξ = xe

TR
t

r(τ)dτ
.

We can check directly that (14) solves (11).
As a consequence of our theorem, taking into account relations (5), (10)

and (14), we find that a solution of the problem (9) is given by




X(t) = x0e

σ[W (t)−W (0)]+
tR
0

b(s)ds
, t ∈ [0, T ],

Y (t) = θ(t,X(t)), t ∈ [0, T ],
Z(t) = X(t)θx(t,X(t)), t ∈ [0, T ].

Remark. The model presented above is of Black-Scholes type because if
we consider b(t), r(t) to be positive constants and the process {W (t)}t∈[0,T ]

to be a Brownian motion, interpreting (9) as an Itô type problem, we end up
with a parabolic problem instead of (11): the Black- Scholes partial differen-
tial equation (see [Ma and Yong, 1999], p.227).
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Abstract. A new Lévy motion with both continuous (Brownian) and discontin-
uous (Laplace motion) components is introduced. The increments of the process
follow a generalized normal Laplace (GNL) distribution, which exhibits positive
kurtosis and can be either symmetrical or skewed. The degree of kurtosis in the
increments increases as the length of the increment decreases. This and other
properties of Brownian-Laplace motion refelect those of observed time series of log-
arithmic stock-price returns and thus render it a good model for fitting to financial
data and for the calculation of the theoretical value of financial derivatives. A for-
muala for the value of European call options based on Brownian-Laplace motion is
given.
Keywords: Laplace motion, generalized normal-Laplace (GNL) distribution,
Black-Scholes.

1 Introduction.

The Black-Scholes theory of option pricing was originally based on the as-
sumption that asset prices follow geometric Brownian motion (GBM). For
such a process the logarithmic returns (log(Pt+1/Pt) on the price Pt are in-
dependent identically distributed (iid) normal random variables. However it
has been recognized for some time now that the logarithmic returns do not
behave quite like this, particulary over short intervals. Empirical distribu-
tions of the logarithmic returns in high-frequency data usually exhibit excess
kurtosis with more probability mass near the origin and in the tails and less
in the flanks than would occur for normally distributed data. Furthermore
the degree of excess kurtosis is known to increase as the sampling interval
decreases (see e.g. [Rydberg, 2000]). In addition skewness can sometimes be
present. To accomodate for these facts new models for price movement based
on Lévy motion have been developed (see e.g. [Schoutens, 2003]). For any
infinitely divisible distribution a Lévy process can be contructed whose in-
crements follow the given distribution. Thus in modelling financial data one
needs to find an infinitely divisible distribution which fits well to observed
logarithmic returns. A number of such distributions have been suggested in-
cluding the gamma, inverse Gaussian, Laplace (or variance gamma), Meixner
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and generalized hyperbolic distributions (see [Schoutens, 2003] for details and
references).

In this paper a new infinitely divisible distribution – the generalized nor-
mal Laplace (or GNL) distribution – which exhibits the properties seen in
observed logarithmic returns, is introduced. This distribution arises as the
sum of independent normal and generalized Laplace [Kotz et al., 2001] ran-
dom variables11. A Lévy process based on the generalized Laplace (variance-
gamma) distribution alone has no Brownian component, only linear deter-
ministic and pure jump components i.e. its Lévy-Khintchine triplet is of the
form (γ, 0, ν(dx)) (see [Schoutens, 2003]). The new distribution of this paper
in effect adds a Brownian component to this motion, leading to what will be
called Brownian-Laplace motion22.

In the following section the generalized normal Laplace (GNL) distribu-
tion is defined and some properties given. Brownian-Laplace motion is then
defined as a Lévy process whose increments follow the GNL distribution. In
Sec. 3 a pricing formula is developed for European call options on a stock
whose logarithmic price follows Brownian-Laplace motion.

2 The generalized normal Laplace (GNL) distribution.

The generalized normal Laplace (GNL) distribution is defined as that of a
random variable Y with characteristic function

φ(s) =

[
αβ exp(µis− σ2s2/2)

(α− is)(β + is)

]ρ
(1)

where α, β, ρ and σ are positive parameters and −∞ < µ < ∞. We shall
write

Y simGNL(µ, σ2, α, β, ρ)

to indicate that the random variable Y follows such a distribution.
Since the characteristic function (1) can be written

exp(ρµis− ρσ2s2/2)

[
α

α− is

]ρ [
β

β + is

]ρ

it follows that Y can be represented as

Y
d
= ρµ+ σ

√
ρZ +

1

α
G1 −

1

β
G2 (2)

1 1. The generalized asymmmetric Laplace distribution is better known as the
variance-gamma distribution in the finance literature. It is also known as the
Bessel K-function distribution (see [Kotz et al., 2001], for a discussion of the
terminology and history of this distribution).

2 2. An alternative name, which invokes two of the greatest names in the history
of mathematics, would be Gaussian-Laplace motion
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where Z,G1 and G2 are independent with Zsim N(0,1) and G1, G2 gamma
random variables with scale parameter 1 and shape parameter ρ, i.e. with
probability density function (pdf)

g(x) =
1

Γ (ρ)
xρ−1e−x.

This representation provides a straightforward way to generate pseudo-
random deviates following a GNL distribution. Note from (1) it is easily
established that the GNL is infinitely divisible. In fact the n-fold convolu-
tion of a GNL random variable also follows a GNL distribution.

The mean and variance of the GNL(µ, σ2, α, β, ρ) distribution are

E(Y ) = ρ

(
µ+

1

α
− 1

β

)
; var(Y ) = ρ

(
σ2 +

1

α2
+

1

β2

)

while the higher order cumulants are (for r > 2)

κr = ρ(r − 1)!

(
1

αr
+ (−1)r

1

βr

)
.

The parameters µ and σ2 influence the central location and spread of the
distribution, while α and β affect the lengths of the tails. Ceteris paribus
decreasing α (or β) puts more weight into the upper (or lower) tail. The
tail behaviour of the GNL distribution can be determined from the nature
of the poles of its characteristic (or moment generating) function (see e.g.
[Doetsch, 1970]). In the tails the generalized Laplace component of the GNL
dominates - precisely f(y)simc1y

ρ−1e−αy (y →∞) and f(y)simc2(−y)ρ−1eβy

(y → −∞), (where c1 and c2 are constants). Thus for ρ < 1, both tails are
fatter than exponential; for ρ = 1 they are exactly exponential and for ρ > 1
they are less fat than exponential.

The parameter ρ affects all moments. However the coefficients of skewness

(γ1 = κ3/κ
3/2
2 ) and of kurtosis (γ2 = κ4/κ

2
2) both decrease with increasing ρ

(and converge to zero as ρ→∞) with the shape of the distribution becoming
more normal with increasing ρ, (exemplifying the central limit effect since the
sum of n iid GNL(µ, σ2, α, β, ρ) random variables has a GNL(µ, σ2, α, β, nρ)
distribution).

When α = β the distribution is symmetric. In the limiting case α = β =
∞ the GNL reduces to a normal distribution.

3 A Lévy process based on the GNL distribution -
Brownian-Lapace motion.

Consider now a Lévy process {Xt}t≥0, say for which the incrementsXt+τ−Xτ

have characteristic function (φ(s))t where φ is the characteristic function (1)
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of the GNL(µ, σ2, α, β, ρ) distribution (such a construction is always possible
for an infinitely divisible distribution - see [Schoutens, 2003]. It is not diffi-
cult to show that the Lévy-Khintchine triplet for this process is (ρµ, ρσ2, Λ)
where Λ is the Lévy measure of asymmetric Laplace motion (see Kotz et al.,
2001, p.196). Laplace motion has an infinite number of jumps in any finite
time interval (a pure jump process). The extension considered here adds
a continuous Brownian component to Laplace motion leading to the name
Brownian-Laplace motion.

The incrementsXt+τ−Xτ of this process will follow a GNL(µ, σ2, α, β, ρt)
distribution and will have fatter tails than the normal – indeed fatter than
exponential for ρt < 1. However as t increases the kurtosis of the distribution
drops, and approaches zero as t→∞. Exactly this sort of behaviour has been
observed in various studies on high-frequency financial data (e.g. [Rydberg,
2000]) - very little kurtosis in the distribution of logarithmic returns over long
intervals but increasingly fat tails as the reporting interval is shortened. Thus
Brownian-Laplace motion seems to provide a good model for the movement
of logarithmic prices.

3.1 Option pricing for assets with logarithmic prices following
Brownian-Laplace motion.

We consider an asset whose price St is given by

St = S0 exp(Xt)

where {Xt}t≥0 is a Brownian-Laplace motion with X0 = 0 and parameters
µ, σ2, α, β, ρ. We wish to determine the risk-neutral valuation of a European
call option on the asset with strike price K at time T and risk-free interest
rate r.

It can be shown using the Esscher equivalent martingale measure (see e.g.
[Schoutens, 2003]) that the option value can be expressed in a form similar
to that of the Black-Scholes formula. Precisely

OV = S0

∫ ∞

γ

d∗TGNL(x; θ + 1)dx− e−rTK
∫ ∞

γ

d∗TGNL(x; θ)dx (3)

where γ = log(K/S0) and

d∗TGNL(x; θ) =
eθxd∗TGNL(x)∫∞

−∞ eθyd∗TGNL(y)dy
(4)

is the pdf of XT under the risk-neutral measure. Here d∗TGNL is the pdf of
the T -fold convolution of the generalized normal-Laplace, GNL(µ, σ2, α, β, ρ),
distribution and θ is the unique solution to the following equation involving
the moment generating function (mgf) M(s) = φ(−is)

logM(θ + 1)− logM(θ) = r. (5)
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The T -fold convolution of GNL(µ, σ2, α, β, ρ) is GNL(µ, σ2, α, β, ρT ) and so
its moment generating function is (from (1))

M(s) =

[
αβ exp(µs+ σ2s2/2)

(α− s)(β + s)

]ρT
.

This provides the denominator of the expression (4) for the risk-neutral pdf.
Now let

Iθ =

∫ ∞

γ

d∗TGNL(x; θ)dx =
1

[M(θ)]
T

∫ ∞

γ

eθxd∗TGNL(x) (6)

so that
OV = S0Iθ+1 − e−rTKIθ.

Thus to evaluate the option value we need only evaluate the integral in (6).
This can be done using the representation (2) of a GNL random variable as
the sum of normal and positive and negative gamma components. Precisely
the integral can be written

∫ ∞

0

g(u;α)

∫ ∞

0

g(v;β)

∫ ∞

γ

eθx
1

σ
√
ρT

φ

(
x− u+ v − µρT

σ
√
ρT

)
dxdvdu (7)

where

g(x; a) =
aρT

Γ (ρT )
xρT−1e−ax

is the pdf of a gamma random variable with scale parameter a and shape
parameter ρT ; and φ is the pdf of a standard normal deviate. After com-
pleting the square in x and evaluating the x integral in terms of Φc, the
complementary cdf of a standard normal, (6) can be expressed

Iθ =

∫ ∞

0

g(u;α− θ)
∫ ∞

0

g(v;β + θ)Φc
(
γ − u+ v − µρT − θσ2ρT

σ
√
ρT

)
dvdu.

(8)
For given parameter values the double integral (8) can be evaluated nu-

merically quite quickly and thence the option value computed. For an exam-
ple see [Reed, 2005].
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Université Libre de Bruxelles,
CP 210, 1050 Brussels, Belgium
(e-mail: griselda.deelstra@ulb.ac.be, ahmed.ezzine@ulb.ac.be)

2 Department of Financial Economics,
Ghent University,
Wilsonplein 5D, 9000 Gent, Belgium
(e-mail: Dries.Heyman@UGent.be)

3 Department of Applied Mathematics and Computer Science,
Ghent University,
Krijgslaan 281, building S9, 9000 Gent, Belgium
(e-mail: Michele.Vanmaele@UGent.be)

Abstract. This paper studies a strategy that minimizes the Value-at-Risk (VaR)
of a position in a zero coupon bond by buying a percentage of a put option, subject
to a fixed budget available for hedging. We elaborate a formula for determining the
optimal strike price for this put option in case of a Vasicek stochastic interest rate
model. We demonstrate the relevance of searching the optimal strike price, since
moving away from the optimum implies a loss, either due to an increased VaR or
due to an increased hedging expenditure. In this way, we extend the results of [Ahn
et al., 1999], who minimize VaR for a position in a share. In addition, we look at
the alternative risk measure Tail Value-at-Risk.
Keywords: Value-at-Risk, bond hedging, Vasicek interest rate model.

1 Introduction

Many financial institutions and non-financial firms nowadays publicly report
Value-at-Risk (VaR), a risk measure for potential losses. Internal uses of
VaR and other sophisticated risk measures are on the rise in many financial
institutions, where, for example, a bank risk committee may set VaR limits,
both amounts and probabilities, for trading operations and fund manage-
ment. At the industrial level, supervisors use VaR as a standard summary
of market risk exposure. An advantage of the VaR measure, following from
extreme value theory, is that it can be computed without full knowledge of
the return distribution. Semi-parametric or fully non-parametric estimation
methods are available for downside risk estimation. Furthermore, at a suffi-
ciently low confidence level the VaR measure explicitly focuses risk managers
and regulators attention on infrequent but potentially catastrophic extreme
losses.
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Value-at-Risk (VaR) has become the standard criterion for assessing risk
in the financial industry. Given the widespread use of VaR, it becomes in-
creasingly important to study the effects of options on the VaR-based risk
management.

The starting point of our analysis is the classical hedging example, where
an institution has an exposure to the price risk of an underlying asset. This
may be currency exchange rates in the case of a multinational corporation,
oil prices in the case of an energy provider, gold prices in the case of a mining
company, etc. The corporation chooses VaR as its measure of market risk.
Faced with the unhedged VaR of the position, we assume that the institution
chooses to use options and in particular put options to hedge a long position
in the underlying.

[Ahn et al., 1999] consider the problem of hedging the Value-at-Risk of a
position in a single share by investing a fixed amount C in a put option.
The principal purpose of our study is to extend these results to the situation of
a bond. We consider the well-known continuous-time stochastic interest rate
model of [Vasicek, 1977] to investigate the optimal speculative and hedging
strategy based on this framework by minimizing the Value-at-Risk of the
bond, subject to the fixed amount C which is spent on put options. In
addition, we consider an alternative risk measure Tail Value-at-Risk (TVaR),
for which we solve the minimization problem and obtain the optimal hedging
policy. In further versions, we will elaborate this part more deeply.

The discussion is divided as follows: Section 2 presents the general risk
management model, introduces the Vasicek model and considers hedging with
bond put options. Afterwards, Section 3 discusses the optimal hedging policy
for VaR, considers the closely related risk measure TVaR and introduces
comparative statics. Section 4 consists of a numerical illustration. Finally,
Section 5 summarizes the paper, concludes and introduces further research
possibilities.

2 The mathematical framework

Consider a portfolio with value Wt at time t. The Value-at-Risk of this
portfolio is defined as the (1− α)-quantile of the loss distribution depending
on a time interval with length T . Common time periods that are taken into
consideration are T = 1, 10, 20 days. A formal definition for the VaRα,T is

Pr(W0 −W d
T ≥ VaRα,T ) = α,

with W d
T the value of the portfolio at time T , discounted back until time zero

by means of a zero coupon with maturity T .
In other words VaRα,T is the loss of the worst case scenario on the investment
at a 1 − α confidence level during the period [0, T ]. It is possible to define
the VaRα,T in a more general way

VaRα,T = inf
{
Y | Pr(W0 −W d

T ≥ Y ) < α
}
.
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In this study, we focus on the hedging problem of a zero-coupon bond.
Therefore, we need to define a process that describes the evolution of the
instantaneous interest rate, and enables us to value the zero-coupon bond.
As term structure model, we consider the Vasicek model, which is a typical
example of an affine term structure model.

2.1 The Vasicek model

[Vasicek, 1977] assumes that the instantaneous interest rate follows a mean
reverting process also known as an Ornstein-Uhlenbeck process:

dr(t) = κ(θ − r(t))dt + σdZ(t) (1)

for a standard Brownian motion Z(t) under the risk-neutral measure Q, and
with constants κ, θ and σ. The parameter κ controls the mean-reversion
speed, θ is the long-term average level of the spot interest rate around which
r(t) moves, and σ is the volatility measure. The reason of the Vasicek model’s
popularity is its analytical and mathematical tractability. An often cited
critique is that applying the model sometimes results in a negative interest
rate.

It can be shown that the expectation and variance of the stochastic vari-
able r(t) are:

E [r(t)] = m = θ + (r(0) − θ)e−κt (2)

Var [r(t)] = s2 =
σ2

2κ
(1− e−2κt). (3)

Based on these results, Vasicek develops an analytical expression for the price
of a zero-coupon bond with maturity date S

Y (t, S) = exp[A(t, S)−B(t, S)r(t)], (4)

where

B(t, S) =
1− e−κ(S−t)

κ
, (5)

A(t, S) = (B(t, S)− (S − t))(θ − σ2

2κ2
)− σ2

4κ
B(t, S)2. (6)

Since A(t, S) and B(t, S) are independent of r(t), the distribution of a bond
price at any given time must be lognormal with parameters Π and Σ2:

Π(t, S) = A(t, S)−B(t, S)m, Σ(t, S)2 = B(t, S)2s2, (7)

with m and s2 given by (2) and (3).
From the formulae (4)-(7), we can see that for S ≥ T the present value

of the loss of the (unhedged) portfolio can be expressed as function of z

L0 = W0 −W d
T = Y (0, S)− Y (0, T )eΠ(T,S)+Σ(T,S)z = f(z) (8)
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where f is a strictly decreasing function and z is a stochastic variable with
a standard normal distribution. Therefore, the VaRα,T of such a portfolio is
determined by the formula

VaRα,T = f(c(α)), (9)

where c(α) is the cut off point for the standard normal distribution at a
certain percent level i.e. Pr(z ≤ c(α)) = α.

Since the distribution of the unhedged position in the zero-coupon bond
is lognormal in the Vasicek model, from the formulae (8)-(9) we observe that
the Value-at-Risk measure for the zero-coupon bond can be expressed as

VaRα,T = Y (0, S)− Y (0, T )eθB(α),

where
θB(α) = Π(T, S) +Σ(T, S)c(α) (10)

and c(·) is the percentile of the standard normal distribution.

2.2 Put options and hedging

We recall from [Ahn et al., 1999] the classical hedging example, where an
institution has an exposure to the price risk of an underlying asset ST . The
hedged future value of this portfolio at time T is given by

HT = max(hX + (1− h)ST , ST ), (11)

where 0 ≤ h ≤ 1, represents the hedge ratio, that is, the percentage of put
option P used in the hedge and X is the strike price of the option.

In our setup, the underlying security is a bond and the hedging tool is a
bond put option, the price of which will be worked out hereafter.
We recall that the price of a European call option with the zero-coupon bond
which matures at time S as the underlying security and with strike price X
and exercise date T (with T ≤ S) is at date t given by:

C(t, T,X) = Y (t, S)Φ(d1)−XY (t, T )Φ(d2), (12)

where

d1 =
1

σp
log(

Y (t, S)

XY (t, T )
) +

σp
2
, d2 = d1 − σp,

σp =
σ

κ
(1− e−κ(S−T ))

√
1− e−2κ(T−t)

2κ
,

and Φ(z) is the cumulative distribution function of a standard normal random
variable. The Put-Call parity model is designed to determine the value of
a put option from a corresponding call option and provides in this case the
following European put option price corresponding to (12):

P (t, T,X) = −Y (t, S)Φ(−d1) +XY (t, T )Φ(−d2). (13)
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3 The bond hedging problem

3.1 VaR minimization

Analogously to [Ahn et al., 1999], we assume that we have one bond and we
use only a percentage of a put option on the bond to hedge. We will find the
optimal strike price which minimizes VaR for a given hedging cost.
Indeed, let us assume that the institution has an exposure to a bond, Y (0, S),
which matures at time S, and that the company has decided to hedge the
bond value by using a percentage of one put option P (0, T,X) with strike
price X and exercise date T (with T ≤ S). Then we can look at the future
value of the hedged portfolio (which is composed of the bond Y and the put
option P (0, T,X)) at time T as a function, analogously to (11), of the form

HT = max(hX + (1− h)Y (T, S), Y (T, S)).

If the put option finishes in-the-money (a case which is of interest to us),
then the discounted value of the future value of the portfolio is

Hd
T = ((1− h)Y (T, S) + hX)Y (0, T ).

Taking into account the cost of setting up our hedged portfolio, which is
given by the sum of the bond price Y (0, S) and the cost C of the position in
the put option, we get for the present value of the loss

L0 = Y (0, S) + C − ((1− h)Y (T, S) + hX)Y (0, T ),

and this under the assumption that the put option finishes in-the-money.
We recall that Y (T, S) has a lognormal distribution with parameters Π and
Σ2, given by (7). Therefore the loss function equals

Y (0, S) + C − ((1 − h)eΠ(T,S)+Σ(T,S)z + hX)Y (0, T ),

where z again denotes a stochastic variable with a standard normal distribu-
tion. The Value-at-Risk at an α percent level of a position H = {Y, h, P}
consisting of a bond Y and h put options P (which are assumed to be in-the-
money) with a strike price X and an expiry date T is equal to

VaRα,T (L0) = Y (0, S) + C − ((1− h)eθB(α) + hX)Y (0, T ), (14)

where we recall that θB(α) = Π + Σc(α) and c(α) is the percentile of the
standard normal distribution.

Similar to the Ahn et al. problem, we would like to minimize the risk of the
future value of the hedged bond HT , given a maximum hedging expenditure
C. More precisely,

min
X

Y (0, S) + C − ((1 − h)eθB(α) + hX)Y (0, T )
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subject to the restrictions C = hP (0, T,X) and h ∈ (0, 1).
Solving this constrained optimization problem, we find that the optimal strike
price X∗ satisfies the following equation

P (0, T,X)− (X∗ − eθB(α))
∂P (0, T,X)

∂X
= 0.

or equivalently, when taking (13) into account,

eθB(α) =
Y (0, S)Φ(−d1)

Y (0, T )Φ(−d2)
. (15)

We note that the optimal strike price is independent of the hedging cost.

3.2 Tail VaR minimization

In this section, we introduce the concept of Tail Value-at-Risk, TVaR, also
known as mean excess loss, mean shortfall or Conditional VaR. We further
demonstrate the ease of extending our analysis to this alternative risk mea-
sure.

A drawback of the traditional Value-at-Risk measure is that it does not
care about the tail behaviour of the losses. In other words, by focusing on
the VaR at, let’s say a 5% level, we ignore the potential severity of the losses
below that 5% threshold. In other words, we have no information on how
bad things can become in a real stress situation. Therefore, the important
question of ‘how bad is bad’ is left unanswered. TVaR is trying to capture
this problem by considering the possible losses, once the VaR threshold is
crossed.

Formally,

TVaRα,T =
1

α

∫ 1

1−α
VaR1−β,T dβ.

This formula boils down to taking the arithmetic average of the quantiles
of our loss, from 1 − α to 1 on, where we recall that VaRα,T stands for the
quantile at the level 1− α.

If the cumulative distribution function of the loss is continuous, which is
the case in our problem, TVaR is equal to the Conditional Tail Expectation
(CTE) which for the loss L0 is calculated as:

CTEα,T (L0) = E[L0 | L0 > VaRα,T (L0)].

A closely related risk measure concerns Expected Shortfall (ESF). It is
defined as:

ESF(L0) = E [(L0 −VaRα,T (L0))+] .
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In order to determine TVaRα,T (L0), we can make use of the following
equality:

TVaRα,T (L0) = VaRα,T (L0) +
1

α
ESF(L0)

= VaRα,T (L0) +
1

α
E [(L0 −VaRα,T (L0))+] .

This formula already makes clear that TVaRα,T (L0) will always be larger
than VaRα,T (L0).
In our case, the loss has a lognormal distribution, because of the lognormality
of our bond prices. This allows us to write the ESF as

ESF(L0) = (1−h)Y (0, T )eΠ(T,S)
[
αeΣ(T,S)c(α) − e 1

2Σ
2(T,S)Φ(c(α) −Σ(T, S))

]
.

This reduces our TVaRα,T (L0) to:

TVaRα,T (L0) = Y (0, S) + C − hXY (0, T )

− 1

α
(1− h)eΠ(T,S)+ 1

2Σ
2(T,S)Φ(c(α) −Σ(T, S))Y (0, T ).

We again seek to minimize this TVaR, in order to minimize potential
losses. The procedure for minimizing this TVaR is analogue to the VaR
minimization procedure. The resulting optimal strike price can thus be de-
termined from the formula below:

1

α
eΠ(T,S)+ 1

2Σ
2(T,S)Φ(c(α) −Σ(T, S)) =

Y (0, S)Φ(−d1)

Y (0, T )Φ(−d2)
.

3.3 Comparative statics

We examine how changes in the parameters of the Vasicek model influence
the optimal strike price, by means of the derivatives of the optimal strike
price with respect to these parameters.

For both VaRα,T and TVaRα,T , the optimal strike price is implicitly de-
fined by

F (X, β) = FAC · Y (0, T )Φ(−d2)− Y (0, S)Φ(−d1) = 0,

with β the vector including the Vasicek parameters, that is θ, κ and the
volatility σ, see Section 2.1, and with FAC representing eθB(α) in the case of
VaRα,T and 1

αe
Π(T,S)+ 1

2Σ
2(T,S)Φ(c(α) −Σ(T, S)) in the case of TVaRα,T .

Taking into account the implicit function theorem, we obtain the required
derivatives as follows:

∂F

∂X
dX +

∂F

∂β
dβ = 0⇐⇒ dX

dβ
= −

∂F
∂β

∂F
∂X

. (16)
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The denominator of (16) is equal for the different derivatives, and is given by

∂F

∂X
=

FAC · Y (0, T )ϕ(d2)− Y (0, S)ϕ(d1)

Xσp
, (17)

with ϕ being the density function of a standard normal random variable, while
the numerator of (16) can be obtained by applying the following formula,

∂F

∂β
=
∂FAC

∂β
Y (0, T )Φ(−d2) + FAC · ∂Y (0, T )

∂β
Φ(−d2) (18)

−FAC · Y (0, T )ϕ(d2)
∂d2

∂β
− ∂Y (0, S)

∂β
Φ(−d1) + Y (0, S)ϕ(d1)

∂d1

∂β
.

These derivatives are rather involved and do not lead to a straightforward
interpretation of their sign and magnitude. Therefore, we will describe the
derivatives in the next paragraph using a numerical illustration.

Further relevant derivatives are dX
dS and dX

dT to study the response of the
optimal strike price to a change in the maturity of both the underlying bond
and the maturity of the bond option used to hedge the exposure. They follow
from formulae (16)-(18), after having replaced β by S and T respectively,
and taking into account the simplification due to the fact that Y (0, T ) is
independent of S, and Y (0, S) is independent of T . Again, we leave the
interpretation of these derivatives to the next section.

A last derivative of interest is the one with respect to α, formally dX
dα :

dX

dα
= − 1

∂F
∂X

· ∂FAC

∂α
Y (0, T )Φ(−d2),

where ∂FAC
∂α is respectively given by

eθB(α)Σ(T, S)

ϕ(c(α))
(VaR)

eΠ(T,S)+ 1
2Σ

2(T,S)

α2

[
αϕ(c(α) −Σ(T, S))

ϕ(c(α))
− Φ(c(α) −Σ(T, S))

]
(TVaR).

4 Numerical results

We illustrate the usefulness of the above results for the VaR case (TVaR case
is ongoing research). In order to provide a credible numerical illustration, we
take the parameter estimates for the Vasicek model from [Chan et al., 1992],
who compare a variety of continuous-time models of the short term interest
rate with respect to their ability to fit the U.S. Treasury bill yield. This
results in the following parameter values: σ = 0.02, θ = 0.0866, κ = 0.1779,
r(0) = 0.06715. Next, we should consider the budget the financial institution
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is willing to spend on the hedging. Standardising the nominal value of the
bond at issuance to 1, we start with a hedging budget of 0.05, so C = 0.05.
We also assume the bank is considering the VaR at the five percent level,
meaning that α = 5%.

We considered two situations, one in which the bank wishes to hedge a
bond with a maturity of one year (S = 1), and one for a bond with a maturity
of ten year (S = 10).
We observe that our strategy is successful in decreasing the risk, while, since
we use options, still providing us with upward potential. In the one year bond
case, the mean reduction in VaR (calculated as the difference between the
VaR of the hedged position and the VaR of the unhedged position, divided
by VaR of the unhedged position) over the holding period amounts to 6.25%.
The maximum reduction is 26.23%, whereas the lowest reduction is 3.25%.
In the ten year bond case, the mean VaR reduction over the holding period
is 5.36%. The maximum reduction that can be achieved amounts to 26.15%.
The minimum reduction is 2.59%.

As already mentioned above, we are also interested in the effect of changes
in the parameter estimates of the Vasicek model on the optimal strike price.
We examine these effects using the first example, in which the bond matures
in one year. An increase in one of these parameters always leads to a lower op-
timal strike price. The influence of a 1% increase in κ only marginally effects
the strike price. Changes in θ also have a moderate impact on the optimal
strike. The most influential parameter of the Vasicek model undoubtedly
is the volatility. Whereas for κ and θ the impact constantly decreases as
the holding period comes closer to the maturity of the bond, we find a non-
monotonic relationship between the derivative (with respect to the volatility)
and the difference between the holding period T and the maturity S of the
bond.

Increasing the maturity of the bond decreases the strike price, while in-
creasing the holding period (meaning that the holding period moves closer to
the maturity of the bond) increases the strike price. Reducing the certainty
with which a bank wishes to know the value it can lose, or in other words,
increasing α leads to a increased strike price. This increase again depends on
the holding period in a non monotonic way.

5 Conclusion

In this paper, we studied the optimal risk control for one bond using a per-
centage of a put option by means of Value-at-Risk and Tail Value-at-Risk,
widespread concepts in the financial world. The interest model we use for
valuation, is the Vasicek model. The optimal strategy corresponds to buy-
ing a put option with optimal strike price in order to have a minimal VaR
or TVaR given a fixed hedging cost. We did not obtain an explicit result,
but numerical methods can be easily implemented to solve for the optimal
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strategy. For the VaR case, we demonstrate the relevance of searching for
this optimal strike price, since moving away from this optimum implies a loss,
either because of an increased VaR, or an increased hedging expenditure. For
TVaR, the numerical illustration is part of ongoing research.

Further analysis is oriented in a number of directions. First of all, we
plan to examine the implications of assuming a different interest rate model
e.g. Hull-White. We will further turn to a deeper study of the effects in the
optimal hedging policy of using either VaR or TVaR.
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Abstract. In this paper we use a discrete time non-homogeneous semi-Markov
model for the rating evolution of the credit quality of a firm C and we determine
the credit default swap spread for a contract between two parties, A and B that,
respectively, sell and buy a protection about the failure of the firm C. We work in
both the case of deterministic and stochastic recovery rate. We highlight the link
between credit risk and reliability theory too.
Keywords: backward recurrence times processes, random recovery rate, reliability.

1 Introduction

The credit default swap (CDS) is a derivative that can be seen as default
insurance on loans and bonds. These contracts are instruments that pro-
vide insurance against a particular company (that we will call company ”C”)
defaulting on its debt. In this paper we present an evaluation procedure of
credit default swap in a rating based model. We assume that the rating credit
quality evolution of the company ”C” that issue the bond follows a discrete
time non-homogeneous semi-Markov process, so to consider the reference de-
fault risk we use the non-homogeneous semi-Markov reliability credit risk
model [D’Amico et al., 2004a]. In this way, how it is showed in [D’Amico et
al., 2004a], we solve all the non-markovianity problems highlighted by some
empirical works in this area such [Carty and Fons, 1994] and [Nickell et al.,
2002].

We fix the credit default swap spread U∗(s) imposing a fair game con-
dition on the wealth balance equation for the swap contract. We compute
U∗(s) first considering a fixed recovery rate ρ and successively extending the
computation to the case of a random recovery rate. Considering the non-
homogeneity of the process we give the same definition of stochastic recovery
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rate as in [D’Amico et al., 2004b] linking the random recovery rate in general
on the last n states visited by the process first of the random default time τs.

In both the cases of deterministic and stochastic recovery rate, we express
the price and the value of the swap as a function of the C’s reliability.

2 The discrete time non-homogeneous semi-Markov
reliability credit risk model

First of all we give some basic results on the theory of discrete time non-
homogeneous semi-Markov processes. Let (Ω,F, P ) be a probability space
and let E be a finite state space. On our probability space we define two
stochastic processes: Xn : Ω −→ E, Tn : Ω −→ IN.

Xn represents the state occupied at the n-th transition and Tn is the time
of the n-th transition. The process (X,T ) is a non-homogeneous Markov
Renewal Process if ∀i, j ∈ E and ∀t ∈ IN the following condition holds:

P [Xn+1 =j, Tn+1≤ t|σ(Xh, Th), Xn= i, Tn=s, 0≤h≤n]=

P [Xn+1 =j, Tn+1≤ t|Xn= i, Tn=s]≡Qij(s, t). (1)

The transition matrix P (s) of the non-homogeneous embedded Markov
chain Xn is obtained as pij(s) = limt→∞Qij(s, t) ∀i, j ∈ E.

We introduce also the following probabilities:

qij(s, t) = P [Xn+1 = j, Tn+1 = t|Xn = i, Tn = s], (2)

Hi(t) = P [Tn+1 ≤ t|Xn = i, Tn = s], (3)

Let N(t) = sup{n : Tn ≤ t} ∀t ∈ IN; we define the non-homogeneous
discrete time semi-Markov process Z= (Z(t),t ∈ IN) as Z(t)=XN(t), that
represents, for each waiting time, the state occupied by the process.

We define, ∀i, j ∈ E, and (s, t) ∈ IN × IN, the semi-Markov’s transition
probabilities as φij(s, t) = P [Z(t) = j|Z(s) = i] satisfying the following
system of equations:

φij(s, t) = δij(1−Hi(s, t)) +
∑

k∈E

t∑

τ=1

qik(s, τ)φkj(τ, t). (4)

At this time we explain briefly the non-homogeneous semi-Markov relia-
bility credit risk model, see [D’Amico et al., 2004a] to study in depth.

Let the state space E indicate the different rating classes that give a
reliability degree of a firm bond. We partition this state space in two sub-
set: D = {N + 1} and Up = {1, 2, ..., N}, that we call respectively ”Down”
(default) and ”Up” states. We assume that the set D is absorbing. The
most important variable to compute is the reliability R(s, ·) of the firm that
is defined ∀t ≥ s as R(s, t) = P [Z(u) ∈ Up, ∀u ∈ {s, s + 1, ..., t}]. The
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reliability function Ri(s, t) conditional on the starting state i at time s, is
given by Ri(s, t) =

∑
j∈Up φij(s, t), then solving the system of equations (4)

(see [Blasi et al., 2003]) and summing on the ”Up” states we obtain the
conditional reliability. Obviously R(s, t) =

∑
i∈Up

∑
j∈Upβi(s)φij(s, t) where

β(s)=(βi(s))i∈E denotes the random starting distribution at time s. In our
model the reliability is equal to the availability, that give us the probability
that the system is ”Up” at the generic time t, because the only one defaulting
state is absorbing.

3 The price and the value of the swap: the fixed
recovery rate case

In this section we consider a CDS contract starting at time s with maturity
T . We denote with τs = inf{t > s : Z(t) ∈ D} and with v the deterministic
discount factor. We write the wealth balance equation (w.b.e.) for the seller
B of the protection about a failure of C that is given by:

∆W |Ts =

T∧τs∑

i=s+1

U(s) · vi−s − (100− Y (T ∧ τs)) · v(T∧τs)−s. (5)

The term (
∑T∧τs

i=s+1 U(s)·vi−s) is the random discounted amount of money

that B will obtain writing the CDS contract and (100−Y (T ∧τs)) ·v(T∧τs)−s

is the potential loss in case of a C’s default.
We assume that Y (T∧τs) = 100·ρ·1{s<τs≤T}+100·1{τs>T} where ρ ∈ [0, 1]

is the deterministic recovery rate. This choice implies that the potential loss
will be zero if there is no default up to time T whereas if a default occurs
first of T the potential loss becomes a real loss equal to 100(1−ρ) discounted
from default time to starting time s. Then the w.b.e. becomes:

∆W |Ts =

T∧τs∑

i=1

U(s) · vi−s − (100[1− ρ]) · v(T∧τs)−s1{s<τs≤T}.

Fixing the credit default swap spread U(s) imposing a fair game condition
so that the expectation of the w.b.e. is zero, we get in:

U∗(s) =
(1− v)[100× (1 − ρ)]E[v(T∧τs)−s1{s<τ≤T}]

(v)× [1− E[v(T∧τs)−s]]
. (6)

Now having

E[v(T∧τs)−s] =

T∑

h=s+1

vh−s{R(s, h−1)−R(s, h)}+vT−sR(s, T ) (7)

E[v(T∧τs)−s1{τs≤T}] =
T∑

h=s+1

vh−s{R(s, h− 1)−R(s, h)} (8)
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substituting in equation (6) we obtain:

U∗(s) =
(1− v)[100× (1− ρ)][∑T

h=s+1 v
h−s{R(s, h− 1)− R(s, h)}]

(v) × [1−∑T
h=s+1 v

h−s{R(s, h− 1)−R(s, h)} − vT−sR(s, T )]
.

(9)
Now we turn our attention to the valuation procedure. The value of

the swap at time t (conditional on no default first of time t) is given by
the difference between the expected present value (at time t) of the future
inflows minus the expected present value (at time t) of the future outflows.

Let V (s, t) the value of the swap and let I(s, t) =
∑T∧τs

h=t+1 U
∗(s)vh−t and

O(s, t) = 100(1 − ρ)v(T∧τs)−t1{s<τs≤T} be, respectively, the future inflows
and the future outflows then by definition we have

V (s, t) = E[I(s, t)−O(s, t)|τs > t] = E[I(s, t)|τs > t]− E[O(s, t)|τs > t].
(10)

We obtain:

E[I(s, t)|τ >t]=U∗(s)
{ T∑

m=t+1

R(s,m−1)−R(s,m)

R(s, t)
(
m∑

h=t+1

vh−t)+
T∑

h=t+1

vh−t
R(s, T )

R(s, t)

}
.

(11)

E[O(s, t)|τs > t]=100(1− ρ)
{ T∑

h=t+1

vh−t
R(s, h− 1)−R(s, h)

R(s, t)

}
. (12)

substituting in formula (10) we get the value of the swap at time t as a
function of the reliability of the firm.

4 The price and the value of the swap: the random
recovery rate case

In this section we extend our model considering a stochastic recovery rate
ρ. [Berthault et al., 2001] noted that the higher is the rating the lower is
the loss in case of default. From this empirical evidence [Millossovich, 2002]
linked the recovery rate to the last credit rating evaluation of the company
first of the default time τs in a markovian time homogeneous environment.
That extension was carried out enlarging the state space, considering multiple
default classes, one for each possible recovery rate. [D’Amico et al., 2004b]
proposed a new way to allows for stochastic recovery rate that depends on
the last (possibly n-last) rating evaluation, obtained first of the default time,
without enlarging the state space E.

In this paper we use the same definition given in [D’Amico et al., 2004b]
being careful on the non-homogeneity of the rating process, so we define the
one period stochastic recovery rate at time τs, ”ρ1(τs)” in the following way:

ρ1(τs) =

{
rj if s < τs ≤ T and Z(τs − 1) = j, ∀j 6= D
1 if τs > T > s

(13)
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We proceed to compute the credit default swap spread U∗(s) starting from
equation (6) and imposing a fair game condition such that the expectation
of the wealth balance equation is zero. In this case we get:

U∗
1 (s) =

(100[E[v(T∧τs)−s1{s<τs≤T}]− E[ρ1(τs)v
(T∧τs)−s1{s<τs≤T}]])× (1− v)

v × (1− E[v(T∧τs)−s])
.

(14)
The unique new component to evaluate is E[ρ1(τs)v

(T∧τs)−s1{s<τs≤T}].
But E[ρ1(τs)v

T∧τs1{s<τs≤T}] = E[E[ρ1(τs)v
(T∧τs)−s1{s<τs≤T}|τs]] where

E[ρ1(τs)v
(T∧τs)−s1{s<τs≤T}|τs] =

∞∑

h=s+1

v(T∧h)−sρ1(h)P [τs = h]1{h≤T} =

T∑

h=s+1

vh−sρ1(h)P [τs = h] =

T∑

h=s+1

vh−sρ1(h){R(s, h− 1)−R(s, h)} (15)

consequently E[ρ1(τs)v
T∧τs−s1{s<τs≤T}] =

T∑

h=s+1

vh−s
∑

j∈Up
rjP [Z(h− 1) = j|Z(h) = D]{R(s, h− 1)− R(s, h)} (16)

To compute P [Z(h − 1) = j|Z(h) = D] we have to introduce the
non-homogeneous discrete backward recurrence time process B(t) defined
as:

B(t) =

{
t+ T0 if t < T1

t− TN(t) if t ≥ T1
(17)

We know that the stochastic process (Z(t), B(t)) with values in E × IN
is a markovian process and ∀h ∈ {1, 2, ...T} and j ∈ E conditioning on all
possible values for B(h− 1) and from Bayes formula we have that

P [Z(h− 1) = j|Z(h) = D] =

∑h−1−s
l=0 P [Z(h)=D|Z(h−1)=j, B(h−1)= l]P [Z(h−1)=j, B(h−1)= l]

∑
k∈Up

∑h−1−s
l=0 P [Z(h)=D|Z(h−1)=k,B(h−1)= l]P [Z(h−1)=k,B(h−1)= l]

=

∑
i∈E βi(s)

∑h−1−s
l=0 Lij(s, h− 1, l)∆jD(h− 1, l, h)

∑
i∈E βi(s)

∑
k∈Up

∑h−1−s
l=0 Lik(s, h− 1, l)∆kD(h− 1, l, h)

(18)

where ∆ij(h, l, t) = P [Z(t) = j|Z(h) = i, B(h) = l] and

Lij(s, h, l)=P [Z(h)=j, B(h)= l|Z(s)= i, B(s)=0]=P(i,s)[Z(h)=j, B(h)= l].
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These probabilities can be computed from the knowledge of the semi-
Markov kernel Q in fact we have, see [D’Amico et al., 2004c], that

∆ij(h, l, t)=
δij(1−Hi(h−l, t))
(1−Hi(h−l, h))

+
1

(1−Hi(h−l, h))
∑

k∈E

t∑

m=h+1

qik(h−l,m)φkj(m, t),

(19)
and Lij(s, h, l) satisfies the following system of equations:

Lij(s, h, l) = 1{l=h−s}δij [1−Hi(s, h)]+
∑

k∈E

h−l∑

m=s+1

qik(s,m)Lkj(m,h, l), (20)

Applying these results we get:

E[ρ1(τs)v
T∧τs−s1{s<τs≤T}] =

T∑

h=s+1

vh−s{R(s, h− 1)−R(s, h)}×

×
∑

j∈Up
rj

∑
i∈E βi(s)

∑h−1−s
l=0 Lij(s, h− 1, l)

qjD(h−1−l,h)
(1−Hj(h−1−l,h−1))∑

i∈E βi(s)
∑

k∈Up
∑h−1−s

l=0 Lik(s, h− 1, l) qkD(h−1−l,h)
(1−Hk(h−1−l,h−1))

(21)

finally putting (21) in equation (14) we obtain the credit default swap spread:

U∗
1 (s) =

100(1− v)
{∑T

h=s+1 v
h−s{R(s, h− 1)−R(s, h)}×

v[1−∑T
h=s+1 v

h−s{R(s, h− 1)−R(s, h)} − vT−sR(s, T )]
×

[1−
∑

j∈Up
rj

∑
i∈E βi(s)

∑h−1−s
l=0 Lij(s, h− 1, l)

qjD(h−1−l,h)
(1−Hj(h−1−l,h−1))∑

i∈E βi(s)
∑

k∈Up
∑h−1−s
l=0 Lik(s, h− 1, l) qkD(h−1−l,h)

(1−Hk(h−1−l,h−1))

]
}

(22)
Note that we can assume a dependence of the recovery rate on the last n

states visited by the process first of default time τs. We define the n-period
stochastic recovery rate as

ρn(τs) =





1 if s < T < τs∑n
i=1 α

τs

inρ1(τs − i+ 1) if n+ s ≤ τs ≤ T
ρτs(τs) if τs < n+ s

(23)

where ρ1(τs − i + 1) = rj if Z(τs − i) = j and Z(τs) = D, whereas ατs

in

denote the proportion of the n period recovery rate with default time τs that
depends on the one period recovery rate at time τs − i+ 1.

In such case to obtain the credit default swap spread we substitute the
one period recovery rate in the equation (14) with the n-period one obtaining:

U∗
n(s) =

(100[E[vT∧τs−s1{s<τs≤T}]− E[ρn(τs)v
T∧τs−s1{s<τs≤T}]])× (1 − v)

v × (1− E[vT∧τs−s])
.

(24)
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If we choose α such that ατs
1n=1, ατs

in=0 ∀i 6= 1 we obtain U∗
n(s)=U∗

1 (s).
All we need is to compute the unique new component
E[ρn(τs)v

T∧τs−s1{s<τs≤T}].

E[ρn(τs)v
T∧τs−s1{s<τs≤T}] = E[E[ρn(τs)v

T∧τs−s1{s<τs≤T}|τs]] (25)

so we start computing the conditional expectation.

E[ρn(τs)v
(T∧τs)−s1{s<τs≤T}|τs] =

∞∑

h=s+1

ρn(h)v
(T∧h)−sP [τs = h]1{h≤T} =

n+s−1∑

h=s+1

ρn(h)v
h−sP [τs = h] +

T∑

h=n+s

ρn(h)v
h−sP [τs = h] (26)

now we apply the definition (23) and we get in

=

n+s−1∑

h=s+1

ρh(h)v
h−sP [τs = h] +

T∑

h=n+s

n∑

i=1

αhinρ1(h− i+ 1)vh−sP [τs = h]

consequently E[ρn(τs)v
(T∧τs)−s1{s<τs≤T}] =

n+s−1∑

h=s+1

E[ρh(h)]v
h−sP [τs = h] +

T∑

h=n+s

n∑

i=1

αhinE[ρ1(h− i+ 1)]vh−sP [τs = h]

(27)
Now E[ρ1(h− i+ 1)] =

∑
j∈Up rjP [Z(h− i) = j|Z(h) = D] and

E[ρh(h)] =
h∑

i=1

αhihE[ρ1(h− i+1)] =
h∑

i=1

αhih
∑

j∈Up
rjP [Z(h− i) = j|Z(h) = D]

(28)
finally we obtain E[ρn(τs)v

(T∧τs)−s1{s<τs≤T}] =

n+s−1∑

h=s+1

h∑

i=1

αhih
∑

j∈Up
rjP [Z(h− i) = j|Z(h) = D]vh−sP [τs = h]+

+

T∑

h=s+n

n∑

i=1

αhin
∑

j∈Up
rjP [Z(h− i) = j|Z(h) = D]vh−sP [τs = h] (29)

The probabilities P [Z(h − i) = j|Z(h) = D] can be evaluated by the
Bayes formula, in fact ∀h, i ∈ IN such that h− i ≥ s

P [Z(h− i) = j|Z(h) = D] =

∑h−i−s
l=0 P [Z(h)=D|Z(h−i)=j, B(h−i)= l]P [Z(h−i)=j, B(h−i)= l]

∑
k∈Up

∑h−i−s
l=0 P [Z(h)=D|Z(h−i)=k,B(h−i)= l]P [Z(h−i)=k,B(h−i)= l]

=
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∑
i∈E βi(s)

∑h−i−s
l=0 Lij(s, h− i, l)∆jD(h− i, l, h)

∑
i∈E βi(s)

∑
k∈Up

∑h−i−s
l=0 Lik(s, h− i, l)∆kD(h− i, l, h)

. (30)

At this point we substitute (30) in (29) and the obtained (29) in (27).
Finally we insert (27) together with (7) in (24) and we obtain U∗

n(s).
We conclude noting that the evaluation procedure in case of random re-

covery rate doesn’t present problems, in fact we have only to change the
outflow’s definition that in this case is

O(s, t) = 100(1− ρn(τs))v(T∧τs)−t1{t<τs≤T}

which expectation can be evaluated using computations similar as those used
to determine the credit default swap spread corresponding to a random re-
covery rate.
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Abstract. Credit risk problem is one of the most important financial topics in this
period because of the Basel II rules. In 1997 a seminal paper Jarrow Lando and
Turnbull showed that this problem could be approached by means of a Markov chain
tool. Subsequently in many papers it was shown that the Markov approach can
give some problems, more precisely: In some previous papers the authors showed
how it is possible by means of a reliability semi-Markov approach to solve the three
problems. In this paper will be summarized the results obtained by the authors to
give a complete overview of the proposed approach.
Keywords: Credit risk, semi-Markov, reliability.

1 Introduction

Homogeneous semi-Markov processes were defined in the fifties in [Levy,
1954]. Non-homogeneous semi-Markov processes were defined in [Iosifescu
Manu, 1972]. A detailed theoretical analysis of semi-Markov processes was
given in [Howard, 1971]. The importance of the Engineering applications of
this kind of processes is highlighted in this book. As specified in [Howard,
1971] and more recently in [Limnios and Oprisan, 2000] book, one of the most
important applications of semi-Markov processes is in reliability of mechani-
cal systems. Putting the hypothesis that the next transition depends only on
the last one (the future depends only on the present) the problem can be faced
by means of Markov processes. In discrete time Markov chain environment
the time transition is given. But in the reality, the transition between two
states in a mechanical system usually happens after a random duration. This
is the reason why the semi-Markov environment fits better than the Markov
one in reliability problems. Another relevant phenomenon in the time evolu-
tion of a system can be the system age. The introduction of non-homogeneity
gives the possibility to take into account this problem. All the highlighted
aspects can be faced using non-homogeneous semi-Markov models. In the
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paper [Blasi et al., 2003] how it is possible to apply non-homogeneous semi-
Markov processes in reliability problems is described. Credit risk problem is
one of the most important problems that are faced in the financial literature.
Fundamentally it consists in computing the default probability of a firm that
do a debt. The literature on this topic is very wide, but the interested lector
can refer to the [Duffie and Singleton, 2003] book. Big interest in this field is
given to the firms that issue bonds. For the credit risk evaluation there are
international organisations, Fitch, Moodys and Standard & Poors, that give
different ranks to the examined firms. At each firm is given a ”rating” that is
a vote to the ”reliability” on the capacity to reimburse the debt. The rating
level changes in the time and one way to follow the time evolution of ratings
is by means of Markov processes [Jarrow et al., 1997]. In this environment
Markov models are called ”migration models”. Other papers, see for example
[Nickell et al., 2000], followed this approach working mainly on the generation
of transition matrix. In some papers the problem of the unfitting of Markov
process in credit risk environment was outlined, see [Carty and Fons, 1994],
[Nickell et al., 2000]. The problems of non-markovianity that are highlighted
mainly are the following:

i - the duration inside a state. The probability to change rating depends on
the time that a firm remains in the same rating [Carty and Fons, 1994];

ii - the time dependence of the rating evaluation (aging). This means that
in general the rating evaluation depends on the time in which is done, see
[Nickell et al., 2000] The rating evaluation done at time t generally is different
from the one done at time s, if s 6= t;

iii - the dependence of the new rating on the previous ones, not only on the
last evaluated, [Carty and Fons, 1994], [Nickell et al., 2000].

The first problem can be well solved by means of semi-Markov processes
(SMP). In fact in SMP the transition probabilities are function of the waiting
time spent in a state of the system. The second problem can be faced in a
general approach by means of a non-homogeneous environment. The third
effect exists in the downward cases but not in the upward ratings. More
precisely if a firm got a lower rating then has a higher probability that the next
rating will be lower than the preceding one. The first two are automatically
solved applying the non-homogeneous semi-Markov environment. The third
problem is solved increasing the number of states to differentiate the case in
which the system arrives in a state from a lower or a higher rating evaluation.
In a previous article [D’Amico et al., 2003] presented a model based on the
homogeneous semi-Markov processes (HSMP) in a reliability environment.
The duration problem was fully solved for the first time, at authors knowing,
in that paper. The other two credit risk problems were not faced. A second
paper [D’Amico et al., 2004a] presenting a non-homogeneous semi-Markov
process (NHSMP) model takes into accounts the duration and the aging
problem. In a third paper [D’Amico et al., 2004b] also the third problem
was solved. The non-homogeneous semi-Markov reliability model, presented
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together the homogeneous one in [Blasi et al., 2003], will be applied, to solve
the credit risk problem.

This paper will present a summary of the three papers and will expose the
approach that was made to solve the Markov migration problems. The next
part will present a short description of NHSMP. After this the reliability non-
homogeneous semi-Markov model will be shown. In the successive paragraph
the relation between the reliability model and the credit risk problem will be
described. The model enlarges the number of states in this way the downward
problem can be solved.

2 Non-homogeneous semi-Markov processes

In this part the NHSMP will be described; we follow the notation given in
[Janssen and Manca, 2005]. First the stochastic process is defined. In SMP
environment two random variables (r.v.) run together. Jn n ∈ N with state
space I = {1, 2, . . . ,m} represents the state at the n-th transition. Tn n ∈ N
with state space equal to R+ represents the time of the n-th transition,

Jn : Ω → I Tn : Ω → R+.

We suppose that the process (Jn, Tn) is a non-homogeneous markovian
renewal process. The kernel Q = [Qij(s, t)] associated to the process is
defined in the following way:

Qij(s, t) = P[Jn+1 = j, Tn+1 ≤ t|Jn = j, Tn = s]

and it results:

pij(s) = lim
t→∞

Qij(s, t), i, j ∈ I, s, t ∈ R+, s ≤ t

where P(s) = [pij(s)] is the transition matrix of the embedded non-
homogeneous Markov chain in the process. Furthermore it is necessary to
introduce the probability that process will leave the state i from the time s
up to the time t:

Si(s, t) = P[Tn+1 ≤ t|Jn = j, Tn = s]

Obviously it results that:

Si(s, t) =
m∑

j=1

Qij(s, t)

Now it is possible to define the distribution function of the waiting time
in each state i, given that the state successively occupied is known:

Gij(s, t) = P[Tn+1 ≤ t|Jn = j, Jn+1 = j, Tn = s]
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Obviously the related probabilities can be obtained by means of the fol-
lowing formula:

Gij(s, t) =

{
Qij(s, t)/pij(s) if pij(s) 6= 0

1 if pij(s) = 0

The main difference between a continuous time non-homogeneous Markov
process and a NHSMP is in the increasing distribution functions Gij(s, t). In
Markov environment this function has to be a negative exponential function.
Instead in the semi-Markov case the distribution functions Gij(s, t) can be of
any type. If we apply the semi-Markov model in the credit risk environment
we can take into account, by means of the Gij(s, t) the problem given by the
duration of the rating inside the states. Now the NHSMP Z = (Zt, t ∈ R+)
can be defined. It represents, for each waiting time, the state occupied by
the process. The transition probabilities are defined in the following way:

φij(s, t) = P[Zt = j|Zs = i]

They are obtained solving the following evolution equations:

φij(s, t) = δij(1− Si(s, t)) +

m∑

β=1

t∫

s

Q̇iβ(s, ϑ)φβj(ϑ, t)dϑ (1)

where δij represents the Kronecker symbol. The first part of relation (1)

δij(1 − Si(s, t)) (2)

gives the probability that the system doesn’t have transitions up to the time t
given that it was in the state i at time s. The (2) formula in rating migration
case represents the probability that the rating organisation doesn’t give any
new rating evaluation from the time s up to the time t. This part has sense
if and only if i = j. In the second part

m∑

β=1

t∫

s

Q̇iβ(s, ϑ)φβj(ϑ, t)dϑ

Q̇iβ(s, ϑ) is the derivative at time ϑ of Qiβ(s, ϑ) and represents the prob-
ability intensity that the system was at time s in the state i and remained
in this state up to the time ϑ and that it went to the state β just at time
ϑ. After the transition the system will go to the state j following one of the
possible trajectories that go from the state β at the time ϑ to the state j
within the time t. In the credit risk environment it means that from the time
s up the time ϑ the rating company doesn’t give any other evaluation of the
firm; at time ϑ the rating company gave the new rating β at the evaluating
firm. After this the rating will arrive to the state j within the time t following
one of the possible rating trajectories.



954 D’amico et al.

3 Non-homogeneous semi-Markov reliability model

There are a lot of semi-Markov models in reliability theory see for example
[Limnios and Oprisan, 2000]. The non-homogeneous case was presented in
[Blasi et al., 2003]. Let us consider a reliability system S that can be at every
time t in one of the states of I = {1, . . . ,m}. The stochastic process of the
successive states of S is Z = {Z(t), t ≥ 0}. The state set is partitioned into
sets U and D, so that:

I = U ∪D, ∅ = U ∩D, U 6= ∅, U 6= I

The subset U contains all ”good” states in which the system is working
and subset D all ”bad” states in which the system is not working well or
is failed. The classical indicators used in reliability theory are the following
ones:
(i) the non-homogeneous reliability function R giving the probability that the
system was always working from time s to time t:

R(s, t) = P [Z(u) ∈ U : ∀u ∈ (s, t]] (3)

(ii) the point wise non-homogeneous availability function A giving the prob-
ability that the system is working on time t whatever happens on (s, t]:

A(s, t) = P [Z(t) ∈ U ] , (4)

(iii) the non-homogeneous maintainability function M giving the probability
that the system will leave the set D within the time t being in D at time s:

M(s, t) = 1− P [Z(u) ∈ D, ∀u ∈ (s, t]] . (5)

It is shown in [Blasi et al., 2003] that these three probabilities can be
computed in the following way if the process is a non-homogeneous semi-
Markov process of kernel Q.
(i) the point wise availability function Ai given that Zs = i.

Ai(s, t) =
∑

j∈U
φij(s, t) (6)

(ii) the reliability function Ri given that Zs = i. To compute these probabili-
ties all the states of the subset D are changed in absorbing states. Ri(s, t) is
given by solving the evolution equation of HSMP but now with the embedded
Markov chain having:

pij(s) = δij if i ∈ D
The related formula will be:

Ri(s, t) =
∑

j∈U
φrij(s, t) (7)



migration semi-Markov models 955

where φrij(s, t) is the solution of equation (1) with all the states in D that
are absorbing;
(iii) the maintainability function Mi given that Zs = i:
in this case all the states of the subset U are changed in absorbing states.
Mi(s, t) is given by solving the evolution equation of HSMP with the embed-
ded Markov chain having:

pij(s) = δij if i ∈ U.
The related formula will be:

Mi(s, t) =
∑

j∈U
φmij (s, t) (8)

where φmij (s, t) is the solution of equation (1) with all the states in U that
are absorbing.

4 Non-homogeneous semi-Markov reliability credit
risk model

The credit risk problem can be situated in the reliability environment. The
rating process, done by the rating agency, gives a reliability degree of a firm
bond. In the Standard & Poors case there are the 8 different classes of rating
that means to have the following set of states:

I = {AAA, AA, A, BBB, BB, B, CCC, D}
To take into account the downward problem we introduce other 6 states.

The set of the states becomes the following:

I = {AAA, AA,AA - , A,A - , BBB,BBB - , BB,BB - , B,B - , CCC,CCC - , D}

For example the state BBB is divided in BBB and BBB-. The system
will be in the state BBB if it arrived from a lower rating, instead it will be
in the state BBB- if it arrived in the state from a better rating (a downward
transition). It is also possible to suppose that if there is a virtual transition
than if the system is in the BBB- state it will go to the BBB state.

The first 13 states are working states (good states) and the last one is the
only bad state. The two subsets are the following:

U = {AAA, AA,AA - , A,A - , BBB,BBB - , BB,BB - , B,B - , CCC,CCC - }
D = { D}

In this case the maintainability function M doesn’t have sense because
the default state D is absorbing and once that the system went in this state
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it is not possible to leave it. Furthermore the fact that the only bad state is
an absorbing state implies that the availability function A and the reliability
function R correspond. In this case the reliability model is substantially
simplified. In fact to get all the results that are relevant in the credit risk
case it is enough to solve only once the system (2.1). Solving this system we
will obtain the following results:
1) φij(s, t), that represents the probabilities to be in the state j after a
time t starting in the state i at time s. These results take into account the
different probabilities to change state during the permanence of the system in
the same state (duration problem) and the different probabilities to change
state in function of the different time of evaluation (aging problem). The
different probability values given for the two states that are obtained because
of downward problem solve the third Markovian model problem.
2) Ri(s, t) = Ai(s, t) =

∑
j∈U

φij(s, t), that represents the probability that the

system never goes in the default state from the time s up to the time t.
3) 1−Si(s, t), that represents the probability that from the time s up to the
time t no one new rating evaluation was done for the firm.

Before to give another result that can be obtained in a SMP environment,
we have to introduce the concept of the first transition after the time t. More
precisely we suppose that the system at time s was in the state i. We know
that with probability 1 − Si(s, t) the system doesn’t move from the state
i. Under these hypotheses we would know the probability that the next
transition will be to the state j. This probability will be denoted by ϕij(s, t).
That has the following meaning:

ϕij(s, t) = P [Xn+1 = j|Xn = i, Tn+1 > t, Tn = s ] (9)

This probability can be obtained by means of the following formula:

ϕij(s, t) =
pij(s)−Qij(s, t)

1− Si(s, t)
After the definition (9) by means of SMP it is possible to get the following

result:
4) ϕij(s, t) represents the probability to get the rank j at next rating if the
previous state was i and no one rating evaluation was done from the time s
up to the time t. In this way, for example, if the transition to the default
state is possible and if the system doesn’t move from the time s up to the
time t from the state i, we know the probability that in the next transition
the system will go to the default state.

5 Conclusions

This paper summarizes the three theoretical step that the authors did to
improve the so called migration models in the credit risk environment. The
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first step solved the problem of different probability transactions because of
the time duration inside a rating state by means of introduction of SMP in
credit risk environment. The second step, by means of non-homogeneity in-
troduction in the SMP environment, gave the way to consider also the system
time dependence problem. The third step solved the credit risk downward
problem. The three models start from the idea that credit risk problem can
be considered a special case of reliability problem and this idea allows the
application of some non-homogeneous semi-Markov reliability results in the
credit risk environment. The downward problem was solved enlarging the
state number. Authors in the next future hope to be able to get data from
rating companies. In this case they will apply to real data their credit risk
models.
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Abstract. Semi-Markov reward processes are a very important tool for the solu-
tion of insurance problems. In disability problems can assume great relevance the
date of the disability accident. In fact the mortality probability of a disabled person
of a given age is higher respect the one of a person of the same age that is healthy.
But the difference decreases with the running of the time after the instant of the
disability. By means of backward semi-Markov processes it is possible to take in
account the duration of the disability for an insured person. In this paper is shown
for the first time, at authors’ knowing, how to apply backward semi-Markov reward
processes in insurance environment. An application will be shown.
Keywords: backward semi-Markov processes, reward processes, disability insur-
ance.

1 Introduction

Semi-Markov processes was first defined by [Levy, 1954] in the fifties. At
the beginning their application was in engineering, mainly where the appli-
cation were linked to ageing. The use of so called multiple state models have
long been used in the actuarial world for dealing with disability and illness
among other things, see for example the book by [Haberman and Pitacco,
1999]. These models can be described by the use of semi-Markov processes
and semi-Markov reward processes. An insurance contract ensures the holder
benefits in the future from some random event(s) occurring at some random
moment(s). The holder of the insurance contract pays a premium for the
contract. Denote the discounted cash flow that occurs between the counter
parties as the discounted accumulated reward where both the premiums and
benefits are considered to be rewards. When developing an insurance con-
tract between the writer and receiver the following questions must be asked.
How shall the reward structure of the contract be determined? The fee can
depend on the individuals exposure to becoming disabled in different states,
and the benefits can be of two types, either instant rewards associated with
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transition between states or permanence rewards associated with maintain-
ing in a state. In time evolution of insurance problems it is necessary to
consider two different kind of randomness. One is originated by the accu-
mulation during the time of the premiums and benefits paid or received (the
financial evolution); the other is given by the time of the state change of the
insured person, usually in insurance problem the transition among the states
are effected at a random time. A semi-Markov environment can naturally
take into account of both the two random aspects. This property was out-
lined for example in [Janssen and Manca, 2003] and [Janssen and Manca,
2004]. Another problem in insurance mainly in disability is the fact that
the probability to change state is function of the distance from the moment
of the disability. For example the probability to die in a disabled person of
a given age is higher respect the one of a person of the same age that is
healthy. But the difference decreases with the running of the time. In this
paper the authors will consider also this duration effect using a bacward ho-
mogeneous semi-Markov reward process. By means of semi-Markov reward
both financial and transition time randomness will be considered. By means
of the backward environment also the duration phenomenon can be taken
into account. It is to remark that, at authors’ knowing, it is the first time
that this last problem is faced by means of SMP in insurance field.

2 Homogenous Model.

Given the probability space (Ω,F, P ) consider a homogenous Markov renewal
process (Xn, Tn), T0 ≤ T1 ≤ T2 ≤ ... . Let the stochastic process Xn, n ∈ N
have state space E = {1, 2, ...,m} representing the state at the n-th tran-
sition. Let Tn represent the random time of the n-th transition with state
space N. For the combined process (Xn, Tn) define Qij(t), bij(t), Si(t) as,

Qij(t) = P (Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i) (1)

bij(t) = P (Xn+1 = j, Tn+1 − Tn = t|Xn = i) (2)

Si(t) = P (Tn+1 − Tn ≤ t|Xn = i). (3)

We allow for Qii(t) 6= 0, t = 1, 2, ..., i.e., artificial jumps from state i to
itself, this is due to that sometimes this possibility makes sense in insurance
applications. Impose Qij(0) = 0 for all i, j ∈ E, i.e., no instantaneously
jumps in our process. Obviously,

Si(t) =
∑

j

Qij(t) (4)

and

bij(t) = Qij(t)−Qij(t− 1). (5)
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It is well known that,

pij = lim
t→∞

Qij(t) i, j ∈ E

where P = [pij ] is the transition probability of the embedded Markov chain.
The conditional distribution functions for waiting time in each state i is given
the state subsequently is j is given by,

Gij(t) = P (Tn+1 − Tn ≤ t|Xn = i,Xn+1 = j) =

{
Qij(t)
pij

, if pij 6= 0,

1, if pij = 0.

Define κ(t) in the following way,

κ(t) = t−max
Tn≤t

{Tn} . (6)

κ(t) describes the time already spent in the current state at time t.

3 Homogenous Rewards

The notation of rewards is given by;
ψi, ψi(κ(t)), ψi(κ(t), t) denotes the rewards that are given for the perma-

nence in the i-th state. The first reward doesn’t change with the time and
the future transition. The second changes with the time spent in the state.
The third changes with the time spent in the state and is function of κ(t)
and t. They represent the flows of annuity that is paid during the presence
in state i.

γij , γij(κ(t)), γij(κ(t), t) denote the rewards that are given for the tran-
sition from the i-th state to the j-th one. The distinctions among the three
impulse rewards is the same given previuosly for the permanence rewards.

We will in this paper focus on constant rewards but our result can be
extended into the other cases on the expense of more notation and indexes.

Let e−tδ denote the discount factor for t periods with common fixed inten-
sity of interest rate δ. Let ξi,u(s, t), s ≤ t denote the accumulated discounted
reward from s excluding s up to and including t given that the at time s the
process is at state i ∈ E and the previous jump accursed u moments ago.
Here we apply the convention that ξi,u(t, t) = 0 for all t.

Theorem 1 The reward process ξi,u(s, t) is homogenous

ξi,u(s, t)
d
= ξi,u(0, t− s) ∀i, u, s, t. (7)

if the underlying process is a homogenous semi-Markov process and if the
rewards only depends on κ(t).
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Introduce Ti,u with the following distribution,

P (Ti,u > t) =
1− Si(t+ u)

1− Si(u)
(8)

and

P (Ti,u = s,Xi,u = j) =
bij(u+ s)

1 − Si(u)
. (9)

Then Ti,u describes the time to the next jump given that the process
already have visited the state i for u units of time and let Xi,u denote the
corresponding state we end up in after the jump.

Let us assume u = 0, and first find a recursive relation for ξi,0(0, t). We
will have to consider two cases, if no jump occurs before moment t, or if at
least one jump occurs between moment 0 up to moment t. If we introduce
the indicator variables for these events we fill find the following relationship
for ξi,0(0, t),

ξi,0(0, t)
d
= χ(Ti,0 > t)

t∑

s=1

ψie
−δs

+
∑

j

t∑

s=1

(χ(Ti,0 = s,Xi,0 = j)(e−δsγij(s) +

s∑

u=1

ψi(s)e
−δu)) (10)

+
∑

j

t∑

s=1

(χ(Ti,0 = s,Xi,0 = j)e−δsξj,0(0, t− s)) i ∈ E, t = 1, 2, ...

where ξj,0(0, t − s) are independent of indicators χ(Ti,0 = s,Xi,0 = j) and
χ(Ti,0 > t). The first term represents the discounted reward we receive at
moment u to jump from state i to state j, the second term is due to the fact
that the process restarts and is Markov at the moment of jump together with
the assumption of homogeneities. The last term consists of the rewards we
receive for the presence in state i between the moment 0 and u. This defines
a closed system of equations which recursively can be solved.

To simplify the expression we can introduce some notation,

ai(t) =
t∑

s=1

ψi(s)e
−δs (11)

ãij(t) = ai(t) + e−δtγij(t). (12)

Here ai(t) corresponds to the discounted accumulated reward for persistence
in state i for t moments of time and ãij(t) the discounted accumulated reward
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for the persistence in state i for t moments of time plus the discounted instant
reward for transition from state i to j at time t.

Then,

ξi,0(0, t)
d
= χ(Ti,0 > t)ai(t) +

∑

j

t∑

s=1

χ(Ti,0 = s,Xi,0 = j)ãij(s)

+
∑

j

t∑

s=1

(χ(Ti,0 = s,Xi,0 = j)e−δsξj,0(0, t− s) i ∈ E, t = 1, 2, ...

In the case u 6= 0, i.e., if we are interested in finding the accumulated reward
toward a moment in time not associated with a jump;

ξi,u(0, t)
d
= χ(Ti,u > t)ai(t) +

∑

j

t∑

s=1

χ(Ti,u = s,Xi,u = j)ãij(s)

+
∑

j

t∑

s=1

χ(Ti,u = s,Xi,u = j)e−δsξj,0(0, t− s) i ∈ E, t = 1, 2, ...

The only difference from the previous expressions is that we have to remember
that our first jump-time depends on u, i.e., our surjeon time in the initial
state is at least u+ 1.

The first moment can now be calculated using these relationships, first
consider the case u = 0,

E[ξi,0(0, t)] = E[χ(Ti,0 > t)]ai(t) +
∑

j

t∑

s=1

E[χ(Ti,0 = s,Xi,0 = j)]ãij(s)

+
∑

j

t∑

s=1

E[χ(Ti,0 = s,Xi,u = j)]E[ξj,0(0, t− s)]e−δs

= (1− Si(t))ai(t) +
∑

j

t∑

s=1

bij(s)ãij(s) (13)

+
∑

j

t∑

s=1

bij(s)E[ξj,0(0, t− s)]e−δs i ∈ E, t = 1, 2, ...
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which follows from independence mentioned earlier. This set of equations
can recursively be solved. Let Vi(t) = E[ξi,0(0, t)], i ∈ E, t = 1, 2, ... then

Vi(0) = 0 ∀i ∈ E
Vi(1) = (1− Si(1))ai(1) +

∑

j

bij(1)ãij(1) ∀i ∈ E

Vi(2) = (1− Si(2))ai(2) +
∑

j

bij(1)ãij(1) +
∑

j

bij(2)ãij(2)

+
∑

j

e−δbij(1)Vj(1) i ∈ E. (14)

And in general,

Vi(t) = (1 − Si(t))ai(t) +
∑

j

t∑

s=1

bij(s)ãij(s) +
∑

j

t∑

s=1

e−δsbij(s)Vj(t− s)

∀i ∈ E

The values of Si(t), ai(t), ãij(t) are known and the only unknown pa-
rameters are Vi(t). Above we see how we can recursively determine Vi(t) by
recursively solving Vj(1), Vj(2), ..., Vj(t− 1) for all j ∈ E.

And in the general case with u 6= 0,

E[ξi,u(0, t)] = E[χ(Ti,u > t)]ai(t) +
∑

j

t∑

s=1

E[χ(Ti,u = s,Xi,u = j)]ãij(s)

+
∑

j

t∑

s=1

E[χ(Ti,u = s,Xi,u = j)]E[ξj,0(0, t− s)]e−δs

=
1− Si(t+ u)

1− Si(u)
ai(t) +

∑

j

t∑

s=1

bij(u+ s)

1− Si(u)
ãij(s) (15)

+
∑

j

t∑

s=1

bij(u + s)

1 − Si(u)
E[ξj,0(0, t− s)]e−δs i ∈ E, t = 1, 2, ...

Note here that its enough to determine all E[ξj,0(0, s)] for all j ∈ E, s =
0, 1, ..., t− 1 to determine E[ξi,u(0, t)]. We are thereby back to our basic case
u = 0.

4 Disability

In the papers by [Janssen and Manca, 2003]and [Janssen et al., 2004] it
is shown how to apply continuous time semi-Markov reward processes in
multiple life insurance. In the paper by Blasi et al (2004), a real case study
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using real disability data is given. We will extend the example given in this
paper using the backward homogeneous semi-Markov reward process that
can take into account the duration of disability.

The model is a 5-state model. The considered states are the following:

states disability degree reward
1 [0, .1) 1000
2 [.1, .3) 1500
3 [.3, .5) 2000
4 [.5, .7) 2500
5 [.7, 1] 3000

The data gives the disability history of 840 persons that had silicosis
problems and that live in Campania, a region in Italy. The reward is given
to construct the example, it represents the money amount that is paid for each
time period to the disable in function of its degree of illness. The transition
occurs after a doctor visit that can be seen as the check to decide in which
state the disable person is in. This gives naturally an example where virtual
transitions are possible.

To be able to apply the technique developed in this paper for homogenous
semi-Markov processes, we must first construct the embedded Markov-chain.
The transition matrix is constructed from real data and is reported in the
following table.

0-10 10-30 30-50 50-70 70-100
0-10 0 1 0 0 0
10-30 0 0.811 0.180 0.005 0.004
30-50 0 0.017 0.75 0.21 0.02
50-70 0 0.023 0.03 0.72 0.22
70-100 0 0 0 0 1

Next step is to construct the matrix valued waiting time distribution G(t).

To show the difference due to the introduction of the backward process
the results with u = 0 (that means that the person entered in the state i
when we begin the study of the system) and with u = 2 are reported.
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s 0-10 10-30 30-50 50-70 70-100
1 970,87 1456,31 1941,74 2427,18 2912,62
2 1913,47 2876,75 3831,08 4780,34 5740,40
3 2993,34 4278,51 5684,64 7081,26 8485,83
4 4283,87 5657,51 7510,09 9330,86 11151,29
5 5547,74 7015,79 9310,84 11536,94 13739,12
6 6792,15 8352,65 11078,77 13684,65 16251,57
7 8015,84 9667,20 12817,61 15778,89 18690,84
8 9219,65 10959,30 14522,48 17822,21 21059,07
9 10403,01 12229,95 16193,96 19816,49 23358,32
10 11565,50 13479,60 17830,89 21759,34 25590,60

mean total reward with u = 0

s 0-10 10-30 30-50 50-70 70-100
1 970,87 1456,31 1941,74 2427,18 2912,62
2 2346,91 2904,34 3880,52 4827,55 5740,40
3 3688,40 4340,42 5812,47 7207,04 8485,83
4 5009,97 5759,51 7714,30 9527,12 11151,29
5 6308,27 7159,74 9590,50 11792,99 13739,12
6 6792,15 8352,65 11078,77 13684,65 16251,57
7 8840,21 9892,87 13237,77 16171,26 18690,84
8 10072,70 11227,54 15006,35 18279,73 21059,07

mean total reward with u = 2
Few words to describe the results. We present an example only to show

that taking into account the permanence into the state before the beginning
of the study of the system changes the results. We did not change the tran-
sition probabilities changing the backward variable u. The different dead
probability means different transition probability. But also without changing
the probabilities the results were different. It is only to observe that the last
state is absorbing and from (15) it follows that the results do not change.
Furthermore the payments of the first year are always the same because they
are equal to the corresponding first discounted rewards as it was proved in
[Janssen and Manca, 2005].

5 Conclusions

In this paper a first step for the application of the backward semi-Markov
reward in insurance field was done. In future works the authors would gen-
eralize this approach in non homogeneous environment. Reward processes
represent the first moment of the total revenues that are given in a stochastic
financial operation. The author would also find models and algorithms useful
to compute the higher moments.
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Abstract. The Markov and semi-Markov reward processes are a very powerful
tool. They can be applied in many different fields, like mechanical systems, evalua-
tion of computer systems etc. But in authors’ opinion the most fruitful and natural
application environment of these tools is the insurance field. In the paper will be
given the definition of stochastic annuity and of its generalization their strict re-
lation to the homogeneous and non-homogeneous semi-Markov reward processes.
At last it will be shown how is natural to apply these rewards processes in the
insurance environment.
Keywords: semi-Markov processes, Markov processes, stochastic annuities.

1 Introduction

Homogeneous semi-Markov processes (HSMP) were defined in the fifties. At
beginning their applications were in engineering field, mainly in problem of re-
liability and maintenance see for example [Howard, 1971]. Non-homogeneous
semi-Markov processes were defined in [Iosifescu Manu, 1972]. Applications
of the semi-Markov processes were presented in finance and insurance see
for example in [Janssen, 1966], [CMIR12, 1991]. Some of these applications
were done attaching a reward structure to the process. This structure can
be thought as a random variable associated with the state occupancies and
transitions [Howard, 1971]. Non-homogeneous semi Markov reward processes
were defined in [De Dominicis et al., 1986]. The non-homogeneity results of
great relevance in actuarial field, because in this way it is possible to take
into account the different behaviour in function of the age. A stochastic
approach to the annuity was given in [Wolthuis, 2003]. In this book the
continuous time non-homogeneous Markov processes were used to generalize
the annuity concept. This approach did not use the reward environment.
The non-homogeneous Markov model was used to solve the multiple state
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insurance problems see [Wolthuis, 2003]. The aim of this paper is to inves-
tigate the strict correlation existing between insurance models and reward
processes in a Markov or semi-Markov environment. In this light the finan-
cial concepts of stochastic annuities and generalized stochastic annuities are
given. It is shown how these concepts correspond from financial view point
to the reward processes. For an applicative intent, the paper is in discrete
time environment. The paper begins introducing the semi-Markov processes
both in homogeneous and non-homogeneous case. In section 3 the Discrete
Time Homogeneous and Non-Homogeneous Markov and Semi-Markov Re-
Ward Processes are presented. The subsequent section defines the concepts
of stochastic annuity and of generalized stochastic annuity. In this part it is
also explained the strict connection between the reward processes presented
before and the annuities. In the last section the relations between multiple
states insurance models and stochastic annuity are given.

2 Discrete time homogeneous and non-homogeneous
semi-Markov processes.

In this part will be shortly described both the DTHSMP and DTNHSMP.
Let E = {1, 2, . . . ,m} be the set of states of our system, Jn ∈ E the

random variable (r.v.) representing the state at the n th transition and
Tn ∈ N an other r.v. with set of states equal to N where Tn represents the
time of the n th transition. It results:

Jn : Ω → E Tn : Ω → N

The process (Jn, Tn) is a homogeneous (non-homogeneous) markovian
renewal process if the kernel Q = [Qij(t)](Q = [Qij(s, t)]]) associated to the
process is defined in the following way:

Qij(t) = P [Jn+1 = j, Tn+1 − Tn ≤ t|Jn = i]
(Qij(s, t) = P [Jn+1 = j, Tn+1 ≤ t|Jn = i, Tn = s])

Furthermore it is necessary to introduce the probability that the process
will leave the state i in a time t:

Hi(t) =

m∑

j=1

Qij(t)


Hi(s, t) =

m∑

j=1

Qij(s, t)




Furthermore the probabilities that there is a transtion at time t are con-
sidered:

bij(t) =

{
Qij(t) = 0 if t = 0

Qij(t)−Qij(t− 1) if t > 0
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(
bij(s, t) =

{
Qij(s, t) = 0 if t ≤ s

Qij(s, t)−Qij(s, t− 1) if t > s

)

Now it is possible to define the probability distribution of the waiting
time in each state i, given that the state successively occupied is known:

Fij(t) = P [Tn+1 − Tn ≤ t|Jn = i, Jn+1 = j]
(Fij(s, t) = P [Tn+1 ≤ t|Jn = i, Jn+1 = j, Tn = s]).

Now the DTHSMP (DTNHSMP) Z = (Zt, t ∈ N) can be defined. It
represents, for each waiting time, the state occupied by the process. The
transition probabilities are defined in the following way:

φij(t) = P [Zt = j|Z0 = i]

(φij(s, t) = P [Zt = j|Zs = i]) .

They are obtained solving the following evolution equations:

φij(t) = δij(1−Hi(t)) +

m∑

β=1

t∑

ϑ=1

biβ(ϑ)φβj(t− ϑ)


φij(s, t) = δij(1−Hi(s, t)) +

m∑

β=1

t∑

ϑ=1

biβ(s, ϑ)φβj(ϑ, t)




where δij represents the Kronecker symbol.

3 The discrete time homogeneous and non-
homogeneous Markov and semi-Markov reward
processes

Now a reward structure will be introduced, this structure is connected with
the Z process. The reward process, both in Markov and semi-Markov cases,
can be considered a class of stochastic processes in which, depending on the
hypotheses, the evolution equation varies. In non-homogeneous case the re-
wards can depend also on the time of entrance in the state. Furthermore
the non-homogeneity can involve the interest law in the sense that the in-
terest rate can depend on the time of beginning of the operation and the
time in which the operation ends (non-homogeneous time interest rate laws).
This fact implies that in the non-homogeneous environment should be con-
sidered more cases than in homogeneous one. There are permanence rewards
and transition rewards. In the literature they are also called respectively
rate rewards and impulse rewards;; the first represents the reward given for
the permanence in a state and the second the one paid because of a tran-
sition. The reward processes can be discounted or non-discounted. We are
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dealing with financial phenomena and we will present only the discounted
cases. As already we told, there many different evolution equations (in non-
homogeneous case more than three hundreds) but we will present the general
cases. We will distinguish only between the immediate and the due cases. In
the first the instalment is paid at the end of each period in the second at the
beginning. This distinction seems to be trivial but from computational point
of view it assumes great relevance. This time we present before the Markov
relation that in the immediate case has the following structure:

V
(n)
i = V

(n−1)
i + ν(n)

·
m∑

k=1

p
(n−1)
ik


(1 − swpe)ψk(n) +

m∑

j=1

pkj (γkj(n) + swpe · ψkj(n))


,




V
(n)
i (s) = V

(n−1)
i (s) + ν(s, s+ n)

m∑

k=1

p
(n−1)
ik (s)· ((1− swpe)ψk(s, s+ n)

+

m∑

j=1

pkj(s+ n) (γkj(s, s+ n) + swpe · ψkj(s, s+ n))),




where V
(n)
i

(
V

(n)
i (s)

)
represents the mean present value of all the rewards

paid from 0 to n ( s to s+n) and ν(s) (ν(s, s+ n)) the corresponding discount
factor. Furthermore swpe represents a variable that will have value 1 if the
permanence rewards depend on the next transition and 0 if they do not
depend on the transition. In Markov due case we have the following relation:

V̈
(n)
i = V̈

(n−1)
i + ν(n)

m∑

k=1

p
(n−1)
ik

m∑

j=1

pkjγkj(n)+

ν(n− 1)


(1− swpe)

m∑

k=1

p
(n−1)
ik ψk(n− 1) + swpe

m∑

k=1

p
(n−2)
ik

m∑

j=1

pkjψkj(n− 1)







V̈
(n)
i = V̈

(n−1)
i + ν(s, s+ n)

m∑

k=1

p
(n−1)
ik

m∑

j=1

pkjγkj(s, s+ n) + ν(s, s+ n− 1)

·


(1− swpe)

m∑

k=1

p
(n−1)
ik ψk(s, s+ n− 1) + swpe

m∑

k=1

p
(n−2)
ik

m∑

j=1

pkjψkj(s, s+ n− 1)







In the semi-Markov immediate case the relation is the following:
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Vi(t) = (1− swpe)(1 −Hi(t))

t∑

τ=1

ψi(τ)ν(τ) + swpe(1−Hi(t))

m∑

k=1

ϕik(t)

t∑

τ=1

ψik(τ)ν(τ)

+
m∑

k=1

t∑

ϑ=1

bik(ϑ)
ϑ∑

τ=1

ψik(τ)ν(τ)+
m∑

k=1

t∑

ϑ=1

bik(ϑ)γik(ϑ)ν (ϑ) +
m∑

k=1

t∑

ϑ=1

bik(ϑ)Vk(t− ϑ)ν (ϑ)




Vi(s, t) = (1− swpe)(1 −Hi(s, t))

t∑

τ=s+1

ψi(s, τ)ν(s, τ)

+swpe(1−Hi(s, t))
m∑

k=1

ϕik(s, t)
t∑

τ=s+1

ψik(s, τ)ν(s, τ)

+

m∑

k=1

t∑

ϑ=s+1

bik(s, ϑ)

ϑ∑

τ=s+1

ψik(s, τ)ν(s, τ)

+
m∑

k=1

t∑

ϑ=s+1

bik(s, ϑ)γik(s, ϑ)ν (s, ϑ) +
m∑

k=1

t∑

ϑ=s+1

bik(s, ϑ)Vk(ϑ, t)ν (s, ϑ)




where:

ϕij(t) =
pij −Qij(t)
1−Hi(t)

(
ϕij(s, t) =

pij(s)−Qij(s, t)
1−Hi(s, t)

)

In the due case we have:

V̈i(t) = (1− swpe)(1 −Hi(t))
t−1∑

τ=0

ψi(τ)ν(τ) + swpe(1−Hi(t))
m∑

k=1

t−1∑

τ=0

ϕik(t)ψik(τ)ν(τ)

+

m∑

k=1

t∑

ϑ=1

bik(ϑ)

ϑ−1∑

τ=0

ψik(τ)ν(τ) +

m∑

k=1

t∑

ϑ=1

ν(ϑ)bik(ϑ)γik(ϑ) +

m∑

k=1

t∑

ϑ=1

ν(ϑ− 1)bik(ϑ)V̈k(t− ϑ)




V̈i(s, t) =

m∑

k=1

t∑

ϑ=s+1

bik(s, ϑ)

ϑ−1∑

τ=s

ψik(s, τ)ν(s, τ)

+

m∑

k=1

t∑

ϑ=s+1

ν(s, ϑ)bik(s, ϑ)γik(s, ϑ) +

m∑

k=1

t∑

ϑ=s+1

ν(s, ϑ− 1)bik(s, ϑ)V̈k(ϑ, t)

+(1− swpe)(1 −Hi(s, t))

t−1∑

τ=s

ψi(s, τ)ν(s, τ)

+swpe(1−Hi(s, t))
m∑

k=1

t−1∑

τ=s

ϕik(s, t)ψik(s, τ)ν(s, τ).
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4 Stochastic annuities

Definition 1 Let:

E = {1, 2, . . . ,m}
be the states of a system and A, B two persons. Furthermore, let

S = {S1, S2, . . . , Sm} , Si ∈ R

be sums. The sums S represent the instalments of the annuity. The instal-
ment Si will be paid or received from it A to it B if the system is in the
state i. The instalment will be given for each period of the contractual time
horizon. We say that this financial operation is a discrete time homogeneous
constant stochastic annuity if:

i) the transitions among the states are governed by a homogeneous discrete
time Markov Chain P = [pij ]

ii) when there is a transition from i to j it is possible that is paid or
received a sum γij.

The sums γij are named transition payments.

- The annuity will be respectively immediate if the payments of the ψi
are scheduled at the end of the period and due at the beginning.

- The annuity is non-homogenous if the Markov chain is non-homogeneous.
In this case it results P(t) = [pij(t)]

- The annuity can be variable if the instalments and/or the transition
payments change during the time horizon. In the non-homogeneous case the
sums paid or received can vary also in function of the starting time of the
financial operation.

It is useful to report the following

Remark 1 If there is a single state then the discrete time stochastic annuity
corresponds to the usual concept of discrete time annuity.

Remark 2 The concepts of homogeneous and non-homogeneous discrete
time stochastic annuity correspond respectively to the ones of discrete time
homogeneous and non-homogeneous Markov reward processes.

Definition 2 Under the same condition of Definition 1 we have the gen-
eralized case if the statement i) becomes:

i’) the transitions among the states are governed by a homogeneous dis-
crete time semi-Markov Chain with kernel Q(t) = [Qij(t)]

- The generalized stochastic annuity is non-homogenous if the semi-
Markov chain is non-homogeneous, and the kernel becomes Q(s, t) =
[Qij(s, t)].
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Remark 3 The concepts of homogeneous and non-homogeneous discrete
time generalized stochastic annuity correspond respectively to the ones of
discrete time homogeneous and non-homogeneous semi-Markov reward pro-
cesses.

5 Multiple state insurance models and discrete time
Markov and semi-Markov reward processes

The definition of multiple state insurance models corresponds with the def-
inition of graph see [Haberman and Pitacco, 1999]. A multiple state model
corresponds with a graph that describes the transitions among the states of
the considered problem. The transition matrix describes the multiple state
insurance models in the homogeneous case. In non homogeneous case a se-
quence of transition matrices describes the multiple state model. Premiums
and benefits can be considered as rewards. The evolution of a general multiple
state insurance model could be studied by means of Markov or semi-Markov
models under the property that future is function only of the present. As
well known, in discrete time the Markov process has the property that the
time interval between two subsequent transitions is always the same. In the
semi-Markov case the time between two transitions is a random variable.
Some times an insurance contract can be studied well by means of a Markov
process, some times the Markov environment is necessary because the tran-
sition are scheduled at each period (there is no randomness in the transition
times), i.e. motorcar insurance. But in general in insurance problems the
semi-Markov environment fits better than Markov one. In fact in the most
part of insurance contracts the time of transition is stochastic. It is clear that
in this light a multiple state insurance problem should be dealt in a better way
by semi-Markov models. The reward processes gives the possibility to take
into account directly the benefits and premiums that are considered in the
multiple state models. Furthermore, usually, the insurance models are non-
homogeneous respect the age of the insured person. It could be possible to
use continuous time semi-Markov processes see [CMIR12, 1991] to construct
multiple state insurance models. The problem in this case is that the solution
of evolution equation is a very difficult task and that the analytical solution,
excluding few particular cases not useful in the real problems, is impossible
to find. The way could be the numerical solution of the evolution equation.
But as it was shown in [Janssen and Manca, 2001], the numerical discretiza-
tion corresponds to the discrete time processes. Summarizing we think that
the best way to solve the multiple state insurance problem under Markov
hypotheses is given by the application of DTNHSMRWP. In some cases the
Markov environment suffices or it is necessary. Usually the problem should
be faced in non-homogeneous environment. To construct non-homogeneous
Markov or semi-Markov chains it is necessary to have huge amount of data
that some times are not available, in these cases homogeneous environment
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should be used. Now considering what we state in the previous section we can
affirm that each multiple state insurance model can be considered a stochas-
tic or a generalized stochastic annuity depending on the insurance contract
to be modelled. This statement confirms the fact that insurance problems
should be considered as a generalization of financial problems in which the
stochastic aspects assume great relevance.

6 Conclusions

In the paper the description of discrete time homogeneous and non-
homogeneous semi Markov processes was given. After the concepts of
Markov and semi-Markov reward processes were presented. The definitions
of stochastic annuity and generalized stochastic annuity have been presented.
The strict relation between the annuities and the reward processes was out-
lined.

All the paper moved in a discrete time approach because the applications
are more suitable in this environment.

The paper should be seen as a theoretic step of these topics, for this
reason there are no applications. The applications were presented in some
less general paper see [Janssen and Manca, 2004]. In a near future the authors
hope to study in depth the applicative aspects of the concepts given in this
paper.
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Abstract. The problem of estimating the distribution of a lifetime when data
may be left or right censored is considered. Two models are introduced and the
corresponding product-limit estimators are derived. Strong uniform convergence
and asymptotic normality are proved for the product-limit estimators on the whole
range of the observations. A bootstrap procedure that can be applied to confidence
intervals construction is proposed.
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1 Introduction

A great deal of recent attention in survival analysis has focused on estimating
the survivor distributions in the presence of various and complex censoring
mechanisms. The goal of this paper is to analyze simple models for lifetime
data that may be left or right censored. Typically, a lifetime T is left or right
censored if, instead of observing T we observe a finite nonnegative random
variable Y , and a discrete random variable with values 0, 1 or 2. By definition,
when A = 0, Y = T, when A = 1, Y < T and, when A = 2, Y > T. Models
for left or right censored data were proposed by [Turnbull, 1974], [Sampath
and Chandra, 1990] and [Huang, 1999]. See also [Gu and Zhang, 1993], [Kim,
1994].

Assume that the sample consists of n independent copies of (Y,A) and
let FT be the distribution of the lifetime of interest T . Using the plug-in
(or substitution) principle, the nonparametric estimation of FT is straight
as soon as FT can be expressed as an explicit function of the distribution
of (Y,A). The existence of such a function requires a precise description of
the censoring mechanism that is generally achieved by introducing ‘latent’
variables and by making assumptions on their distributions. In this paper,
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two latent models allowing for explicit inversion formula, that is closed-form
function relating FT to the distribution of (Y,A), are proposed.

In some sense, our first latent model lies between the classical right-
censorship model and the current-status data model. It may be applied to the
following framework. Consider a study where T the age at onset for a disease
is analyzed. The individuals are examined only one time and they belong
to one of the following categories: (i) evidence of the disease is present and
the age at onset is known (from medical records, interviews with the patient
or family members, ...); (ii) the disease is diagnosed but the age at onset is
unknown or the accuracy of the information about this is questionable; and
(iii) the disease is not diagnosed at the examination time. Let C denote the
age of the individual at the examination time. In the first case the exact
failure time T (age at onset) is observed, that is Y = T . In case (ii) the fail-
ure time T is left-censored by C and thus Y = C, A = 2. Finally, the onset
time T is right-censored by C for the individuals who have not yet developed
the disease; in this case Y = C, A = 1. If no observation as in (ii) occurs,
we are in the classical right-censorship framework, while if no uncensored
observation is recorded we have current-status data. Our first latent model
can be applied, for instance, with the data sets analyzed by [Turnbull and
Weiss, 1978].

The second latent model proposed is closely related to the first one. It
lies between the left-censorship model and the current-status data model.
Consider the example of a reliability experiment where the failure time of a
type of device is analyzed. A sample of devices is considered and a single in-
spection for each device in the sample is undertaken. Some of them already
failed without knowing when (left censored observations). To increase the
precision of the estimates, a proportion of the devices still working is selected
randomly and followed until failure (uncensored observations). For the re-
maining working devices the failure time is right censored by the inspection
time.

Let us point out that, without any model assumption, given a distribu-
tion for the observed variables (Y,A) with Y ≥ 0 and A ∈ {0, 1, 2}, we can
always apply our two inversion formulae. In this way we build two pseudo-
true distribution functions of the lifetime of interest which are functionals
of the observed distribution. If the experiment under observation is com-
patible with the hypothesis of one of our latent models, the true FT can be
exactly recovered from the observed distribution. Otherwise, we can only
approximate the true lifetime distribution.

The paper is organized as follows. Section 2 introduces our two latent
models through the equations relating the distribution of the observations
to those of the latent variables. Solving these equations for FT we deduce
the inversion formulae. The product-limit estimators are obtained by apply-
ing the inversion formulae to the empirical distribution. Section 2 is ended
with some remarks and comments on related models. Section 3 contains the
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asymptotic results for the first latent model (similar arguments apply for the
second model). We prove strong uniform convergence for the product-limit
estimator on the whole range of the observations. Our proof extends and
simplifies the results of [Stute and Wang, 1994] and [Gill, 1994] provided in
the case of the Kaplan-Meier estimator. Next, the asymptotic normality of
our product-limit estimator is obtained. The variance of the limit Gaussian
process being complicated, a bootstrap procedure for which the asymptotic
validity is a direct consequence of the delta-method is proposed.

2 The latent models

2.1 Model 1

The survival time of interest is T (e.g., the age at onset). Let C be a censoring
time (e.g., the age of the individual at the examination time) and ∆ be a
Bernoulli random variable. Assume that the latent variables T, C and ∆
are independent. The observations are independent copies of the variables
(Y,A), with Y ≥ 0 and A ∈ {0, 1, 2}. These variables are defined as

Y = min(T,C) + (1 −∆)max(C − T, 0) = C +∆min(T − C, 0)

and A = 2(1−∆)1{T≤C} +1{C<T}, where 1A denotes the indicator function
of the set A. With this censoring mechanism the lifetime T is observed, right
censored or left censored. In view of the definitions of Y and A, note that if
∆ is constant and equal to one (resp. zero), we obtain right censored (resp.
current status ) data.

Let FT and FC denote the distributions of T and C, respectively. Let
p = P (∆ = 1) . Define the observed subdistributions of Y as

Hk (B) = P (Y ∈ B, A = k) , k = 0, 1, 2, (1)

for any B Borel subset of [0,∞]. As usually in survival analysis, the censoring
mechanism defines a map Φ between the distributions of the latent variables
and the observed distributions. For the censoring mechanism we consider, the
relationship (H0, H1, H2) = Φ (FT , FC , p) between the subdistributions of Y
and the distributions of the latent variables T , C and ∆ is the following:




H0(dt) = pFC ([t,∞])FT (dt)
H1(dt) = FT ((t,∞])FC(dt)
H2(dt) = (1− p)FT ([0, t])FC(dt)

. (2)

Remark that when p = 1 (resp. p = 0) the equations (2) boil down to the
equations of the classical independent right-censoring (resp. current status)
model.

By plug-in applied with the empirical distribution, the nonparametric
estimation of the distribution of T is straight as soon as the map Φ is invertible
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and FT can be written as an explicit function of the observed subdistributions
Hk, k = 0, 1, 2. The model considered allows us an explicit inversion formula
for FT . In order to derive this inversion formula, integrate the first and the
second equation in (2) on [t,∞] and deduce

H0([t,∞]) + pH1([t,∞]) = pFT ([t,∞])FC ([t,∞]) . (3)

For t = 0, it follows that

p =
H0([0,∞])

1−H1([0,∞])
=

H0([0,∞])

H0([0,∞]) +H2([0,∞])
. (4)

Recall that the hazard measure associated to a distribution F is Λ(dt) =
F (dt)/F ([t,∞]). In our case, use (2)-(3) to deduce that the hazard function
corresponding to FT can be written as

ΛT (dt) =
H0(dt)

H0([t,∞]) + pH1([t,∞])
. (5)

Finally, the distribution FT can be expressed as

FT ((t,∞]) =
∏

[0,t]

(1− ΛT (ds)), (6)

where
∏

[0,t] is the product-integral on [0, t]. Note that there is no explicit

formula for FT if p = 0 in equations (2), that is with current status data.
Given the explicit relationship between the distribution of T and the

observed subdistributions, to obtain the product-limit estimator of FT , we
simply replace Hk, k = 0, 1, 2 by their empirical counterparts. Let F̂T denote
the product-limit estimator of FT .

2.2 Model 2

As in Model 1, assume that T, C and ∆ are independent. The observations
are independent copies of the variables (Y,A), with Y ≥ 0 and A ∈ {0, 1, 2}
where 



Y = T, A = 0 if 0 ≤ C ≤ T and ∆ = 1;
Y = C, A = 1 if 0 ≤ C ≤ T and ∆ = 0;
Y = C, A = 2 if 0 ≤ T < C.

(7)

The equations of this model are



H0(dt) = pFC ([0, t])FT (dt)
H1(dt) = (1− p)FT ([t,∞])FC(dt)
H2(dt) = FT ([0, t))FC(dt)

. (8)

Remark that when p = 1 (resp. p = 0) the equations (8) boil down to the
equations of the classical independent left-censoring (resp. current status)



PL estimators with left or right censored data 983

model. This model also allows for an explicit inversion formula for FT . By
integration in the first and the third equation in (8), H0([0, t])+pH2([0, t]) =
pFT ([0, t])FC([0, t]). Deduce

p =
H0([0,∞])

1−H2([0,∞])
.

Recall that given a distribution F, the associated reverse hazard measure is
M(dt) = F (dt)/F ([0, t]). By equations (8) deduce that the reverse hazard
function MT associated to FT can be written as

MT (dt) =
H0(dt)

H0([0, t]) + pH2([0, t])
.

Finally, the distribution FT can be expressed as

FT ([0, t]) =
∏

(t,∞]

(1 −MT (ds)).

Applying the inversion formula with the empirical subdistributions, we get
the product-limit estimator of FT in Model 2.

Note that if T̃ = h(T ) and C̃ = h(C), with h ≥ 0 a decreasing transfor-

mation, then T̃ , C̃ and ∆ are the variables of Model 1 applied to the left or
right censored lifetime h(Y ). In other words, Model 2 is equivalent to Model
1, up to a time reversal transformation.

2.3 Related models

[Huang, 1999] introduced a model for the so-called partly interval-censored
data, Case 1; see also [Kim, 1994]. In such data, for some subjects, the
exact failure time of interest T is observed. For the remaining subjects, only
the information on their current status at the examination time is available.
[Huang, 1999] considered the nonparametric maximum likelihood estimator
(NPMLE) of FT . Unfortunately, NPMLE does not have an explicit form
and therefore Huang needs strong assumptions for deriving its asymptotic
properties and a numerical algorithm for the applications. Let us point out
that, on contrary to our Model 1 (resp. Model 2), in Huang’s model one
may observe exact failure times even if failure occurs after (resp. before)
the examination time. Moreover, in Huang’s model one may still obtain a√
n−consistent estimator of the distribution FT if one simply considers the

empirical distribution of the uncensored lifetimes. This is no longer true in
our models.

Perhaps, the most popular model for left or right-censored data is the
one introduced by [Turnbull, 1974]; see also [Gu and Zhang, 1993]. In Turn-
bull’s model there are three latent lifetimes L (left-censoring), T (lifetime
of interest) and R (right-censoring) with L ≤ R. The observed variables
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are Y = max(L,min(T,R)) = min(max(L, T ), R) and A defines as follows:
A = 0 if L < T ≤ R; A = 1 if R < T ; and A = 2 if T ≤ L. The equations of
this model are




H0(dt) = {FR([t,∞])− FL([t,∞])} FT (dt)
H1(dt) = FT ((t,∞]) FR(dt)
H2(dt) = FT ([0, t]) FL(dt)

,

where Hk, k = 0, 1, 2 are defined as in (1) and FT , FL and FR are the
distributions of T , L and R, respectively. The NPMLE of the distribution
of the failure time T is not explicit but it can be computed, for instance,
by iterations based on the so-called self-consistency equation. Note that
imposing FC(dt) = (1 − p)−1FL(dt) = FR(dt), one recovers the equations of
Model 1. However, for the applications we have in mind, there is no natural
interpretation for such a constraint in Turnbull’s model. Moreover, we derive
a product-limit estimator for our Model 1. Finally, the asymptotic results
below are much simpler and they are obtained under weaker conditions than
in Turnbull’s model.

3 Asymptotic results

In this section the strong uniform convergence and the asymptotic normality
for the estimator of the distribution FT in Model 1 are derived. Moreover, we
propose a bootstrap procedure that can be used to build confidence intervals
for FT . As in the previous sections, the distributions FT and FC need not
be continuous. For simpler notation, hereafter, the subscript T is suppressed
when there is no possible confusion. We write F̂ (resp. F , Λ̂ and Λ) instead

of F̂T (resp. FT , Λ̂T and ΛT ).

3.1 Strong uniform convergence

LetHnk be the empirical counterparts of the subdistributions Hk, k = 0, 1, 2,,
that is

Hnk([0, t]) =

n∑

i=1

1{Yi≤t, Ai=k}, k = 0, 1, 2.

Clearly, supt≥0 |Hnk([0, t])−Hk([0, t])| → 0, almost surely. We want to prove

the strong uniform convergence of the distribution F̂ , that is

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣→ 0, asn→∞, almost surely,

where I = {t : H0([t,∞])+ pH1([t,∞]) > 0}. For this purpose, first we prove
the almost sure convergence of the hazard function.
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Theorem 1 Assume that p ∈ (0, 1] and let t∗ = sup I. For any σ ∈ I,

sup
0≤t≤σ

∣∣∣Λ̂ ([0, t])− Λ ([0, t])
∣∣∣→ 0, as n→∞, almost surely.

Moreover, if t∗ /∈ I and Λ ([0, t∗)) <∞, then Λ̂ ([0, t∗))→ Λ ([0, t∗)) , almost
surely.

The strong uniform convergence of the distribution F̂ follows without any
additional assumption.

Theorem 2 Assume that p ∈ (0, 1]. Then

sup
t∈I

∣∣∣F̂ ([0, t])− F ([0, t])
∣∣∣→ 0, as n→∞, almost surely.

With p = 1 one recovers the strong uniform convergence result for the
Kaplan-Meier estimator obtained by [Stute and Wang, 1994], [Gill, 1994].
Our alternative proof is simpler.

3.2 Asymptotic normality

Here we study the weak convergence of the process
√
n(F̂ − F ) where F̂ is

the product-limit estimator of Model 1. In this case, Λ̂ does no longer have
a martingale structure (in t) as in the case of the Nelson-Aalen estimator,
that is when p = 1. However, a continuous time submartingale property for
Λ̂ can be obtained. This suffices us to extend the techniques of Gill (1983)
and to use them in combination with the functional delta-method in order to
establish the weak convergence of

√
n(F̂ − F ) to a Gaussian process. Here,

the weak convergence is denoted by⇒. The space D[a, b] of càdlàg functions
defined on [a, b] is endowed with the supremum norm and the ball σ−field.

Theorem 3 Assume that p ∈ (0, 1] and define U(t) =
√
n(F̂ ([0, t]) −

F ([0, t])), t ≥ 0. Let t∗ = sup I.
a) Let τ be a point in I. Then, U ⇒ G in D[0, τ ], where G is a Gaussian

process.
b) If t∗ 6∈ I, but

∫

[0,t∗)

H0(dt)

{H0([t,∞]) + pH1([t,∞])}2 <∞, (1)

then G can be extended to a Gaussian process on [0, t∗] and U ⇒ G in
D[0, t∗].

The proof of the weak convergence is postponed to the appendix. Note
that when t∗ 6∈ I, condition (1) is equivalent to

FT ([t∗,∞]) > 0 and

∫

[0,t∗)

FT (dt)

FC([t,∞])
<∞. (2)
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3.3 Bootstrapping the product-limit estimator

Theorem 3 may be used to obtain confidence intervals and confidence bands
for F. However, the law of the process G̃(t) = G(t)/F ((t,∞]) being com-
plicated, one may prefer a bootstrap method in order to avoid handling
this process in practical applications. Here, a bootstrap sample is obtained
by simple random sample with replacement from the set of observations
{(Yi, Ai) : 1 ≤ i ≤ n}. Let {(Y ∗

i , A
∗
i ) : 1 ≤ i ≤ n} denote a bootstrap

sample and let H∗
k be the corresponding subdistributions. Apply equations

(4) to (6) to obtain the bootstrap estimator F̂ ∗. The following theorem state
that the bootstrap works almost surely for our product-limit estimator on
any interval [0, τ ] such that H0([τ,∞]) + pH1([τ,∞]) > 0. This result is a
simple corollary of Theorem 3.9.13 of [Van der Vaart and Wellner, 1996] and
it is based on the uniform Hadamard differentiability of the maps involved
in the inversion formula of Model 1.

Theorem 4 Let τ ∈ I and let G̃(t) be the limit of U(t)/F ((t,∞]) in D[0, τ ],
as obtained from Theorem 3. Then, the process

√
n{F̂ ∗([0, t])− F̂ ([0, t])}/F̂ ((t,∞])

converges to G̃ in D[0, τ ], almost surely.
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Abstract. The paper presents a Java framework for stochastic modelling and sim-
ulation, used as an infrastructure to model and simulate real world activities, phe-
nomena and processes, particularly in health care, patient monitoring and medical
education. We modelled the flow of patients through medical units, considering
both their arrivals and their stay in the hospital. Also, we implemented bootstrap-
ping methods, which are quite useful in simulation studies. We created bootstrap-
ping e-tools for simulating laboratory works and experiments, to be used in both
didactic and research activities.
Keywords: stochastic model, distributional model, simulation, bootstrapping
methods, Java framework.

1 Introduction

Previous research has shown that stochastic models are advantageous tools
for representation of real world activities, phenomena and processes. Due
to actual spread of fast and inexpensive computational power everywhere in
the world, the best approach is to model a real phenomenon as faithfully
as possible, and then rely on a simulation study to analyze it. Based on
theoretical fundamentals in stochastic modelling and simulation [Ross, 1990],
we implemented an object-oriented Java framework for stochastic modelling,
analysis and simulation of problems arising in a practical context, particularly
in medicine and pharmacy. We created an infrastructure, consisting of a
collection of Java class libraries, which are used to model and to simulate
distributional models, stochastic processes and Monte Carlo methods. The
basic design philosophy of our object-oriented approach to simulation of the
random variables by means of distributional models is presented in [Prodan
et al., 1999]. The object-oriented Java framework containing the set of base-
line classes for stochastic modelling and simulation is presented in [Prodan
and Prodan, 2001]. We implemented bootstrapping methods [Hesterberg et
al., 2003], then we created and implemented bootstrapping e-tools with the
purpose of simulating laboratory works and experiments, in both didactic
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and research activities [Prodan and Campean, 2004]. There are two reasons
for creating such e-tools: (a) to reduce the number of animals (guinea pigs,
frogs, etc.) used in experimentation (an ethical reason), and (b) to reduce
the consumption of substances and reactants (an economical reason). Using
a bootstrapping e-tool, the experimenter can repeat the original experiment
on computer, obtaining pseudo-data as plausible as those obtained from the
original experiment.

2 The infrastructure

We created an infrastructure consisting of a set of Java class libraries for
stochastic modelling and simulation. The classical random variables are the
simplest stochastic models, also called distributional models, which enter
into the composition of other complex models. We propose a hierarchy of
Java classes for modelling the classical distributions. Each distribution class
encapsulates a particular simV alue() method (see Figure 1) incorporating
a simulation algorithm, able to generate a specific value for that distribu-
tion. In other words, the simulation algorithms for distributional models
are implemented via a polymorphic method called simV alue(). The par-
ticular implementation in case of each simulation algorithm is based on one
or more of the following techniques: the Inverse Transform Technique, the
Acceptance-Rejection Technique and the Composition Technique (see [Ross,
1990] and [Prodan et al., 1999]).

Fig. 1. The hierarchy of Java classes for distributional models

We consider three levels of simulation (Figure 2). The first level consists
of simulating random numbers, as they are the basis of any stochastic sim-
ulation study. Using this first level, we build the second level, applied for
classical distributions, for stochastic processes and for Monte Carlo methods.
The third level of simulation is devoted to applications. As applications,
we modelled activities, processes and phenomena from health care, patient
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monitoring and pharmacy, we created e-learning tools (see [Prodan and Pro-
dan, 2003] and [Prodan, 2004]) and we implemented bootstrapping methods
[Prodan and Campean, 2004].

Fig. 2. Levels of simulation

To make a simulation study, it is necessary to generate more values, a se-
quence of values. One may choose to continually generate additional values,
stopping when the efficiency of the simulation is good enough. Generally, one
may use the variance of the estimators obtained during the simulation study
to decide when to stop the generation of additional values. For example, if
the objective is to estimate the mean value µ = E(X), i = 0, 1, 2, ..., one may
continue to generate new data values until one has generated n data values
for which the estimate of the standard error (i.e. the standard deviation of
the mean) is less than an acceptable value. We implemented a general sim-
ulation class as a canvas, which encapsulates the methods doSimulation()
and doV isualisation(). These methods are inherited by specific simulation
classes for specific distributions (binomial, exponential, etc), which encap-
sulates specific redraw() methods, able to show the results of specific sim-
ulations. Figure 3 shows the results of simulations from some discrete and
continuous distributional models.

Fig. 3. Simulations from distributional models
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When simulate from a continuous random variable X , a generated value
x ∈ X is approximated with a given precision expressed by the number of
decimal digits to be considered. The user has the possibility to choose a
precision of one, two, or more decimal digits. If no decimals are considered,
the real value x is approximated by integer part of the x, the continuous
random variable X is rudely approximated by a discrete one, and the results
of a simulation can be graphically expressed in a segmented line format. If a
precision of one decimal digit is selected, the results of the same simulation is
more precisely visualized by a more refined segmented line. With a precision
of two decimal digits, a more refined visualization is obtained. The higher
this precision is, the higher is the resolution realized in visualization [Prodan
and Prodan, 2002]. Figure 4 compares two visualizations for the same set of
generated values from the exponential distribution with parameter λ = 0.3,
the first visualization being with a precision of one decimal digit (Figure 4,
graph a), and the second with a precision of two decimal digits (Figure 4,
graph b).

Fig. 4. Visualization with precision of one decimal digit, versus visualization with
precision of two decimal digits, for the same set of generated values from the dis-
tribution Exponential(0.3)

As can be seen in this figure, when the precision grows with one deci-
mal digit, the resolution grows ten times. With a precision of one decimal
digit, ten numbers are considered between two successive integers, while if
the precision is of two decimal digits, one hundred numbers are considered
between two successive integers. When necessary, intermediate resolutions
can be considered.



Stochastic Models Applied in Health Care and Medical Education 991

3 A model for patient flow simulation

Chronic patients may generally be thought of as progressing through two
standard stages: firstly, the acute care, consisting of diagnosis, assessment
and rehabilitation and secondly, the long-stay care where a small proportion
of them remains in hospital for months or even years. Obviously, these pa-
tients may be very consuming of resources, situation which implies a serious
analysis of health care costs in order to avoid the distortion of the perfor-
mance statistics.

We applied stochastic processes to model the flow of patients through
chronic diseases departments. The science of best designing the movement
of patients through hospitals has not yet been discovered, but the use of the
queuing theory models may provide a good enough solution to the problem.
We intend to use results from both the queuing theory, particularly, and
stochastic modelling, generally, in order to optimize the bed inventory and
the cost-effectiveness of a hospital system. We describe patients arrivals
by a Poisson process, hospital beds by the servers and the lengths of stay
are modelled using phase-type distributions. In queuing terminology this is
known as a M/Ph/c/N queue, where M denotes Poisson (Markov) arrivals,
the service distribution is phase-type, c is the number of servers (i.e. beds)
and N represents the finite capacity of the system, comprising both waiting
patients and patients being served [Gorunescu and Prodan, 2001]. It is also
assumed that the queuing system is in steady state which, in practical terms,
means that we assume that the hospital system has been running, in its
present form, for a few years. This model enables us to study the whole
system of geriatric medicine and is used to look either at the time patients
spend in hospital, or at the subsequent time patients spend in the community.

In order to simulate the model, we have split it into two parts: the arrival
of patients and the in-patient care. We modelled the arrival of patients as
a Poisson process with a parameter λ estimated by using the inter-arrival
times. These times are independent exponential random variables, each with
the parameter λ and with the corresponding density function f(t) = λe−λt.
Figure 5 shows the results of a simulation, considering the arrival of patients
as a Poisson process at rate λ = 7.25 patients per day.

Fig. 5. Poisson arrivals at rate λ = 7.25 patients per day
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The care time is modelled by the application of a mixed-exponential distri-
bution, where the number of terms in the mixture corresponds to the number
of stages of patient care. A common scenario is that there are two stages for
in-patient care: acute and long-stay. In this case we compose two exponen-
tial distributions with parameters α and β, representing the access rates for
the corresponding stages. The mixed-exponential phase-type distribution has
the probability density function f(t) = ραe−αt + (1 − ρ)βe−βt, which imply

a mean care time of ρ
α + (1−ρ)

β days per patient. Figure 6 shows the results

of a simulation with parameters ρ = 0.07, α = 1
77.18 and β = 1

33.3 .

Fig. 6. The simulated results for in-patient care time

4 E-learning tools for medical education

Based on the infrastructure presented in section 2, we created e-learning tools
and incorporated them into an e-learning environment, to be used by both
the students and the teaching staff in their didactic and research activities.
We implemented e-learning scenarios by looking at problems that can be put
in a probabilistic framework. Every new concept is developed systematically
through completely worked out examples from current medical and pharma-
ceutical problems. In addition, we introduced in each e-learning scenario
specific probability models that fit out some real life problems, by assessing
the probabilities of certain events from actual past databases.

As an example, we propose an e-learning scenario for students in Medicine.
A learner that traverses such a scenario, will be able to apply a binomial dis-
tributional model in studying the chance of patients suffering from a partic-
ular type of cancer, to survive for at least a six month period after diagnosis.
We would have to appeal to previous studies and information from actual
databases to assess the chances of a patient surviving. This might indicate,
for instance, that the probability of survival is p = 0.3, and consequently
the complementary probability of death is q = 1 − p = 0.7. In real life, we
are frequently interested what might happen to a group of patients we are
studying. Therefore, we may formulate the following problem, as a piece of
the current e-learning scenario:
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Of the 11 patients in a particular cancer program, what is the chance
of 7 or more of them surviving at least six months past diagnosis?

If pk is the probability that k patients survives (k ≤ 11), the solution
is given by the sum P = p7 + p8 + p9 + p10 + p11. The distributional
model Binomial(11, 0.3) gives the values for pk (p7 ≈ 0.017, p8 ≈ 0.003
and p9 ≈ p10 ≈ p11 ≈ 0), hence the solution is P ≈ 0.017 + 0.003 = 0.02.
The e-learning scenario may be resourceful in showing additional informa-
tion about probabilities and statistics. We prepare and configure suggestive
visualizations, based on a friendly and efficient dialogue with the learner. As
an example, for any learner may be useful to see the previous probabilities
pk in a suggestive column format, and to recognize the solution to previous
problem shown with dashed columns (see Figure 7).

Fig. 7. A graphical solution for patient surviving problem (dashed columns)

An e-learning scenario combines simulation with interactive visualization
and allows the learners to explore the knowledge bases with some well-defined
learning purposes. We define a simulation class and a visualization class for
each application object. These classes are then configured to obtain a par-
ticular simulation with a specific visualization. In an e-learning scenario, vi-
sualization is an active part of the system, serving as an additional interface
for modifying dynamically some parameters. For example, the same distri-
butional model Binomial(11, 0.3) may be applied in an e-learning scenario
for students in Pharmacy, studying the effect of digitalis on frogs. Suppose
we know from previous studies and experiments, that injection of a certain
dose of digitalis per unit of body weight into a large number of frogs, causes
death of 30% of them. We may propose the following problem, as a piece of
the current e-learning scenario for students in Pharmacy (similar with that
proposed for students in Medicine):

If this dose of digitalis is injected into each of a group of 11 frogs,
what is the probability that the number of deaths will be 7 or more?
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To answer this question, it is used the same distributional model as for
students in Medicine, and the solution is given by the same sum of proba-
bilities. The numerical result is the same, because the binomial template is
the same, with the same values for parameters, but with specific texts (see
Figure 8).

Fig. 8. A graphical solution for students in Pharmacy (dashed columns)

5 The implementation of the bootstrapping e-tools

We implemented bootstrapping methods and we created bootstrapping e-tools
[Prodan and Prodan, 2002] for simulating laboratory works and experiments.
Both the students and the teaching staff use traditional statistical methods to
infer the truth from sample data gathered in laboratory experiments. How-
ever, the repeated laboratory experiments mean the consumption of a great
deal of substances and reactants. At the same time, there are some ethi-
cally motivated reasons to reduce the number of animals (guinea pigs, frogs,
etc.) used in experimentation. Using a bootstrapping tool and the computer
power, the experimenter can repeat the original experiment on computer,
obtaining pseudo-data as plausible as those obtained from the original exper-
iment.

Based on distributional models available in JAR (Java ARchive) libraries
as infrastructure, we implement in bootstrapping e-tools both parametric
and non-parametric bootstrapping methods. When we can not assume the
distribution of the population from which the original sample v is taken from,
we use the non-parametric bootstrap. When we can make safely assumptions
about the distribution of v, we may use the parametric bootstrap. We may
use the sample v to calculate a statistic of interest θ∗ that is an estimator of
some population parameter θ. If we could obtain more samples, we evaluate
the estimator on each of these samples. In fact, we only have the one actual
sample to work with, so the idea of bootstrapping is to simulate not from
the population, but from the single actual sample which we have available.
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We have to simulate the population and to generate more so called bootstrap
samples, or re-samples, then to calculate the statistic of interest θ∗ for each re-
sample, named the bootstrap replication. The bootstrapping e-tools provide
a set of procedures and functions for re-sampling, for hypothesis testing and
for obtaining standard errors, confidence intervals and other measures of
uncertainty. The basic bootstrap reassigns randomly the original data and
recalculates the estimates. As a computer-intensive method, the bootstrap
repeats these reassignments and recalculations thousands of times, treating
them as repeated experiments. Using a bootstrapping tool and the computer
power, one can repeat the original experiment as many times as necessary to
satisfy didactic and research activities.

Generally, we implemented the following algorithm for a bootstrapping
e-tool:

i ) Read the actual sample v = (v1, v2, . . . , vn) and evaluate the empirical
distribution function Fe.

ii ) Simulate N independent bootstrap samples v∗1, v∗2, . . . , v∗N , each con-
taining n data values drawn with replacement from v, based on distribu-
tion Fe.

iii ) Evaluate the bootstrap replication θ∗(k) corresponding to each bootstrap
sample v∗k, for k = 1, 2, ..., N .

iv ) Estimate the standard error by the sample standard deviation of the N
replicates.

The distribution of the statistic of interest θ∗ is called bootstrap distribution.
The bootstrap distribution gives information about the shape, center, and
spread of the corresponding population parameter θ.

6 Conclusions and future work

We presented a Java framework for stochastic modelling and simulation, used
as an infrastructure to create models and to simulate real world activities,
phenomena and processes, particularly in health care, patient monitoring and
medical education. As future work, we will combine stochastic modelling with
new AI (Artificial Intelligence) paradigms, such as Bayesian inference, intel-
ligent agents and case based reasoning, for simulations and for incorporating
intelligent strategies in e-learning scenarios. We will write all simulation
and visualization classes in Java and will use the XML (eXtensible Markup
Language) format to describe the configurations.

In cooperation with Pharmaceutical Technologies Department of the our
university, we have to apply bootstrapping methods in modelling and simula-
tion of some drug design experiments. Real experimental data and simulated
pseudo-data refer to some tests made for the characterization of drugs with
delayed action, so called retard drugs. This approach is useful, the purpose
being to improve real data with simulated valid pseudo-data and to reduce
the number of actual tests.
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Abstract. In AIDS control, physicians have a growing need to use pragmatically
useful and interpretable tools in their daily medical taking care of patients. In
that sense, semi-Markov process seems to be well adapted to model the evolution
of HIV-1 infected patients. In this study, we introduce and define a Non Homo-
geneous semi-Markov Model (NHSMM) in continuous time. Then the problem of
finding the equations that describe the biological evolution of patient is studied
and the interval transition probabilities are computed. A parametric approach is
used and the maximum likelihood estimators of the process are given. As results,
follow-up time has an impact on the evolution of patients and interval transition
probabilities are computed.
Keywords: Semi-Markov process, Non homogeneity, Maximum likelihood estima-
tion, Right censored data, interval transition probabilities.

1 Introduction

The CD4 count and the VL measurement are both fundamental markers of
the state of an HIV-1 infected patient. The potential of these immunological
and virological reservoirs determines the way the patients are handled. In
the context of HIV, it seems reasonable to think that the probability of a
patient’s transition from one state to another depends on how long he has
spent in this state. Therefore the semi-Markov Models (SMM) seem to be
appropriated [Janssen and Limnios, 1999].

The SMM have been considered in the HIV modelling [Wilson and
Solomon, 1994], [Satten and Sternberg, 1999], [Joly and Commenges, 1999].
These models were time Homogeneous semi-Markov Models (HSMM) and
unidirectional. Nowadays it seems to be appropriated to take into account
the impact of the follow-up time on the patients’ evolution. The goal of this
paper is to formulate a Non Homogeneous semi-Markov Model (NHSMM) of
the HIV biological process and to compute its interval transition probabili-
ties. The NHSMM have found many applications, in breast cancer [Davidov,
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1999], [Davidov and Zelen, 2000] in manpower system [Papadopoulou and
Vassiliou, 1999],

[Vassiliou and Papadopoulou, 1992],[Papadopoulou, 1998], [McClean et
al., 1998] and [Janssen and Manca, 2001].

This paper is organized as follows. In the next section, the model and
associated notation are introduced. Section 3 defines the semi-Markovian
interval transition probabilities and solves integral equations. In section 4, the
emi-Markov process is parametrically modelled and the likelihood function is
built. Section 5 illustrates an application to HIV control. Finally, section 6
is a summary and discussion.

2 Model description and Notation

The natural history of HIV infection can be considered as a series of stages
through which a patient progresses. Based both on currently information and
physicians’ opinion, we have taken four immunological and virological states:
state 1 (V L ≤ 400 and CD4 ≤ 200), state 2 (V L ≤ 400 and CD4 > 200),
state 3 (V L > 400 and CD4 > 200), state 4 (V L > 400 and CD4 ≤ 200).
Patients move thought these four states according ten transitions given in
figure 1.

STATE 1
CV ≤ 400 cp/ml
CD4 ≤ 200/ml

STATE 2
CV ≤ 400 cp/ml
CD4 > 200/ml

STATE 4
CV > 400 cp/ml
CD4 ≤ 200/ml

STATE 3
CV > 400 cp/ml
CD4 > 200/ml

Fig. 1. An HIV Multi-state model, with 4 immunological and virological states and
10 transitions.

More formally, let E = {1, 2, 3, 4} be the state space and (Ω,z, P ) be
a probability space. We define the following random variables [Janssen and
Manca, 2001]:

Jn : Ω → E, Sn : Ω → [0,+∞),

where Jn represents the state at the n-th transition and Sn represents the
chronological time of the n-th transition. Let N (t) be the counting process
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(N (t) , t ≥ 0) associated to the point process (Sn)n∈ N defined for any time
t ≥ 0 by :

N(t) = sup {n : Sn ≤ t} .
The random variable N (t) represents the number of transitions occured in
the interval of time [0, t] . Let us define the (Xn)n∈ N ‘duration process ’ by :

X0 = 0,
Xn+1 = Sn+1 − Sn, n ∈ N∗

where Xn+1 represents the duration time spent in state Jn.
The (Jn, Sn)n∈ N process is called ‘non-homogeneous Markov renewal pro-

cess ’ if :

P (Jn+1 = j, Sn+1 ≤ t| Jn = i, Sn = s, Jn−1, Sn−1, ..., J0, S0) = P (Jn+1 = j, Sn+1 ≤ t|Jn = i, Sn = s),

and for j 6= i

Qij(s, t) = P (JN(s)+1 = j, SN(s)+1 ≤ t|JN(s) = i, SN(s) = s),

is the associated non-homogeneous semi-Markov kernel Q. The semi-
Markov kernel is written again :

Qij(s, x) = P (JN(s)+1 = j,XN(s)+1 ≤ x|JN(s) = i, SN(s) = s).

The second composant ofQ, namely x, represents a duration time whereas
s represents a chronological time.

As is well known [Wadjda, 1992],

pij(s) = lim
x→∞

Qij(s, x), i, j ∈ E, j 6= i

= P (JN(s)+1 = j|JN(s) = i, SN(s) = s),

represents the probability of a patient making its next transition to state
j, given that he entered state i at time s and P(s) = [pij(s)]i,j is the (4 ×
4) transition probability matrix of the embedded non-homogeneous Markov
chain (Jn)n∈ N .

However, before the entrance into j, the patients ’holds’ for a time x in
state i. The conditional cumulative distribution function of the waiting time
in each state, given the state subsequently occupied, is defined by :

Fij(s, x) = P (XN(s)+1 ≤ x|JN(s)+1 = j, JN(s) = i, SN(s) = s).

This probability function is obtained by :

Fij(s, x) =

{
Qij(s,x)
pij(s)

if pij(s) 6= 0

1 if pij(s) = 0
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and for more feasability, it is supposed free of the chronological time
s, namely Fij(x). Without loss of generality, the waiting time also has a
probability density function, namely fij(x) and D(x) = [fij(x)]i,j represents

the (4× 4) duration matrix.
Let introduce the probability that the process stays in state i for at least

a duration time x, given state i is entered at chronological time s :

Hi(s, x) = P (XN(s)+1 ≤ x|JN(s) = i, SN(s) = s).

Of course,

Hi(s, x) =

4∑

j 6=i
Qij(s, x) =

4∑

j 6=i
pij(s)Fij(x).

Therefore, the marginal cumulative distribution functions of the waiting
time in each state depend on both time. Let us define Si (s, x) = 1−Hi(s, x).

Now it is possible to define the continuous time non homogeneous semi
Markov process Z(t), which represents, for each time t, the state occupied by
the process [Cox and Isham, 1980], [Janssen, 1986], as :

Z(t) = JN(t), t ∈ R+.

with :
P [Z(t) = j] = P [SN(t) ≤ t < SN(t)+1, JN(t) = j].

This SM process is both characterized by a set of Markov transition ma-
trices {P(t)}t≥0, and a set of duration matrices {D(x)}x≥0 . Note that two
time scales arise, the chronological time and the internal time scales. The
chronological time, namely t, is relative to an arbitrary origin. In our case,
t = 0 represents the first immunological and virological measurement experi-
mented by the patient in hospital. The internal time, namely x, is relative to
the duration time in each state [Davidov and Zelen, 2000]. Our model is quite
simple and completely defined by both the jump and duration processes. The
advantage of semi-Markov model is their mathematical tractability and sim-
ple interpretation. The SMM presented in this section is non homogeneous
with time since the jump process (pij(t))i,j,t≥0 depends on the chronological
time.

3 Interval transition probabilities

In the perspective of a more and more effective taking care of patients,
physicians need tools of prediction and reference points. Let us define,
∀i, j = 1, ..., 4, φij(t, x) as the following probability [Papadopoulou and Vas-
siliou, 1999] :

φij(t, x) = P [a patient is in state j at time t+ x | he entered state i at time t] .
= P

[
Z(t+ x) = j | JN(t) = i ; SN(t) = t

]
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These probabilities are real quantities of interest in the medical practice.
Let us precise that φij(t, x) 6= φij(t + h, x + h), ∀h > 0. We now turn on
the question of developing a functional relationship between the probabilities
φij(t, x), which from now on we call the interval transition probabilities of
the SM process, and the probabilities pij(t) and dij(x).This could be done by
taking all the possible mutually exclusive ways in which it is possible for the
event of interest to take place. With careful reasoning we could prove that
∀t, x ≥ 0:

φij(t, x) = δij × Si.(t, x) +

4∑

l=1
l 6=i

x∫

0

pil(t)dil(u)φlj(t+ u, x− u)du.

This equation represents the evolution equation of a continuous NHSMM.
Let cil(t, x) be the product pil(t)dil(x). Then the previous equation is written:

φij(t, x) = δij × Si.(t, x) +

4∑

l=1
l 6=i

x∫

0

cil(t, u)φlj(t+ u, x− u)du. (1)

Obviously φij(t, 0)=0 for j 6= i, 1 otherwise. Using probabilistic argu-
ments, we could find probabilities φij(t, x) in closed analytic form. Let k be
the index of the number of transitions in the interval of time ]t, t+x[, and let
t+ x1, t+ x1 + x2, ...., t+ x1 + x2 + ...+ xk be the chronological times where
they successively occur. Then the equation (1) is written as follows

φij(t, x) = δij × Si.(t, x)
+
∫ x
0 cij(t, x1)Sj.(t+ x1, x− x1)dx1

+
∑4

l=1
l 6=i,l 6=j

∫ x
0

∫ x−x1

0
cil(t, x1)clj(t+ x1, x2)Sj.(t+ x1 + x2, x− x1 − x2)dx2dx1

+
∑∞
k=3

∑4
l=1
l 6=i

∑4
m=1
m 6=l

...
∑4

w=1
w 6=v

∫ x
0

∫ x−x1

0 ...
∫ x−x1−x2−...−xk−1

0

cil(t, x1)clm(t+ x1, x2)...cwj(t+ x1 + x2 + ...+ xk−1, xk)
×Sj.(t+ x1 + x2 + ...+ xk−1 + xk, x− x1 − x2 − ...− xk−1 − xk)dxk...dx2dx1.

(2)
This previous expression formalizes the fact that the event of interest {a

patient of the NHSMM is in in state j at time t+ x, given he entered state
i at time t} may be derived from no transition (k = 0) or from exactly one
transition (k = 1) or from exactly two transitions (k = 2) or more (k ≥ 3).
Let us define φkij(t, x) by the following probability:

φkij(t, x) = P [patient in state j at t+ x; k transitions during ]t, t+ x[
| he entered state i at time t ] .

Finally the equation (2) can be written ∀i, j ∈ {1, 2, 3, 4}

φij(t, x) =

∞∑

k=0

φkij(t, x) (3)
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and in matrix form, with Φ(t, x) = (φij(t, x))i,j and Φk(t, x) =(
φkij(t, x)

)
i,j

Φ(t, x) =
∞∑

k=0

Φk(t, x). (4)

4 The likelihood function

Over a period of time, M patients are observed (p = 1, ...,M). Each patient
begins his immunological and virological trajectory in any state, which is re-
vealed by the first measurement at time s = 0. Let us assume that the pth sub-
ject changes state (np−1) times in the instants sp,1 < sp,2 < ... < sp,np−1 and
successively occupies states Jp,1, Jp,2,...,Jp,np−1 with Jp,n 6= Jp,n+1, ∀n ≥ 1.
At the last observed time of the follow-up, namely sp,np , the patient either
may enter a new state Jp,np or stay in the state Jp,np−1. In the last case,
the last duration time in state Jp,np−1 is right censored. More generally,
the contribution for an observed transition i → j, after a duration time x
spent in state i, equals pij(t)fij(x), namely the probability P [duration time
= x;next = j| state i is entered at time t]. If the transition from state i is
right censored, after a staying time x, then the contribution is the function
Si(t, x). The likelihood function for all times and transition times observed,
is written as follows

L =

M∏

p=1

np∏

n=1

[pJp,n−1,Jp,n(sp,n−1)fJp,n−1,Jp,n(sp,n−sp,n−1)]
ξp,n [SJp,n−1(sp,n−1, sp,n−sp,n−1)]

1−ξp,n

where ξp,n = 1, if the nth transition is observed for the individual p, and
ξp,n = 0 if censored. Our parametric approach for both jump and duration
processes consists respectively in a linear and a Weibull modelings

pij(t|θij) = aijt+ bij ∀j 6= i (5)

pii(t) = 0 ∀i = 1, ..., 4

fij(x|γij) = νijσ
νij

ij x
νij−1Exp[−(σijx)

νij ] ∀j 6= i (6)

5 Application to HIV control

In this section, we apply the previous parametric NHSMM to an HIV-1 in-
fected patients database. The database NADIS is made of patients followed
in the Nice Hospital, France. The study sample is made of 1313 patients and
17888 virologic and immunologic measurements. The chronological time is
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measured from the first biological measurement. From the modelings (5) and
(6), we test several restrictions in order to select the parametric model which
offers the best adequacy (Likelihood Ratio Test). The selected parametric
NHSMM is based on both exponential and Weibull duration times, but also
on time linear and constant probabilities.The estimations of the NHSMM
parameters are given in Table 1.

Transition
i→ j

Estimators of the duration process
dij(x)

Estimators of the jump process
pij(t)

1→ 2 Weibull (1.1069 , 1.6795) (0.0450 × t)+ 0.4748
1→ 3 Weibull (1.4460 , 1.8283) 0.1111
1→ 4 Weibull (1.0971, 1.7254) (−0.0450 × t)− 0.4141
2→ 1 Weibull (0.5878 , 0.0940) (−0.0213 × t)+ 0.3148
2→ 3 Weibull (1.0500, 0.8844) (0.0213 × t) + 0.6852
3→ 2 Expo (1.0841 ) 0.8496
3→ 4 Weibull (0.7842, 0.7597 ) 0.1504
4→ 1 Weibull (0.9095, 1.0556) (−0.0276 × t)+ 0.4779
4→ 2 Weibull (1.1866, 1.5765) 0.1605
4→ 3 Expo (1.8410) (0.0276 × t)+ 0.3616

Table 1. Estimations of parameters in the NHSMM defined by the linear jump
process {pij(t)}i,j and the duration process {dij(x)}i,j

Mathematical computing was preformed on R software version 1.9.1. The
standard error deviations are not presented for more lisibility. The real quan-
tities of interest are the semi-Markovian interval transition probabilities de-
fined in Section 3. Indeed in medical practice, physicians are often interested
in predictions. In this view, the 4× 4 matrix of the interval transition prob-
abilities for fixed chronological time t and duration time x,given by equation
(4) in section 3, are useful. For exemple, the estimations of Φ(0, 1) are given
in Table 2.

state j
state i

1 2 3 4

1 0.2059 0.3212 0.2182 0.1935
2 0.0336 0.6530 0.2623 0.0210
3 0.0219 0.4311 0.4673 0.0094
4 0.1464 0.2557 0.2266 0.2649

Table 2. The 4× 4 interval transition matrix (φij(0, 1))i,j

Given a patient enters state 2 at t = 0, he has a 0.652 probability to be
1-year later in state 2; Given a patient enters state 3 at t = 0, there is a quasi
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equiprobability to be 1-year later in state 2 or 3. Lastly, given a patient
enters state 4 at t = 0, there is a quasi equiprobability to be 1-year later in
state 2, 3 or 4.

6 Discussion

The HIV model considered in this study clearly relates to a ’macroscopic’
view of the disease process and it is based both on the CD4 count and VL
measurement. This multi-state model is made of 4 immunological and viro-
logical states and 10 transitions. The non homogeneous semi-Markov model
captures the main features of the disease process and therefore provides a
reasonable approximation of a very complicated process. The homogeneity
hypothesis reveals to be too restrictive in the HIV context which nowadays
becomes a chronic disease. The follow-up time has a significant impact on the
disease process. We use a parametric approach and compute the maximum
likelihood estimators of the NHSMM. The integral evolution equations of the
continuous NHSMM are solved and the interval transition probabilities are
computed. Therefore physicians have interesting reference points and some
predictions can be made as regards the biological evolution of patients. Here
are the three characteristics of a good model which should be mathematically
tractable, pragmatically useful and interpretable.
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Abstract. The aim of this paper is to evaluate the risk of tumor recurrence of
bladder cancer after surgical operation (TUR: Trans-urethral Resection). The prog-
nostic significance of some clinical features in 454 patients with primary superficial
bladder carcinoma is studied. The modelling procedure is featured within interval
censored and right censored framework.
Keywords: bladder carcinoma, prognostic factors, recurrence, interval–censored
survival data, generalized non-linear model, Cox model.

1 Introduction

Transitional bladder cancer represents about 2% of all human tumors. It
supposes an important public health problem because it is biologically very
aggressive and causes more than 130.000 deaths by year all around the world.
Superficial bladder tumors are characterized by recurrence (reappearance of
a new tumor) in 50-70% of cases. Although most recurrences are still su-
perficial, progression to muscle invasive disease occurs in 10-30% of patients.
Therefore, when superficial bladder tumor is diagnosed, it is important to
identify patients who are at risk of disease recurrence and progression. If
it were possible to define exactly which subset of superficial bladder tumors
have more risk to recur and to progress, preemptive therapy could be used.
Identifying the prognostic factors that determine that risk in each patient
remains a subject of extensive research [Jaemal et al., 2003], [Black et al.,
2002] and [Royston et al., 2002].

Biotechnological advances have allowed us to use different therapeutic
procedures (surgery, radiotherapy, chemotherapy, immunotherapy) success-
fully but still many patients suffer an unfavorable outcome without control
of disease.

Multiple clinical and pathological variables are important in predicting
outcome in patients with transitional bladder cancer, among which patho-
logical stage and grade of differentiation are recognized as the most important
[Zieger et al., 1998], [Kurth et al., 1995]. Therefore, an ideal prediction model
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should combine stage, and grade, along with any other features shown to be
associated with outcome in a multivariate model (histological characteristics,
size, number of tumors, etc).

The TNM system (classification of 1997) is generally used to establish the
stage of the bladder tumors [Hermanek and Sobin, 1998]:

Tis : tumor is limited to the mucosa and is flat (a carcinoma in situ).

Ta : tumor is papillary and it is limited to the mucosa.
T1 : tumor penetrates the lamina propia but not the muscle layer.

T2-T4 : tumor invades muscle and is staged from T2 to T4 according to
the depth of infiltration of muscle tissue or the extent to which the sur-
rounding tissue is affected.

Superficial bladder tumors (stages Ta and T1) have trend to produce recur-
rences (generally with similar stage). Tumors that invade the bladder muscle
are highly aggressive and have a strong potential metastasize preferentially
to regional lymph nodes, lungs, liver, and bone.

The histologic grade establishes according to the WHO (World Health
Organization) 1999 classification [Hermanek and Sobin, 1998]:
G1: Urothelial carcinoma grade I (differentiated)
G2: Urothelial carcinoma grade II (intermediate differentiation)
G3: Urothelial carcinoma grade III (poor differentiated)

Well differentiated tumors (G1 grade) have generally low agressivity while
poor differentiated tumors (G3 grade) are highly aggressive (cause many
recurrences) [Millan et al., 2000].

Prediction models can be used to counsel patients, determine the need for
adjuvant therapy, stratify patients in risk groups, and develop appropriate
postoperative surveillance programs tailored to risk for cancer progression.
There are quite a few models in the medical literature, see [Millan et al., 2000]
for a little account. Nevertheless, many studies are based only on univariate
analysis. Even if multivariate analysis is performed, usually the event of
interest, for instance tumor recurrence, is recorded at scheduled screening
times. It may be more convenient to consider arbitrarily interval-censored
survival data because the exact time of the event of interest is not known.
Our aim is to construct a prognostic model for predicting the outcome of
superficial bladder cancer of transitional cells, within this framework. Then
we perform the usual Cox model approach in order to compare.

In our study the time origin concern to the so called TUR (trans-urethral
resection): a surgical endoscopic technique used to remove the macroscopic
tumor from the inner of the bladder. The end-point is the first tumor recur-
rence.

The paper is organized as follows: in Section 2 the data on the survival
times of 454 patients and their characteristics (explanatory variables) are
described. In Section 3 we give a brief description of a method for analyzing
interval–censored data proposed by Farrington [Farrington, 1996], and we
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apply the method to our data base. In Section 4, a multivariate analysis is
performed by using the Cox proportional hazards model.

We have used the packages S-PLUS ([Venables and Ripley, 2002]), SPSS
and SAS ([Delwiche and Slaughter, 1998]).

2 Data and selection of variables

In this research, 454 patients from La Fe University Hospital from Valencia
(Spain) were examined. They had primary superficial transitional cell car-
cinoma of the bladder initially treated with transurethral resection (TUR).
The variable of interest was time (in days) from TUR to the first appearance
of recurrence. The exact time of the recurrence will be unknown and the
only information available concerns whether or not recurrence is identified
when a patient visits the clinic. So, each individual may have a different
time interval in which the recurrence has occurred and data are referred to
as arbitrarily interval-censored data.

The period goes from 1973 to 2003. Variables considered for this study
were: sex, age, tumor stage (pTa and pT1), tumor grade (G1, G2 and G3),
number of tumors (one or more than one), tumor size (≤ 3 cm or > 3 cm) and
treatment (Thiotepa, Adriamicine, Cisplatine, BCG and others treatments),
see Table 1

3 Interval–censored analysis

The method for analyzing such data, assuming proportional hazards, is based
on a non-linear model for binary data. The model is known as a generalized
non-linear model [Farrington, 1996], see [Collett, 2003]:

The likelihood function for n observations may be expressed as:

n+c∏

i=1

pyi

i (1− pi)1−yi (1)

where y1, y2, . . . , yn+c are observations from a Bernoulli distribution with
response probability pi, i = 1, 2, . . . , n+ c, where c is the number of confined
observations.

The survivor function is given by:

Si(t) = S0(t)
exp(β′xi) (2)

where S0(t) is the baseline survivor function and xi is the vector of values of
p explanatory variables for the ith individual, i = 1, 2, . . . , n. The baseline
survivor function will be modelled as a step function, where the steps occur
at the k ordered censoring times, t1, t2, . . . , tk, where t1 < t2 < . . . < tk
(subset of times at which observations are interval–censored).
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Variable N patients (%)

Stage
pTa 114 25.1
pT1 340 74.9
Grade
G1 260 57.3
G2 162 35.7
G3 32 7.0
Sex
Men 383 84.4
Women 71 15.6
Number
One 380 83.7
Two or more 74 16.3
Size
≤ 3 cm 357 78.6
> 3 cm 97 21.4
Age
≤ 40 years 20 4.4
between 41 y 60 years 150 33
> 61 years 284 62.6
Treatment
Thiotepa 257 56.6
Adriamicine 33 7.3
Cisplatine 21 4.6
BCG 62 13.7
Others treatments 81 17.8

Table 1. Patients characteristics.

This methodology defines the following baseline survivor function:

S0(t) = exp (−
k∑

j=1

θj dij) (3)

where dij = 1 if tj ≤ ti, dij = 0 if tj > ti and θj are given by:

θj = log
S0(t(j−1))

S0(t(j))
(4)

Then it follows that the response probability can be expressed in the form:

pi = 1− exp (−exp (β′xi)
k∑

j=1

θj dij) (5)
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This leads to a generalized non-linear model for a binary response vari-
ables, with values yi, and corresponding probabilities pi, for i = 1, 2, . . . , n+c.
The model contains k+p unknown parameters. After fitting the model, the
statistic −2 log L̂ can be used to compare alternative manner.

Patients were followed up at clinic visits, generating observations as fol-
lows: 69 left–censored ; 216 right–censored and the remaining patients are
confined.

For the survivor function model, a minimal set of censoring times was
chosen. The set of ordered censoring times is 50, 171, 261, 343, 399, 579,
674, 851, 1046, 1290, 1427, 1524, 1750, 2069, 2290, 2633, 2953, 3365, 3768,
5287.

We use the statistic −2 log L̂ in a strategy of selection of variables. We
obtain number, tumor size and treatment as prognostic factors.

On fitting the model with tumor size and number of tumors the value of
the statistic −2 log L̂ is 1498.4. On adding Treatment to the model, the value
of this statistics is reduces to 1471.7. This reduction is significant at the 1%
level.

Parameter β̂ Exp(β̂) se(β̂)

two or more 0.2933 1.3408 0.1719
> 3 cm 0.3651 1.4406 0.1524
Cisplatine 0.3212 1.3787 0.2327
BCG 0.1279 1.1364 0.3314
ADR 0.6428 1.9017 0.1872
Others treatments 0.0733 1.0760 0.2027

Table 2. Generalized non-linear model. Parameters estimates

Using this model we may conclude that the relative hazard of first recur-
rence after TUR is increased in a 90% if adriamicine is provided, relative to
a patient on thiotepa alone. The relative hazards are 1.37 and 1.13 respect
thiotepa, when ciplastine and BCG are applied. This hazard is increased
in a 7.3% if others treatments are applied, relative to a patient on thiotepa
treatment alone. Patients with two or more tumors have a risk of recurrence
34% higher than patients with only one tumor and individuals with tumors
> 3 cm have a risk 44% bigger than patients with tumor ≤ 3 cm.

We have checked the model by means of residuals proposed by Farring-
ton in [Farrington, 2000]. It is assumed that the observation process that
generates the interval censoring is independent of the survival times and the
covariates. In that sense Figure 1 shows the distribution of interval lengths
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by observation number. The plots do not reveal any systematic differences
in the observation process between treatment groups.
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Fig. 1. Distribution of interval length: by observation number and treatment

Martingale residuals, in large samples, were shown to have zero mean un-
der the correct model. That type of residuals reveal the existence of outliers.
In Figure 2 patients 384 and 396 are separated from the bulk of the data.
These patients belong to groups with the same features in size (> 3 cm),
number (two or more) and treatment (Adriamicine).
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Fig. 2. Martingale residual by observation number, treatment, number and size

It would be useful to plot these residuals against log interval length and
its analysis with deviance residuals as it is shown in [Farrington, 2000].
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4 A Cox model of tumor recurrence

Let us consider now that time of recurrence is the time at which recurrence
is detected.

The survival experience of the 454 patients depends on several variables,
whose values have been recorded for each patient at the time origin. The aim
of this Section is to determine which of explanatory variables have an impact
on the free of disease time of the patients (survival time).

The focus is modelling the recurrence hazard (risk of recurrence)at time
t. The recurrence hazard is obtained from the hazard function h(t) and it is
obtained from the basic model for survival data: proportional hazard model
or Cox regression model given by:

hi(t) = exp(β1x1i + β2x2i + . . .+ βpxpi)h0(t) , (6)

where h0(t) is the baseline hazard function.
On the other hand, the objective of this modelling procedure is to de-

termine which combination of explanatory variables affects the form of the
hazard function. In this process we use the statistic −2LogL̂.

Indicator or Dummies variables are generated for the analysis. From treat-
ment (five categories) four Dummies are defined: Adriamicine, Cisplatine,
BCG and others treatments. From grade (three categories) two Dummies :
G2 and G3. Sex, number, size and stage are dichotomic variables. Age is
continuous. In this way the individual of reference is a 65 years old man
(average patient), with only one tumor, of pTa stage, G1 grade, with a size
minor or equal than 3 cm and with Thiotepa treatment after TUR.

Parameters estimates in the Cox regression model are presented in Table
3. The model allows us to compare risks among different groups of patients
in a similar way of previous section.

Parameter β̂ Exp(β̂) se(β̂) z p-value lower.95 upper.95

> 3 cm 0.408 1.50 0.147 2.766 0.006 1.126 2.01
Cisplatine 0.418 1.52 0.224 1.866 0.062 0.979 2.36
BCG 0.201 1.22 0.329 0.611 0.540 0.642 2.33
ADR 0.725 2.07 0.181 4.017 0.000 1.450 2.94
Others treatments 0.147 1.16 0.201 0.731 0.460 0.781 1.72

Table 3. Cox regression model. Parameters estimates

Let us begin the model checking by testing the proportional hazards as-
sumption. Grambsch and Therneau [Therneau and Grambsch, 2000] show
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that the expected value of the ith scaled Schoenfeld residual is given by
E (r∗Pji) ≈ β̂j (ti) − β̂j , and so a plot of the values of r∗Pji + β̂j against the
death times should give information about the form of the time-dependent
coefficient of Xj , βj (t).

The horizontal line in each graph of Figure 3 indicates no suggestion
of non-proportional hazards and that the coefficients of these variables are
constant.
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Fig. 3. Plots of scaled Schoenfeld residuals against time for each variable.

This graphical diagnostic is supplemented by a test for each variable,
along with a global test for the model as a whole. In Table 4 it is showed the
mentioned global test and the tests for each variable.

Here rho is the Pearson product-moment correlation between the scaled
Schoenfeld residuals and time for each variable. The column chisq gives the
tests statistics for each variable and the last row GLOBAL gives the global
test for a χ2 of 5 degree of freedom. With these results we may assume the
proportional hazard hypothesis.

Validation and diagnostic of our model is based on Martingale and De-
viance residuals. All results were consistent. The following graphics, see
figure 4, show an Index plot of those residuals. In both plots the cluster of
points is rather compact. We highlight patients 443 and 448 (they are pa-
tients 384 and 396 of section 3) whose survival times are larger than expected
from the model.
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variable rho chisq

Cisplatine 0.0182 0.0787
BCG -0.0913 1.9992
Adriamicine -0.0178 0.0748
Others treatments -0.0524 0.6489
≤ 3cm -0.0352 0.2944
GLOBAL 2.8889

Table 4. Test for the Proportional Hazards
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Fig. 4. Martingale and Deviance residuals

Identification of influential observations is performed by means of Delta–
Beta test and examining the −2 log L̂ changes. We found no alarming obser-
vations.

5 Conclusions

We have studied the prognostic factor for bladder cancer by means two
different models: Cox regression and generalized non–linear models. In the
first model, the prognostic factors are size and treatment; in the second
model these factors are number, size and treatment. In the validation of
both models the same two patients are detected and they belong to groups
with the same features. Their characteristics correspond to the highest risk
of recurrence and, however, they are among the patients with the longest
time free of disease (what justify their behavior in our analysis). But this is
not an important fact.

Acknowledgements: This work has been supported by the Generalitat
Valenciana Grant GV04B-483
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Abstract. This paper is focusing on the application of a probabilistic neural
network-based model in diagnosing hepatic diseases. In the diagnose process, the
physicians compare numerical medical data against prior knowledge in order to
determine the right diagnostic. Neural networks are ideal in recognizing diseases
using representative examples since there is no need to provide a specific algorithm
on how to identify the disease. The goal of this paper is to explore a PNN-based
approach to determine the (near) optimum diagnosis for hepatic cancer. As con-
cerns the concrete program, a Java implementation is provided as well.
Keywords: probabilistic neural networks, Monte Carlo approach, hepatic diseases
diagnosis, Java implementation.

1 Introduction

Hepatocellular carcinoma (HCC), briefly hepatic cancer, represents a pri-
mary malignant tumor of the liver that ranks fifth in frequency among all
malignancies in the world. HCC is increasing in many countries, especially
in areas where hepatitis C virus (HCV) infection is more common than hep-
atitis B virus (HBV) infection. The diagnosis of HCC is difficult in the
early stages, most of the patients being diagnosed in advanced stages. Al-
though alpha-fetoprotein (AFP) is the most important tumor marker for the
diagnosis of HCC, a considerable proportion of HCC’s do not produce AFP,
making early diagnosis difficult with this marker alone. Imaging modalities
(power Doppler, harmonic imaging, pulse inversion, etc.), combined with mi-
cro bubble contrast agents and a better understanding of the importance of
serum enzymes significantly improved the rate of detection for early (small)
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HCCs’. Among these detection factors, the serum enzymes analysis is by far
the fastest and simplest method, representing the first step in hepatic cancer
diagnosis.

The probabilistic neural network (PNN) was developed by [Specht, 1988]
[Specht, 1990]. This particular type of artificial neural networks (ANNs) pro-
vides a general solution to pattern classification problems by following the
probabilistic approach based on the Bayes formula. The Bayes decision the-
ory, emerged from his celebrated formula and developed in the 1950’s, takes
into account the relative likelihood of events and uses a priori information
to improve prediction. The network paradigm uses the Parzen estimators to
obtain the corresponding probability density functions (p.d.f.) to the classi-
fication categories. In his classic paper, Parzen [Parzen, 1962] showed that
a class of p.d.f. estimators asymptotically approach the underlying density
function, provided that it is continuous. Cacoulos [Cacoulos, 1966] extended
Parzen’s method to the multivariate case. PNN uses a supervised training set
to develop probability density functions within a pattern layer. Training of a
PNN is much simpler than other ANNs techniques. Key advantages of PNN
are that training requires only an unique pass and that the decision hiper-
surfaces are guaranted to approach the Bayes-optimal decision boundaries as
the number of training samples grows. On the other hand, the main criticism
of PNN is that all training samples must be stored and used in classifying
new patterns (very rapid increase in memory and computing time when the
dimension of the input vector and the training set size increase). However,
to reduce the computational cost, dimensionality reduction and clustering
methods are usually applied, previous to the PNN construction.

ANNs in general and PNNs especially are currently a main research area
in health care modelling and it is believed that they will receive extensive
application to biomedical systems in the next years ([Lin et al., 2002], [Norton
et al., 2001], [Taktak et al., 2004]). Neural networks learn by examples so
the details of how to recognize the disease is not needed. We only need a
set of examples (patterns) that are representative of all the variations of the
specific disease. To obtain a high accuracy level in the disease recognition
the patterns generally need to be selected carefully.

2 Bayes decision rule for PNNs

Bayesian decision theory is a fundamental statistical approach to the problem
of pattern classification. To illustrate the formalism of the Bayes decision
rule, consider the sample space Ω and B1, B2, ...Bn a partition of Ω. Then
the celebrated reverend Bayes formula (1763) is given by:

P (Bi|A) =
P (A|Bi)P (Bi)
n∑
i=1

P (A|Bi)P (Bi)
(1)
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Usually, the Bayes formula becomes:

Posterior =
likelihood × prior

evidence
(2)

where P (Bi|A) is known as Posterior, P (Bi) -the prior probabilities, P (A|Bi)
-the likelihood, P (A) -the evidence.

Formally, the Bayes decision rule in a simplified form is given by:

• Decision Dk: ”State of nature is Bk”;
• Given measurement x if the decision is Dk then the error is P (error|x) =

1− P (Bk|x);
• Minimize the probability error;
• Bayes decision rule: ”Decide Dk if P (Bk|x) > P (Bj |x), ∀j 6= k” or,

equivalently, ”Decide Dk if P (x|Bk)P (Bk) > P (x|Bj)P (Bj), ∀j 6= k”

To illustrate the way the Bayes decision rule is applied to PNNs, consider
the general case of the q-category classification problem, in which the states
of nature will be denoted by Ω1, Ω2, ..., Ωq. The goal is to determine the class
(category) membership of a multivariate sample data (i.e. a p-dimensional
random vector x) into one of the q possible groups Ω1, Ω2, ..., Ωq, that is, we
have to make the decision D(x) = Ωi, i = 1, 2, ..., q, where x represents
the sample (data vector). If we know the (multivariate) probability density
functions f1(x), f2(x), ..., fq(x), associated with the categoriesΩ1, Ω2, ..., Ωq,
the a priori probabilities hi = P (Ωi) of occurrence of patterns from categories
Ωi and the loss (or cost) parameters li associated with all incorrect decisions
given Ω = Ωi, then, according to the Bayes decision rule, we classify x into
the category Ωi if the following inequality holds true:

lihifi(x) > ljhjfj(x), i 6= j. (3)

The boundaries between every two decision classes Ωi and Ωj , i 6= j, are
given by the hypersurfaces:

lihifi(x) = ljhjfj(x), i 6= j, (4)

and the accuracy of the decision depends on the accuracy of estimating the
corresponding p.d.f’s.

The key to using the Bayes decision rule to PNNs is represented by the
technique chosen to estimate the p.d.f’s fi(x) corresponding to each decision
class Ωi, based upon the training patterns set. The classical approach uses
a sum of small multivariate Gaussian distributions, centered at each training
sample, that is:

fi(x) =
1

σpi (2π)p/2
· 1

mi
·
mi∑

j=1

exp

(
−‖x− xj‖

2

2σ2
i

)
, i = 1, 2, ..., q, (5)
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where mi is the total number of training patterns in Ωi, xj is the j-th train-
ing pattern from category Ωi, p is the input space dimension and σ is an
adjustable ”smoothing” parameter using the training procedure. The main
issue in PNNs methodology is represented by the way to determine the value
of σ, since this parameter needs to be estimated to cause reasonable amount
of overlap. Commonly, the smoothing factor is chosen heuristically. If σ is
too large or too small the corresponding probability density functions will
lead to the increase in misclassification rate. Fortunately, PNNs are not too
sensitive to the very precise choice of the smoothing factor.

3 Modified Specht algorithm (Monte Carlo approach)

The only control parameter that needs to be selected for probabilistic neu-
ral network training is the radial deviation of the Gaussian densities -the
smoothing factor. This section deals with one of the simplest but most ro-
bust algorithm, straight related to the Parzen-Cacoulos window classifiers,
using the sum of training patterns that are classified in the right way as cost
function and the Monte Carlo method for searching for the best solution.
Among other statistical or Artificial Intelligence techniques, the Monte Carlo
method allows us to obtain the optimization of the smoothing factor for each
category with a good accuracy and saving computational effort.

Algorithm (training)
Input. Consider q decision classes Ω1, Ω2, ..., Ωq, each decision class Ωi

containing a number of mi training patterns.

i ) For each class Ωi, i = 1, 2, ..., q, compute the (Euclidian) distance
between any pair of training patterns;

ii ) For each class Ωi, i = 1, 2, ..., q, compute the corresponding average
distances and standard deviations, denoted by Di, SDi respectively.

iii ) For each class Ωi, i = 1, 2, ..., q, compute the corresponding confidence
intervals IΩi = (Di − 3SDi, Di + 3SDi) for the average distances. This
intervals represent the domains of the smoothing factors σi.

iv ) For each decision class Ωi, i = 1, 2, ..., q, consider the Parzen-
Cacoulos classifiers fi(x) as the corresponding parent densities. Assign
(σi, Di), i = 1, 2, ..., q.

v ) In each decision class Ωi (randomly) choose a certain vector x0
i and com-

pute fi(x
0
i ).

vi ) (Bayes decision rule) Compare fi(x
0
i ) and fj(x

0
i ) for all i 6= j following

the algorithm: ”IF lihifi(x
0
i ) > ljhjfj(x

0
i ) (for all j 6= i) THEN x0

i ∈ Ωi
ELSE IF lihifi(x

0
i ) ≤ ljhjfj(x0

i ) (for some j 6= i) THEN x0
i /∈ Ωi”.

vii ) (Measuring the classification accuracy. Updating counter) For each
(fixed) decision class Ωi consider the 3-valued logic: TRUE -if lihifi >
ljhjfj (for all j 6= i), UNKNOWN -if lihifi = ljhjfj (for some j 6= i)
and FALSE -otherwise. Initially, each of the three variables is set to
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zero. Whenever a truth value is obtained, the corresponding variable is
incremented with step size 1.

viii ) The cost function is given by the sum of training patterns that are clas-
sified in the right way.

ix ) Repeat step 5 for another choice for x0
i in Ωi until all of them are chosen.

Increment counter.
x ) Repeat step 5 for all vectors x0

j in Ωj for all j 6= i. Increment counter.
xi ) (Searching for optimal smoothing parameter) Generate in each confidence

interval IΩi a number of N random dividing points {P1, P2, ..., PN},
uniformly distributed in IΩi . Repeat step 5 by assigning σi = Pk, k =
1, 2, ..., N for each i = 1, 2, ..., q.

xii ) Find the maximum of the cost function.

Output. σi, i = 1, 2, ..., q, corresponding to the maximum of the cost
function, represent the optimal values of the smoothing parameters σ′s for
each decision category Ωi, i = 1, 2, ..., q.

Note. It is well-known that, on the one hand, the health care modelling
domain frequently encounters situations of non-numeric data (e.g. nomi-
nal data, ordinal data, images, multimedia data, even data collected from
WWW) and, on the other hand, PNNs do not tend to perform well with
such a data. Moreover, in the use of complex patterns in the health care
area, weights for the attributes may be incorporated, in order to highlight
the importance of each attribute. Under these circumstances, the Euclidian
distance used in the PNN algorithm does not work correctly any more. For-
tunately, there are methods to deal with these problems [Bishop, 1995]. One
of the simplest approaches consists in using a mixed-weighted measure of sim-
ilarity instead of the Euclidian distance [Gorunescu, 2003]. Such a measure
allows us to compute distances between training patters consisting in numer-
ical and non-numerical attributes (e.g. images) and taking into account the
significance of each attribute in the decision process.

4 PNN application to hepatic cancer diagnosis

The PNN-based decision model was applied to classify a group of individuals
into a certain categories of diagnosis in the area of hepatic diseases. This
application might be seen as a case-control study investigating a way of se-
lecting people with liver cancer (HCC) -the cases, using comparable persons
who do not have this disease (the controls). It has been suggested [Ibrahim
and Spitzer, 1979] that a case-control study requires at least two control
groups to minimize the possibility of accepting a false result; the rationale is
that if the same result is not achieved in the two case-control comparisons,
both the apparent results are suspect. In our application there is a case
group (HCC) and three control groups (CH), (LC) and (HP). Since PNNs
are particularly useful for classification problems with more than two out-
puts, we have enlarged the previous case-control study in order to classify
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people in four diagnosis group: healthy people (HP), chronic hepatitis (CH),
liver cirrhosis (LC) and hepatic cancer (HCC), instead of persons developing
hepatic cancer vs. persons who do not have the disease.

The PNN-based classification algorithm has been applied to data in or-
der to classify the initial group of individuals into four categories, depending
on the diagnosis type: Ω1 = HCC, Ω2 = LC, Ω3 = CH and Ω4 = HP.
Each person in the data set is represented by a 15-dimensional vector x
= (x1, x2, ..., x15) where the components represent some of the most im-
portant characteristics leading to the right medical diagnosis. Concretely,
x1 = TB (total bilirubin), x2 = DB (direct bilirubin), x3 = IB (indirect
bilirubin), x4 = AP (alkaline phosphatase), x5 = GGT (gamma glutamyl
transpeptidase), x6 = LAP (leucine amino peptidase), x7 = AST (aspartate
amino transferase), x8 = ALT (alanine amino transferase), x9 = LDH (lactic
dehydrogenase), x10 = PI (prothrombin index), x11 = GAMMA, x12 = AL-
BUMIN, x13 = GLYCEMIA, x14 = CHOLESTEROL and x15 = AGE. An
example of such training data vector related to hepatic cancer is the following
one: (6.97, 3.04, 3.93, 438, 279, 182, 135, 52, 95, 450, 3.6, 80, 1.2, 56, 1).

The model was fitted to real data consisting of 299 individuals (both
patients and healthy people) from the Department of Internal Medicine, Di-
vision of Gastroenterology, University Emergency Hospital of Craiova, Roma-
nia. This group of individuals consists of 60 patients with chronic hepatitis
(CH), 179 patients with liver cirrhosis (LC), 30 patients with hepatocellular
carcinoma (HCC) and 30 healthy people (HP).

5 Experimental results

It is worth to mention that we have used only raw data without any previous
data checking or data preparation (some errors in recording data or the ex-
istence of certain outliers is thus possible); moreover, no data screening has
been performed [Altman, 1990]. The goal of such an approach is to verify
the robustness of the PNN technique to learn from raw data.

The key to obtain a good classification using PNNs is to optimally es-
timate the two parameters of the Bayes decision rule, the misclassification
costs and the prior probabilities. Unfortunately, there is no definitive sci-
ence to obtain them and must be assigned as a specific part of the problem
definition. In our practical experiment we have estimate them heuristically.
Thus, as concerns the costs parameters, we have considered them depending
on the average distances Di, inversely proportional, that is li = 1/Di; in this
case the accuracy rate for N = 450 was about 90%. As concerns the prior
probabilities, they measure the membership probability in each group and,
thus, we have considered them equal to each group size, that is hi = mi.

To avoid overfitting, the data set was randomly partitioned into two sets:
the training set and the validation set. A number of 254 persons (85%) of
the initial group was withheld from the initial group for the smoothing factor
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adjustment (the training process). Once optimal smoothing parameters σ′s
for each decision category were obtained using the training set, the trained
PNN was applied to the validation set (the remaining 45 persons). Since we
have used raw data to perform the PNN algorithm and to avoid the criticism
of some people against the Monte Carlo method due to the fact the smallness
of the error of method is only ensured with a certain probability, we have
repeated 10 times the above procedure to diminish the outliers influence and
a possible Monte Carlo technique weakness.

We have use the Java package for the algorithm implementation. What
is important about the Java implementation of the program is that all data
about patients collected by physicians can, at any time, be added, modified
or deleted, with no change in the source of the program whatsoever. That is
so because for the processing of the data we have used JDBC (Java Database
Connectivity). Thus the program is connected to a database and the records
of the specific table of this database can always be updated by the users
themselves (in MS Access or MS Excel) with no further worries concerning
the applicability of the program.

The experimental results are shown in Table 1 and Table 2. Table 1
presents the accuracy rates for both the training process and for the validation
process.

Training accuracy rate (%) Validation accuracy rate (%)

97.32 92.22

85.28 88.88

85.61 95.55

95.65 93.88

91.60 92.00

89.62 93.66

89.28 93.77

90.26 92.22

87.94 91.22

88.29 93.33

Average accuracy 90.10 92.67

Table 1. PNN classifier: experimental results

When the PNN was applied to the training process, the sensitivity anal-
ysis indicated that the proportion of the patients correctly diagnosed was
(average) 90.10%.

When the PNN was applied to the validation data set, which was not
subjected to neural network training, the proportion was (average) 92.67%.

The general predictive abilities of the PNN with the validation data set
is particularly positive, given the fact that the validation data were not used
in the training of the neural network.
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In Table 2 we have considered the 3-valued logic: TRUE, FALSE and
UNKNOWN and we have displayed the accuracy rates obtained during the
validation process related to this classification, that is the percentage of pa-
tients correctly classified, incorrectly classified and unclassified.

Correctly classified patients Incorrectly classified patients Unclassified patients

92.22 6.78 1.00

88.88 8.12 3.00

95.55 4.45 0.00

93.88 6.12 0.00

92.00 7.00 1.00

93.66 6.34 0.00

93.77 6.23 0.00

92.22 7.78 0.00

91.22 8.78 0.00

90.10 7.90 2.00

Table 2. PNN classifier: classification correctness

We see that the unclassified cases represent at most 3% of the whole
number of patients and in 60% of the computer program running we obtained
no unclassified cases.

6 Conclusion and further work

In this paper we have developed and demonstrated the applicability and
suitability of a PNN-based model for decision-making in the hepatic diagnosis
process. PNNs learn by examples so the details of how to recognize the disease
are not needed. What is needed is a set of examples that are representative
of all the variations of the disease. We used raw data (the only data available
for the experiment) and we obtained reliable results proving the PNNs ability
and flexibility to learn by raw examples.

A problem to deal with in PNNs applications is the data set size. The
number of cases required for PNN training frequently presents difficulties.
As the number of variables increases, the number of cases required increases
nonlinearly, so that with a fairly small number of variables a huge number
of cases are required. In our experiment we used 299 cases with 15 vari-
ables. Further works should perform a heuristic study relating the number
of variables to the number of cases.

In comparison with other PNN approaches related to the diagnosis pro-
cess, the accuracy of this technique is competitive. For instance, in predicting
ascites in broilers based on minimally invasive inputs [Roush et al., 1997], a
validation rate accuracy of 95% was reported. At the same time, a validation
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accuracy rate of 92.3% was reported in estimating the mortality risk following
cardiac surgery [Orr, 1997].

Although the early diagnosis of liver cancer in liver cirrhosis is based
on biochemical tests, modern approaches also use imaging tests (i.e. trans-
abdominal ultrasound and/or spiral computed tomography). Therefore, an-
other way to enlarge this heuristic approach in medical research is represented
by the replacement of the Euclidian distance with a general mixed-weighted
measure of similarity. Such an approach will strengthen the decision process
by using much more attributes of the training patterns.

Clearly, much work still needs to be done to improve this methodology
and to apply it to other health care classification problems.
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Abstract. Vaccine induced protection against infection is often random. A con-
cept of protective vaccine efficacy, depending on the mean relative susceptibility
of vaccinated individuals, is considered for a large vaccine trial in which partici-
pants are recruited over a period of time. Bounds are derived that make statistical
inference possible under weak assumptions about the transmission process, irre-
spectively of the type of protection induced by the vaccine.
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1 Introduction

A standard concept of vaccine efficacy is defined as

VEP = 1− c
V

cU
, (1)

c
U

and c
V

representing the proportions of cases among unvaccinated and
vaccinated individuals, respectively.

As pointed out by, e.g., [Smith and Fine, 1984], vaccine efficacy depends
on the type of the protection induced by a vaccine. Two types of vaccine
response are usually discussed. A first case is when a vaccinee receives either
complete protection or no protection against infection (i.e. the vaccine con-
fers a complete/no (CN in short) protection). A second case is when every
vaccinee receives exactly the same partial protection (i.e. the vaccine confers
a partial/uniform (PU in short) protection).

Recently, [Becker and Utev, 2002] introduced a class of vaccine responses
that includes CN and PU protection as particular cases. Shortly, if at time
t, the force of infection acting on an unvaccinated susceptible individual is
λ(t), then the force of infection acting on a vaccinated susceptible individual
is reduced to Aλ(t), A denoting a discrete random variable with probability
distribution

Pr(A = aj) = pj, j = 1, . . . , r, (2)
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where the possible values aj are in [0, 1]. These authors proposed for this
class a concept of protective vaccine efficacy given by

VEP = 1− EA. (3)

When a vaccine induces CN protection, (3) yields VEP = p1, i.e. the prob-
ability that the vaccinee is completely protected. For PU protection, (3)
becomes VEP = 1 − a1, i.e. the per-contact reduction in the probability of
disease transmission.

Estimating VEP from data on the eventual numbers of vaccinated and
unvaccinated cases requires to specify assumptions about the type of vaccine
response. [Becker and Utev, 2002] showed, however, that for a standard
model of epidemics in a large uniformly mixing community, the inequality

1− cV
c
U

≤ VEP ≤ 1− ln(1− cV)

ln(1− c
U
)
, (4)

holds independently of all types of protection induced. These bounds are
estimable from data on the eventual numbers of vaccinated and unvaccinated
cases, and seem to be close enough to be used for inference about VEP.

Our purpose in the present paper is to show how to extend the analy-
sis made in [Becker and Utev, 2002] to a more general model (i) based on
less restrictive assumptions about the force of infection and (ii) allowing for
recruitments of participants over time (which is useful for large field trials
and/or for rather rare diseases). As a key result, we will obtain lower and
upper bounds that are analogous to (but different fom) those given in (4).
Furthermore, we will then prove that if the vaccination coverage remains con-
stant over time, the lower bound can provide a good estimate of the vaccine
efficacy.

This is a joint work with Niels Becker (The Australian National Uni-
versity, Canberra, Australia) and Sergey Utev (University of Nottingham,
Nottingham, United Kingdom).

2 An epidemic model with vaccination

Denote by A the relative susceptibility of a vaccinated individual, such as
defined by (2). Vaccinated individuals for which A = aj are said to be of
type j, and unvaccinated individuals are said to be of type U. In practice,
only unvaccinated (U) and vaccinated (V) individuals can be distinguished.

The population sizes are described by a deterministic model (valid for
large trials). Let N

U
(t) be the number of unvaccinated trial participants

recruited by time t, and let N
V
(t) be the number of vaccinated trial members

recruited by time t. Initially, there are n individuals of whom a fraction u
are unvaccinated and a fraction v are vaccinated (u + v = 1). In Section 3,
the proportion of vaccinated trial participants will be assumed to be always
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as large as its initial level v. In particular, the vaccination coverage can then
remain constant.

At time 0, the numbers of susceptible trial participants are given by

S
U
(0) = nu, and Sj(0) = nvpj, j = 1, . . . , r.

Let λ(t) be the force of infection on an unvaccinated individual. Then, the
number of unvaccinated trial members who are susceptible to infection at
time t is ruled by the differential equation

dS
U
(t) = −λ(t)S

U
(t) dt+ dN

U
(t).

For the vaccinated members, these numbers are governed by the differential
equations

dSj(t) = −ajλ(t)Sj(t) dt+ pj dNV
(t), j = 1, . . . , r.

Putting Λ(t) =
∫ t
0 λ(x) dx, the solutions to these equations are respectively

given by

S
U
(t) =

∫ t

0−
exp[Λ(x)− Λ(t)] dN

U
(x), (5)

and

Sj(t) = pj

∫ t

0−
exp[ajΛ(x) − ajΛ(t)] dN

V
(x), j = 1, . . . , r. (6)

Let us fix any finite time interval [0, T ]. The number of unvaccinated trial
participants who are cases by time T is

CU = NU(T )− SU(T ),

and the number of vaccinated cases by time T is

C
V

= N
V
(T )−

r∑

j=1

Sj(T ).

3 An estimator for the vaccine efficacy

As a first step, we begin by showing how (4) can be generalized to the present
framework.

Proposition 1 Provided that the proportion of vaccinated trial participants
remains in the course of time as large as its initial level v, then

1− u

v

C
V

C
U

≤ VEP ≤ 1− ln[1− C
V
/N

V
(T )]

ln[1− C
U
/N

U
(0)]

. (7)

Moreover, the lower bound is attained when the vaccine induces CN protection
and the vaccine trial has a non-varying vaccination coverage.
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In the proof, a central point is a simple inequality for the expectation of
a concave function of a random variable (see, e.g., [Becker and Utev, 2002]):
if g is a continuous concave function defined on a finite interval [c1, c2], then
for any random variable A taking values in [c1, c2],

g(c1)
c2 − EA

c2 − c1
+ g(c2)

EA− c1
c2 − c1

≤ E g(A) ≤ g(EA).

Now, let us give some comments on this result. We see that (7) reduces
to (4) when recruitment occurs only at time t = 0. We also observe that
the bounds of (4) still apply when recruitment occurs after time 0, but they
ignore data on individuals recruited after time t = 0. Obviously, (7) uses
data on individuals recruited after time 0, but the upper bound does so only
through CU , CV and NV (T ). Finally, we indicate that the upper bound in
(7) cannot be attained with recruitment after time 0, but it is attained when
the vaccine induces PU protection and the only recruitment is at time 0.

As a second step, we are going to derive an approximate estimator for
the vaccine efficacy. More precisely, let us assume that all vaccine trial par-
ticipants are recruited at k different instants during [0, T ]. Initially, in each
group i, i ∈ {1, . . . , k}, there are ni participants, and an identical vaccination
coverage v is applied to each group. In group i, an unvaccinated individual
escapes the disease with probability πi = exp(−Λi), Λi denoting a cumula-
tive force of infection upon this group until time T . A vaccinated individual
in group i escapes the disease with probability E[(πi)

A] where the random
variable A has a distribution given by (2).

It is well-known (see, e.g., [Smith and Fine, 1984]) that without recruit-
ment (i.e. when πi = π), and if the vaccine induces CN protection, the mea-
sure (1) constitutes a maximum likelihood estimator of the vaccine efficacy
VEP. Hereafter, we will consider the cases, rather frequent in reality, where
the different cumulative forces of infection Λi are all relatively small. We will
then show that the lower bound, 1 − uCV /vCU , derived in (7) provides a
good estimator for VEP.

Proposition 2 Under the condition that maxi(1− πi) ↓ 0, then

V̂EP = 1− u

v

C
V

CU

(8)

is asymptotically equivalent to a maximum likelihood estimator of VEP.

In the proof, the starting point is an expression for the global likelihood
function L as a function of the unknown parameters {πi, i = 1, . . . , k},
{pj, j = 1, . . . , r} and {aj , j = 1, . . . , r}. To construct L, we will have
to introduce the final number of cases among vaccinated and unvaccinated
participants in each group.

It is important to underline, however, that the only data needed for this
estimator are the final numbers of cases observed at time T .
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An asymptotic distribution as n→∞ can also be derived by using stan-
dard statistical arguments. First, a central limit theorem allows us to show
that the lower bound type estimator ÊA = uCV /vCU is approximately nor-
mal. Then, using inequalities between integrals of special functions of expo-
nential type, we are able to prove that the asymptotic mean of ÊA, denoted
by a, is given by

asimEA+ α with 0 ≤ α ≤ ε/8(1− ε)2, (9)

where ε = 1 − exp[−Λ(T )] is small by the assumption made before. The
variance can also be calculated in a similar way.
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Abstract. Early detection of (pre)tumor is a priority in the understanding of
cancer development in tissues. Several hypotheses have been proposed to explain
tumorigenesis. One of them, the mutator phenotype, postulates that the loss of
mismatch repair (MMR) generates a raise in the mutation rate. Under this as-
sumption estimating the increase in the mutation rate is a key step for detecting a
tumor. In this paper an estimator of the raised mutation rate based on the number
of segregating sites in a sample of cells is proposed. The bias and the mean squared
error of this estimator have been assessed through a simulation study.
Keywords: Tumorigenesis, Genetic instability, Mutator phenotype, Coalescent
theory, Number of segregating sites.

1 Introduction

Cancer is known to be a very complex phenomenon. Since early in the 20th
century [Boveri, 1929], it is widely assumed that a normal cell is converted to
a tumoral cell by a succession of genetic events. More precisely the genetic
equilibrium of a cell is disrupted by an initiating event and then because
of a cascade process the cell becomes tumoral. This is the so-called genetic
instability hypothesis for tumorigenesis.

Three major competing hypotheses have been formulated concerning the
initial event of tumorigenesis. The first one [Tomlinson and Bodmer, 1999]
[Cairns, 1975]explains that a cell must exhibit a selective advantage to be
converted into a pretumoral cell. Then by a selective clonal expansion the
cell becomes malignant. The second hypothesis is based on the experimental
results that most of tumoral cells are victims of aneuploidy [Duesberg et al.,
1998]. This chromosomal instability may be responsible for the multistep pro-
cess that leads to cancer [Duesberg and Rasnick, 2000]. The third hypothesis
is called the mutator phenotype [Loeb and Springgate, 1974]. Considering
the high fidelity of DNA replication in normal cells and the large number of
genetic alterations that are observable in cancer cells, it postulates that the
initial event in tumorigenesis is a particular mutation. This mutation should
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take place in genes that control the fidelity of DNA replication and the ef-
ficacity of DNA repair. These genes are directly responsible for the genetic
stability of a cell. An alteration of their functions called loss of Mismatch
Repair (loss of MMR) may generate a deregulation of the apoptosis or a re-
duction of the cell cycle duration. As a result of loss of MMR, the mutation
rate will be raised in all cells that are descendants of the cell affected by loss
of MMR. It has been suggested that the loss of MMR is required to initiate
tumorigenesis [Loeb, 1991].

It is still a matter of debate to know exactly which event is the initiating
event of tumorigenesis. Several mathematical models have been studied to
understand the mutator phenotype hypothesis. Some of them argued that
selection prevails on the raise of the mutation rate [Tomlinson and Bodmer,
1995]. Other models study the effect of the loss of MMR and how it hastens
tumorigenesis [Plotkin and Nowak, 2002, Michor et al., 2003]. Evolutionary
models had been developed to infer the age of the loss of MMR [Tsao et
al., 2000] [Calabrese et al., 2004]. It is widely assumed ( [Shibata et al.,
1994] and [Bhattacharyya et al., 1994] ) that after the loss of MMR the
mutation rate increases 102- to 103-fold. The need for deeper mathematical
studies has been formulated in a recent review [Michor et al., 2004] to better
understand the influence of the three hypothesis (selection, aneuploidy and
mutator phenotype) in the evolution of a cell. So far no mathematical model
has been developed to estimate the raised mutation rate, and this is the
focus of this article. A classical method in population genetics for estimating
a mutation rate consists in counting the number of segregration sites in a
sample of genes. In this article we propose a correction of this estimator in
the context of genetic instability based on the coalescent theory.

2 Model Description

We consider a sample of n copies of a particular gene taken from a
(pre)tumoral tissue, and assume that the loss of MMR occurred once in the
sample history. However, the date and place at which this event occurred
are unknown. Loss of MMR can be considered as a particular deleterious
mutation of a mismatch repair gene. We denote by µLMMR the rate of this
particular mutation, and we assume that the rate of this event is very small
(µLMMR goes to 0).

The sample is divided in two random subsamples B and C where B de-
notes the subset of descendants of the mutation and C its complement. Given
the number B = b of genes in B, the number of genes in C is then equal to
n − b (see Figure 1). Genes are characterized by their DNA sequences. For
instance, such data may arise from the FISH (Fluorescence In Situ Hybrida-
tion) technology [Pinkel et al., 1986]. In our model, the evolution of genes
is described by a two-rates model. We denote by µC the normal rate, ie the
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mutation rate per base per generation in C. On the other hand, we denote
by µB the raised mutation rate in B.

Conditional on B = b, the genealogy of the n genes can be described by
the so-called conditional coalescent [Wiuf and Donnelly, 1999] for which the
genes in B share a common ancestor before any of them shares an ancestor
with C. In addition, loss of MMR occurred between the time of the most
recent common ancestor (MRCA) of the subsample B and the time at which
B coalesces with C (see Figure 1). The coalescent approximation was intro-
duced by Kingman in the 80’s [Kingman, 1982]. It is similar to the diffusion
approximation in population genetics. Time is measured in units of N gen-
erations where N is the total population size. In this setting, mutation rates
are rescaled as θB/2 = 2NµB and θC/2 = 2NµC.

nη

Loss of MMR

n−b b

C

Coalescent Mutation rate θCCoalescent Mutation rate

Mutation rateMutation rate Mutation rate

θ
µ µC

B

B

B

SubsampleSubsample

X2

X3

X4

X5

X6

X7

X8

Fig. 1. A coalescent tree of size n = 8 conditional on B = 4. Time is represented
backward and the loss of MMR event is indicated.

In the coalescent, mutations occur according to independent Poisson pro-
cesses of rate θ/2 along the branches of the tree. Among the various models
that describe the mutation types, the infinitely-many sites model may be
one of the most appropriate [Watterson, 1975]. In this model, each DNA
sequence consists of completely linked sites (ie, no recombination occurs).



1034 Emily and François

Each mutation occurs at a site of the DNA sequence that had not been mu-
tated before, so that a new segregating site arises. The number of segregating
sites corresponds to the number of substitutions of ancestral bases since the
MRCA.

3 Theoretical analysis

3.1 Background

In this section, we recall well-known results about the number of segregat-
ing sites under the infinitely-many sites model of mutation. These results are
valid when loss of MMR do not occur which means that there is only one mu-
tation rate , written θ [Watterson, 1975]. In the neutral coalescent, the gene
lineages coalesce at random, and the times separating the coalescence events
Xi, i = 2 · · ·n are independent exponential random variables of parameter
i(i− 1)/2. The tree has total length Ln =

∑n
i=2 iXi of expectation

IE[Ln] = 2Hn−1 ≈ 2 logn

and variance

V ar[Ln] = 4
n−1∑

i=1

1

i2
≈ 2π2

3

where Hn is the nth harmonic number Hn =
∑n

i=1 1/i.

The number of segregating sites θ̂ = Sn/Hn−1 is frequently used as an
unbiased estimator of the mutation rate θ. Using that

V ar[Sn] =
n−1∑

i=1

(
θ2

i2
+
θ

i

)

we see that θ̂ converges to θ at a logarithmic rate.

3.2 Number of sites of segregation in the two-rates model

In the mutator phenotype hypothesis, a rare mutation is responsible for an
increase in the DNA mutation rate from θC to θB. In this section, we build
an approximately unbiased estimator of θB.

First of all, the number B of genes that carry the mutator phenotype (the
frequency spectrum) has a Yule distribution [Stephens, 2000]

P (B = b) =
1

bHn−1
, b = 1, . . . , n− 1 (1)

Given B = b, the total length L̃n of the genealogy of the subsample B has
an expected value equal to [Griffiths and Tavaré, 2003]

IE[L̃n|B = b] = Ln,b =

(
n− 1
b

)−1 n−b+1∑

j=2

(
n− j
b− 1

) n∑

k=j+1

2

k(k − 1)
cjk (2)
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where b = 2, · · · , n− 1, and

cjk = b− (b − 1)
n− k
n− j −

(n− k)!(n− j − b+ 1)!

(n− j)!(n− k − b+ 1)!
(3)

Consider the time ηn that separates the MRCA of the B sample from the
loss of MMR event. Wiuf and Donnelly [Wiuf and Donnelly, 1999] showed
that

IE[ηn|B = b] = 2

(
n− 1
b

)−1 n−b+1∑

j=2

1

j

(
n− j
b− 1

)
b = 1, · · · , n− 1 (4)

Now, consider the total length L̃n + ηn (see Figure 1), and take the expecta-
tion. We set

βn = IE[L̃n + ηn]/2

The average number of mutations in descendants of the loss of MMR event
is given by

IE[SB
n ] = βnθB

In addition, the average number of mutations in the subsample B is

IE[SC
n ] = γnθC

where
γn ≈ Hn−1 − βn (5)

Finally, consider the total number Sn of segregating sites. We obtain that

IE[Sn] = βnθB + γnθC (6)

An unbiased estimator of the raised mutation rate can be proposed as follows

θ̂B =
Sn − γnθC

βn
(7)

4 Results and discussion

In this section, we study the behaviour of the estimator given in equation
(7) through simulations. Data were simulated as follows. The first step was
the determination of B using the frequency spectrum distribution described in
equation (1). Then, we built a conditional coalescent tree given B = b, with
biased inter-coalescence times. We computed both the total length Ln of the
tree and the length L̃n of the b-subtree, and we simulated the random variable
ηn. Finally, we simulated the random variable Sn as a Poisson distributed
variable of rate β̂nθB +γ̂nθC where β̂n = (L̃n + ηn)/2 and γ̂n = Ln/2 − β̂n.
Biased inter-coalescence times were obtained from a rejection algorithm. The
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simulation procedure was validated by recovering various known quantities
(such as Ln,b).

The experimental results regarding the estimator θ̂B are presented in Ta-
ble 1. These results were obtained from the procedure above described using
the following experimental design. The parameter θC was set equal to a
small value θC = 0.01. This corresponds to the rough value of a mutation
rate µC ≈ 10−10, the total number of cells N ≈ 108. Four different values
for the raised mutation rate θB = 0.1, 0.2, 1 and 10 were considered. Sample
sizes of n = 10, n = 20 and n = 50 cells were considered. For each simulation
we took two configurations of the mutation rate θLMMR, and observed that
this had a weak influence on the result.

θB = 0.1 θB = 0.2

IE[θ̂B] SD[θ̂B ]

q
MSE[θ̂B] IE[θ̂B] SD[θ̂B]

q
MSE[θ̂B]

n = 10

0.085 0.48 0.48 0.20 0.60 0.60

n = 20

0.057 0.38 0.38 0.19 0.71 0.71

n = 50

0.18 0.58 0.59 0.21 0.66 0.66

θB = 1 θB = 10

IE[θ̂B] SD[θ̂B ]

q
MSE[θ̂B] IE[θ̂B] SD[θ̂B]

q
MSE[θ̂B]

n = 10

0.93 1.43 1.42 8.92 11.42 11.44

n = 20

0.94 1.56 1.56 6.80 11.43 11.84

n = 50

0.75 1.82 1.84 9.65 16.15 16.11

Table 1. Results of our estimator θ̂B on simulations. This table summarises results
obtained under various conditions. Simulations were made for a population of
n = 10, n = 20 and n = 50 cells in total. For each n, 500 simulations were
performed in each 4 cases : θB = 0.1 θB = 0.2, θB = 1 and θB = 10.

Table 1 gives the bias, variance and mean squared error estimated over
500 simulations. The results show that θ̂B is indeed weakly biased. The
major source of bias was the limit of a null mutation rate µLMMR considered
in the theoretical analysis. Nevertheless, the mean squared error is very high,
and the distribution of the estimator appeared to be positively skewed. In
addition, the variance did not decrease with the sample size. This might be
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due the dependence of data within the B subsample, and the fact that the
MRCA of the subsample is expected to be recent.

Although it is crucial in the fight against cancer, detection of the disease
at a pretumoral stage is a very difficult issue. In this paper we showed that
estimating the raised mutation rate (posterior to loss of MMR) based on the
number of segregating sites may not be an efficient method while the use of
this estimator is widely spread in more classical population genetics studies.

As well, we observed that the variance of the estimator did not decrease
as the sample size increased (from n = 10 to n = 50). Consequently if
DNA analyses of a (supposed tumoral) tissue are necessary, collecting a large
number of DNA sequences may not be the best approach for inferring the
raised mutation rate. This issue may be overcome by considering several
chromosomal loci instead of a single locus as we did. Nevertheless the fact
that empirical distributions of the estimator are positively skewed indicates
that statistical testing using the number of segregating sites might be lacking
power.
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Abstract. Adaptative designs for clinical trials that are based on a generalization
of the “play-the-winner” rule are considered as an alternative to previously devel-
oped models. Theoretical and numerical results show that these designs perform
better for the usual criteria. Bayesian methods are proposed for the statistical
analysis of these designs.
Keywords: Clinical trials, Adaptative designs, Play-the-winner rule, Generalized
Friedman’s urn, Bayesian methods.

1 Introduction

From ethical point of view, adaptative designs can be desirable for some clini-
cal trials. In such designs subjects are assumed to arrive sequentially and they
are assigned to a treatment with a probability that is updated as a function
of the previous events. The intent is to favor the “most effective treatment”
given available information. Originally, the play-the-winner allocation rule
was designed for two treatments with a dichotomous (e.g. success/failure)
outcome [Zelen, 1969]. It involves an “all-or-none” process: if subject n−1 is
assigned to treatment t and if the outcome is a success, subject n is assigned
to the same treatment; if on the contrary the outcome is a failure, subject n
is assigned to the other treatment.

Later, different designs were developed to generalize the rule to the case
of three or more treatments and/or to take into account the case of delayed
responses (most clinical trials do not result in immediate outcomes and the
subject’s outcome can be not observable when the next subject arrives):
see e.g. [Hoel and Sobel, 1998], [Wei and Durham, 1978], [Andersen and
Tamura, 1994], [Bai et al., 2002a], [Biswas, 2003]. These designs are generally
presented as a randomized play-the-winner rule or as a modified version of
this rule. We shall see that this name is misleading, because all these designs
alter the original all-or-none rule by replacing it with a “linear” adaptive
process.
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In spite of its apparent determinism, the play-the-winner rule is a stochas-
tic process, since it depends on the probabilities of success on each treatment.
However many people believe that a “less deterministic” rule is better in prac-
tice. We shall see that it is not the case.

2 GFU models and extensions

The traditional approach is to depict the adaptive rule as a generalized Fried-
man’s urn (also named as generalized Pólya urn) model (GFU model) [Freed-
man, 1965]. A typical GFU model for two treatments can be described as
follows. When a new subject n arrives, the urn contains (Y 1

n−1, Y
2
n−1) balls

(or “particles” since the number of balls in the urn can be non integer) that
represents the two treatments. A ball is drawn at random and replaced.
Then the subject is assigned to the corresponding treatment (say t). When
the subject outcome is known, balls are added to the urn. For instance, for
a dichotomous outcome u + v balls are added: u type t balls and v balls of
the other type in case of success; v type t balls and u balls of the other type
in case of failure. Then, if we assume an initial urn composition (Y 1

0 , Y
2
0 )

and immediate outcomes, the urn contains at step n (Y 1
n , Y

2
n ) balls, with

Y 1
n + Y 2

n = Y 1
0 + Y 2

0 + n(u+ v). Therefore the number of balls in the urn at
step n is the same, whatever the previous events are.

Bai, Hu and Shen developed a general class of adaptative designs for t

treatments and a dichotomous outcome [Bai et al., 2002a] that extend in a
straigthforward way the model above. They considered models with u = 1
and v = 0. Then the models in the class differ only with respect to the
repartition of the balls when the response to treatment t is a failure. They
proposed in particular the three following models. GFU model 1 consists of
equally adding 1/(t-1) (fractional) balls of each of the other (t-1) types (see
[Wei, 1979]); of course it is not very satisfactory. GFU model 2 consists of
adding balls proportional to the “known” probabilities of success, but this
theoretical model is not applicable in practice. Then in model 3 the unknown
probabilities are replaced with the estimated probability of success; this looks
more satisfactory, but the model is much more complex and is no longer a
GFU.

They investigated the asymptotic properties of this class of models and
found them to be “desirable” (see also [Bai et al., 2002b]). It must be empha-
sized that the case of delayed outcomes is directly taking into account by the
models, the urn being updated when outcomes become available; moreover
this does not affect the limiting distribution, although the adaptation process
can be considerably slowed.

“In order to demonstrate the performance of the new design” the au-
thors gave numerical illustrations. Unfortunately, if we look through their
numerical tables ([Bai et al., 2002a], page 17), we can seriously questioned
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the real value of their asymptotic results for samples of moderate size, even
with immediate outcomes.

For instance, let us consider three treatments with probabilities of suc-
cess 0.50, 0.80 and 0.90. For the “best design” of the authors, the average
allocation proportions in a trial of 100 subjects are respectively 0.165, 0.354
and 0.481, and they are very distant from the asymptotic values 0.089, 0.295
and 0.616. Even in a trial of 10 000 subjects the proportions – 0.099, 0.325
and 0.576 – are not what could be expected. So, we were induced to consider
other designs that directly generalize the play-the-winner rule and appear to
be preferable.

3 Alternative models and some basic results

We shall adopt here an equivalent but slightly different conceptualization.
For simplification, we present only the case of two treatments. We represent
the state of the investigator before subject n arrives by a vector zn−1 =
(z1
n−1, z

2
n−1) where 0 ≤ zin−1 ≤ 1 and

∑
zin−1 = 1. For each subject n,

there are two observable events: (1) the treatment tn to which this subject is
assigned; tn = ti with probability zin−1; and (2) the corresponding outcome
rn; rn = 1 (success) with probability ϕ1 for t1 and probability ϕ2 for t2. We
assume an initial state z0 = (z1

0 , z
2
0).

The probability transition for the GFU model with two treatments de-
scribed above (named here as Model I) is given in Table 1

tn rn Model I Model II

t1 1 z1
n = n0+(n−1)(u+v)

n0+n(u+v)
z1

n−1 + u
n0+n(u+v)

z1
n = az1

n−1 + (1− a)b

t1 0 z1
n = n0+(n−1)(u+v)

n0+n(u+v)
z1

n−1 + v
n0+n(u+v)

z1
n = az1

n−1 + (1− a)(1− b)
t2 1 z1

n = n0+(n−1)(u+v)
n0+n(u+v)

z1
n−1 + v

n0+n(u+v)
z1

n = az1
n−1 + (1− a)(1− b)

t2 0 z1
n = n0+(n−1)(u+v)

n0+n(u+v)
z1

n−1 + u
n0+n(u+v)

z1
n = az1

n−1 + (1− a)b

Table 1. Probability transitions for the two classes of models

It must be noted that the initial urn composition (Y 1
0 , Y

2
0 ) is here repre-

sented by two parameters with distinct status, on the one hand the initial
state z0 (z1

0 = Y 1
0 /(Y

1
0 + Y 2

0 )), and on the other hand the parameter n0

(= Y 1
0 + Y 2

0 ). Consequently, with the new conceptualization, one can let
n0 = 0, so that the initial state only intervenes for the assignment of the first
subject, but does not intervene in the probability transition.

In that follows, we shall consider only, as usually done, the particular case
u = 1 and v = 0.

It can be shown that, in order to improve the fastness of the adaptation
process, the property of a constant number of balls in the urn at a given
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step must be relaxed . For this purpose we can then envisage a new class of
models, named as Model II, where z1

n is again a linear function of z1
n−1, but

with constant coefficients. The corresponding probability transition is given
in Table 1. It must be emphasized that, unlike Model I, Model II includes
the original play-the-winner rule when a = 0 and b = 1. In this case z1

n takes
only the values 0 and 1 (“all or none” model).

In that follows, we shall consider only the particular case b = 1 and we
shall assume z1

0 = z2
0 = 0.5.

The two models can be characterized by the recurrence relation

E(z1
n) = AnE(z1

n−1) +Bn

where An and Bn are constants that are function of the model parameters,
and furthermore of n for Model I. It can be deduced that

E(z1
n) = z1

0

n∏

i=1

Ai +

n∑

j=1

Bj

n∏

i=j+1

Ai

For Model I (u = 1 and v = 0),

Ai = 1− 2− ϕ1 − ϕ2

n0 + i
and Bi =

1− ϕ2

n0 + i

For Model II (b = 0) An and Bn does not depend on n

Ai = a+ (1 − a)(ϕ1 + ϕ2 − 1) and Bi = (1− a)(1 − ϕ2)

hence

E(z1
n)− ψ1 = (z1

0 − ϕ1)
(
a+ (1− a)

(
1− 1− ϕ2

ψ1

))n

For each of the two models, we have asymptoticaly

when n→∞, E(z1
n)→ ψ1 =

1− ϕ2

1− ϕ1 + 1− ϕ2

but the convergence is faster for Model II as shown by the two equalities

Model I: E(z1
n)− ψ1 = (z1

0 − ϕ1)

n∏

i=1

(
1− 1− ϕ2

(n0 + i)ψ1

)n

Model II: E(z1
n)− ψ1 = (z1

0 − ϕ1)
(
a+ (1 − a)

(
1− 1− ϕ2

ψ1

))n

Furthermore, for Model II we have the following properties. The smaller
a, the smaller |E(z1

n − ψ1| is, and when a = 0 the minimum is such that
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E(z1
n)− ψ1 = (z1

0 − ϕ1)(ϕ1 + ϕ2 − 1)n

The closer to one ϕ1 + ϕ2, the smaller |E(z1
n)− ψ1| is, and for ϕ1 + ϕ2 = 1,

E(z1
n) = ψ1 (∀n ∀z1

0).

Let T 1
N be the number of subjects assigned to treatment t1 in a trial of

N subjects. It can be deduced that

E(T 1
N ) =

1

N

N−1∑

n=0

E(z1
n) = ψ1 +

1

N
(z1

0 − ϕ1)
1− hN
1− h

where h = a+ (1− a)(ϕ1 + ϕ2 − 1)

= ϕ1 + ϕ2 − 1 if a = 0

Table 2 illustrates the superiority of the all-or-none model for the proba-
bility of success ϕ1 = 0.60 and ϕ2 = 0.80. The possibility of setting n0 = 0
in Model I improves the average allocation proportion, but notably increases
the standard deviation.

ϕ1 = 0.60 ϕ2 = 0.80

N = 50 subjects
Model I Model I Model II
n0 = 1 n0 = 0 a = 0 N →∞

0.618 (0.149) 0.649 (0.186) 0.661 (0.101) 0.667

Table 2. Comparison of Models I and II with two treatments: average alloca-
tion proportions (exact) for treatment t2 (standard deviations estimated from 106

replications)

4 Generalizations

The two class of models can be easily generalized to the case of t > 2 treat-
ments. We can translate as a Model I each of the particular models (1, 2 and
3) considered by Bai et al. (and other related models proposed). We can also
associate a Model II to each of these models; these models differ with respect
to the probability transition in case of failure, while for a = 0 they comply
with the original play-the-winner rule which is to repeat the treatment in
case of success. As for Model I, delayed outcomes are directly taking into
account. Moreover, it can be demonstrated that each particular Model II has
the same asymptotic properties as the corresponding Model I. But it always
perform better, the adaptation process being the fastest when a = 0.
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ϕ1 = 0.50 ϕ2 = 0.80 ϕ3 = 0.90

Model I-1 Model II-1 (a = 0)
N = 100 N = 300 N = 100 N = 300 N →∞

t1 0.181 (0.088) 0.135 (0.063) 0.122 (0.053) 0.089 (0.036) 0.118
t2 0.355 (0.152) 0.349 (0.127) 0.299 (0.119) 0.296 (0.073) 0.294
t3 0.464 (0.165) 0.516 (0.137) 0.579 (0.134) 0.615 (0.079) 0.588

Model I-3 Model II-3 (a = 0)
N = 100 N = 300 N = 100 N = 300 N →∞

t1 0.165 (0.092) 0.135 (0.063) 0.097 (0.056) 0.089 (0.036) 0.089
t2 0.354 (0.157) 0.349 (0.127) 0.296 (0.127) 0.296 (0.073) 0.295
t3 0.481 (0.167) 0.516 (0.137) 0.607 (0.136) 0.615 (0.079) 0.616

Table 3. Comparison of Models I and II with three treatments: average alloca-
tion proportions and standard deviations between parentheses (estimated from 106

replications)

This is illustrated in table 3 for the probability of success ϕ1 = 0.50,
ϕ2 = 0.80 and ϕ3 = 0.90.

We have also computed the proportions of the different orders of treat-
ment allocations in each replication. Table 4 illustrates again the manifest
superiority of Model II. For the same probability of success, when N = 300,
for a given trials there is for instance about a 98% chance with Model II-3
that a majority of subjects is assigned to the most effective treatment against
only about a 74% chance with Model I-3.

ϕ1 = 0.50 ϕ2 = 0.80 ϕ3 = 0.90

Model I-1 Model II-1
N = 100 N = 300 N = 100 N = 300

t1 ≤ t2 ≤ t3 + + + 0.489 0.676 0.801 0.975
t2 ≤ t1 ≤ t3 −−+ 0.136 0.060 0.064 0.007
t3 ≤ t2 ≤ t1 −+− 0.015 0.001 0.000 0.000
t1 ≤ t3 ≤ t2 +−− 0.287 0.253 0.129 0.018

t3 ≤ t1 ≤ t2 or t2 ≤ t3 ≤ t1 −−− 0.073 0.010 0.003 0.000
Model I-3 Model II-3

N = 100 N = 300 N = 100 N = 300
t1 ≤ t2 ≤ t3 + + + 0.511 0.675 0.814 0.975
t2 ≤ t1 ≤ t3 −−+ 0.136 0.061 0.071 0.006
t3 ≤ t2 ≤ t1 −+− 0.012 0.001 0.000 0.000
t1 ≤ t3 ≤ t2 +−− 0.281 0.254 0.113 0.018

t3 ≤ t1 ≤ t2 or t2 ≤ t3 ≤ t1 −−− 0.061 0.010 0.003 0.000

Table 4. Comparison of Models I and II with three treatments: Proportions of the
different orders of treatment allocations (estimated from 106 replications)
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5 Bayesian methods

In conclusion, our results are very incentive: the simplest model is the best!
This greatly facilitates both a thoughtful planning into the design phase and
the use of efficient inference procedures.

For this purpose, the Bayesian statistical methodology can be used for
designing the study (how many subjects?) and for comparing the treatments.
A clinical trial is generally expected to bring evidence by itself. So it is
desirable in clinical research to assume noninformative priors for objective
report in publication, the posterior distribution being based solely on the
data. But alternative choices of priors may be used to refining inference.

Moreover, the Bayesian predictive approach is a very appealing method
for monitoring the study and in particular for stopping it early if necessary
(e.g., [Spiegelhalter et al., 1986, Lecoutre et al., 1995, Lecoutre et al., 2002]).
It simulates the probability of achieving the trial target, conditionally on
available data and simple conjectures about the future observations. The
simulations can be explicitly based on either the hypotheses used to design
the study, expressed in terms of the prior distribution, or on available data,
or on both.

We shall briefly illustrate Bayesian methods for the basic situation of an
adaptative design with two treatments using Model II (with a = 0). We
also assume immediate outcomes. The sequel of treatment allocations (t1,
t2 . . . tn, tn+1 . . . tN+1) contains all the information in the data. Indeed, tn =
tn+1 implies that a success to tn has been observed and tn 6= tn+1 implies
that a failure to tn has been observed. Moreover, the likelihood function is
simply

l(ϕ1, ϕ2)|(t1, . . . tN+1) =
1

2
ϕn11

1 (1− ϕ1)
n10ϕn21

2 (1 − ϕ2)
n20

where nij is the number of pairs (tn, tn+1) equal to (ti, tj), so that n11 and
n21 are the respective numbers of success to treatments t1 and t2, and n10

and n20 are the numbers of failure (1/2 is the probability of t1).
Bayesian methods only involve the likelihood function and are imme-

diately available. This results from the fact that the likelihood function
is identical (up to a multiplicative constant) with the likelihood function
associated with the comparison of two independent binomial proportions.
Therefore we can apply the same Bayesian procedures. A simple and usual
solution assumes two independent beta prior distributions for ϕ1 and ϕ2:
respectively β(ν11, ν10) and β(ν21, ν20). The marginal posterior distribution
are again two independent beta distributions: β(ν11 + n11, ν10 + n10) and
β(ν21 + n21, ν20 + n20). The predictive distributions for future observations
are two independent beta-binomial distributions ([Lecoutre et al., 1995]).

Let us consider for illustration the results of a trial with N = 100 sub-
jects. The observed rates of success are respectively 17 out of 31 attri-
butions for treatment t1 and 56 out of 69 attributions for treatment t2.
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A joint probability statement is, in a way, the best summary of the poste-
rior distribution. For instance, if we conventionally adopt the Jeffreys prior
(ν11 = ν10 = ν21 = ν20 = .5), the joint posterior probability that ϕ1 < 0.712
and ϕ2 > 0.708 is 0.95.

However, a statement that deals with the comparison of the two treat-
ments directly would be preferable. So we have a probability 0.996 that
ϕ2 > ϕ1. Moreover, the main classical criteria for comparing two propor-
tions can be dealt with. This is easily solved in the Bayesian approach, since
the distribution of any derived parameter of interest can be easily obtained
from the joint posterior distribution using numerical methods. For instance,
we find the 95% credible intervals [+0.068,+0.453] for ϕ2 − ϕ1, [1.10, 2.18]
for ϕ2/ϕ1 and [1.41, 9.07] for (ϕ2/(1− ϕ2))/ϕ1/(1− ϕ1)).

For the Jeffreys prior, Bayesian methods have fairly good frequentist cov-
erage properties for interval estimates, even in the the cases of moderate
sample sizes and small parameter values (see e.g., [Lecoutre and Charron,
2000]). As an illustration, 105 samples of size N = 50 were generated for
different set of parameter values. We considered the inference about the dif-
ference ϕ2 − ϕ1. The proportion of samples for which respectively the 95%
lower and 95% upper limits were respectively greater and smaller than the
true difference are reported in Table 5.

Lower limit Upper limit

ϕ2 = 0.80 ϕ1 = 0.80 0.059 0.057
ϕ2 = 0.60 ϕ1 = 0.60 0.053 0.053
ϕ2 = 0.50 ϕ1 = 0.50 0.052 0.051

ϕ2 = 0.80 ϕ1 = 0.70 0.058 0.052
ϕ2 = 0.70 ϕ1 = 0.60 0.056 0.049
ϕ2 = 0.60 ϕ1 = 0.50 0.053 0.051

ϕ2 = 0.80 ϕ1 = 0.60 0.055 0.053
ϕ2 = 0.70 ϕ1 = 0.50 0.058 0.050
ϕ2 = 0.60 ϕ1 = 0.40 0.058 0.047

Table 5. Coverage properties of Bayesian credible intervals for the comparison of
two treatments: proportions of errors for the 95% lower and 95% upper limits (105

replications)

These methods can be easily generalized with virtually no more concep-
tual difficulties to the case of several treatments and/or delayed outcomes.
The Bayesian approach is appropriate as well for a definitely decisional trial
(e.g., for selecting the best treatment) as for estimation (e.g., for assessing
the difference in efficacy between two treatments). Moreover, the predictive
approach enables the trial to be stopped early, or on the contrary to be ex-
tended to an adequate size, in a sequential perspective that fits with the
methodological principle of adaptative designs.



Play-the-winner rule in clinical trials 1047

References

[Andersen and Tamura, 1994]D. Andersen, J.and Faries and R. Tamura. A ran-
domized play-the-winner design for multiarm clinical trials. Communications
in Statistics, Theory and Methods, pages 309–323, 1994.

[Bai et al., 2002a]Z. D. Bai, F. Hu, and W. F. Rosenberger. Asymptotic properties
of adaptive designs for clinical trials with delayed response. The Annals of
Statistics, pages 122–139, 2002.

[Bai et al., 2002b]Z. D. Bai, F. Hu, and L. Shen. An adaptive design for multi-arm
clinical trials. Journal of Multivariate Analysis, pages 1–18, 2002.

[Biswas, 2003]A. Biswas. Generalized delayed response in randomized play-the-
winner rule. Communications in Statistics, Simulation and Computation, pages
259–274, 2003.

[Freedman, 1965]D. Freedman. Bernard friedman’s urn. The Annals of Mathemat-
ical Statistics, pages 956–970, 1965.

[Hoel and Sobel, 1998]D. G. Hoel and M. Sobel. Comparison of sequential proce-
dures for selecting the best binomial population. In Proceedings of the Sixth
Berkeley Symposium on Probability and Statistics, pages 53–69, 1998.

[Lecoutre and Charron, 2000]B. Lecoutre and C. Charron. Bayesian procedures
for prediction analysis of implication hypotheses in 2 × 2 contingency tables.
Journal of Educational and Behavioral Statistics, pages 185–201, 2000.

[Lecoutre et al., 1995]B. Lecoutre, G. Derzko, and J.-M. Grouin. Bayesian predic-
tive approach for inference about proportions. Statistics in Medicine, pages
1057–1063, 1995.

[Lecoutre et al., 2002]B. Lecoutre, B. Mabika, and G. Derzko. Assessment and
monitoring in clinical trials when survival curves have distinct shapes in two
groups: a bayesian approach with weibull modeling. Statistics in Medicine,
pages 663–674, 2002.

[Spiegelhalter et al., 1986]D.J. Spiegelhalter, L.S. Freedman, and P.R. Blackburn.
Monitoring clinical trials: Conditional or predictive power? Controlled Clinical
Trials, pages 8–17, 1986.

[Wei and Durham, 1978]L. J. Wei and S. Durham. The randomized play-the-winner
rule in medical trial. Journal of the American Statistical Association, pages
840–843, 1978.
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Abstract. Semi-Markov control processes with Borel state space and Feller tran-
sition probabilities are considered. We prove that under fairly general conditions
the two expected average costs: the time-average and the ratio-average coincide for
stationary policies. Moreover, the optimal stationary policy for the ratio-average
cost criterion is also optimal for the time-average cost criterion.
Keywords: semi-Markov control models, average cost optimality equation.

1 The model

Let X and A be Borel spaces, the state and the action space, respectively.
By A(x) we denote the compact set of actions available in state x. Define

K := {(x, a) : x ∈ X, a ∈ A(x)},

the set of admissible pairs as a Borel subset of X × A.
If the current state is x and an action a ∈ A(x) is selected, then the

immediate cost of c1(x, a) is incurred and the system remains in state x0 = x
for a

random time T with the cumulative distribution G(·|x, a) depending only
on x and a. The cost of c2(x, a) per unit time is incurred until the next tran-
sition occurs. Afterwards the system jumps to the state x1 = y according to
the probability distribution (transition law) q(·|x, a). This procedure repeats
itself and yields a trajectory (x0, a0, t1, x1, a1, t2, . . .) of some stochastic pro-
cess, where xn is the state, an is the control variable and tn is the time of
the nth transition, n ≥ 0.

A control policy π = {πn} and a stationary policy π = {f, f, . . .} are
defined in a usual way. By Π and F we denote the set of all policies and
the set of all stationary policies, respectively. Further, we will identify any
stationary policy π = {f, f, . . .} with f ∈ F.
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Let (Ω,F) be the measurable space consisiting of the sample space Ω :=
(X ×A× [0,+∞))∞ and the corresponding product σ-algebra F . Obviously,
any policy π, the transition law q, and the conditional cumulative distribution
function G of the differences {Tn+1 − Tn} generate the stochastic process
{xn, an, Tn}, n ≥ 0 on (Ω,F).

Let Eπx be the expectation operator with respect to the probability mea-
sure P πx defined on the product space Ω.

Let π ∈ Π, x ∈ X and t ≥ 0 be fixed. Put

N(t) := max{n ≥ 0 : Tn ≤ t}

as the counting process, and

τ(x, a) :=

∫ ∞

0

tP ax (dt) =

∫ ∞

0

tG(dt|x, a) = EaxT

as the mean holding (sojourn) time. By our assumptions P πx (N(t) <∞) = 1
We shall consider the two average expected costs:

- the ratio-average cost

J(x, π) := lim sup
n→∞

Eπx

(∑n−1
k=0 c(xk, ak)

)

EπxTn
,

- the time-average cost

j(x, π) := lim sup
t→∞

Eπx

(∑N(t)
k=0 c(xk, ak)

)

t
,

where

c(x, a) := c1(x, a) + τ(x, a)c2(x, a)

for each (x, a) ∈ K.
We impose the following assumptions on the model.

(B) Basic assumptions:
(i) for each x ∈ X , A(x) is a compact metric space and, moreover, the set-
valued mapping x 7→ A(x) is upper semicontinuous, i.e. {x ∈ X : A(x)∩B 6=
∅} is closed for every closed set B in A;
(ii) the cost function c is lower semicontinuous on K;
(iii) the transition law q is weakly continuous on K, i.e.,

∫

X

u(y)q(dy|x, a)

is continuous function of (x, a) for every bounded continuous function u on
X ;
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(iv) the mean holding time τ is continuous on K, and there exist positive
constants b and B such that

b ≤ τ(x, a) ≤ B
for all (x, a) ∈ K;
(v) there exist a constant L > 0 and a continuous function V : X 7→ [1,∞)
such that |c(x, a)| ≤ LV (x) for every (x, a) ∈ K;
(vi) the function ∫

X

V (y)(dy|x, a)

is continuous on K.
(GE) Geometric ergodicity assumptions:
(i) there exists a Borel set C ⊂ X such that for some λ ∈ (0, 1) and η > 0,
we have ∫

X

V (y)q(dy|x, a) ≤ λV (x) + η1C(x)

for each (x, a) ∈ K; V is the function introduced in (B, v);
(ii) the function V is bounded on C, i.e.,

vC := sup
x∈C

V (x) <∞;

(iii) there exist some δ ∈ (0, 1) and a probability measure µ concentrated on
the Borel set C with the property that

q(D|x, a) ≥ δµ(D)

for each Borel set D ⊂ C, x ∈ C and a ∈ A(x).

For any function u : X 7→ R define the V-norm

‖u‖V := sup
x∈X

|u(x)|
V (x)

.

By L∞
V we denote the Banach space of all Borel measurable functions u for

which ‖u‖V is finite.
Let LV denote the subset of L∞

V consisting of all lower semicontinuous
functions.

Under (GE) the embedded state process {xn} governed by a stationary
policy is a positive recurrent aperiodic Markov chain and for each stationary
policy f, there exists a unique invariant probability measure, denoted by πf
(see Theorem 11.3.4 and page 116 in [Meyn and Tweedie, 1993]). Moreover,
by Theorem 2.3 in [Meyn and Tweedie, 1994], {xn} is V -uniformly ergodic.
Thi results in the following

J(f) := J(x, f) =

∫
X
c(x, f(x))πf (dx)∫

X τ(x, f(x))πf (dx)
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for every f ∈ F.

We also make two additional assumptions on the sojourn time T.

(R) Regularity condition:
there exist ε > 0 and β < 1 such that

P ax (T ≤ ε) ≤ β

for all x ∈ C and a ∈ A(x).
(I) Uniform integrability condition:

lim
t→∞

sup
x∈C

sup
a∈A(x)

P ax (T > t) = 0.

For further and broad discussion of the assumptions the reader is referred
to [Jaśkiewicz, 2001] and [Ross, 1970].

2 Main results

In this section we present two new theorems on SMCPs with Borel state
spaces. Theorem 1 concerns the existence of the optimal stationary policy
for the ratio-average criterion. The proof combines some ideas and tools used
in [Jaśkiewicz, 2001].

For the ε-perturbed SMCPs, we prove that the associated with them the
average cost optimality equation has a solution.

Next, taking into account slightly modified solutions, we obtain a certain
optimality inequality, which is enough to obtain an average optimal policy.
It is worth pointing out that compared with previous work [Jaśkiewicz, 2001]
in the limit passage we need to use of Fatou’s lemma for weakly convergent
measures [Serfozo, 1982].

Theorem 1. Assume (B, GE). There exist a constatant g∗, a function
h∗ ∈ LV and f∗ ∈ F such that

h∗(x) ≥ min
a∈A(x)

[
c(x, a)− g∗τ(x, a) +

∫

X

h∗(y)q(dy|x, a)
]

(1)

= c(x, f∗(x)) − g∗τ(x, f∗(x)) +

∫

X

h∗(y)q(dy|x, f∗(x))

for all x ∈ X. Moreover, f∗ is an average optimal policy and g∗ is optimal
cost with respect to the ratio-average criterion, i.e.,

g∗ = inf
π∈Π

J(x, π) = J(f∗)
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for every x ∈ X.

Theorem 2 deals with the equivalence of the two expected average cost
criteria for SMCPs with Feller transition probabilities. Related result under
the strong continuity of q(·|x, a) in a ∈ A(x) is given in [Jaśkiewicz, 2004].

To obtain the mentioned equivalence we use two inequalities as the point
of departure. Using them we define a supermartingale and submartingale,
and then by Doob’s theorem we obtain the equality of the two optimal costs
according to the ratio-average and time-average cost criteria. To apply the
optional sampling theorem we have to prove the uniform integrability of
the supermartingale and submartingale involved. This issue is studied in
[Jaśkiewicz, 2004]. The whole analysis relies on dealing with the consecutive
returns of the process (induced by q, an arbitrary π, and the cumulative
distribution G) to the small set C.

Theorem 2. Assume (B, GE, R, I). Then
(a) g∗ = infπ∈Π j(x, π);
(b) j(x, f) = J(x, f) for any f ∈ F.
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Université de Technologie de Compiègne,
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Abstract. In this paper we present a diffusion approximation algorithm for a
centered semi-Markov random walks in the series scheme with the small parameter
series ε→ 0, (ε > 0).

1 The semi-Markov random walk

The semi-Markov random walk (SMRW) is defined on the real line R = (−∞,+∞)
by the superposition of two independent renewal processes of the i.i.d. sequences
of nonnegative random variables α±

k , k ≥ 1, and the two sequences of nonnegative
independent i.i.d. random variables β±

k , k ≥ 1, as follows

ζ(t) = u+

ν+(t)X

k=1

β+
k −

ν−(t)X

k=1

β−
k , t ≥ 0. (1)

The renewal process are

ν±(t) := max

(
n :

nX

k=1

α±
k ≤ t

)
, t ≥ 0. (2)

The distribution functions

P±(t) = P{α±
k ≤ t}, G±(u) = P{β±

k ≤ u} (3)

are given.
SMRW (1) was investigated in average, diffusion and Poisson approximation

schemes under distinct assumption of semi-continuity [Korolyuk and Korolyuk,
1999], [Korolyuk, 1997], [Korolyuk, 1999], etc. This kind of processes are inter-
esting for various applied problems. The number of customs in the queue system is
described by (1) with the given distribution function of arrival and service time and
with . The process (1) can be considered as a mathematical model of risk process
with arbitrary distribution of interval between moments of payment of claims and
the premium income.

In this paper we discuss a centered normalized in diffusion approximation
scheme (see process (12) below).
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2 The superposition of two renewal processes

Relation (2) can be described by the counting process

ν(t) = ν+(t) + ν−(t), t ≥ 0, (4)

for the Markov renewal process xn, τn, n ≥ 0, on the phase space E = E+ ∪
E−, E± = {±, x > 0} by the formula of sojourn times θn+1 := τn+1 − τn, n ≥ 0
[Korolyuk and Korolyuk, 1999]:

θ±x = α± ∧ x. (5)

The transition probabilities of the embedded Markov chain (EMC)
xn, θn, n ≥ 0, is defined by the matrix [Korolyuk and Limnios, (2004b]

P (x, dy) =

„
P+(x− dy) P+(x+ dy)
P−(x+ dy) P−(x− dy)

«
.

The stationary distribution of the EMC has the density

ρ±(t) = P∓(t)/a, a := a+ + a−, a± := Eα±. (7)

As usual, P±(t) := 1− P±(t).
The embedded SMRW ζn := ζ(τn), n ≥ 0, is defined by the relations

ζn+1 = ζn + βn+1, n ≥ 0,
βn+1 := β+

n+1I(xn+1 ∈ E+)− β−
n+1I(xn+1 ∈ E−),

(8)

where, as usual, I(A) is the indicator of a random event A.
The SMRW (1) can be defined as follows: ζ(t) = ζν(t), t ≥ 0. It is worth noticing

that the average drift per unit time of the SMRW (1) is defined by the value

b = b+/a+ − b−/a−, b± := Eβ±. (9)

The average algorithm for SMRW (1) is realized in the following series scheme
with the small series parameter ε→ 0 (ε > 0):

ζε(t) = u+ ε

ν+(t/ε)X

k=1

β+
k − ε

ν−(t/ε)X

k=1

β−
k , t ≥ 0. (10)

Under the condition b 6= 0, the weak convergence takes place:

ζε(t)⇒ ζ0(t) = u+ bt, ε→ 0. (11)

3 The algorithm of diffusion approximation

The centered SMRW in the series scheme is considered as follows:

ζε(t) = u+ ε

2
4

ν+(t/ε2)X

k=1

β+
k − ε

ν−(t/ε2)X

k=1

β−
k

3
5

+

− bτ (t/ε2). (12)
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The renewal process τ (t) := τν(t), t ≥ 0, defines the last renewal moment before
time t.

Introduce the random variables

γn := βn − bθn, n ≥ 1, (13)

it is worth noticing that, for any x ∈ E±,

b±(x) := E[βn+1|xn = x] = ±[b±P±(x)− b∓P±(x)] (14)

and
eb±(x) := E[γn+1|xn = x] = b±(x)− ba±(x), (15)

where

a±(x) := E[θn+1|xn = x] =

Z ∞

0

P±(t)dt. (16)

The centered SMRW (12) can be represented in the following form:

ζε(t) = u+ ε

ν(t/ε2)X

n=1

γn, t ≥ 0. (17)

Theorem 1 Let b 6= 0 defined in (9) and the third moments E[β±
n ]3 < ∞. Then

the weak convergence

ζε(t)⇒ ζ0(t) = u+ σw(t), ε→ 0 (18)

takes place. The variance σ2 of the standard Wiener process w(t) is calculated by
the formulae:

σ2 = σ2
0 + σ2

1 − σ2
2 ,

σ2
0 = q

R∞
0

[ρ+(x)C+(x) + ρ−(x)C−(x)]dx,
σ2

1 = 2
R∞
0

[π+(x)h+(x) + π−(x)h−(x)]dx,

σ2
2 = 2q

R∞
0

[ρ+(x)eb2+(x) + ρ−(x)eb2−(x)]dx.

(19)

Here, by definition:

C± := E[γ2
n+1|xn = x],

h± := −eb0±(x)R±
0
eb0±(x),eb0±(x) := eb±/a±(x),

π±(x) := qρ±(x)a±(x), q := 1/a+ + 1/a−,

where x ∈ E±.

The potential operator R±
0 is defined for the generator of the Markov kernel

Q = q(x)[P − I ].

Remark. It is worth noticing that σ2
1 − σ2

2 ≥ 0.



Centered Semi-Markov Random Walk 1059

4 Scheme of Proof

The construction of the algorithm of diffusion approximation is realized by the
scheme introduced in our papers [Korolyuk and Limnios, 2004a] and [Korolyuk
and Limnios, (2004b].

The compensating operator Lε of the extended Markov renewal process

ζε
n := ζε(τ ε

n), xn, τ ε
n := ε2τn, n ≥ 0 (20)

on the test-function ϕ(u, ·) ∈ C3(R) admit the asymptotic representation

Lεϕ(u, x) = [ε−2Q+ ε−1Q1(x) +Q2(x)]ϕ(u, x) + θε
lϕ(u, x) (21)

where
Q1(x)ϕ(u) = q(x)Peb(x)ϕ′(u), (22)

Q2(x)ϕ(u) =
1

2
q(x)PC(x)ϕ′′(u), (23)

and the remainder operator θε
l satisfies the negligible condition:

||θε
l ϕ(u)|| → 0, ε→ 0, ϕ(u) ∈ C3(R). (24)

The limit operator

Lϕ(u) =
1

2
σ2ϕ′′(u)

is determined by a solution of the singular perturbation problem for the truncated
operator

Lε
0ϕ

ε := [ε−2Q+ε−1Q1+Q2](ϕ(u)+εϕ1(u, x)+ε2ϕ2(u, x)) = Lϕ(u)+θε
0ϕ(u). (25)

According to Lemma 3.3 [Korolyuk and Korolyuk, 1999] (p.51) the operator L in
(25) is calculated by the formula

LΠ = ΠQ2Π −ΠQ1R0Q1Π, (26)

where the projector Π is defined by the stationary distribution of the associated
Markov process with the generator Q = q(x)[P − I ], q(x) = 1/m(x),m(x) := Eθx.

After some computation we obtain the result of Theorem 1.
The verification of the algorithm of diffusion approximation follows some famil-

iar procedure in the theory of convergence of stochastic processes [Ethier and Kurtz,
1986], [Jacod and Shiryaev, 1987], adapted to the semi-Markov switching process
in [Korolyuk and Limnios, 2002a], [Korolyuk and Limnios, 2004a], [Korolyuk and
Limnios, (2004b].
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Abstract. The problem concerned here is the estimation of ergodic finite semi-
Markov processes from data observed by considering K independent censored sam-
ple paths with application in the reliability.

1 Introduction

Semi-Markov modeling, as a generalization of Markov modeling, is a an active area
in research. See, e.g., [Alvarez, 2005]-[Voelkel and Cronwley, 1984].

In our previous work [Ouhbi and Limnios, 1999], we have considered one tra-
jectory in the time interval [0, T ], and given the estimators and their asymptotic
properties, as T → ∞. In the present work, we consider K trajectories in the
time interval [0, T ], generated by K independent semi-Markov processes having the
same semi-Markov kernel Q and initial distribution α. We obtain asymptotic prop-
erties of the estimators when K → ∞. In this case the time T is finite and fixed.
This type of observation can be viewed as a generalization of the fixed (or type I)
censoring of a single failure time. Our method, as in our previous works [Ouhbi
and Limnios, 1999, Ouhbi and Limnios, 2003, Ouhbi and Limnios, 2001], consists
in obtaining estimators of the semi-Markov kernel, by using a maximum likelihood
estimator (MLE) of the hazard rate function of transitions between states, and then
considering estimators of other quantities, as the semi-Markov transition function,
Markov renewal function, and reliability functions as statistical functionals of the
semi-Markov kernel via analytic explicit formula.

2 Estimation of the hazard rate function of transitions

We will consider in this paper a semi-Markov process with a finite state space,
E = {1, 2, ..., s} say, with irreducible embedded Markov chain and finite sojourn
time in all states [Limnios and Oprişan, 2001].

In this section, we will derive and study the maximum likelihood estimator of
the hazard rate functions of piecewise constant type estimator (PEXE).
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Let us suppose that the semi-Markov kernel Q is absolutely continuous with re-
spect to the Lebesgue measure on R+ and denote by q its Radon-Nikodym deriva-
tive, that is, for any i, j ∈ E,

Qij(dt)

dt
=: qij(t). (1)

So, we can write also qij(t) = P (i, j)fij(t), where fij is the density function of the
distribution Fij .

For any i and j in E, let us define the hazard rate function of transition distri-
butions between states, λij(t), t ≥ 0, of a semi-Markov kernel by

λij(t) =

(
qij (t)

1−Hi(t)
if P (i, j) > 0 and Hi(t) < 1,

0 otherwise.
(2)

Let us also define the cumulative hazard rate from state i to state j at time t
by Λij(t) =

R t

0
λij(u)du and the total cumulative hazard rate of state i at time t

by Λi(t) = Σj∈EΛij(t). We have also

Qij(t) =

Z t

0

exp[−Λi(u)]λij(u)du. (3)

Let us consider now a family of K independent E-valued Markov renewal pro-
cesses (Jr

n, S
r
n, n ≥ 0), 1 ≤ r ≤ K, defined by the same semi-Markov kernel Q, and

the initial distribution α, that is, for any r, 1 ≤ r ≤ K,

Qij(t) := P(Jr
n+1 = j, Sr

n+1 − Sr
n ≤ t | Jr

n = i), i, j ∈ E, t ∈ R+, n ∈ N,

α(i) = P(Jr
0 = i), i ∈ E.

For any r, let us denote by Nr
i (t),Nr

ij(t),Nr(t), ... the corresponding quantities
Ni(t), Nij(t), N(t), ..., and define further

Ni(t,K) :=
KX

r=1

Nr
i (t), Nij(t,K) :=

KX

r=1

Nr
ij(t), N(t) :=

KX

r=1

Nr(t). (4)

If t = T fixed, then we will note simply Ni, Nij , ....
The maximum likelihood estimator of the hazard rate functions will be

based upon the observation of the above K independent MRP {(Jr, Sr) =
[(Jr

n, S
r
n)n≥0], 1 ≤ r ≤ K}.

We assume hereafter that we observe each MRPs over the period of time [0, T ]
for some finite and fixed T . A sample or history for the r-th MRP is given by

Hr(K) = (Jr
0 , J

r
1 , ..., J

r
Nr(T ),X

r
1 ,X

r
2 , ..., X

r
Nr(T ), U

r
T ), (5)

where Ur
T = T − Sr

Nr(T ) is the backward recurrence time.
The log-likelihood function associated to (Hr(T ), 1 ≤ r ≤ K) is:

l(K)=logL(K)=

KX

r=1

nNr(T )X

l=1

[log λJr
l−1

,Jr
l

(Xr
l )− ΛJr

l−1
(Xr

l )]− ΛJr
Nr(T )

(Ur
T )
o
. (6)

In the sequel of this paper, we will approximate the hazard rate function λij(t)
by the piecewise constant function λ∗

ij(t) defined by λ∗
ij(t) = λij(vk) = λijk ∈ R+
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for t ∈ (vk−1, vk] = Ik, 1 ≤ k ≤ M , where (vk)0≤k≤M is a regular subdivision of
[0, T ], that is, vk = k∆, 0 ≤ k ≤ M , M = M(K), with step ∆ := T/M , such that,
as K →∞, ∆→ 0, and K∆→∞.

Hence,

λ∗
ij(t) =

MX

k=1

λijk1(vk−1,vk ](t), (7)

where 1(vk−1,vk](t) is equal to 1 if t ∈ (vk−1, vk], and 0 otherwise. We get

l(K) =
X

i,j∈E

MX

k=1

(dijk log λijk − λijkνik), (8)

where dijk =

KX

r=1

Nr(T )X

l=1

1{Jr
l−1

=i,Jr
l
=j,Xr

l
∈Ik} is the number of transitions from state

i to state j for which the observed sojourn time in state i belongs to Ik, and νik is
the trace of the sojourn time in state i on the interval time Ik, given for N(T ) ≥ 1.
The r.v. νik can be represented by the sum of two r.v. as follows

νik := ν1
ik + ν2

ik,

where ν1
ik is the trace of the sojourn time on the interval Ik, of the sojourn times

in state i, and ν2
ik is the trace of the cumulated censored time T greater than vk,

in state i.
So, the maximum likelihood estimator bλijk of λijk is given by:

bλijk =


dijk/νik if νik > 0
0 otherwise.

Thus, the estimator bλij(t,K) of λij(t) is then given by

bλij(t,K) =
MX

k=1

bλijk1(vk−1,vk](t). (9)

Let us also define

bΛi(t,K) =
X

j∈E

Z t

0

bλij(u,K)du, bΛik = bΛi(vk,K) = ∆
X

j∈E

kX

l=1

bλijl, (10)

and

νl
i(t) =

MX

k=1

νl
ik1(vk−1,vk](t), l = 1, 2.

3 Maximum likelihood and empirical estimators
of the semi-Markov kernel

Let us define estimators of the semi-Markov kernel by putting estimators (9) to
(10), as follows

bQij(t,K) := ∆
X

{k:0≤vk≤t}
e−

bΛikbλijk.
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Consider now the empirical kernel function defined by

eQij(t,K) :=
1

Ni

KX

r=1

NrX

l=1

1{Jr
l−1

=i,Jr
l
=j,Xr

l
≤t}, (11)

and the empirical density kernel given by:

eqij(t,K) =
eQij(vk,K) − eQij(vk−1,K)

∆
, if t ∈ Ik.

Define also the estimator eHi(t,K) by

eHi(t,K) :=
X

j∈E

eQij(t,K). (12)

We define a function Gi(·,K), for t ∈ Ik, 1 ≤ k ≤ M , by

Gi(t,K) :=
KX

r=1

n NrX

l=1

Xr
l − vk−1

Ni∆
1{Jr

l−1
=i,Xr

l
∈Ik,Xr

l
≥t}+

Ur
T − vk−1

Ni∆
1{Jr

Nr(T )
=i,Ur

T
∈Ik}

o
.

Now, let us write estimator (9), as follows

bλij(t,K) =
eqij(vk,K)

1− { eHi(vk,K)−Gi(vk,K)}+ hr
i (t,K)

, if t ∈ Ik,

where

hr
i (t,K) :=

ν2
ik

Ni∆
=

1

Ni

KX

r=1

1{Jr
Nr(T )

=i,Ur
T >vk}.

In order to obtain a consistent estimator, we will neglect the term hr
i (t,K)

from the denominator of estimator bλij(t,K), and obtain a new modified estimator

denoted by bλ0
ij(t,K). That is,

bλ0
ij(t,K) =

eqij(vk,K)

1− { eHi(vk,K)−Gi(vk, K)}
, if t ∈ Ik. (13)

Denote the corresponding cumulative hazard rates estimator by bΛ0
i (t), and bΛ0

ij(t).

Lemma 1 The estimator bλ0
ij(t,K), is a consistent estimator of λij(t), as K →∞.

Since hr
i (t,K) converges to a positive quantity, it is clear the estimator bλij(t,K)

is not consistent.
In the sequel of this paper, we will consider only the estimator bλ0

ij(t,K). So,

the MLE bQij(t,K) in (11) is obtained by using this estimator. In the remaining
of this section we will study the asymptotic properties of the semi-Markov kernel
estimator given by (11).

Theorem 1 The empirical estimator of the semi-Markov kernel is uniformly
strongly consistent, in the sense that, as K →∞,

max
i,j

sup
t∈[0,T ]

˛̨
˛ eQij(t,K) −Qij(t)

˛̨
˛ a.s.−→ 0.
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We will prove now that the semi-Markov kernel estimator, obtained from modi-
fied PEXE of the hazard rate function bλ0

ij(t,K), is asymptotically uniformly equiv-

alent to the empirical estimator eQij(t,K).

Lemma 2 Let i and j be any two fixed states. Then we have, for any t ∈ [0, T ],

bQij(t,K)− eQij(t,K) = O(K−1), as K →∞.

¿From the previous lemma, we conclude that the estimator of the semi-Markov
kernel is asymptotically uniformly a.s. equivalent to the empirical estimator of the
semi-Markov kernel for which we will prove the uniform strong consistency and
derive a central limit theorem.

Corollary 1 The estimator of the semi-Markov kernel bQij(t,K) is uniformly
strongly consistent, that is, when K tends to infinity,

max
i,j

sup
t∈[0,T ]

˛̨
˛ bQij(t,K) −Qij(t)

˛̨
˛ a.s.−→ 0.

Theorem 2 For any i, j ∈ E and t ∈ [0, T ] fixed, K1/2[ bQij(t,K) − Qij(t)]
converges in distribution, as K →∞, to a zero mean normal random variable with
variance Qij(t)(1−Qij(t))[(αψ)(T )1].

4 The estimator of the reliability function and its
asymptotic properties

After having outlined the problem of estimating the semi-Markov transition matrix,
it is appropriate to give some concrete applications of these processes as models of
evolution of the reliability function of some system.

Let the state space, E, be partitioned into two sets, U = {1, ..., r} the patient
is in good health and D = {r + 1, ..., s} the patient is ill due to some causes or
the component is failed and under repair. Reliability models whose state space is
partitioned in the above manner will be considered here. As indicated above, it
is of interest to estimate the distribution function of the waiting time to hit down
states (failure).

We focus on the estimation of the reliability function for a semi-Markov process
which describes the stochastic evolution of system. The general definition of the
reliability function in the case of semi-Markov processes is

R(t) = P(Zu ∈ U, ∀ u ≤ t).

The reliability function R(t) is given by:

R(t) =
X

i∈U

α(i)Ri(t), (14)

where Ri(t) is the conditional reliability function, that the hitting time to D, start-
ing from a state i ∈ U , is greater than the time t. It is easy to show, by a renewal
argument, that Ri(t) satisfies the following Markov renewal equation

Ri(t)−
X

i∈U

Z t

0

Rj(t− u)Qij(du) = 1−Hi(t), i ∈ U.
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The solution of this MRE, see Section 2, together with (14), in matrix form, gives

R(t) = α0(I −Q0(t))(−1) ∗ (I −H0(t))1, (15)

where 1 = (1, ..., 1)> is an r-dimensional column vector. Index 0 means restriction
for matrices on U × U , and for vectors on U .

We will give an estimator of the reliability function of semi-Markov processes
and prove its uniform strong consistency and weak convergence properties as K →
∞.

Let bQ be the modified MLE of PEXE type of the transition probability of the
semi-Markov kernel Q. Then we propose the following estimator for the reliability
function

bR(t,K) = bα0(I − bQ0(t,K))(−1) ∗ (I − bH0(t,K))1, (16)

and we will prove now its uniform strong consistency and central limit theorems.

Theorem 3 The estimator of the the reliability function of the semi-Markov
process is uniformly strongly consistent in the sense that,

sup
t∈[0,T ]

˛̨
˛ bR(t,K)−R(t)

˛̨
˛ a.s.−→ 0, K →∞.

Set

Bij(t) :=
X

n∈U

X

k∈U

α(n)Bnijk ∗ (1−Hk)(t).

Theorem 4 For any fixed t ∈ [0, T ], the r.v. K1/2[ bR(t,K) − R(t)] converges in
distribution to a zero mean normal random variable with variance

σ2
S(t) :=

X

i∈U

X

j∈U

µii{[Bij − (αψ)i]
2 ∗Qij(t)− [(Bij − (αψ)i) ∗Qij(t)]2}.

5 Numerical Application

In this section we present a numerical example for a three state semi-Markov process
for which we will consider K = 50 censored trajectories. The time interval is [0, T ],
with T = 1000.

The conditional transition functions Fij(t) are the following F12(t), and F31(t)
are exponential with parameters respectively 0.1 and 0.2, and F21(t) , F23(t) are
Weibull with parameters respectively (0.3, 2), and (0.1, 2) (scale and shape param-
eter). The other functions are identically 0.

The transition probabilities P (2, 1) and P (2, 3) are:

P (2, 1) = 1− P (2, 3) =

Z ∞

0

[1− F23(t)]dF23(t).

The results obtained here are illustrated in figure 1. These results concern the
reliability function.
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Abstract. A number of Bayesian tracking models involve auxiliary discrete vari-
ables beside the main hidden state of interest. These discrete variables usually
follow a Markovian process and interact with the hidden state either via its evo-
lution model or via the observation process, or both. Examples of such auxiliary
variables include depth ordering for occlusion handling, switches between different
state dynamics, exemplar indices, etc. We consider here a general model that en-
compasses all these situations, and show how Bayesian filtering can be rigorously
conducted in this general setup. The resulting approach facilitates easy re-use of
existing tracking algorithms designed in the absence of the auxiliary process. In
particular we show how particle filters can be obtained based on sampling only in
the original state space instead of sampling in the augmented space, as it is usually
done. We finally demonstrate how this framework facilitates solutions to the criti-
cal problem of appearance and disappearance of targets, either upon scene entering
and exiting, or due to temporary occlusions. This is illustrated in the context of
color-based tracking with particle filters.
Keywords: Optimal Bayesian filter, Auxiliary discrete process, Particle filter, Vi-
sual tracking, Occlusion, Disappearance, Object detection.

1 Introduction and motivation

Visual tracking involves the detection and recursive localization of objects
within video frames. In a number of visual trackers, the state of interest,
e.g., size and location of the object, is associated with auxiliary discrete
variables. Such variables show up for instance within the state evolution
model, e.g., when different types of dynamics can occur (e.g., [North et al.,
2000]). More often, such auxiliary variables are introduced in the observation
model. It is the case for appearance models based on a set of key views (e.g.,
[Toyama and Blake, 2001],[Wu et al., 2003]) or silhouettes (e.g., [Gavrila,
2000] [Toyama and Blake, 2001]). Auxiliary variables are also used to handle
partial or total occlusions (e.g., [Nguyen et al., 2001]) or mutual occlusions
when jointly tracking multiple objects (e.g., [MacCormick and Blake, 1999]
[Wu et al., 2003]). Finally, auxiliary variables can be used to assess the
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presence of tracked objects in the scene (e.g., [Vermaak et al., 2002] [Isard and
MacCormick, 2001]). When a Bayesian tracking approach is used with such
augmented models, either specific filters are derived based on the detailed
form of the model at hand or the optimal filter of the joint model is simply
used. In the latter case, a practical implementation might be unnecessarily
costly due to the increased dimension of the joint space. Sequential Monte
Carlo approximations (SMC) in the joint space are for instance used in [Isard
and MacCormick, 2001] [Toyama and Blake, 2001] [Vermaak et al., 2002] [Wu
et al., 2003].

The first contribution of this paper is to propose a general and unified
framework to easily derive the optimal Bayesian filter for the augmented
model based on the one for a model with no (or frozen) auxiliary variables.
In practice, this allows the re-use of existing tracking architectures, with
a reasonable computational overhead in case the discrete auxiliary variable
only takes a small number of values. This approach allows us in particular
to introduce a generic SMC architecture that relies on sampling in the main
state space only. This is exposed in Section 2.

The problem of appearing and disappearing objects, whether it is upon
entering and exiting the scene, or upon getting occluded by another object, is
critical in visual tracking. As we mentioned above, the different forms of this
problem have already been addressed in the past based on auxiliary hidden
processes. The second contribution of this paper is to re-visit these problems
using our generic framework. The resulting filters are implemented using
the generic SMC architecture proposed in Section 2. To handle occlusions,
we introduce in Section 3 a binary visibility process that intervenes in the
observation model. In this case, our generic approach allows us to derive
a two-fold mixture filter that deal with temporary occlusions. In a similar
fashion, we address the problem of “birth” and “death” of objects, which is
crucial for multiple-object tracking, by introducing a binary existence process.
This process impacts both the state evolution and the data model. The
application of our approach leads in this case to a simple filter whose SMC
approximation does not need to draw samples for the existence variable.

2 Tracking with an auxiliary process

2.1 Modeling assumptions

For visual tracking, we are interested in recursively estimating the object
state xt ∈ Rnx , which specifies the position of the object in the image plane
and, possibly, other parameters such as its size and orientation, based on
a sequence of observations yt = (y1 · · ·yt). We assume in addition that a
discrete auxiliary variable at also has to be recursively inferred. This variable
takes its values in a set of cardinality M that we will denote by {0 · · ·M −1}
for convenience.
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The complete set of unknowns at time t is thus {xt, at}, for which we
assume the following Markovian prior

p(xt, at|xt−1, at−1) = p(xt|xt−1, at, at−1)p(at|at−1). (1)

In other words, the state follows a Markov chain with its kernel parame-
terized by the current and previous values of the auxiliary variable, and the
auxiliary process is a discrete Markov chain. Let A = (αji) be its M ×M
transition matrix, with αji

.
= p(at = i|at−1 = j). For brevity, we will also

use the notation

pji(xt|xt−1)
.
= p(xt|xt−1, at = i, at−1 = j). (2)

As for the observation model, we assume in the normal way that the
image data at successive instances are independent conditional on the hidden
variables, i.e., p(yt|xt, at,yt−1) = p(yt|xt, at). For notational convenience we
will denote

pi(yt|xt) .
= p(yt|xt, at = i). (3)

2.2 Bayesian filter

For tracking, we are interested in recursively estimating the joint filtering
distribution

p(xt, at|yt) = p(xt|at,yt)p(at|yt), (4)

from which the marginal filtering distribution can be deduced as

p(xt|yt) =
∑

i

p(xt, at = i|yt) =
∑

i

pi(xt|yt)ξi,t, (5)

where we used the notation

pi(xt|yt) .
= p(xt|at = i,yt) and ξi,t

.
= p(at = i|yt). (6)

Similar to our previous notation, we will now use the distribution subscript
i to indicate conditioning with respect to the current auxiliary variable set
to i, and the distribution subscript ji for conditioning on i and j being the
current and previous values of the auxiliary variable.

We will first show how to compute the M conditional state posteriors
pi(xt|yt). First note that

pi(xt|yt) =
pi(xt,yt|yt−1)

pi(yt|yt−1)
. (7)

The numerator can be expressed as

pi(xt,yt|yt−1) =
∑

j

pji(xt,yt|yt−1)p(at−1 = j|at = i,yt−1), (8)
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with

pji(xt,yt|yt−1) = pi(yt|xt)pji(xt|yt−1)

= pi(yt|xt)
∫
pji(xt|xt−1)pj(xt−1|yt−1)dxt−1,(9)

p(at−1 = j|at = i,yt−1)
.
= α̃ji,t

∝ p(at = i|at−1 = j,yt−1)p(at−1 = j|yt−1). (10)

Based on the conditional independence structure of the model, one can show
that the first term on the right hand side is independent of yt−1. We thus
obtain, after normalization,

α̃ji,t =
αjiξj,t−1∑
k αkiξk,t−1

. (11)

The predictive likelihood in the denominator of (7) is

pi(yt|yt−1) =
∑

j

α̃ji,t

∫
pji(xt,yt|yt−1)dxt. (12)

The filtering distribution in (5) is then a mixture of theM conditional filtering
distributions, i.e.,

pi(xt|yt) =

∑
j α̃ji,tpji(xt,yt|yt−1)

pi(yt|yt−1)
, (13)

each of which is obtained by combiningM optimal Bayesian filters to compute
(9) and (12).

We still need the marginal posterior of the auxiliary variable, p(at|yt), to
compute the weights ξi,t in the mixture of (5). We have

ξi,t ∝ pi(yt|yt−1)
∑

j

p(at = i|at−1 = j,yt−1)ξj,t−1. (14)

Since the first factor in the sum is independent of yt−1, we finally obtain,
after normalization

ξi,t =
pi(yt|yt−1)

∑
j αjiξj,t−1∑

k pk(yt|yt−1)
∑
j αjkξj,t−1

. (15)

Let us summarize the operations at time t for the generic algorithm:

• Input: pi(xt−1|yt−1) and (ξi,t−1) for i = 0 · · ·M − 1.
1. Compute α̃ji,t as in (11), for i = 0 · · ·M − 1.
2. Compute distributions pji(xt,yt|yt−1) as in (9), for i, j = 0 · · ·M − 1.
3. Compute distributions pi(yt|yt−1) as in (12), for i = 0 · · ·M − 1.
4. Compute filtering distributions pi(xt|yt) = as in (13), for i = 0 · · ·M −1.
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5. Compute posterior distribution (ξi,t)i=0···M−1 of auxiliary variable as in
(15).
• Output: distributions pi(xt|yt) and weights ξi,t.

At each time step, M2 “elementary” filtering operations are required (step
2), one per possible occurrence of the pairing (at, at−1). In practice, not
all M2 values may be admissible, in which case the number of elementary
filtering operations at each time step is reduced accordingly. As we will
see, specificities of the model under consideration might also permit further
computational savings.

The framework above is entirely general, both in terms of model ingredi-
ents (evolution and observation processes) and in terms of implementation.
Regarding the latter, all existing techniques, whether exact or approximate,
can be accommodated. If, for example, the filtering distributions pi(xt|yt) are
to be represented by Gaussian mixtures, the mixtures components can be ob-
tained by the Kalman filter for linear Gaussian models, and by the extended
or unscented Kalman filters for non-linear and/or non-Gaussian models. For
models of the latter kind it may sometimes be beneficial to adopt a particle
representation, and use sequential importance sampling techniques to update
the filtering distribution. This is especially true for the highly non-linear and
multi-modal models used in visual tracking, hence the success of SMC tech-
niques in the computer vision community. It is this type of implementation
that we now consider.

2.3 SMC implementation

For a general SMC implementation, we will consider proposal distributions
of the form qji(xt|xt−1,yt)

.
= q(xt|xt−1, at = i, at−1 = j,yt). Based on these

proposals, different SMC architectures can be designed to approximate the
generic algorithm of the previous section. We propose here an architecture
that is based on systematic resampling. Assuming that each conditional
posterior distribution pi(xt−1|yt−1) at time t − 1 is approximated by a set

(s
(n)
i,t−1)n=1···N of N equally weighted particles, we simply replace steps 2, 3

and 4 in the generic algorithm by:

2. For j = 0 · · ·M − 1, for i = 0 · · ·M − 1

2a. Sample N particles s̃
(n)
ji,tsimqji(xt|s

(n)
j,t−1,yt).

2b. Compute the normalized predictive weights

π
(n)
ji,t ∝

pji(s̃
(n)
ji,t|s

(n)
j,t−1)

qji(s̃
(n)
ji,t|s

(n)
j,t−1),yt

with
∑

n

π
(n)
ji,t = 1. (16)

3. Approximate the M predictive data likelihoods by

pi(yt|yt−1) ≈
∑

j

∑

n

w
(n)
ji,t, (17)



1074 Pérez and Vermaak

where, for i, j = 0 · · ·M − 1,

w
(n)
ji,t

.
= α̃ji,tpi(yt|s̃(n)

ji,t)π
(n)
ji,t. (18)

4. For i = 0 · · ·M − 1, draw N particles s
(n)
i,t with replacement from the

weighted set (s̃
(n)
ji,t, pi(yt|yt−1)−1w

(n)
ji,t)j,n of M ×N particles.

Steps 1 and 5 remain unchanged. At each instant t, posterior expectations
can be approximated using the final particle sets. In particular,

E[xt|at = i,yt] ≈ x̂i,t
.
=

1

N

∑

n

s
(n)
i,t , E[xt|yt] ≈ x̂t

.
=
∑

i

ξi,tx̂i,t. (19)

If the proposal distribution does not depend on at = i, then step 2a can

be performed M times instead of M2 times, providing particles sets (s̃
(n)
j,t )n

to be used in place of (s̃
(n)
ji,t)n in the remainder of the algorithm.

3 Appearance and disappearance

Most tracking algorithms assume the number of objects of interest to be
constant in the sequence. However, in most cases objects of interest enter
and exit the scene at arbitrary times. In addition, they can also disappear
temporarily behind other occluding objects. In the latter case of occlusion,
tracking should be continued blindly in the hope of locking back onto the ob-
jects when they re-appear. An object entering or exiting the scene should in
contrast result in initiating or terminating tracking, respectively. In any case,
these appearance and disappearance events, whether they are temporary or
definitive, are themselves uncertain events. The associated concepts of “exis-
tence” and “visibility” should thus be treated jointly with the other unknowns
within a probabilistic framework that can account for all the expected am-
biguities. Exploiting the generic approach presented in the previous section,
we propose to achieve this using two auxiliary binary processes. Although
these two processes can be used jointly, we introduce them separately for the
sake of clarity.

3.1 Visibility process

Explicit introduction of an occlusion process within the Bayesian tracking
framework was proposed in [MacCormick and Blake, 1999] and [Wu et al.,
2003]. Both works, however, rely on specific modeling assumption (contour-
based tracking in the former, luminance exemplars in the latter), and specific
implementations (particle filter with partitioned importance sampling in the
former vanilla bootstrap particle filter in the latter). In contrast, our ap-
proach relies on generic modeling assumptions and is independent of a spe-
cific implementation strategy, so that existing tracking architectures can be
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re-used. The occlusion modeling we propose can thus be used in conjunc-
tion with any Bayesian visual tracking technique, based for instance on the
Kalman filter or one of its variants. In addition, using it within the SMC
architecture of Section 2 allows restriction of the sampling to the object state
space only.

Considering here only the case of complete occlusion, we introduce a
binary visibility variable vt that indicates whether the object is visible (vt =
1) or not (vt = 0) in the image at time t. The Markov chain prior on
this binary variable is completely defined by the occlusion and desocclusion
probabilities, α10 and α01. The state evolution model is independent of the
visibility variable, i.e.,

pji(xt|xt−1) = p(xt|xt−1). (20)

Two data models,

p(yt|xt, vt = 0) = p0(yt) and p(yt|xt, vt = 1) = p1(yt|xt), (21)

will have to be specified, depending on whether the object of interest is visible
in the image or not. In the former case, the likelihood is independent of the
state value. Since our experiments are conducted in the context of color-
based tracking we consider a simple observation model related to the more
complex ones proposed in [Isard and MacCormick, 2001] and [Vermaak et al.,
2002]. Pixel-wise location independent background and foreground models,
g0 and g1, respectively, are specified over the selected color space. Assuming
conditional independence of color measures over a sub-grid S of pixels, we
obtain

p0(yt) =
∏

s∈S
g0(ys,t) and p1(yt|xt) =

∏

s∈R(xt)

g1(ys,t)
∏

s∈R̄(xt)

g0(ys,t), (22)

where R(xt) is the image region associated with an object parameterized by
the state xt, and ys,t is the color at pixel s in frame t.

For this dynamic model, the SMC architecture of Section 2 can be sim-
plified. Indeed, the independence of the state evolution with respect to the
auxiliary variables allows step 2a to be performed only M times, and suggests
the use of a unique proposal. A simple and classical choice is to take the state
dynamics (20) as the proposal [Isard and Blake, 1996]. We will adopt this
approach here, while bearing in mind that any data-based proposal, includ-
ing the optimal one [Doucet et al., 2000] in the rare cases that it is accessible,
can be used in our generic framework.

Fig. 1 shows results obtained on a sequence where a walking person is
successfully tracked despite a succession of severe and total occlusions caused
by trees in the foreground. The tracking is initialized manually on the red
top of the person. The initialization also provides the reference foreground
model g1, defined as a 5× 5× 5 joint histogram in the RGB color space. The
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histogram for the reference background model g0 is also obtained in the first
frame based on the image complement of the initial selection. The unknown
state xt comprises the position in the image plane (nx = 2) and its dynam-
ics (20) is taken to be a random walk with independent Gaussian noise with
variance 102 on each component. The parameters of the Markov chain on the
visibility process are α01 = 0.8 and α10 = 0.1, and its initial distribution is
given by p(v0 = 1) = 0.8. We use N = 200 particles for the SMC implemen-
tation. The main quantities of interest are the marginal filtering distributions
(5), which inform on the localization of the object of interest regardless of
whether it is visible or not. We display the MC approximations of the state
expectations x̂t relative to these distributions in Fig. 1. The algorithm also
recursively estimates the marginal visibility posterior p(vt = 1|yt). The time
evolution of this quantity for the pedestrian sequence is plotted in Fig. 2. It
correctly drops to zero for each complete occlusion of the tracked person.

5 7 11 19

39 41 74 91

Fig. 1. Tracking under occlusions. The color-based tracker is initialized on the
trousers of Lola (from movie “Run, Lola, run”) who runs in the street. The rapid
succession of partial, large or complete occlusions caused by cars, poles and mailbox
is successfully handled thanks to the explicit modeling of visibility changes. In each
of the displayed frames, the box corresponds to x̂t and its color is changed from
yellow to red when ξ1,t drops below 0.5.

10 20 30 40 50 60 70 80 90 100
0

0.2
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0.8

1

Fig. 2. Posterior visibility probability, ξ1,t = p(vt = 1|yt), plotted against
time for the example in Fig. 1. Occlusions and desocclusions make respectively the
visibility probability drop, possibly down to zero, and increase back to unity.
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3.2 Existence process

Using a Markovian binary variable to indicate presence in the scene is pro-
posed in [Vermaak et al., 2002] to determine in a probabilistic fashion the
beginning and end of the track for a single object. We adopt the same model
here. However, sequential Monte Carlo is the only inference mechanism con-
sidered in [Vermaak et al., 2002], and it is conducted in the augmented state
space. By comparison, our generic framework can be easily used with any
Bayesian filtering technique and its SMC version implies sampling only in
the object state space.

Following [Vermaak et al., 2002], we introduce a binary existence variable
et that indicates whether the object of interest is present (et = 1) or not
(et = 0) in the scene at time t. The Markov chain prior on this binary
variable is completely defined by the death and birth probabilities, α10 and
α01. Conditional on the existence variables the state dynamics is specified
by

p00(xt|xt−1) = p10(xt|xt−1) = δu(xt) (23)

p01(xt|xt−1) = pinit(xt) (24)

p11(xt|xt−1) = pdyn(xt|xt−1), (25)

where u is the consuming state that corresponds to the object not existing,
pinit is the initial state distribution, and pdyn is the object dynamic model.
From the data model point of view, the existence process is similar to the
visibility process.

Due to the component (23) of the evolution model, non-existence et = 0
deterministically forces xt into fictitious state u. This is carried over in the
posterior model, yielding

p0(xt|yt) = δu(xt). (26)

As a consequence, the algorithm only needs to recursively estimate the condi-
tional filtering distribution for the case of the object existing, i.e., p1(xt|yt).
Thus, within the SMC framework, only two proposal distributions, q01 and
q11, are required, instead of four. As in the previous section, we only consider
the simple case where these distributions coincide with their counterparts in
the evolution model.

In the following experiment, the observation model is defined as in the
previous section. Yet again the state comprises the object location in the
image plane, and in the state evolution model (24)-(25), pinit and pdyn are
respectively chosen as the uniform distribution over positions in the image
plane and a random walk with independent Gaussian noise. The variance of
the noise is 152 for each component for the car race sequence in Fig. 3. Also,
the state distribution at time t = 0 coincides with pinit. Hence, contrary to the
previous experiment, the tracker is not initialized manually at the beginning
of the sequence (the reference foreground model is picked on an arbitrary red
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Fig. 3. Detection and tracking. A reference color model is initialized before-
hand on one instance of a red car. The algorithm then successfully detects red
cars that enter the scene, tracks them as long as they remain in view, and finally
determines automatically when they disappear. In each of the displayed frames
x̂1,t is displayed, provided that ξ1,t exceeds 0.2 (in blue if it is greater than 0.8 and
in yellow otherwise).

car in a different part of the video). For this experiment, the death and birth
probabilities are respectively set to α01 = 0.1 and α10 = 0.1, and the initial
existence distribution is given by p(e0 = 1) = 0.1. Finally, N = 50 particles
were sufficient to detect the entrance and exit of red cars in the field of view
and to track them while present in the scene. Entrance and exit events are
clearly identified by the variations in the posterior existence probability ξ1,t,
as shown in Fig. 4. In this example, a single tracker successively locks on
to different cars, each one appearing in the image after the previous one
has been successfully detected and tracked until disappearance. In practice,
distinction between different tracked objects would be necessary, especially
if they are likely to be present simultaneously in the image. In this context,
the information carried by the existence probabilities would facilitate the
design of a mechanism that effectively initiates different trackers for each
“detected” object and subsequently discards each tracker whose associated
existence probability ξ1,t falls below a threshold.

4 Conclusion

In this paper we introduced a generic Bayesian filtering tool to perform track-
ing in the presence of a certain class of discrete auxiliary processes. The
approach places no restriction on the ingredients of the evolution and ob-
servation models and on the selected type of filter (Kalman filter and its
variants, particle filters). Hence the proposed framework allows re-use of ex-
isting architectures on a variety of tracking problems where the introduction
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Fig. 4. Posterior existence probability, ξ1,t = p(et = 1|yt), against time for
the example in Fig. 3. When the object of interest enters the scene the existence
probability quickly ramps up to one, and falls back down to zero when it exits the
field of view.

of auxiliary discrete variables is useful. We demonstrated in particular how
the technique can be applied in visual tracking to handle occlusions and ob-
ject appearance/disappearance via visibility and existence binary processes.
Our generic frameworkwould now allow the combination of these two binary
processes within a single tracking setup.
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Abstract. The restoration of a hidden process X from an observed process Y is
often performed in the framework of hidden Markov chains (HMC). HMC have
been recently generalized to triplet Markov chains (TMC). In the TMC model one
introduces a third random chain U and assumes that the triplet T = (X,U, Y ) is
a Markov chain (MC). TMC generalize HMC but still enable the development of
efficient Bayesian algorithms for restoring X from Y . This paper lists some recent
results concerning TMC; in particular, we recall how TMC can be used to model
hidden semi-Markov Chains or deal with non-stationary HMC.
Keywords: hidden Markov chains, hidden semi-Markov chains, pairwise Markov
chains, triplet Markov chains, Bayesian segmentation, Kalman filtering and smooth-
ing, iterative conditional estimation.

1 Introduction

An important problem in statistical data restoration consists in estimat-
ing a hidden random chain X = {Xi}ni=1 from an observed random chain
Y = {Yi}ni=1. Let Xi be discrete and Yi continuous. Many Bayesian meth-
ods are available once the distribution of Z = (X,Y ) is simple enough.
In particular, HMC with independent noise (HMC-IN), in which1 p(z) =
p(x1)p(x2|x1) · · · p(xn|xn−1) p(y1|x1) · · · p(yn|xn) have been widely used and
studied (see e.g. [Ephraim and Merhav, 2002] for a recent tutorial).

The pairwise Markov chains (PMC) model has been proposed recently
[Pieczynski, 2003] and [Derrode and Pieczynski, 2004]. In a PMC one assumes
that Z = (X,Y ) is an MC, i.e. that p(z) = p(z1)p(z2|z1) · · · p(zn|zn−1). Any
HMC-IN is a PMC, but the converse is not true, because in a PMC X is
no longer necessarily an MC; however, conditionally on Y , X remains an
MC, and in turn this key computational property enables the development

1 in this formula p(z) denotes the probability density function (pdf) of Z w.r.t.
κn ⊗ µn, p(xi) the pdf of Xi w.r.t. κ, and p(yi|xi) the conditional pdf (w.r.t. µ)
of Yi given Xi, where κ denotes the counting measure and µ denotes the Lebesgue
measure. Later on, other pdf or conditional pdf w.r.t. Lebesgue measure, count-
ing measure, or product measures involving the Lebesgue and/or the counting
measure(s) will also be considered; the true meaning of p(.) or of p(.|.) is easily
deduced from the context.
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of analogous Bayesian restoration algorithms [Lipster and Shiryaev, 2001,
corollary 1 p. 72], [Pieczynski, 2003], [Pieczynski and Desbouvries, 2003],
and [Desbouvries and Pieczynski, 2003b]. PMC have been further extended
to TMC. In the TMC model one introduces a third chain U = {Ui}ni=1

(which can be physically meaningful or not) and assumes that the triplet
T = (X,U, Y ) is an MC [Pieczynski et al., 2002] and [Pieczynski, 2002]. TMC
generalize some classical models in the sense that none of the chains X , U , Y ,
V = (X,U), Z = (X,Y ) or (U, Y ) needs to be an MC. The wider generality
of PMC w.r.t. HMC and of TMC w.r.t. PMC can also be seen through the
expression of p(y|x). In an HMC-IN p(y|x) = p(y1|x1) · · · p(yn|xn), which
is very simple, and undoubtedly too simple in some applications, including
speech recognition [Wellekens, 1987] and [Ostendorf et al., 1996]; in a PMC
p(y|x) is an MC, which is much richer; and in a TMC p(y|x) is the marginal
distribution of the MC p(u, y|x), which is still much richer than an MC. In
such applications as image processing, these increasingly complex models are
likely to meet the growing need for a better modeling of the noise [Pérez,
2003].

Apart from this general discussion, the contribution of the TMC model
(w.r.t. other possible extensions of the HMC-IN model) appears when de-
scribing how they encompass and extend some well known stochastic models.
This is better appreciated at the local level, as we now see from a simple ex-
ample. By definition, a TMC distribution is defined by p(t1) and by p(ti+1|ti),
which itself can be written by different expressions. In particular, the follow-
ing factorizations will prove useful in the sequel :

p(ti+1|ti) = p(xi+1|ti)p(ui+1|xi+1, ti)p(yi+1|xi+1, ui+1, ti) (1)

= p(ui+1|ti)p(xi+1|ui+1, ti)p(yi+1|xi+1, ui+1, ti). (2)

The HMC-IN model is obtained from (1) if p(xi+1|ti) reduces to p(xi+1|xi),
p(ui+1|xi+1, ti) to δxi+1(ui+1) (with δxi+1 the Dirac mass, which simply means
that ui+1 = xi+1), and p(yi+1|xi+1, ui+1, ti) to p(yi+1|xi+1). Other (non-
trivial) examples will be given below.

The aim of this paper is to summarize some recent results (some of which
are still under review) concerning the large family of TMC. In particular, we
will see that the TMC model gathers some well known dynamical stochastic
models (and thus provides a unifying framework for these models), as well as
some new extensions of these models, and yet still enables the development
of efficient hidden chain restoration and parameter estimation algorithms.

The rest of this paper is organized as follows. We will say that X (resp.
U , Y ) is discrete (resp. continuous) if each Xi (resp. Ui, Yi) takes discrete
(resp. continuous) values, and in this paper X and U can be either discrete
or continuous (Y will be assumed to be continuous). So we have four possible
situations, which are discussed in sections 2 to 5; as we will see, depending
on the situation U admits a physical interpretation (see e.g. ?2, item (iii),
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or ?3, item (ii)) or not (see e.g. ?2, item (i), or ?3, item (i)). Finally section
6 is devoted to parameter estimation.

2 Discrete hidden chain with discrete auxiliary chain

Let X and U be discrete, with Xi ∈ Ω and Ui ∈ Λ. In this section we shall
briefly recall why some classical Bayesian methods like Maximum Posterior
Mode (MPM) can be used in TMC. Let T = (X,U, Y ) be an MC. The
conditional law of V = (X,U) given Y is then an MC, with initial pdf and
transitions given by

p(v1|y) =
p(t1)β1(v1)∑

v1∈Ω×Λ p(t1)β1(v1)
, p(vi+1|vi, y) =

p(ti+1|ti)βi+1(vi+1)

βi(vi)
, (3)

in which βi can be computed via the classical backward recursions : βn(vn) =
1 and βi(vi) =

∑
vi+1∈Ω×Λ p(ti+1|ti)βi+1(vi+1) for 1 ≤ i ≤ n−1. Once p(v1|y)

has been computed, the a posteriori marginals are computed recursively via
p(vi+1|y) =

∑
vi∈Ω×Λ p(vi|y)p(vi+1|vi, y). Finally p(xi|y) =

∑
ui∈Λ p(vi|y),

and thus the MPM estimate, which is defined by

[x̂MPM (y) = {x̂i}ni=1]⇐⇒ [for all i, 1 ≤ i ≤ n, x̂i = arg max
xi

p(xi|y)],

can be computed.
Let us now describe five particular applications of TMC in which this

MPM restoration algorithm can be used.

(i) Mixture approximation. Assume that a given PMC (X,Y ) is stationary,
i.e. that p(xi, xi+1, yi, yi+1) does not depend on i. Then the distribu-
tion of (X,Y ) is given by p(x1, x2, y1, y2) = p(x1, x2) p(y1, y2|x1, x2). If
p(y1, y2|x1, x2) is not known exactly, one can approximate it by a mixture
distribution (for instance a Gaussian one)

p(y1, y2|x1, x2) =
∑

u1,u2∈Λ×Λ
p(u1, u2)p(y1, y2|x1, x2, u1, u2),

and in this case the model we implicitely deal with is actually a stationary
TMC model, the distribution of which is defined by p(t1, t2) = p(u1, u2)
p(x1, x2) p(y1, y2|x1, x2, u1, u2).

(ii) ”Switching” or ”jumping” models”. One way to model non stationary
hidden chains is to assume that for each i, 1 ≤ i ≤ n − 1, there are m
possible transitions p(xi+1|xi, ui) with ui ∈ Λ = {λj}mj=1. One usually
considers that ui is a realization of Ui, and (U1, · · · , Un) is an MC. If
we directly assume that (X,U) is an MC then we obtain a more gen-
eral model since U does not need to be an MC any longer. This model
has been successfully applied in non stationary image segmentation [Lan-
chantin and Pieczynski, 2004a]. A further generalization consists in as-
suming that (X,U, Y ) is a general TMC.
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(iii) Hidden semi-Markov chains (HSMC). When X is an MC, the distribution
of the sojourn duration in a given state is exponential, which is restrictive
in some situations. In HSMC this distribution can be of any form; these
models thus extend HMC, and yet still enable analogous processing, see
e.g. [Yu and Kobayashi, 2003] [Moore and Savic, 2004] [Guédon, 2005].
Let q be a pdf on IN∗ modeling the probability distribution of the state
duration, let Un ∈ IN∗ be the time during which Xn remains in the same
state, and let δxi(.) be the Dirac mass on xi. Then the semi-MC model
can be written as

p(ui+1|ui) =

{
δui−1(ui+1) if ui > 1
q(ui+1) if ui = 1

; (4)

p(xi+1|xi, ui) =

{
δxi(xi+1) if ui > 1
p(xi+1|xi) if ui = 1

, (5)

with p(xi+1|xi) = 0 for xi+1 = xi. Consequently HSMC happen to be
particular TMC (with auxiliary chain U), in which the three transition
pdf in the r.h.s. of factorization (2) reduce respectively to p(ui+1|ti) =
p(ui+1|ui) given by (4), p(xi+1|ui+1, ti) = p(xi+1|xi, ui) given by (5), and
p(yi+1|xi+1, ui+1, ti) = p(yi+1|xi+1). Notice that the fact that HSMC are
particular TMC enables to consider a lot of TMC models generalizing
HSMC [Pieczynski, 2004].

(iv) Non-stationary hidden chain X . Let us consider the problem of unsuper-
vised restoration using the classical HMC-IN Z = (X,Y ). The assump-
tion that X is stationary cannot always be done, and yet this assumption
is required when estimating the model parameters. However, the possible
non stationarity of X can also be modeled by ”mass functions”, which
can be seen as an extension of the probability distribution on discrete
finite sets, and then the computation of the posterior distribution of X
becomes a particular ”Dempster-Shafer” fusion. Now, one can show that
introducing mass functions is mathematically equivalent to considering
some TMC, which in turn enables one to use different Bayesian algo-
rithms. In particular, using TMC in unsupervised image segmentation
enables to improve the results obtained with classical HMC [Lanchantin
and Pieczynski, 2004b].

(v) Vector auxiliary chain. In a TMC T = (X,U, Y ) the chain U can be a
vector one. For instance, it is possible to deal with non-stationary HSMC
by introducing the pair U = (W,S), in which W models the fact that an
HSMC is a TMC, and S models the fact that the TMC (X,W, Y ), which
is seen as a PMC (V ′, Y ) with V ′ = (X,W ), is not stationary.

3 Discrete hidden chain with continuous auxiliary
chain

Let us now give two examples of TMC models with a discrete hidden chain
and a continuous auxiliary chain; the first one, in which (U, Y ) is Gaussian
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conditionally on X , enables to model complex noise distributions; while the
second one, in which (U, Y ) is not Gaussian conditionally on X , appears in
radar signal or images modeling.

(i) Consider the following model : let T = (X,U, Y ) be an MC, X be an
MC, and (U, Y ) be Gaussian conditionnally on X . Since T is an MC,
the conditional law of (U, Y ) given X is an MC as well. However the
conditional distribution of Y given X remains Gaussian but is no longer
necessarily an MC (the proof of this result is an adaptation of the proof in
[Pieczynski and Desbouvries, 2003] [Desbouvries and Pieczynski, 2003a]),
so these simple assumptions can lead to ”noise” models (i.e., p(y|x))
which are significantly more complex than those one usually deals with.

Unfortunately, computing p(xi|y) exactly is not feasible and approximate
methods are needed, as we now briefly explain. Let xi ∈ Ω. Since T is
an MC, the distribution of (X,U) conditionally on Y is also an MC,
the transitions of which can be computed by the ”backward” recursion
(with the difference that now Ui is continuous). As in section 2, let us
classically set βn(vn) = 1 and

βi(vi) =
∑

xi+1∈Ω

∫

IR

p(ti+1|ti)βi+1(vi+1)dui+1 for 1 ≤ i ≤ n− 1. (6)

Then p(vi+1|vi, y) = p(ti+1|ti)βi+1(vi+1)
βi(vi)

, so p(vi+1|vi, y) can be computed

if βi(vi) can be computed. But we see from (6) that βi(vi) is a rather
rich mixture, containing, for k classes, kn−i components.

(ii) Speckle distribution in SAR images. TMC with a discrete hidden chain
and a continuous auxiliary chain are encountered for instance in radar
signal or images, as we see from the following example. Let us consider
a TMC T = (X,U, Y ) such that X is an MC, and p(u, y|x) =

∏n
i=1

p(ui, yi|xi). Let also p(ui, yi|xi) = p(ui|xi)p(yi|ui, xi), in which p(ui|xi)
are Gamma distributions, and p(yi|ui, xi) are Gaussian distributions with
mean µ(xi) and variance σ2(ui, xi) = uiσ

2(xi). Then the distribu-
tions p(yi|xi) are the so-called ”K-distributions”, and the chain U is the
”speckle” process [Barnard and Weiner, 1996] [Delignon and Pieczynski,
2002] [Brunel and Pieczynski, 2005].

4 Continuous hidden chain with discrete auxiliary
chain

In this section we assume that T is a TMC in which both X and Y are
continuous, and U is discrete with ui ∈ Λ. As in section 2, switching or
jump-Markov models, i.e. models in which U is assumed to be an MC, and
(X,Y ) is an HMC-IN conditionally on U , are well known simple examples
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of such TMC; for such models the 3 factors in the r.h.s. of (2) reduce re-
spectively to p(ui+1|ti) = p(ui+1|ui), p(xi+1|ui+1, ti) = p(xi+1|ui+1, xi), and
p(yi+1|xi+1, ui+1, ti) = p(yi+1|xi+1, ui+1).

Let us now consider the restoration problem. Although the physical mean-
ings of the TMC models we deal with in this section are very different of those
of section 3, the mathematical modeling and computational difficulties are
indeed quite similar. Let us for instance consider the filtering problem, which
consists in computing p(xi|y0:i). A recursive solution is given by

p(xi|y0:i) =

∑
ui−1∈Λ

∫
p(xi, ui, yi|xi−1, ui−1, yi−1)p(xi−1, ui−1|y0:i−1)dxi−1

p(yi|y0:i−1)

which, in general, cannot be computed in closed form. This computational
problem is already encountered in the context of jump-Markov models. In
particular, the linear Gaussian case has been studied for a long time, and
as is well known the exact computation of the posterior filtered or smoothed
estimates leads to a computational cost which grows exponentially with time
(see e.g. [Tugnait, 1982] and the references therein). So approximate solu-
tions have been proposed, see e.g. [Tugnait, 1982] [Kim, 1994] [Bar-Shalom
and Li, 1995] [Doucet et al., 2001]. Reformulating the jump-Markov model
as a particular TMC does not help in solving the filtering problem; however,
it can lead to interesting generalizations, to which the classical approximate
methods designed for jump-Markov systems could be extended. For instance,
in the TMC above U is a discrete MC and thus T can be viewed as a ”hid-
den” MC. Such an HMC could then be extended to an HSMC, as specified
in section 2, item (iii).

5 Continuous hidden chain with continuous auxiliary
chain

TMC with continuous processes X , U and Y are used in some applications,
including the extensions of the classical linear state-space system (7) to col-
ored process and/or measurement noise. Let

{
Xn+1 = FnXn +Gnηn
Yn = HnXn + Jnξn

, (7)

in which ηn is the process noise and ξ is the measurement noise. Fn, Gn,
Hn and Jn are known deterministic matrices, and processes η = {ηn}n∈IN

and ξ = {ξn}n∈IN are assumed to be independent, jointly independent and
independent of X0. As a consequence, (X,Y ) is an HMC-IN. The filter-
ing problem consists in computing the posterior pdf p(xn|y0:n). From (7),
p(xi|y0:i) can be computed recursively as

p(xi+1|y0:i+1) =
p(yi+1|xi+1)

∫
p(xi+1|xi)p(xi|y0:i)dxi∫

p(yi+1|xi+1)[
∫
p(xi+1|xi)p(xi|y0:i)dxi]dxi+1

. (8)
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If furthermore X0 and (ηn, ξn) are Gaussian, then p(xn|y0:n) is also Gaus-
sian and is thus described by its mean and covariance matrix. Propagating
p(xn|y0:n) amounts to propagating these parameters, and (8) reduces to the
celebrated Kalman filter [Kalman, 1960] see also [Ho and Lee, 1964] [Ander-
son and Moore, 1979] [Kailath et al., 2000].

It happens that some classical extensions of model (7) are particular TMC.
Consider for instance model (7), but in which we now assume that

[
ηn+1

ξn+1

]
=

[
Aη,ηn 0

0 Aξ,ξn

]

︸ ︷︷ ︸
An

[
ηn
ξn

]

︸ ︷︷ ︸
un

+

[
εηn
εξn

]
,

︸ ︷︷ ︸
εn

(9)

where εη = {εηn}n∈IN (resp. εξ = {εξn}n∈IN is zero-mean, independent and
independent of η0 (resp. of ξ0), and εη and εξ are independent. Each one of
the two processes η = {ηn}n∈IN and ξ = {ξn}n∈IN is thus an MC, and η is
independent of ξ. Such a model has been introduced by Sorenson [Sorenson,
1966] (see also [Chui and Chen, 1999, ch. 5]). It is no longer an HMC (X is
not an MC), but the whole model Tn = (Xn, Un, Yn−1) can be rewritten as



Xn+1

Un+1

Yn




︸ ︷︷ ︸
Tn+1

=



Fn Gn 0
0 An 0
Hn Jn 0




︸ ︷︷ ︸
Fn



Xn

Un
Yn−1


+




0
εn
0




︸ ︷︷ ︸
Wn

(10)

(with Gn = [Gn, 0] and Jn = [0, Jn]), and so T = {Tn} is a TMC.
Model (10) is indeed a particular case of a linear TMC, defined by

Tn+1 = FnTn + Wn, with Tn = (Xn, Un, Yn−1), and Wn independent and
independent of T0. p(xn|y0:n) is obtained by marginalizing p(vn|y0:n) which,
in the Gaussian case, can be computed efficiently by a Kalman-like filtering
algorithm [Desbouvries and Pieczynski, 2003a], [Ait-el-Fquih and Desbou-
vries, 2005b].

Kalman-like smoothing algorithms, extending to linear Gaussian TMC
the two-filter and RTS smoothers, have also been derived [Ait-el-Fquih and
Desbouvries, 2005a].

6 Parameter estimation

Let us finally mention that the model parameters can be estimated
from the observed data Y , either by using the well-known ”Expectation-
Maximization” (EM) method [McLachlan and Krishnan, 1997] or the ”Itera-
tive conditional estimation” (ICE) method (some relationships between ICE
and EM can be found in [Delmas, 1997]).

As an illustrative example, let us see how the model parameters can be es-
timated by ICE, which we first briefly recall. Parameter estimation according
to the ICE principle can be performed once
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(i) an estimator θ̂(X,Y ) of the parameters θ from the complete data (X,Y )
is available; and

(ii) one can sample X according to p(x|y).

Then ICE is described by the recursion θq+1 = E(θ̂(X,Y )|Y = y, θq), starting
with some initial value θ0. If for some components θj of θ this expectation
cannot be computed, one samples x1, · · · , xl according to p(x|y, θq) and sets

θq+1
j = 1

l

∑l
i=1 θ̂j(x

i, y).
Let us turn to parameter estimation in PMC and TMC. Let us first re-

mark that the problem is identical in both cases, since a TMC T = (X,U, Y )
can be seen as a PMC (V, Y ) with V = (X,U). Let us as an illustrative exam-
ple consider the case of a stationary PMC Z = (X,Y ) = (X1, Y1, · · ·Xn, Yn)
in which p(zi, zi+1) does not depend on i. So the distribution of Z is given
by p(z1, z2) = p(x1, x2)p(y1, y2|x1, x2). Assume that Xi ∈ Ω = {ω1, ω2}
and that p(y1, y2|x1, x2) are Gaussian. Then the model parameter con-
sists of θ = (α, β), where α gathers the four parameters α = {αi,j =
p(x1 = ωi, x2 = ωj)}2i,j=1, and β = {βi}20i=1 the twenty parameters of the

four Gaussian densities {p(y1, y2|x1, x2)}x1,x2∈Ω×Ω on IR2.

Let us now apply ICE to this model. Let θ̂(X,Y ) = (α̂(X), β̂(X,Y )).

α̂(X) can be chosen as the classical frequency estimator, and β̂(X,Y ) as the
classical empirical means and variance-covariance matrices. Then αq+1

i =

E(α̂i(X)|Y = y, θq) can be computed, but βq+1
i = E(β̂i(X,Y )|Y = y, θq)

cannot. In practice, the interest of PMC over HMC-IN in unsupervised seg-
mentation using the ICE principle has been proven by different experiments
[Derrode and Pieczynski, 2004]. On the other hand, using copulas enables to
extend ICE to the case where the exact nature of the noise distribution is not
known (it can take different possible forms) [Brunel and Pieczynski, 2003].
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Abstract. This paper is concerned with the analysis of multispectral observations,
provided by space or ground telescopes. The large amount and the complexity of
heterogeneous data to analyse lead us to develop new methods for segmentation
tasks, which aim to be robust, fast and efficient. Some prior knowledge on the
information to be extracted from the original image is available, and Bayesian sta-
tistical theory is known to be a convenient tool to take this a priori knowledge
into consideration. In this paper, we investigate the use of the Bayesian inference
on Markovian quadtrees for some reduction, fusion, segmentation or restoration
problems of great importance in multiband astronomical imagery.
Keywords: Markovian quadtree, Bayesian inference, fusion, data reduction, cop-
ulas, astronomy.

1 Introduction
This paper deals with the unsupervised segmentation, reduction, fusion or restora-
tion of multiband images. These different tasks are developed in an astronomical
multispectral imagery framework, and validated on raw data cubes. The main goal
of this presentation, consists in showing different processing chains describing the
power, the efficiency and the fruitfulness of hierarchical Markovian modeling based
on a quadtree topology. We will see that such modeling allows to deal with a large
varieties of data : missing data, multiresolution data, multiband data, strongly
noised data. In particular, we show how such approach is general and how this
tool is able to face with a large number of various image processing tasks. The pa-
per is organized as follows. The Markovian quadtree model is described in section
2. In section 3 a reduction methods on large data cube is coupled with quadtree
modeling, in order to provide a single segmentation map avoiding thus the curse
of dimensionality phenomenon. Then, in the fourth section, we propose to process
the wavelet coefficients on the raw data cube, and feed a Markovian quadtree with
the multiscale coefficients of the wavelet transform. Indeed, the quadtree topol-
ogy exhibits a suitable structure to deal with multiscale coefficients : in this way,
it becomes possible to use the different multi-scale segmentation maps obtained
along a quadtree to restore and fused multiband images. Particularly, the prob-
lem of between-channels correlation modeling in the non-Gaussian case is briefly
presented.

2 Markovian quadtree and segmentation tasks
Statistical Markovian approaches have proved to be fruitful to design robust and
efficient images analysis methods. In the context of multispectral images, handling
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Fig. 1. Example of a dependency graph corresponding to a quadtree structure on
a 16 × 16 lattice. Black circles represent labels and white circles represent multi-
component observations. Each node t has a unique parent t− and four “children”
t+. aij stands for inter-scale probability of label transition, whereas Pn

i (ys) repre-
sents the likelihood to affect a label ωi with observation ys. Likelihood parameters
and Markovian quadtree parameters (aij and root probabilities) can be estimated
with, e.g., an EM algorithm. The segmentation algorithm re-estimates iteratively
the parameters of a given hidden in-scale-Markov model, to produce a new model
which has a higher probability of generating the given observation sequence. This
re-estimation procedure is continued until no more significant improvement in pa-
rameters can be obtained. The two-step computation of posterior marginals prop-
agates available information all over the tree : on one hand, the bottom-up step
spreads the influence of data to other levels up to the root, on the other hand the
top-down step computes the posterior marginals taking into account this informa-
tion. Thus, this proposed modeling scheme captures, over the quadtree, significant
statistical dependencies and provides a robust scheme for segmentation.

correlated observed data requires a well-designed modeling framework. Resorting
to a Bayesian scheme based on Markov models is indeed attractive when dealing
with large amount of multispectral observations. Nevertheless, the well known
Markov Field Models (MFM) lead to iterated optimization algorithms, not really
well adapted [Geman and Geman, 1984, Graffigne et al., 1995, Kato et al., 1996]
for many applications, even if some strategies to decrease the computing time have
been proposed in the last decade (e.g., [Pérez et al., 2000, Mignotte et al., 2000]).
This is due to the fact that most of Markov models are non-causal. As a con-
sequence, inference must be conducted iteratively, which might turn prohibitively
expensive. One way to circumvent this problem is to resort to a Markov model on a
quadtree where in-scale causality[Laferté et al., 2000, Provost et al., 2003] permits
non-iterative inference . A quadtree-based approach offers the well-known advan-
tages of standard hierarchical techniques (improved robustness, ability to deal with
multiresolution or missing data), while allowing for non-iterative inference as in the
case of hidden Markov chains [Giordana and Pieczynski, 1997]. Let G = (S,L) be
a graph composed of a set S of nodes and a set L of edges. A tree is a connected
graph with no cycle, where as a consequence, each node apart from the root r has
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a unique predecessor, its ”parent”, on the path to the root. A quadtree, as illus-
trated in Fig. 1, is a special case of tree where each node, apart from the terminal
ones, the ”leaves”, has four ”children”. The set of nodes S can be partitioned into
”scales”, S = S0 ∪ S1 . . . ∪ SR, according to the path length from each node to the
root. Thus, SR = {r}, Sn involves 4R−n sites, and S0 is the finest scale formed
by the leaves. We consider a labeling process X which assigns a class label Xs

to each node of G : X = {Xn}Rn=0 with Xn = {Xs, s ∈ Sn} where Xs takes its
values in the set Ω = {ω1, ..., ωK}, of the K classes. A number of conditional inde-
pendence properties are assumed. First, X is supposed to be Markovian in scale,
i.e.,1 P (xn|xk, k > n) = P (xn|xn+1). It is also assumed that the probabilities of
inter-scale transitions can be factorized in the following way [Laferté et al., 2000]:

P (xn|xn+1) =
Y

s∈Sn

P (xs|xs−), (1)

where s− designates the father of site s, as illustrated in Fig. 1. Finally, the likeli-
hood of the multiband/multisensor observations Y conditionally to X is expressed
as the following product (assuming conditional independence):

P (Y =y|x) =

RY

n=0

P (yn|xn) =

RY

n=0

Y

s∈Sn

P (yn
s |xs), (2)

where ∀s ∈ Sn, ∀n ∈ {0, ..., R}, P (ys|xs = ωi)
4
= fi(ys), captures the likelihood

of the data ys. Each site s of scale n can be associated with a label ωi. If data
are available at scale n, then the likelihood is expressed as fn

i (yn
s ). Of course, if

the data-driven terms do not follow a Gaussian law, the analytic expression of the
multidimensional density fn

i (yn
s ) is not always available. To overcome this difficulty,

one may decorrelate bands via an adequate mapping, compute the multidimensional
density of the decorrelated data as a simple product of the marginals and then
obtain fn

i (yn
s ) by Jacobian method [Provost et al., 2003]. Another solution is to

use copulas theory [Nelsen, 1998][Brunel et al., 2005] (see Annexe). In section 3,
we present a new way for multidimensional data-driven term computation, thanks
to a regularized mixture of Probabilistic Principal Component.

Sometimes, the lack of observed data on some locations within the pictures leads
to intricate segmentation problems but here, missing data can be easily inferred
[Provost et al., 2003]. In a general manner, we suppose the data available at different
levels n, including the finest level (n = 0). On one hand, when no observation exists
(for any given scale n), the likelihood fn

i (yn
s ) is set to 1. On the other hand, if we

have images of the same area at different levels of resolution, the quadtree structure
can be still used and permits to properly consider all the available data. It is a way
to conduct the segmentation while merging data. From these assumptions, it can
be easily inferred that the joint distribution P (x,y) can be factorized as follows :

P (x,y) = P (xr)
Y

s6=r

P (xs|xs−)

RY

n=0

Y

s∈Sn

P (ys|xs). (3)

One of the interests of this model lies in the possibility of computing exactly the
posterior marginals P (Xs|Y ) and P (Xs,X

−
s |Y ) at each node s within two passes

1 To simplify notation, we will denote the discrete probability P (X = x) as P (x).
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in an unsupervised way [Delmas, 1997]. The segmentation label map x̂ to be
determined is finally given by:

x̂s,s∈Sn = arg max
ωi∈Ω

P (Xs = ωi|Y = y). (4)

Equation (4) shows that we obtain a labeling of each pixel at each level of the
quadtree, even if observations only lie on the finest level and even if there is missing
data.

color for each class :

Fig. 2. On the left picture, composed of a mosaic of 9 observations, the missing pixel
data, due to sampling adjustment problems, appear as a regular lattice of white
dots. The Markovian quadtree allow to reconstruct a segmentation map without
missing labels : the missing observations are labeled thanks to the Markovian a
priori model.

3 Reduction/Segmentation on the Quadtree
Analysis of multicomponent data sets is a very hard task, due to the curse of
dimensionality[Hughes, 1968]. Indeed, learning algorithms need a large diversity
of observations to cover the behavior of the studied process. Especially, in the
multidimensional case, the required number of samples grows quickly with the
dimension, so that the process behavior becomes rapidly untractable in practice.
This is the so-called Hughes phenomenon which corresponds to an important loss of
accuracy in the process statistics estimation as dimensionality grows (more precisely
the likelihood term in the quadtree). For example , for an observation size of H×W
pixels by D spectral bands, one more channel observed adds H × W additional
samples whereas the complexity deals with IR D+1. To deal with this problem,
one may carry out a space reduction step before classification [Landgrebe, 2003].
Fortunately, high dimensional observed data can often be described in a significantly
smaller number of dimension than the original due to redundancy in data cube
where neighboring bands are highly correlated. Many approaches were proposed
to solve such analysis task. All seek a mapping on a reduced dimension space by
maximizing a given criterion [Duda et al., 2001]. More graceful solution consists
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on combining reduction and classification by associating a generative model to the
observations within each class to compute the corresponding likelihood. Thus the
observations are modeled as a mixture of such generative models [Tipping and
Bishop, 1999, Lee et al., 2000]. In this paper we propose to use a Markovian a
priori associated with such generative models to regularize multidimensional pixel
classification. In the sequel this approach will be illustrated using the Probabilistic
Principal Component analysis (PPCA) generative model.

3.1 Probabilistic Principal Component analysis (PPCA)

The PPCA [Tipping and Bishop, 1999] is based on a latent variable model which
lies each D × 1 observed vector y to q × 1 latent vector t, q < D, as follows:

y = At + µ+ ε (5)

where A is a D × q matrix, µ the observed data mean and ε is a random variable
following an Gaussian N (0, σ2I) noise, I being the identity matrix. Given t and
Eq. 5, the y probability distribution is :

P (y/t) = (2πσ2)
−D
2 exp{− 1

2σ2
‖y −W t− µ‖2}. (6)

Choosing Gaussian prior for t, i.e.; N (0, I), the marginal distribution of y is

P (y) = (2π)
−D
2 |C|

−1
2 exp{−1

2
(y − µ)tC−1(y − µ)} (7)

with C = σ2I + AAt a D × D matrix. Using the Bayes rule, the a posteriori
probability of t is found to be [Tipping and Bishop, 1999] N (M−1At(y−µ), σ2M−1)
where M = σ2I − AtA.

The maximization of the data log-likelihood L =
P

s∈S0 ln{p(ys)} gives the
following parameter estimators :

µML =

P
s∈S0 ys

card(S0)
; σ2

ML =
1

D − q
DX

j=q+1

λj ; AML = Uq(Λq − σ2I)
1
2R. (8)

where λj are the eigenvalues of the data covariance matrix Σx = 1
card(S0)P

s∈S0 (ys − µ)(ys − µ)t given in descending order (λ1 ≥ · · · ≥ λq), Λq is a
diagonal matrix of the q largest eigenvalues, Uq the matrix of the corresponding
eigenvectors, and R is an arbitrary orthogonal rotation matrix.

3.2 Regularized mixture of Probabilistic Principal Component
analyzers

A mixture of PPCA (MPPCA) was proposed in [Tipping and Bishop, 1999] to
model complex data structures as a combination of local PCA. For a K compo-
nent MPPCA, the observations are partitioned in K clusters (i.e; classes) each one
spanned by a local PPCA. Given this model, the distribution of the observations
is P (ys) =

PK
i=1 πiP (ys/xs = ωi). Note that in this formulation the prior is the

same for all s ∈ S0 and thus, any information about the neighborhood is taken
into account when classifying ys. We adapt this model by imposing a Marko-
vian constraints via the quadtree modelling. The observation distribution become
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P (ys) =
PK

i=1 P (xs = ωi)P (ys/xs = ωi), where Xs is drawn from a hierarchical
Markovian process (Eq. 1) and

P (ys/xs = ωi) = (2π)
−D
2 |Ci|

−1
2 exp{−1

2
(y − µi)

tC−1
i (y − µi)}. (9)

The matrix Ci is obtained in analog manner to Eqs. 7 and 8 by eigen-decomposition

of the weighted covariance matrix Σi =
P

s∈S0 P (xs=ωi/Y )(ys−µ̂i)(ys−µ̂i)
t

P
s∈S0 P (xs=ωi/Y )

, where

µ̂i =
P

s∈S0 P (xs=ωi/Y )ysP
s∈S0 P (xs=ωi/Y )

. The estimation of the a priori parameter remains the

same as in the classical quadtree. To test our approach, we generate 3 sets of 3
images (2 classes (geometric shape and background) with Gaussian distribution
(mean 120/120/128 and 136/136/128, standard deviation 16/16/16). Thus we ob-
tain 9 images to segment. The obtained 4-classes segmentation map shows clearly
the better behavior of our proposed approach towards MPPCA (cf. Fig. 3).
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Fig. 3. Segmentation map obtained with the MPPCA on 9 images (left) remains
noisy whereas the map obtained with the proposed technique (right) is well regu-
larized.

4 Wavelet domain for restoration and fusion tasks
Fusion of multiband images is of great interest in astronomy, allowing to obtain
an efficient summary of the whole multiband information in a single scene. Gener-
ally this task is more difficult for noisy observations. The wavelet domain is well
adapted both for fusion [Zhang and Blum, 1999] and denoising [D.L.Donoho and
Johnstone, 1994] tasks. Actually, wavelet coefficients measure local variations in
the image and the sharper the discontinuity, the larger the coefficients. Intensity
fluctuations corresponding to the noise, most of time considered as uncorrelated,
are most important at the finest resolution and related wavelet coefficients decrease
quickly as the scale increases. Real structures in the image will therefore lead to
larger wavelet coefficient values at these coarsest resolutions. A threshold can be
defined at each scale below which all the coefficients are discarded [D.L.Donoho and
Johnstone, 1994]. Note that the result of such analysis depends strongly both on
the wavelet used and on the thresholds chosen. Generally astronomical objects are
diffuse and exhibit smooth edges so isotropic wavelet transforms are well adapted
[Starck et al., 1998]. We use the pyramidal algorithm with one wavelet which is an
isotropic transform obtained by adapting the classical Laplacian pyramid [Starck
et al., 1998].

Few years ago [Crouse et al., 1998], an efficient Markovian modeling of wavelets
was introduced capturing interscale and spacial wavelet coefficient correlations. In
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this paper we use a more general Markovian framework modeling not only spatial
and interscale dependencies as the existent models but also interband correlation
for multiband image fusion and denoising. Moreover, the multidimensional likeli-
hood may be efficiently modeled using the copulas theory [Nelsen, 1998] allowing
us to use any kind of marginal densities with a given interband correlation. The

Fig. 4. Fusion-restoration algorithm illustrated for a bi-band image. A pyramidal
wavelet transform analyzes the two spectral bands (on the top). This leads to a
multiresolution pyramid of wavelet coefficients for each band, up to scale 4. Then,
all wavelet pyramids are combined to carry out two-class multiresolution Markovian
segmentation map (on the right). This segmentation map masks small coefficients
at different scales. The remainder coefficients are fused using an appropriate rule.
The result with the average of coarsest approximations feed an iterative reconstruc-
tion procedure to give a unique fused restored image.

proposed approach is summarized in Fig.4. For a multiband image Y with D
bands, a wavelet decomposition is carried out for each band b separately leading
to a multiresolution pyramids Wb, b = 1, · · · ,D. These D pyramids are combined
in unique Multiband-Multiresolution Pyramid (MMP, cf. Fig. 4 and 5) W by con-
sidering details coefficients, W1

s∈Sj , · · · ,WD
s∈Sj , for space location s at scale j as a
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components of an unique vectorWj(s). The MMP is segmented in two-classes (i.e.;
∀s ∈ S : xs ∈ {0, 1}) using a vectorial hidden Markov quadtree (Fig.5) to separate
significant wavelet coefficients from those associated with the noise. The selection
relies now not only on the sole coefficient magnitude but also takes into account
its neighbors : in space, in scale and with wavelength. This classification scheme
produces a multiresolution binary mask highlighting significant wavelet coefficients
and removing the others, corresponding to the noise contribution. The fusion of
the cleaned wavelet coefficients is operated using the following rule :

∀s ∈ Sn : W fused
s =

PD
i=1 σ

n
i xsWi

sPD
i=1 σ

n
i xs

, (10)

σn
i being the standard deviation of the ith marginal of the likelihood associated

with class kept at scale n. The structure W fused does not correspond to a smooth
image since all non significant coefficients are put to zero before fusion. We seek
instead a smooth solution F̂ fused which minimizes ‖ (W fused−O(F̂ fused)) ‖ where
O is the wavelet transform operator. In practice we use the Van Cittert’s algorithm
[Starck et al., 1998] to obtain the final restored-fused image (see Fig. 6).

xsxs

xs+xs+

xr = xs−xr = xs−
WrWr

WsWs

rootroot

Fig. 5. Example of a dependency graph corresponding to a quadtree structure on
a 4× 4 lattice. White circles represent labels and black circles represent multiband
observations Ws, s ∈ S in the wavelet domain.

Conclusion
This paper summarizes some variations around Markovian quadtree model, in or-
der to show the efficiency of such a tool, to deal with unsupervised multiband
image analysis, for e.g., reduction, segmentation, restoration, fusion tasks. Our
motivations for using such a model are to provide fast computations and efficient
structures to process multispectral and multiresolution large observations. Indeed,
computer vision and astronomers communities need efficient tools to analyse and
interpret large data cubes : ground or on-board telescopes provide larger amount
of multispectral/multiresolution data cube every year, that have to be processed in
an efficient way.



1098 Collet and Flitti

Fig. 6. Example of image fusion: from the left three simulated bands, the fusion
result is on the right. All objects appearing in the three bands are present in fused
image.

Annexe : Copulas for N-D likelihood computation
The basis of the copulas theory is Sklar’s Theorem [Nelsen, 1998] which asserts
the existence of a function C, called copula and defined on [0, 1]N , binding the
joint cumulative distribution function F (y1

s, · · · ,yN
s ) to the marginal cumula-

tive distribution functions F [1](y1
s), · · · , F [N](yN

s ) as follows : F (y1
s, · · · ,yN

s ) =
C(F [1](y1

s), · · · , F [N](yN
s )). If the marginals F [1], · · · , F [N] are continuous, then C

is unique. Moreover, if C is differentiable it is possible to define a copula density
as [Nelsen, 1998]:

f(y1
s, · · · ,yN

s ) = f [1](y1
s)× · · · × f [N](yN

s )×
c(F [1](y1

s), · · · , F [N](yN
s )) (11)

where f [j](yj
s) is the probability density function corresponding to F [j](yj

s) and
c = ∂C/(∂F [1], · · · , ∂F [N]) is the copula density. For multivariate Gaussian copula
CG, the copula density is given by [Nelsen, 1998]:

∀ t = (t1, · · · , tN )T ∈ IR N : cG(t) = |R|− 1
2 exp

»
− t̃T (R−1 − I) t̃

2

–
(12)

where t̃ = (Φ−1(t1), · · · , Φ−1(tN))T with Φ(.) the standard Gaussian cumulative
distribution, R is the N × N correlation matrix of t̃ and I the same size identity
matrix. To model non-Gaussian multivariate densities, we use Eq. 11 with a
Gaussian copula density (Eq. 12) and Generalized Gaussian marginal densities
[Provost et al., 2003] each one characterized by three parameters namely the mean,
the standard deviation and the shape parameter. This modeling allows us to cover
Upper-Gaussian (shape parameter < 2), Gaussian (shape parameter = 2) and Sub-
Gaussian (shape parameter > 2) multidimensional densities. See [Nelsen, 1998] for
more details on copulas theory.
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Estimation for partially observed semi-Markov

processes via self-consistency equations

Odile Pons

INRA, Mathématiques et informatique appliquée, 78352 Jouy-en-Josas cedex,
France
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Abstract. Nonparametric estimators of the survival function S(t) = P (T ≥ t)
for a censored time variable T has been defined by several methods, in particular
by integral self-consistency equations since Efron (1967) [Chang and Yang, 1987].
We establish explicit expressions of the estimators in an additive form and extend
this approach to several cases: a left-truncated and right-censored variable, the
left-censored or left-truncated sojourn times of a right-censored semi-Markov pro-
cess.
Keywords: left-truncation, right-censoring, self-consistency, semi-Markov process.

1 Introduction

Semi-Markov processes are non-homogeneous models for the evolution of in-
dividuals or systems between several states or submitted to several kinds of
damage. They may be applied to data in biomedicine, biology, demography
and quality control. For instance, the comparison of two treatments in pa-
tients may involve not only the final event, death or recovery, but also their
evolution between several health states or their quality of life during a dis-
ease. The transition times between the states are not always observed and
their values may be missing due to several possible observation scheme. In
some cases the estimation of the survival function has only solved by recursive
algorithms. This paper presents the usual product-limit estimator of right-
censored survival function as a sum and provide closed form expressions of a
survival function under left and right censoring or truncation. The estimators
are extended to estimate the distribution of sojour times of a semi-Markov
process under similar censorship and truncation.

2 Estimation of right-censored and left-truncated
variables

2.1 Right-censored variables

Let (Xi, δi)i≤n be a sample of real time variables and censoring indicators,
Xi = Ti∧Ci and δi = 1{Ti ≤ Ci}, where T and C have the distribution func-
tions F and G, and survival functions S and Ḡ. Let Nn(t) =

∑
i δi1{Xi≤t}
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and Ŝn satisfying the self-consistency equation

Ŝn(t) = n−1
n∑

i=1

{1{Xi>t} + (1− δi)1{Xi≤t}
Ŝn(t)

Ŝn(Xi)
}, (1)

then equation (1) uniquely defines an estimator of S if the censoring distri-
bution is continuous,

Ŝn(t) = 1−
∫ t

0

dNn(s)

n−∑n
j=1(1− δj)1{Xj<s}Ŝ

−1
n (Xj)

and Ŝn(t) ≡ ̂̄Fn(t), the Kaplan-Meier estimator.

2.2 Numerical example

Let (X(1) < X(2) < . . . < X(n)) be the ordered sample (Xi)i≤n and δ(i)

be the indicator related to X(i). The estimator Ŝn is as a right-continuous
decreasing step function with jumps at the uncensored observations, starting
from Ŝn(0) = 1 and with

Ŝn(X(i)) = Ŝn(X(i−1))−
δ(i)

n−∑n
j=1(1− δj)1{Xj≤X(i−1)}Ŝ

−1
n (Xj)

.

Consider a sample such that (δ(i))i≤n = (1, 0, 1, 1, 0, 0, 0, 1, 1, 1), then the

sequence (Ŝn(X(i−1), Ŝn(X(i))− Ŝn(X(i−1))i≤n takes the values

((1,
1

10
), (

9

10
, 0), (

9

10
,
9

8
× 1

10
), (

9

8
× 7

10
,
9

8
× 1

10
), (

9

8
× 6

10
, 0), (

9

8
× 6

10
, 0),

(
9

8
× 6

10
, 0), (

9

8
× 6

10
,

9

4× 10
), (

9

2 × 10
,

9

4× 10
), (

9

4 × 10
,

9

4× 10
)).

The product-limit estimator of Kaplan-Meier is defined as

̂̄Fn(t) =
∏

Xi≤t

{
1− δi

Yn(Xi)

}

with Yn(t) =
∑n
i=1 1{Xi≥t}. For the above sample

(1−Nn(X(i))Y
−1
n (X(i)))i≤n = (

9

10
, 1,

7

8
,
6

7
, 1, 1, 1,

2

3
,
1

2
, 0),

̂̄Fn is a step function with jumps at the X(i)’s and the values ( ̂̄Fn(X(i)))i≤n
are

(
9

10
,

9

10
,

9

10
× 7

8
,

9

10
× 6

8
,

9

10
× 6

8
,

9

10
× 6

8
,

9

10
× 6

8
,

9

10× 2
,

9

10× 4
, 0).
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2.3 Left-truncated and right-censored variables

Under left-truncation and right-censoring, the variables Xi and δi for indi-
vidual i are observed only if Xi > Ui, where Ti, Ci, Ui are independent with
dfs 1 − S, G and H respect. Let Yn(t) =

∑n
i=1 1{Ui<t≤Xi}. As in (1), self-

consistency property for the estimator of H(t) and H(t)S(t) = P (U ≤ t ≤ T )
may be written

Ĥn(t) = n−1{Yn(t+) +

n∑

i=1

1{Ui<Xi≤t}
Ĥn(t)

Ĥn(Xi)
}

Ĥn(t)Ŝn(t) = n−1{Yn(t+) +

n∑

i=1

(1 − δi)1{Ui<Xi≤t}
Ĥn(t)Ŝn(t)

Ĥn(Xi)Ŝn(Xi)
}, (2)

Let RU (i) and RX(i) be the ranks of U(i) and X(i). A direct estimator
of H(t) as a right-continuous increasing step function with jumps at the

observations Ui, i = 1, . . . , n, and starting from Ĥn(0) = 0 is defined by

Ĥn(U(i+1)) = Ĥn(U(i)) +
1{U(i+1)<XRU (i+1)}

n−∑n
j=1 1{Xj<Uj≤U(i)}Ĥ

−1
n (Uj)

. (3)

Moreover, Ĥn given by (3) is equal to the product-limit estimator of H
([Woodroof, 1985]),

Ĥpl
n (t) =

∏

1≤i≤n
{1− 1{Yn(Xi)>0}1{Ui<t∧Xi}

Yn(Xi)
}.

By (2) an estimator Ŝn is defined as a step function with jumps at the ob-

served Xi, with Ŝn(0) = 1 and such that

(ĤnŜn)(X(i)) = (ĤnŜn)(X(i−1))

−
δ(i)1{URX (i)<X(i)}

n−∑n
j=1(1− δj)1{Uj<Xj≤X(i−1)}(ĤnŜn)

−1
n (Xj)

.

3 Estimation of a semi-Markov process under
right-censoring

We consider a n independent observations of a semi-Markov jump process in a
finite state space {1, . . . ,m}. The ith sample path of the process is defined by
the sequence of the different sojourn states Ji = (Ji,k)k≥0 and by the sequence
of the transition times Ti = (Ti,k)k≥0, with Ti,0 = 0 and Ti,k is the arrival
time in state Ji,k, up to a random time ti. For k ≥ 1, i = 1, . . . , n, the sojourn
time Xi,k = Ti,k − Ti,k−1 in a transient state Ji,k−1 may therefore be right-
censored by a random variable Ci,k and the observations are Xi,k ∧Ci,k and
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the indicator δi,k = 1{Xi,k≤Ci,k}. The variable Ci,k is supposed independent
of (Ti,1, · · · , Ti,k−1) and (Ji,0, · · · , Ji,k−2) but to depend only on Ji,k−1, k ≥ 1,
i = 1, . . . , n. Let Ki be the random number of uncensored transitions of the
process (Ji, Ti), X

∗
i = ti −

∑Ki

k=1Xi,k the last (censored) duration time; if
J∗
i = Ji,Ki is censored, δ∗i = δi,Ki+1 = 0, otherwise X∗

i = 0.
The model is defined by the transition functions from j to j′, Fj′|j(x) =

P (Xi,k ≤ x, Ji,k = j′|Ji,k−1 = j) or, equivalently, by the transition probabili-
ties pj′|j = P (Ji,k = j′|Ji,k−1 = j) and the distributions of the sojourn times
between two states j and j′, F|jj′ (x) = P (Xi,k ≤ x|Ji,k = j′, Ji,k−1 = j).
The distribution of a sojourn time in j is Fj =

∑
j′ Fj′|j ; the related survival

functions are denoted S|jj′ and Sj , and Sj′|j(x) = pj′|j − Fj′|j(x). The cen-
soring variable of the sojourn times in state j has a distribution function Gj .
These functions are all assumed to be continuous.

Let N(j, n) be the total number of arrivals in state j, Y nc(x, j, j′, n)
the total number of sojourn times larger than x before a transition from
j to j′, Y nc(x, j, n) (resp. Y c(x, j, n)) the total number of uncensored (resp.
censored) sojourn times larger than x in j and Y (x, j, n) = Y nc(x, j, n) +

Y c(x, j, n). As in (1), the nonparametric maximum likelihood estimator Ŝn,j
of the survival function Sj in state j may be defined as a solution of the
self-consistency equation

Ŝn,j(x) =
1

N(j, n)

{
Y (x+, j, n) +

n∑

i=1

(1 − δ∗i )1{J∗
i =j}1{X∗

i ≤x}
Ŝn,j(x)

Ŝn,j(X∗
i )

}
,

(4)

with Ŝn,j(0) = 1 and (4) determines the Kaplan-Meier estimator of Sj .
For the estimation of Sj′|j and S|jj′ , we assume that the mean number

of visits in j, π0
j = n−1EN(j, n), is finite and π0

j pjj′ > 0. Estimators Ŝn,j′|j
and Ŝn,|jj′ are unique solutions of

Ŝn,j′|j(x) =
1

N(j, n)

{
Y nc(x+, j, j′, n) +

n∑

i=1

(1 − δ∗i )1{J∗
i =j}1{X∗

i >x}
Ŝn,j′|j(X∗

i )

Ŝn,j(X∗
i )

+

n∑

i=1

(1 − δ∗i )1{J∗
i =j}1{X∗

i ≤x}
Ŝn,j′|j(x)

Ŝn,j(X∗
i )

}
, (5)

Ŝn,|jj′ (x) =
1

N(j, n)

{
Y nc(x+, j, j′, n)

p̂n,jj′
+

n∑

i=1

(1− δ∗i )1{J∗
i =j}1{X∗

i >x}
Ŝn,|jj′ (X∗

i )

Ŝn,j(X∗
i )

+
n∑

i=1

(1 − δ∗i )1{J∗
i =j}1{X∗

i ≤x}
Ŝn,|jj′(x)

Ŝn,j(X∗
i )

}
(6)

where p̂n,jj′ = Ŝn,j′|j(0). The estimators Ŝn,j′|j and Ŝn,|jj′ solutions of equa-

tions (5) and (6) are defined from Ŝn,j′|j(0) = p̂n,jj′ and Ŝn,|jj′ (0) = 1. They
are decreasing step functions with jumps at the observed durations before a
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transition from j to j′ and their variations depend on the number of such
transitions and on the number of censored durations in state j. The cen-
sored durations in j, before and after x, are dispatched onto all the observed
duration times in j before a transition to another state according to weights
depending on the previously calculated values of Ŝn,j′|j (resp. Ŝn,|jj′ ) and

Ŝn,j .

We denote (X(1) < X(2) < . . .) the ordered sample
((Xi,1, . . . , Xi,Ki), X

∗
i )i≤n and δ(l) the indicator related to X(l),

Ŝn,j′|j(X(l−1))− Ŝn,j′|j(X(l)) =
Y nc(X(l−1), j, j

′, n)− Y nc(X(l), j, j
′, n)

N(j, n) +
∫X(l−1)

0 Ŝ−1
n,j(y) dY

c(y+, j, n)
.

(5) defines the Kaplan-Meier estimator for Sj′|j studied by [Gill, 1980] and

Ŝn,|jj′ (x) = p̂−1
n,jj′ Ŝn,j′|j(x).

A self-consistency equation and a direct estimator of p(j′|x, j) = P (Jk,i =
j′|Xk,i ≥ x, Jk−1,i = j)

p̂n(j
′|x, j) = Y −1(x+, j, n){Y nc(x+, j, j′, n)−

∫ ∞

x+

p̂n(j
′|y, j) dY c(y, j, n)}.

(7)
Equation (7) defines an estimator of p(j′|x, j) as a decreasing step function
with jumps at the censored durations in j and at the uncensored durations
related to transitions from j to j′. Starting from p̂n(j

′|∞, j) = 0,

p̂n(j
′|X(l−1), j) = p̂n(j

′|X(l), j) +
1− δ(l)p̂n(j′|X(l), j)

Y c(X(l), j, n)
.

4 Self-consistent estimation for observations by
intervals

4.1 Doubly censored observations

For individual i, the k-th sojourn time Xi,k of the process is observed on an
interval [Ui,k, Ci,k] with Ui,k ≤ Ci,k and ∪0≤k≤Ki [Ti,k + Ui,k, Ti,k + Ci,k] ⊂
[0, ti]. The observations are Ji,k−1, Wi,k = max{Ui,k,min(Xi,k, Ci,k)},
δ1,i,k = 1{Xi,k>Ui,k} and δ2,i,k = 1{Xi,k<Ci,k}, and Xi,k is observed only if
δ1,i,kδ2,i,k = 1. We assume that the variables Ui,k and Ci,k are independent of
Xi,k, with continuous d.f. Hj and Gj such that τ1,j = inf{u;Hj(u) > 0} = 0
and τ2,j = sup{u;Sj(u)Ḡj(u) > 0} = ∞. For x ≥ τ1,n,j , the notations of
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section 3 are modified as

Y nc(x, j, j′, n) =

n∑

i=1

Ki∑

k=1

δ1,i,kδ2,i,k1{Ji,k=j′}1{Ji,k−1=j}1{Xi,k≥x},

Y c,1(x, j, n) =

n∑

i=1

Ki∑

k=1

(1 − δ1,i,k)1{Ji,k−1=j}1{Ui,k≤x},

Y c,2(x, j, n) =

n∑

i=1

Ki∑

k=1

(1 − δ2,i,k)1{Ji,k−1=j}1{Ci,k≥x},

Ŷ c,1(x, j, j′, n) =

∫ x

0

1− Ŝn,j′|j(y)
1− Ŝn,j(y)

dY c,1(y, j, n),

Ŷ c,2(x, j, j′, n) = −
∫ ∞

x

Ŝn,j′|j(y)

Ŝn,j(y)
dY c,2(y, j, n),

Ŷ (x, j, j′, n) = Y nc(x, j, j′, n) + Ŷ c,1(x, j, j′, n) + Ŷ c,2(x, j, j′, n) and
Y (x, j, n) =

∑
j′ Y

nc(x, j, j′, n) + Y c,1(x, j, n) + Y c,2(x, j, n).

The self-consistency equation for the estimator Ŝn,j′|j of Sj′|j is written as

N(j, n)Ŝn,j′|j(x) = Ŷ (x+, j, j′, n)− Ŝn,j′|j(x)
∫ x

0

dY c,2(j, n)

Ŝn,j
(8)

+{1− Ŝn,j′|j(x)}
∫ ∞

x

dY c,1(j, n)

1− Ŝn,j
A sum over index j′ gives an equation for Ŝn,j

Ŝn,j(x) =
1

N(j, n)
[Y (x+, j, n)− Ŝn,j(x)

∫ x

0

dY c,2(j, n)

Ŝn,j

+{1− Ŝn,j(x)}
∫ ∞

x

dY c,1(j, n)

1− Ŝn,j
],

with Ŝn,j(0) = 1. This equation provides an algorithm for a decreasing

estimator Ŝn,j starting from Ŝn,j(0) = 1 and with jumps at the uncensored
transitions times. Let (W(1) < W(2) < . . .) the ordered sample of the variables
Wi,k, k = 1, . . . ,Ki, i = 1, . . . , n and let δ(l), δ1,(l) and δ2,(l) the indicators
related to X(l), then

Ŝn,j(W(l)) = Ŝn,j(W(l−1))−
Y nc(X(l−1), j, n)− Y nc(X(l), j, n)

dn,j,(l)
, with

dn,j,(l) = N(j, n) +

∫ W(l−1)

0

Ŝ−1
n,j(y) dY

c,2(y+, j, n)

+

∫ ∞

W(l)

(1− Ŝn,j(y))−1 dY c,1(y+, j, n).
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Since Ui,k ≤ Ci,k, boundary constraints are Ĥn,j(∞) = 1 ≥ Ĝn,j(∞),

Ĝn,j(0) = 0 ≤ Ĥn,j(0) and (8) uniquely defines estimators of Sj′|j , Hj ,
Ḡj and pjj′ ,

p̂n,jj′ = {N(j, n) +

∫ ∞

0

dY c,1(j, n)

1− Ŝn,j
}−1{Ŷ (0, j, j′, n) +

∫ ∞

0

dY c,1(j, n)

1− Ŝn,j
},

and, starting from Ŝn,j′|j(0) = p̂n,jj′ , Ŝn,j′|j is a decreasing step-function
with jumps at the uncensored transitions times,

Ŝn,j′|j(W(l)) = Ŝn,j′|j(W(l−1))−
Y nc(X(l−1), j, j

′, n)− Y nc(X(l), j, j
′, n)

dn,j,(l)
.

4.2 Left-truncated and right-censored observations

The k-th transition Xi,k of the process for an individual i is now observed on
an interval [Ui,k, Ci,k], conditionally on Xi,k ∧Ci,k > Ui,k. The variables Ui,k
and Ci,k are only supposed to be independent and independent of Xi,k but
without Ui,k < Ci,k and all the observations of the states and the duration
times are missing for the transitions with Xi,k ∧ Ci,k ≤ Ui,k. The nonpara-
metric estimators of the survival functions are now defined from the counting
processes

Y nc,nt(x, j, j′, n) =

n∑

i=1

Ki∑

k=1

δi,k1{Ji,k=j′}1{Ji,k−1=j}1{Ui,k<x≤Xi,k},

Y c,nt(x, j, n) =

n∑

i=1

Ki∑

k=1

(1 − δi,k)1{Ji,k−1=j}1{Ui,k<x≤Ci,k},

N c,nt(x, j, n) =

n∑

i=1

Ki∑

k=1

(1 − δi,k)1{Ji,k−1=j}1{Ui,k<Ci,k≤x},

Ŷ c,nt(x, j, j′, n) = −
∫ ∞

x

Ŝn,j′|j(y)

Ŝn,j(y)
dY c,nt(y, j, n),

Yn(x, j) =
∑

j′

Y nc,nt(x, j, j′, n) + Y c,nt(x, j, n).
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Self-consistency equations may be written for Ĥn,j , Ĥn,jŜn,j and Ĥn,jŜn,j′|j ,

Ĥn,j(x) = n−1{Yn(x+, j) +

n∑

i=1

1{Ui,k<Xi,k≤x}1{Ji,k−1 = j} Ĥn,j(x)

Ĥn,j(Xi,k)
},

Ĥn,j(x)Ŝn,j(x) =
1

N(j, n)
{Yn(x+, j) + Ĥn,j(x)Ŝn,j(x)

∫ x

0

dN c,nt(j, n)

Ŝn,jĤn,j

},

Ĥn,j(x)Ŝn,j′|j(x) =
1

N(j, n)
{Y nc,nt(x, j, j′, n) + Ŷ c,nt(x, j, j′, n)

+Ĥn,j(x)Ŝn,j′|j(x)
∫ x

0

dN c,nt(j, n)

Ŝn,jĤn,j

}.

Let (U(1) < U(2) < . . .) and respectively (X(1) < X(2) < . . .) be the ordered
sample of the variables Ui,k and Xi,k, k = 1, . . . ,Ki, i = 1, . . . , n and let δ(l)
be the indicator related to X(l), RU (l) and RX(l) be the ranks of U(l) and

X(l). The nonparametric estimator of Hj(t) = exp{−
∫∞
t
H−1
j dHj} may be

defined as an increasing step function with jumps at the observations Ui,k
such that Ji,k−1 = j, with Ĥn,j(0) = 0 and

Ĥn,j(U(l+1)) = Ĥn,j(U(l)) +
1{U(l+1) ≤ XRU (l+1)}1{JRU (l+1) = j}
n−∑l′ 1{Xl′ < Ul′ ≤ U(l)}Ĥ−1

n,j(Ul′)
.

Ŝn,j is deduced as a step function with jumps at the Xi,k such that Ji,k−1 = j,

with Ŝn,j(0) = 1 and satisfying

(Ĥn,jŜn,j)(X(l)) = (Ĥn,jŜn,j)(X(l−1))

− δ(l)1{JRX(l) = j}1{URX(l) < X(l)}
n−∑n

l′=1(1 − δl′)1{Ul′ < Xl′ ≤ X(l−1)}(Ĥn,jŜn,j)−1(Xl′)
.

An explicit expression of Ŝn,j′|j is similar.

All the proposed estimators are all uniformly consistent on compact sets
included in the support of the survival functions.
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Abstract. We consider here ergodic homogeneous Markov chain with finite state
spaces. We study an estimator of the entropy rate of the chain based on the
maximum likelihood estimation of the transition matrix. We prove its asymptotic
properties for estimation from one sample with long length or many independent
samples with given length. This result has potential applications in all the real
situations modeled by Markov chains, as detailed in the introduction.
Keywords: entropy rate, homogeneous Markov Chain, maximum likelihood esti-
mation.

1 Introduction

Markov chains and entropy are linked since the introduction of entropy in
probability theory by Shannon [24]. He defined the entropy of a distribution
P taking values in a finite set, say E = {1, . . . , s}, as S(P ) = −∑s

i=1 pi log pi,
with the convention 0 ln 0 = 0.

For a discrete-time process X = (Xn)n∈N, the entropy at time n is defined
as the Shannon entropy of the n-dimensional marginal distribution of X.
Under suitable conditions, the entropy at time n divided by n converges.
When the limit H(X) is finite, it is called the entropy rate of the process.

The entropy rate was first defined in [24] for an ergodic Markov chain
with a finite state space E as the sum of the entropies of the transition
probabilities (pij)j=1,...,s weighted by the probability of occurrence of each
state according to the stationary distribution π of the chain, namely

H(X) = −
s∑

i=1

πi

s∑

j=1

pij log pij . (1)

Shannon [24] proved the convergence of n−1 log P(X1 = i1, . . . , Xn = in)
to H(X) in probability. McMillan [16] proved the convergence in mean for
any stationary ergodic process with a finite state space. This constitutes
the Shannon-McMillan theorem. The almost sure convergence proven by
Breiman [4] is known as the Shannon-McMillan-Breiman theorem. Many ex-
tensions have been proven since (see [10] and the references therein), but the
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entropy rate has an explicit form only for Markov or semi-Markov processes
(see [12]).

The entropy S(P ) of a distribution P is widely used in all applications in-
volving random variables; see [6], [8] and the references therein. The entropy
rate H(Y) of an i.i.d. sequence with distribution P is the entropy S(P ) of P .
A whole statistical tool-box has been developed in this regard and applied
to a wide range of applied domains. Having an explicit form for the entropy
rate of a Markov chain allows one to use it similarly in all applications in-
volving Markov modeling. For example, maximum entropy methods can be
considered (see [9]).

It is well-known that in information theory, the entropy rate of a source
measures its degree of complexity (see [6]), but the entropy rate is used in
many other applied fields. In time series theory, the ApEnt coefficient de-
scribes the degree of hazard in a time series, and Pincus [20] proved that
for a Markovian model, the ApEnt is equal to the entropy rate of the chain.
In finance, Kelly [14] introduced entropy for gambling on horse races, and
Breiman [5] for investments in general markets; Shannon-McMillan-Breiman
theorem appears as an ergodic theorem for the maximum growth of com-
pounded wealth when gambling on a sequence of random variables (see [6]),
and the admissible self-financing strategy achieving the maximum entropy is
a growth optimal strategy (see [15]).

When observations of the process are available, the need for estimating
the entropy rate obviously arises.

Approximations of entropy can be obtained by numerical algorithms. The
Ziv-Lempel algorithm allows one to get an approximation of the entropy
of a binary process, whichever be its distribution. Plotkin & Wyner [21]
derive an algorithmic estimator of the entropy rate for a queueing problem
in telecommunication networks, for measuring the scattering and clustering
of cells. Abundo et al. [1] compute numerical approximations of the entropy
rate via the ApEnt to explain the degree of cooperativity of proteins in a
Markov model with binomial transition distributions.

Basharin [3] introduced estimation of the entropy rate in the statistical
theory of random processes by considering the maximum likelihood (ML) esti-

mator p̂i = n−1
∑n

k=1 11(Xk=i) and the plug-in estimator H̃ = −∑s
i=1 p̂i log p̂i

of H(Y), for an i.i.d. sequence Y = (Yn) with distribution P = (p1, . . . , ps) on

a finite state space E = {1, . . . , s}. He proved that H̃ is biased but strongly
consistent and asymptotically normal. Misevichyus [18] considers an esti-
mator of the entropy rate of an homogeneous stationary Markov chain with
finite state space, based on the ML estimation of the transition probabilities.

For an estimation based on one sample of long length, problems may
arise from the non-observation of some states, especially if s is large. Several
procedures exist in order to avoid these problems.
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Meeden [17] constructs an estimator of the transition matrix by a ML
method modified by a Bayes procedure. He proves that this estimator is
admissible when the loss function is the sum of individual squared error
losses.

Another procedure consists in the series schemes (the number of observed
states, their probabilities and the transition probabilities may vary with n).
The main issue of these methods is the determination of the asymptotic
distribution (possibly normal, but also Poisson, centered or non-centered chi-
square, etc.) of the estimators thus obtained. For an i.i.d. sequence, Zubkov

[27] gives conditions on the series scheme for the asymptotic normality of H̃ .
Mukhamedkhanova [19] studies the class of asymptotic distributions of an
estimator based on the ML estimation of the transition probabilities for a
two-state stationary Markov chain.

Another approach consists in using several samples of finite length in
which all the states are observed infinitely often; see [2], [13, Chapter V] or
[23]. Moreover, practically, it may be simpler to observe many independent
trajectories of the chain with short length rather than one long trajectory.

We study here ergodic homogeneous but non necessarily stationary
Markov chains with finite state spaces. We study the estimator of the entropy
rate for non-stationary chains and prove its asymptotic properties for an es-
timation based one sample in Section 3. We generalize it to an estimation
based on several samples in Section 4. Some extension prospects are given in
Section 5.

2 Notation and definitions

Let (Xn) be an homogeneous ergodic (that is irreducible and aperiodic)
Markov chain with finite state space E = {1, . . . , s} and stationary distri-
bution (πi)i=1,...,s. Set, for i, j = 1, . . . , s,

p
(n)
i = P(Xn = i), n ≥ 0,

pij = P(Xn = j|Xn−1 = i), n ≥ 1,

p
(n)
(i,j) = pijp

(n)
i = P(Xn = j,Xn−1 = i), n ≥ 1,

in which pij does not depend on n due to the homogeneity of the chain. We

know from the ergodic theorem of Markov chains that p
(n)
i converges to πi

when n tends to infinity (see, e.g., [11]).
We will also consider the bidimensional Markov chain (Xn, Xn−1), which

is homogeneous and ergodic too, with transition probabilities

P(Xn+1 = l, Xn = k|Xn = j,Xn−1 = i) = pijδjk, (2)

(where δjk denotes Kronecker’s symbol). Its stationary distribution is given
by π(i,j) = πipij . Indeed, since π is the stationary distribution of X, we have
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∑s
i′=1 πi′pi′i = πi, or

s∑

i′=1

πi′pijpi′i = πipij , i, j = 1, . . . , s,

which is equivalent to

s∑

i′,j′=1

π(i′,j′)pijδj′i = π(i,j) i, j = 1, . . . , s.

Note that p
(n)
(i,j) converges to π(i,j) when n tends to infinity.

The entropy rate of the chain X, given in (1), can be written

H(X) =

s∑

i=1

πi log πi −
s∑

i=1

s∑

j=1

π(i,j) log π(i,j), (3)

This decomposition will be the basis of the definition of the estimators of
H(X) considered in the following.

3 Estimation from one sample with long length

Suppose we are given one observation of the chain, say X = (X0, . . . , Xn).
Let us set for i, j = 1, . . . , s,

Nn(i, j) =

n∑

m=1

11{Xm−1=i,Xm=j} and Nn(i) =

n∑

m=1

Nn(i, j).

It is well-known (see [2, Section 5] and the references therein, and also
[23]) that the following estimators of the transition probabilities (pij),

p̂ij =
Nn(i, j)

Nn(i)
,

are their ML estimators. Clearly, the stationary distribution (πi) is estimated
by

π̂i =
Nn(i)

n
, i, j = 1, . . . , s,

Note that when Nn(i) = 0, it is necessary to set p̂ij = 0 for all j = 1, . . . , s,
and π̂i = 0. When Nn(i) 6= 0 and Nn(i, j) = 0, we also have p̂ij = 0 and
suppose that pij = 0. Note that the scheme of estimation considered below in
Section 4 constitutes a means of avoiding such problems of non-observation.

The asymptotic properties given in the following proposition derive from
the law of large numbers and central limit theorem for Markov chains (see,
e.g., [7]).
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Proposition 1 The estimators p̂ij and π̂i are strongly consistent and asymp-
totically normal, in mathematical words, when n tends to infinity,

π̂i
a.s.−→ πi and

√
n(π̂i − πi) L−→ N (0, πi(1 − πi)),

p̂ij
a.s.−→ pij and

√
nπi(p̂ij − pij) L−→ N (0, pij(1− pij)).

Replacing in (3) the probabilities by their estimators, we get the following
estimator for the entropy rate,

Ĥn =

s∑

i=1

π̂i log π̂i −
s∑

i=1

s∑

j=1

π̂(i,j) log π̂(i,j),

where π̂(i,j) = π̂ip̂ij = n−1Nn(i, j).
Misevichyus [18] proved the following theorem in the particular case of a

stationary chain (whose initial distribution is the stationary one). We give
here a shorter proof which holds true for any chain.

Theorem 1 Let X be an homogeneous ergodic Markov chain with a finite
state space. Then the estimator Ĥn(K) of H(X) is
1. strongly consistent;
2. asymptotically normal and unbiased when n tends to infinity.

Proof of Theorem 1
1. For proving that Ĥn converges almost surely to H when n tends to

infinity, it is sufficient to apply [26, Theorem 1.10, p59].
2. Set

Ĥ1 =

s∑

i=1

π̂i log π̂i and Ĥ2 = −
s∑

i=1

s∑

j=1

π̂(i,j) log π̂(i,j).

Since by Proposition 1, π̂i converges almost surely to πi when n tends to
infinity, the Taylor’s formula for x log x at πi, for πi 6= 0, implies that

Ĥ1 = H1 +

s∑

i=1

(log πi + 1)(π̂i − πi)−
1

2

s∑

i=1

(π̂i − πi)2
[πi +Θ1(π̂i − πi)]3

,

for some 0 < Θ1 < 1.
Clearly, E [π̂i − πi] converges to zero when n tends to infinity. We get

from Proposition 1 that E [π̂i − πi]2 = O(n−1). Hence Ĥ1 is asymptotically
unbiased.

By Proposition 1,
√
n(π̂i−πi) converges in distribution to N (0, πi(1−πi))

when n tends to infinity, hence the delta method (see, e.g., [25]) applies to

prove that
√
n(Ĥ1 −H1) is asymptotically centered and normal.

Since (π(i,j))i,j=1,...,s is the stationary distribution of the bidimensional
chain given in (2), the same arguments hold for H2, and the conclusion
follows. 2
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4 Estimation based on several independent samples
with fixed length

Suppose we are given K independent observations of the chain, say X(k) =

(X
(k)
0 , . . . , X

(k)
n ), k = 1, . . . ,K, for a fixed integer n. Let us set

nK(i) =

K∑

k=1

11{X(k)
0 =i} = Card{X(k)

0 = i : k = 1, . . . ,K},

Nn,K(i, j) =

K∑

k=1

n∑

m=1

11{X(k)
m−1=i,X

(k)
m =j}

and Nn,K(i) =

s∑

j=1

Nn,K(i, j).

The following ML estimators of the transition probabilities (pij),

p̂ij(n,K) =
Nn,K(i, j)

Nn,K(i)
, i, j = 1, . . . , s,

have been computed and studied in [2].
Suppose that when K tends to infinity, nK(i)/K converges to a finite

quantity, say ηi, for all i = 1, . . . , s (with ηi > 0 and
∑s

i=1 ηi = 1). Then, the
ML estimators p̂ij(K) are strongly consistent and Anderson & Goodman [2]
proved that

√
Nn,K(i) [p̂ij(K)− pij ] L−→ N (0, pij(1− pij)).

Note that for the above result to hold, the initial distribution of the chain
nK(i) can be supposed to be either non-random, with multinomial distribu-
tion M(K, (ηi)i=1,...,s) or equal to the stationary distribution of the chain.

For estimating the stationary distribution from samples with finite length,
it is easy to see that it is necessary for the chain to be stationary, with then

π̂i(K) =
nK(i)

K
, i = 1, . . . , s.

Proposition 2 Suppose that the chain is stationary and that K is such that
nK(i)/K converges to a finite quantity, say ηi, for all i = 1, . . . , s, when
K tends to infinity. Then, the estimators π̂i(K) and p̂ij(K) are strongly
consistent and asymptotically normal, in mathematical words,

π̂i
a.s.−→ πi and

√
K(π̂i − πi) L−→ N (0, πi(1− πi)) (4)

p̂ij(K)
a.s.−→ pij , and

√
Kπ̂i(p̂ij(K)− pij) L−→ N (0, pij(1− pij)). (5)
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Proof of Proposition 2 Since the K samples are supposed to be
independent, (4) is a straightforward consequence of the strong law of large
numbers and of the central limit theorem for i.i.d. sequences. Finally, (5) is
proven in [2]. 2

Setting π̂(i,j)(K) = π̂i(K)p̂ij(K) = n−1Nn,K(i, j) and replacing in (3)
the probabilities by their estimators, we get the following estimator for the
entropy rate,

Ĥ(K) =

s∑

i=1

π̂i(K) log π̂i(K)−
s∑

i=1

s∑

j=1

π̂(i,j)(K) log π̂(i,j)(K).

Theorem 2 Let X be a stationary homogeneous ergodic Markov chain with
a finite state space. Suppose that nK(i)/K converges to a finite quantity, say

ηi, for all i = 1, . . . , s, when K tends to infinity. Then the estimator Ĥn(K)
of H(X) is

1. strongly consistent;
2. asymptotically normal and unbiased when K tends to infinity.

The proof follows the same lines as the proof of Theorem 1, with n re-
placed by K.

5 Conclusion

The above results have potential extensions in several directions. Extensions
to a countable state space or to a general Borel state space can be considered.
The parametric case, that is a Markov chain whose transition matrix depends
continuously on a parameter with dimension less than s, would also be of
interest for many applications; see for example [21] for a Bernoulli traffic
source, [1] for a Markov chain with binomial transition probabilities modeling
proteins interactions, or [6] for binary information source models.
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Abstract. In the present, the reward paths in non homogeneous semi Markov
systems in discrete time are examined with stochastic selection of the transition
probabilities. First, the basic probability equations of the reward paths are derived
in terms of the main parameters of the system and a general formula is given. Then
the expected rewards for the one unit time intervals are presented in relation to the
entrance probabilities.
Keywords: Stochastic selection, semi-Markov process, reward.

1 Introduction

The definition of the non homogeneous semi Markov process was provided
in Iosifescu-Manu (1972) for the continuous time case, in Janssen & De Do-
minicis (1984) for the discrete case and in De Dominicis & Manca (1985). A
general definition of rewards can be found in Limnios & Oprisan (2001) and
the study of the asymptotic behaviour of semi Markov reward process in Reza-
Soltani & Khorshidian (1998). Later on the non homogeneous semi Markov
system in discrete time was examined in Vassiliou and Papadopoulou (1992),
and the asymptotic behavior of the same model was studied in Papadopoulou
and Vassiliou (1994). Important theoretical results and applications for semi
Markov models can be found in the work of Cinlar (1969,1975,1975), Teugels
(1976), Pyke and Schaufele (1964), Keilson (1969,1971), Mclean and Neuts
(1967), Howard (1971), McClean (1980,1986), Janssen (1986) and in Janssen
and Limnios (1999). Continuing this effort in the present, we study the be-
haviour of the rewards paid during an interval of time along the reward paths.
We consider rewards to be discrete random variables depending on the state
occupancies, transition probabilities which are stochastically selected for ev-
ery time unit, and the time spent at the state we examine before and after
the time of reference. In order to examine the characteristics of the reward
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paths, we derive a general formula expressing the rewards per time unit for
every state of the system and every time point. The expected reward for
every time unit and every state can be easily evaluated by means of this
general formula. Moreover the basic function used, helps us to look into the
relative reward structure in the course of time. A specific type of the hold-
ing time probability functions leads to a characteristic result for the rewards
evolution.

2 The semi Markov reward model with stochastic
selection of the transition matrix

We consider a population which is stratified into a set of states according to
various characteristics and we denote by S = {1, 2, . . . , N} the set of states
assumed to be exclusive and exhaustive, so that each member of the system
may be in one and only one state at any given time. Time t is considered to
be a discrete parameter and the state of the system at any given time could be
described by the vector N(t) = [N1(t), N2(t), . . . , NN (t)]′ where Ni(t) is the
expected number of members of the system in the i-th state at time t. The
expected number of members of the system at time t is denoted by T (t) and
NN+1(t) is the expected number of leavers during the time interval (t− 1, t].
We assume that T (t) = T , i.e. the total number of leavers equals to the total
number of recruits for every t and that the individual transitions between the
states occur according to a non homogeneous semi Markov chain (embedded
non homogeneous semi Markov chain). In this respect we denote by F(t)∞t=0

the sequence of matrices, the (i, j)th element of which is the probability of
a member of the system to make its next transition to state j, given that
it entered state i at time t. Let also pN+1(t) be the Nx1 vector whose
i-th element is the probability of leaving the system from i, given that the
entrance in state i occured at time t and po(t) the Nx1 vector the j-th element
of which is the probability of entering the system in state j as a replacement
of a member who entered his last state at time t. A member entering the
system holds a particular membership which moves within the states with the
members (see also Bartholomew (1982), Vassiliou and Papadopoulou (1992),
Vassiliou et al. (1990)). Since the size of the system is constant, when a
member decides to leave the system, the empty membership is taken by a
new recruit who behaves like the former one. Denote by P(t) the matrix
described by the relation

P(t) = F(t) + pN+1(t)p
′
o(t)

Obviously P(t) is a stochastic matrix with the (i, j)th element equal to
the probability that a membership of the system which entered state i
at time t makes its next transition to state j. For the present, we con-
sider that the transition probability matrix P(t) is selected from a pool
of matrices L = [P1(t),P2(t), . . . ,Pv(t)] with corresponding probabilities
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c1(t), c2(t), . . . , cv(t). Thus, whenever a membership enters state i at time t,
it selects state j for its next transition according to the probabilities pij(t).
However before the entrance into j, the membership ’holds’ for a time in
state i. Holding times for the memberships are described by the holding time
mass function hij(m) which equals to the probability, a membership which
entered state i at its last transition holds m time units in i before its next
transition, given that state j has been selected.

Let also yij(t) be the reward that a membership earns at time t after
entering state i for occupying state i during the interval [t, t + 1) when its
successor state is j, and bij(m) be the bonus reward that the membership
earns for making a transition from state i to j, after holding time m time
units in state i. Thus if a membership enters state i at time s and decides to
make a transition to j after m time units in i, then the total reward that it
earns equals to

s+m−1∑

t=s

yij(t) + bij(m).

Now, denote:
Aij;k(t) ={the reward that a membership earns during the time interval

[t, t+ 1) given that the membership entered state i at time 0, possesses state
j at time t, and will undertake its next transition to state k}.
Moreover, entering some state j implies stay at j at least one time unit.
Also, denote

eij(n, t) =prob{that a membership which entered state i at time t will
enter state j after n time units},
with corresponding probability matrix E(n, t) = {eij(n, t)}. It is appar-
ent that eij(n, t) depend on the transition probabilities pij(t) (see also Pa-
padopoulou (1997)) or equivalently on the transition probability matrices
P(t) which are selected from the pool L = [P1(t),P2(t), . . . ,Pv(t)] with
probabilities c1(t), c2(t), . . . , cv(t). Thus eij(n, t) become (define) random
variables and we are interested in the expected value of matrix E(n, t). From
Papadopoulou (1997) we have that

E(n, t) = P(t)�H(n) +
∑n

j=2{P(t)�H(j − 1){P(t+ j − 1)�H(n− j + 1)}+∑n
j=2

∑j−2
k=1 Sj(k, s,mk){P(t+ j − 1)�H(n− j + 1)},

for every n ≥ 1 and E(0, t) = I, where:
P(t)�H(n) is the Hadamard product of the matrices P(t), H(n),

Sj(k, s,mk) =
∑j−k
mk=2

∑j−k+1
mk−1=1+mk

...
∑j−1

m1=1+m2

∏k−1
r=−1{P(t+mk−r −

1)�H(mk−r−1 −mk−r)}.

where the i, r element of Sj(k, s,mk) is the probability that a membership
which entered state i at time s makes a transition to state r after j − 1 time
units and k intermediate transitions during the interval (s, s+ j − 1). Thus,
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it is easily seen that
E[E(n, t)] = E[P(t)]�H(n)+

∑n
j=2{E[P(t)]�H(j−1)}{E[P(t+j−1)]�H(n−

j + 1)}+
∑n

j=2

∑j−2
k=1 S̃j(k, s,mk){E[P(t+ j − 1)]�H(n− j + 1)},

where:
E[P(t)] =

∑v
x=1 cx(t)Px(t),

S̃j(k, s,mk, β) =
∑j−k

mk=2

∑j−k+1
mk−1=1+mk

...
∑j−1

m1=1+m2

∏k−1
r=−1E[P(t+mk−r−

1)]�H(mk−r−1 −mk−r).
There are three different ways for a membership starting from state i (at time
t = 0) to occupy state j at time t. The three different ways are exclusive and
exhaustive, and are illustrated below:

time t time t+ 1
new entrance in j new entrance in k
age in j equal to mp ≥ 0 residual life in j equal to mf > 0
age in j equal to mp > 0 new entrance in k

Thus Aij;k(t) is a random variable taking the values: yjk(t) + bjk(1), yjk(t),
yjk(t)+bjk(mp+1). The corresponding probabilities can be easily evaluated,
for example:

P{Aij;k(t) = yjk(t) + bjk(1)}
=prob{a membership which entered state i at time 0 will enter state j at
time t}·prob{a membership which entered state j at time t will take its next
transition to state k}·prob{a membership which entered state j at its last
transition holds one time unit in j before its next transition given that state
k has been selected}
= eij(0, t)pjk(t)hjk(1).
Similarly we have:

P{Aij;k(t) = yjk(t)} =

=
∑

mp

∑
mf

eij(0, t−mp)pjk(t−mp)hjk(mp +mf + 1)

where mp +mf ≤M − 1, mf 6= 0, M ∈ N ,
P{Aij;k(t) = yjk(t) + bjk(mp + 1)} =

= eij(0, t−mp)pjk(t−mp)hjk(mp + 1).

The three cases given above can be summarized in the following general
formula:

P{Aij;k(t) =

= yjk(t) + δ(mf−1)bjk(mp +mf + 1)

=
∑

mp

∑
mf

E[eij(0, t−mp)]E[pjk(t−mp)]hjk(mp +mf + 1)

where δ(mf−1) stands for the unit impulse , i.e. δ(n) =

{
1, if n=0
0, if n6=0

.
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Now, let us number by 1, 2, ..., Ni(0) the memberships having started their

motion from state i, and denote by A
(r)
i (t) the reward of the r-th membership

paid in the time interval [t, t + 1) and by Ai(t) the rewards paid to all the
Ni(0) memberships having started their motion from state i.

Let us assume that the r-th membership having started its motion from
state i, possesses at time t state j, having hold for mp time units in j and
having attained the next state k after mf time units. Then we correspond
to the r-th membership a N ×N ×M ×M vector (M stands for the bound
of mp,mf ) having the value

A
(r)
ij;k(t;mp,mf)=yjk(t) + δ(mf−1)bjk(mp +mf )

in the position (i − 1)NM2+(j − 1)M2+mpM+mf and 0 elsewhere.Then,
the total reward paid in the interval [t, t + 1) for the memberships having
started their motion from state i, is the r.v.

Ai(t) =
∑Ni(0)

r=1 A
(r)
i (t).

Symbolize by f
(r)
i (t) the probability generating function (p.g.f.) of A

(r)
i (t)

and by Fi(t) the p.g.f. of Ai(t). Since the r.v’s. A
(r)
i (t) are independent with

common p.g.f. f
(r)
i (t) = fi(t), r = 1, 2, .., Ni(0), then

Fi(t) =
∏Ni(0)
r=1 f

(r)
i (t) = (fi(t))

Ni(0).

3 Conclusions

In the present paper we have derived, for the discrete time semi Markov
system, formulas providing the probabilities of the rewards for one unit time
interval by means of the entrance probabilities, the transition probabilities
and the probabilities of the holding times. Then, relations for the evaluation
of the total reward paid in one unit time interval to all the memberships of
the system are given. The conclusions can be generalized for various reward
paths of the memberships, and a reasonable perspective is treating the same
questions for the continuous time case.
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Abstract. Markov mixtures of autoregressions (MMAR) have been recently used
to analyse the behaviour of non-linear and non-Gaussian time series. A special
MMAR model with periodic components and a non-homogeneous hidden Markov
chain is proposed here: the transition probabilities of the hidden chain are time-
varying, because they depend, through logistic functions, on the dynamics of exoge-
nous variables. We perform a complete Metropolis-within-Gibbs algorithm associ-
ated to the random permutation sampling for model choice and variable selection
and to constrained permutation sampling for the estimation of the unknown pa-
rameters and the latent data. An environmental application is developed on the
series of sulphur dioxide and meteorological variables recorded by an air pollution
testing station in the lagoon of Venice.
Keywords: Time-varying transition probabilities, exogenous variables, Metropo-
lis-within-Gibbs, random and constrained permutation sampling, sulphur dioxide.

1 Introduction

Non-linear and non-normal time series can be modelled by autoregressive
processes assuming that different autoregressions, each one depending on a
latent regime, alternate according to the regime switching, which is driven
by an unobserved Markov chain. When the chain is supposed homogeneous
these models are widely known as Markov switching autoregressive models,
introduced in the econometric literature by [Hamilton, 1994] to study eco-
nomic and financial time series. When the Markov chain is non-homogeneous
we have that the transition probabilities are time-varying and depend on ex-
ogenous variables. The class of non-homogeneous hidden Markov models de-
pending on deterministic exogenous variables has been proposed by [Diebolt
et al., 1994] in the classical framework.

In this paper we propose the Bayesian analysis of Markov mixtures of
autoregressions (MMAR) models with a periodic component and a non-
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homogeneous Markov chain defined on a general number of states, whose
transition probabilities depend on deterministic exogenous variables through
a logistic function. We introduce Metropolis-within-Gibbs algorithms for
the estimation of the unknown parameters and for the computation of the
marginal likelihood, needed for model comparison. In both cases we con-
sider the problem of label switching, which recently has become one of the
most interesting topics in the Bayesian analysis of independent and Markov-
dependent mixture models. We tackle label switching through constrained
permutation sampling algorithm in the case of parameter estimation and
through random permutation sampling in the case of marginal likelihood
computation.

In the applications these models can be efficient tools to analyse environ-
mental time series, whose main characteristics are: i) different unobserved
levels of pollutant mean concentrations, depending on the weather conditions,
ii) serially correlated data, iii) periodicities, iv) missing values, v) availability
of meteorological covariates. So we will apply our methodology to analyse a
three year series of hourly mean concentrations of sulphour dioxide recorded
in the lagoon of Venice.

2 The non-homogeneous Markov mixtures of periodic
autoregressions

The non-homogeneous Markov mixtures of periodic autoregressionsof or-
der (m; p) (NHMMAR(m; p)) are discrete-time stochastic processes {Yt;Xt},
such that {Xt} is an unobservable non-homogeneous discrete-time Markov
chain with a finite number of states, m, while {Yt}, given {Xt}, is an observed
autoregressive process of order p with a periodic component and depending
on exogenous variables with the conditional distribution of Yt depending on
{Xt} only through the contemporary Xt.

Let {Xt} be a discrete-time, first-order, non-homogeneous Markov chain
on a finite state-space SX with cardinality m (SX = {1, . . . ,m}) . For any
t = 2, . . . , T , Γt =

[
γti,j
]

is the (m×m) transition matrix, where γti,j =
P (Xt = j | Xt−1 = i), for any i, j ∈ SX ; the initial distribution is the vector
δ = (δ1, . . . , δm)′, where δi = P (X1 = i), for any i ∈ SX ; xT = (x1, . . . , xT )′

is the sequence of the states of the Markov chain and, for any t = 1, . . . , T , xt
has values in SX . At any time t = 2, . . . , T , the transition probabilities γti,j can
be obtained as logistic functions of the vector zt of exogenous deterministic
variables, i.e.

logit(γti,j) = ln
(
γti,j

/
γti,i
)

= z′tαi,j for any i, j ∈ SX

γti,j = (exp (z′tαi,j))
/(

1 +
∑

j 6=i exp (z′tαi,j)
)

for any i, j ∈ SX
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where αi,j is an n-dimensional vector of parameters, αi,j =
(αi,j,0, αi,j,1, . . . , αi,j,n−1)

′
, if i 6= j, and an n-dimensional vector of ze-

ros, if i = j; zt is an n-dimensional vector, zt = (1, zt,1, . . . , zt,n−1)
′
, for any

t = 2, . . . , T. Instead of placing the first or the last entry of the transition
matrix at the denominator of the logit as usual, we place there the diagonal
entry because this statement allows us to perform constrained permutation
sampling and random permutation sampling algorithms, as we shall see in
Sections 3. Notice that when the last n− 1 entries of zt are equal to zero for
any t, the Markov chain is homogeneous.

Hence, given the order-p dependence and the contemporary dependence
conditions, the equation describing the NHMMAR model is

Yt(i) = µi +

p∑

τ=1

ϕτ(i)yt−τ +

q∑

j=1

θj(i)wt,j + βt(i) + Et(i), (1)

where Yt(i) denotes the generic variable Yt when Xt = i, for any 1 ≤ t ≤ T
and for any i ∈ SX ; the autoregressive coefficients ϕτ(i), for any τ = 1, . . . , p
and for any i ∈ SX , depend on the current state i of the Markov chain; wt,j ,
for any 1 ≤ t ≤ T , are the observations of the j-th exogenous deterministic
variable, for any j = 1, . . . , q, that are elements of the matrix W of dimension
(T × q), weighted by the coefficients θj(i), for any j = 1, . . . , q and for any
i ∈ SX , that depend on the current state of the Markov chain. The term
βt(i) is the harmonic component of periodicity 2s, depending on the current
state i of the Markov chain

βt(i) =
s∗∑

j=1

(
β1,j(i) cos (πjt/s) + β2,j(i) sin (πjt/s)

)
,

where s∗ is the number of significant harmonics (s∗ ≤ s) . Et(i) denotes
the Gaussian random variable Et when Xt = i, with zero mean and preci-
sion λi

(
Et(i)simN (0;λi)

)
, for any i ∈ SX , with the discrete process {Et},

given {Xt}, satisfying the conditional independence and the contemporary
dependence conditions.

By these statements the conditional distribution of any variables Yt(i),
given state i, is normal,

Yt(i)simN


µi +

p∑

τ=1

ϕτ(i)yt−τ +

q∑

j=1

θj(i)wt,j + βt(i);λi


 ,

for any t = 1, . . . , T and for any i ∈ SX , while the marginal distribution of
any variable Yt is a mixture of m normals, whose mixing distribution is a row
of the transition matrix Γt,

Ytsim

m∑

i=1

γxt−1,iN


µi +

p∑

τ=1

ϕτ(i)yt−τ +

q∑

j=1

θj(i)wt,j + βt(i);λi


 ,
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for any t.

A sufficient condition for the stationarity of the process (1) is that all
the m sub-processes generated by the m states of the chain are station-
ary, that is, for any i ∈ SX , the roots of the auxiliary equations are
all inside the unit circle. To automatically satisfy the constraint on any
ϕi =

(
ϕ1(i), . . . , ϕp(i)

)′
, we can reparametrize ϕi in terms of the partial au-

tocorrelations ri =
(
r1(i), . . . , rp(i)

)′
of any sub-process, for any i ∈ SX ,

according to [Jones, 1987]. Our inference will be based on the logarithmic

transformation Rj(i) = ln
(

1+rj(i)

1−rj(i)

)
, which maps any partial autocorrelation

rj(i) from (−1; 1) to <, for any j = 1, . . . , p and any i ∈ SX .

In the framework of the mixture models the problem of identifiability
concerns the invariance of the mixture under permutation of the indices of
the components. In model (1) we have m states and we have m! ways to
label them; so different models are interchangeable by permuting their label-
ing. This is often called the “label switching” problem and it can be over-
come by placing some identifiability constraints on some parameters with
a data-driven procedure based on random permutation sampling algorithm
[Frühwirth-Schnatter, 2001]. In this paper we shall introduce the random
permutation sampling and the constrained permutation sampling algorithms.

Furthermore to be able to estimate the state-dependent seasonal com-
ponent we need to assume the same hidden state for all the s times of any
sub-period.

The unknown parameters and latent data of the NHMMAR to be esti-
mated are: α the matrix of the vectors αi,j ; µ the vector of the signals; λ the
vector of the precisions; R the matrix of the coefficients Rj(i); θ the matrix
of the coefficients θj(i); β the matrix of the state-dependent harmonic coeffi-
cients; xT the sequence of the hidden states; y∗ the vector of all the missing
observations. For our Bayesian inference, we place independent multivariate
normal priors on each entry of matrix α; independent normal priors on each
entry of vector µ; independent gamma priors on each entry of vector λ; inde-
pendent multivariate normal priors of dimension p on each entry of the vector
Ri; independent multivariate normal priors of dimension q on each vector θi;
independent multivariate normal priors of dimension 2s∗ on each vector βi.

Let yT = (y1, . . . , yT )
′
be the sequence of the observations; the posterior

distribution of the parameter vector ψ = (α, µ, λ,R, θ, β, xT , y∗) is

π
(
ψ | yT , y0, Z,W, V, δ

)
= f(α, µ, λ,R, θ, β, xT , y∗ | yT , y0, Z,W, V, δ) ∝

∝ f
(
yT , y∗ | µ, λ,R, θ, β,W, V, xT , y0

)
f
(
xT | α,Z, δ

)
p(α)p(µ)p(λ)p(R)p(β)p(θ),

where y0 = (y−p+1, . . . , y0)
′ are the initial values fixed for the p-dependence

condition; Z is the matrix of dimension (T ×n) of zt, the exogenous variables
of the Markov chain; V is a (T × 2s∗) matrix whose generic element on the
t-th row of the j-th odd column is cos(πjt/s), while the generic element on
the t-th row of the j-th even column is sin(πjt/s), for any j = 1, 2, . . . , s∗.
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3 Bayesian analysis

Bayesian approach to inference of mixture models is based on MCMC meth-
ods. We introduce a Metropolis-within-Gibbs procedure for model choice,
variable selection and for parameter estimation.

Model choice and variable selection can be performed by means of Bayes
factors in which the marginal likelihoods of the competing models are com-
puted according to [Chib, 1995] and [Chib and Jeliazkov, 2001] corrected
by the random permutation sampling algorithm [Frühwirth-Schnatter, 2001].
For model choice we need to select the unknown cardinality of the state-space
of the hidden Markov chain m and the autoregressive order p, while for vari-
ables selection we require to find the best subsets of explanatory variables Z
and W among all the exogenous variables to be included in the final model.
To encourage the moves between the m! subspaces, we can use the random
permutation sampling algorithm. So at the k-th iteration of the Metropolis-
within-Gibbs algorithm we use to estimate the marginal likelihood, once ψ(k)

has been drawn, we select randomly a permutation (ρ(1), . . . , ρ(m))
′
of the

current labeling (1, . . . ,m)′ and then relabel the sequence of hidden states
and the switching parameters.

We can estimate the unknown parameters of NHMMAR models via a
Metropolis-within-Gibbs procedure, that we briefly discuss here.

To overcome label switching the Metropolis-within-Gibbs sampler is run
on a subspace only, by placing some parameters in increasing or decreasing
order. The identifiability constraint is chosen ex post after simulations by
a data-driven procedure, based on random permutation sampling algorithm,
so as to respect the geometry and the shape of the unconstrained posterior
distribution; different identifiability constraints can be derived by different
data sets. By plotting the couples of the outputs of the estimates, obtained
via unconstrained Metropolis-within-Gibbs algorithm, performed associated
with random permutation sampling, we can check if there are as many groups
as the hidden states and if these groups can suggest special ordering in their
labeling. Without loss of generality, and since for our data set the constraint
is based on the precisions, we discuss our methodology assuming that the
entries of λ must be in decreasing order (λi > λj , for i < j, i, j ∈ SX), but
the procedures can be easily adapted to any other type of constraint. If λ
is not ordered, instead of rejecting the vector and going on sampling till an
ordered vector is obtained, we adopt the constrained permutation sampling
algorithm [Frühwirth-Schnatter, 2001]. At any k-th iteration of the MCMC
sampler, after the generation of the sequence of the hidden states, we gener-

ate the vector of the precisions; so we have m couples
(
i, λ

(k)
i

)
. If the λ

(k)
i ’s

are unordered, we apply a permutation ρ(·) to order them; consequently
also the corresponding i′s must be permuted according to the permutation,
{ρ(1), . . . , ρ(m)}; then the permutation is extended to the sequence of states
xT (k) just generated, and to the switching-parameters generated in the previ-
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ous iteration, ρ
(
µ(k−1)

)
, ρ
(
R(k−1)

)
, ρ
(
θ(k−1)

)
, ρ
(
β(k−1)

)
, ρ
(
α(k−1)

)
; finally

all the parameters and the missing observations are generated.
The iterative scheme of the Metropolis-within-Gibbs algorithm at the k-th

iteration can be summarized as follows:
1) the sequence xT (k) of hidden states is generated by the forward filtering-
backward sampling algorithm, [Carter and Kohn, 1994] and
[Frühwirth-Schnatter, 1994];

2) the parameters λ
(k)
i , for any i ∈ SX , are generated independently from

gamma distributions; the entries of the vector λ(k) must be in decreasing
order to satisfy the identifiability constraint. If λ(k) is not ordered, we apply
the constrained permutation sampling algorithm;

3) the parameters µ
(k)
i , for any i ∈ SX , are generated independently from

normal distributions;

4) the parameters R
(k)
j(i), for any j = 1, . . . , p and any i ∈ SX , are generated

independently, by a Metropolis step, from the random walk R
(k)
j(i) = R

(k−1)
j(i) +

UR, where UR is a Gaussian noise with zero mean and constant precision.

5) the parameters θ
(k)
i , for any i ∈ SX , are independently generated from

normal distributions of dimension q;

6) the parameters β
(k)
i , for any i ∈ SX , are independently generated from

normal distributions of dimension 2s∗;
7) the parameters α

(k)
i,j , for any i, j ∈ SX , with i 6= j, are generated inde-

pendently, by a Metropolis step, from the random walk α
(k)
i,j = α

(k−1)
i,j + UA,

where UA is a Gaussian noise with zero mean and constant precision matrix.
8) every missing observation y∗t is generated from the conditional normal
distribution.

Now, at the end of the k-th iteration of the MCMC sampler, the vec-
tor ψ(k) has been approximately simulated from π(ψ | yT , y0), if k is large
enough. We shall repeat these steps till we have an N -dimensional sample.
This sample will be used to estimate each entry of ψ by means of posterior
means, apart from the sequence of states, estimated thought posterior modes.

4 Application to air pollution in the lagoon of Venice

Air quality control includes the study of data sets recorded by air pollution
testing stations. We are interested both in the analysis of the dynamics of
the hourly mean concentrations of sulphur dioxide (SO2), in micrograms per
cubic meter

(
µg/m3

)
, recorded by an air pollution testing station in the

lagoon of Venice (Italy), and in investigating its relationships with the daily
meteorological variables. The series of the SO2 in the log scale from the 1st
of January 2001 to the 31st of December 2003 (26280 observations) is plotted
in Figure 1a and it can be noticed that some observations are missing. This
happens either because sometimes the station must be stopped for automatic
calibration or because of occasional mechanical failure, ordinary maintenance,
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or data quality inspections. Plotting the histogram of the values we can guess
the presence of hidden states by noticing an asymmetric distribution.
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Fig. 1. (a) Series of the SO2 hourly log-concentrations; (b) 120 hours autocorrela-
tions.

Just by looking at the series of observations we can notice a daily period-
icity (s = 24) with 1 peak a-days (s∗ = 1); the daily periodicity is confirmed
by the correlogram of five days (Figure 1b). Atmospheric concentrations of
the SO2 are influenced by many meteorological variables that are recorded
together with the pollutant by the same station; we consider the following co-
variates: wind speed, temperature, atmospheric pressure, humidity, rainfall
and solar radiation. Some of these variables will be included in the matrix W
of the exogenous variables influencing the observed process and in the matrix
Z of the covariates influencing the non-homogeneous Markov chain.

We develop our empirical analysis in three steps: i) model and variables
selection, ii) constraint identification, iii) parameter estimation.

i) Model selection is performed for m = 1, 2, 3, 4 and p = 0, 1, 2, 3, 4, 5, 6 and
the NHMMAR(3,1), i.e. a model with 3 hidden states and an autoregression
component of order 1, is the best among all the competing models. Also
variable selection is based on the values of the marginal likelihoods of all the
models we analysed. The results show that temperature, humidity and wind
are the variables to be included in the final model. They will be included
both in the matrix W and in the matrix Z.

ii) In the second step of our analysis we have to select the identifiability
constraint, which must respect the geometry and the shape of the uncon-
strained posterior distribution. Graphically analysing the outputs of the
unconstrained NHMMAR(3;1) model, we chose the constraint on the preci-
sions: λ1 > λ2 > λ3 (Figures 2a) because the decreasing ordering is evident
in the graph. Decreasing precisions is a reasonable constraint for these data,
because when the low hidden state occurs, the variability of SO2 data depend-
ing on it is low and the concentrations of pollution are also low; by contrast
when the high hidden state occurs, the variability of SO2 data depending on
it is high and the concentrations of pollution are also high.
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iii) Now we run constrained permutation sampling for the NHMMAR(3;1)
model to estimate its parameters. The dynamics of the fitted values can be
observed in Figure 2b: if we compare it with the dynamics of the actual data
(in Figure 1a), we can see that these simulated values correctly follow the
series according to the dynamics of the twenty-four hours. By this graph and
by the values of the descriptive statistics we calculated to assess the fitting
accuracy of the estimated model, we can argue that the fitting ability of the
model is satisfactory.

Missing observations are simulated as extra latent variables; Figure 2c
shows how simulated values fill the series according to the dynamics of the
observed data. The dynamics of the hidden states, representing the three dif-
ferent levels of pollution occured during the analysed period, can be observed
in Figure 2d, where we have depicted the sequence of the posterior modes of
all generated states. State 3 underlies the observations with the highest level
of pollution, while state 1 underlies those with the lowest level of pollution.
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Fig. 2. (a) Couples of outputs of means and precisions of unconstrained algorithm
with random permutations for m=3; (b) dynamics of the fitted values; (c) a subserie
of actual (solid line) and fitted (dashes); (d) the sequence of the hidden states

5 Conclusions

We recurred to Bayesian non-homogeneous Markov mixtures of periodic au-
toregressions to analyse a time series about the hourly mean concentrations of
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sulphur dioxide, whose dynamics is characterized by cyclicity, non-normality
and non-linearity. Model choice, exogenous variable selection and inference
have been performed through Metropolis-within-Gibbs algorithms, consider-
ing the label switching problem, which has been efficiently tackled by per-
mutation sampling.
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Abstract. We consider a finite set of words W = {w1, w2, . . . , wν} which are
produced under the Markovian hypothesis. We study the distances between word
occurrences and we give explicit formulae for the corresponding distributions in the
case of having words of equal lengths.The obtained results can be applied to certain
problems concerning DNA sequences, as well as, general sequential analysis.
Keywords: Word, Markov chain, distance between occurrences, semi-Markov,
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1 Preliminaries

Consider an alphabet Ω = {α1, . . . , α`} with ` ≥ 2. We call word a finite
sequence of elements of Ω. Let W = {w1, . . . , wν} a finite sets of words where
wi = (αi1 , . . . , αiki

), αini
∈ Ω, ni = 1, . . . , ki where ki denotes the length of

word wi and let ki > 1. We assume that the set of words is reduced. Let
us consider a sequence of outcomes {J∗

n}n≥1 generated by a Markov chain
with state space Ω, and let P = (℘(αi, αj))αi,αj∈Ω, the transition probability

matrix. We write Pn
l = (℘n(αi, αj))αi,αj∈Ω, where

℘n(αi, αj) = P (J∗
n+1 = αj |J∗

1 = αi).

A word wi occurs at time γ iff J∗
γ−ki+1 = αi1 , . . . , J

∗
γ = αiki

.

Definition 1 Let Wλ a subset of W .We define

U∗ = min{γ ≥ 1 : a word occurs at γ},

M∗
Wλ

= min{γ ≥ 1 : a word from the subsetWλ occurs at γ},
and let y0 be the first word which appears.
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Clearly, the variable U∗ indicates the waiting time (number of letters) for the
first occurrence of any word from the setW , while the variableM∗

Wλ
indicates

the waiting time (number of letters) for the first occurrence of any word from
the subset Wλ. In section 2 we assume words of the same length and we
obtain explicit formulae concerning the distributions of the above random
variables. In section 3, under the same assumption we model the process of
word occurrences via a semi-Markov model for which we derive the kernel
as well as relative results. The under consideration random variables are of
great interest for the study of biological sequences where the corresponding
alphabet is Ω = {A,C,G, T }.

Recurrent relations for variable M∗
{wi} are given by Blom and Thorburn

(1982) in the i.i.d case, by Chryssaphinou and Papastavridis (1990) and Robin
and Daudin (1999) in the Markov case.

2 Words of the same length and without a word at the
beginning of the sequence

Let us examine the case where ki = k, ∀ wi ∈W. We construct a new Markov
Chain {X∗

n}n≥1 where

X∗
n = (J∗

n, . . . , J
∗
n+k−1), n ≥ 1, (1)

with state space Ωk = Ω× . . .× Ω and

ui = (αui
1 , . . . , α

ui

k ), ∀ i = 1, . . . , `k and αui
n ∈ Ω, ∀ n = 1, . . . , k,

The new transition matrix is

P̃ = (p̃(ui, uj)), ui, uj ∈ Ωk, (2)

where

p̃(ui, uj) = IP(X∗
n+1 = uj|X∗

n = ui)

= IP(J∗
n+1 = α

uj

1 , . . . , J∗
n+k = α

uj

k | J∗
n = αui

1 , . . . , J
∗
n+k−1 = αui

k )

= I{αui
2 =α

uj
1 ,...,α

ui
k

=α
uj
k−1

}℘(α
uj

k−1, α
uj

k ). (3)

The initial distribution is

IP(X∗
1 = ui) = IP(J∗

1 = αui
1 , . . . , J

∗
k = αui

k ) (4)

= σ(αui
1 )℘(αui

1 , α
uj

2 ), . . . , ℘(αui

k−1, α
ui

k ),

where σ is the initial distribution of Markov chain J∗. We note

P̃1 = (IP(X∗
1 = u1), . . . , IP(X∗

1 = u`k)). (5)
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Since W ⊆ Ωk, ∃ r1, . . . , rν ∈ {1, . . . , `k} : w1 = ur1 , . . . , wν = urν . Let
Bc = Ωk \B, ∀B ⊆ Ωk. We define the matrices

P̃BcBc , P̃BcB, (6)

which are the restriction of the transition matrices P̃ in Bc×Bc and Bc×B
respectively. Generally ∀ B1, B2 ⊆ Ωk , let P̃B1B2 the restriction of P̃ in
B1 ×B2.

For Wλ ⊆ W , where | Wλ |= λ, we now define the nth-order transition
matrix

P̃ n
W c

λ
W c

λ
= (p̃ n

W c
λ
W c

λ
(ui, uj)), ui, uj ∈ W c

λ, (7)

where p̃ n
W c

λW
c
λ
(ui, uj) = IP(X∗

n+1 = uj, X
∗
n ∈ W c

λ, . . . , X
∗
2 ∈ W c

λ|X∗
1 = ui),

and IP1
W c

λW
c
λ

= IPW c
λW

c
λ
, IP0

W c
λW

c
λ

= II`k−λ. Finally, let us define

P̃Wλ
= (IP(X∗

1 = ui)), ui ∈ Wλ, P̃W c
λ

= (IP(X∗
1 = ui)), ui /∈ Wλ. (8)

Now we are ready to present the following results.

Proposition 1 With the above notation the distribution of the random vari-
able M∗

Wλ
is given by

IP(M∗
Wλ

= n) =





0, n < k,

P̃Wλ
1′
λ, n = k,

[P̃W c
λ
]× [P̃n−k−1

W c
λW

c
λ

]× [P̃W c
λWλ

]1′
λ, n > k.

(9)

where 1λ = (1, . . . , 1), (1 × λ matrix)

Proof. It is IP(M∗
Wλ

= k) = IP(X∗
1 ∈Wλ) = P̃Wλ

1′
λ. For n > k we have

IP(M∗
Wλ

= n) = IP(X∗
n−k+1 ∈Wλ, X

∗
n−k ∈W c

λ, . . . , X
∗
2 ∈W c

λ, X
∗
1 ∈ W c

λ)

=
∑

ui∈W c
λ

IP(X∗
n−k+1 ∈Wλ, X

∗
n−k ∈W c

λ, . . . , X
∗
2 ∈W c

λ | X∗
1 = ui)

IP(X∗
1 = ui)

=
∑

ui∈W c
λ

∑

uj∈Wλ

IP(X∗
n−k+1 = uj | X∗

n−k ∈W c
λ, . . . , X

∗
2 ∈W c

λ, X
∗
1 = ui)

IP(X∗
n−k ∈W c

λ, X
∗
n−k−1 ∈ W c

λ . . . , X
∗
2 ∈W c

λ | X∗
1 = ui)IP(X∗

1 = ui)

=
∑

ui∈W c
λ

∑

uj∈Wλ

∑

ul /∈Wλ

IP(X∗
n−k+1 = uj | X∗

n−k = ul)

IP(X∗
n−k = ul, X

∗
n−k−1 ∈W c

λ . . . , X
∗
2 ∈W c

λ | X∗
1 = ui)IP(X∗

1 = ui)

= [P̃W c
λ
]× [P̃n−k−1

W c
λW

c
λ

]× [P̃W c
λWλ

]1′
λ,

which completes the proof.
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Proposition 2 For every wi ∈ W the following is valid

IP(U∗ = γ, y0 = wi) =

{
P̃1 e′`k;ri

, γ = k,

P̃W c [P̃W cW c ]γ−k−1 P̃W cΩk e′`k;ri
, γ > k,

(10)

where en;m = (0, . . . , 1︸︷︷︸
m−position

, . . . , 0) ( 1× n matrix)

Proof. The case of γ = k is obvious, since IP(U∗ = k, y0 = wi) =
IP(X∗

1 = uri). For γ > k we proceed as follows

IP(U∗ = γ, y0 = wi)

= IP(X∗
γ−k+1 = uri, X

∗
γ−k ∈ W c, . . . , X∗

2 ∈ W c, X∗
1 ∈W c)

=
∑

us /∈Wλ

IP(X∗
γ−k+1 = uri , X

∗
γ−k ∈W c, . . . , X∗

2 ∈W c | X∗
1 = us)

IP(X∗
1 = us)

=
∑

us /∈W
IP(X∗

γ−k+1 = uri | X∗
γ−k ∈W c, . . . , X∗

2 ∈W c, X∗
1 = us)

IP(X∗
γ−k ∈W c, X∗

γ−k−1 ∈W c . . . , X∗
2 ∈W c | X∗

1 = us)

IP(X∗
1 = us)

=
∑

us /∈W

∑

ul /∈W
IP(X∗

γ−k+1 = uri | X∗
γ−k = ul)

IP(X∗
γ−k = ul, X

∗
γ−k−1 ∈ W c . . . , X∗

2 ∈ W c | X∗
1 = us)

IP(X∗
1 = us)

= P̃W c [P̃W cW c ]γ−k−1 P̃W cΩk e′qk;ri
,

which ends the proof.

3 Words of the same length and with a word at the
beginning of the sequence

We now consider {Jn} where Jn = J∗
U∗+n, ∀n ≥ −U∗ +1. We want to study

the sequence J0, J1, . . . under the assumption that the word wi has occurred
with probability θi = IP(J−ki+1 = αi1 , . . . , J0 = αiki

), i = 1, . . . , ν. Without
loss of generality we can take θi = IP(y0 = wi), i = 1, . . . , ν.

The sequence {Jn, n ≥ 0} is a Markov chain with first order transi-
tion probabilities IP(Jn+1 = αj |Jn = αi) = ℘(αi, αj) and IP(J0 = αζ) =∑ν

i=1 I{αiki
=αζ}θi.

In this case a word wi occurs at time γ iff Jγ−ki+1 = αi1 , . . . , Jγ = αiki
.
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3.1 The Semi-Markov Model

In the case where words do not overlap, Biggins and Cannings (1987), in-
troduced the idea of modelling the process of word occurrences via a semi-
Markov model. Recently, Robin and Daudin (2001) generalized the idea
considering the fact that words may overlap. Our aim is to determine the
kernel of this new process. In order to present our results we need some more
definitions and notations.

Definition 2 Let us define the stochastic processes {Un, n ≥ 0}, {yn, n ≥
0}, which describe the times of word occurrences and the corresponding words
respectively, where U0 = 0 and

Un = min{γ > Un−1 : a word fromW occurs at γ}, n ≥ 1, (11)

yn = wi, wi ∈ W, i = 1, . . . , `. (12)

The process {(yn, Un), n ∈ IN} is an homogenous Discrete time Markov
Renewal Process(DTMRP) since

IP(yn+1 = wj , Un+1 − Un = γ | y0, . . . , yn = wi, U0, . . . , Un) =

IP(yn+1 = wj , Un+1 − Un = γ | yn = wi) =

IP(y1 = wj , U1 = γ | y0 = wi) = qij(γ), ∀n ≥ 1

Let us consider the following notation

• ME , the set of non negative matrices on E × E.
• IE ∈ME , the identity matrix, 0

Å
∈ME , the null matrix.

• ME(IN), the set of matrix-valued functions: IN → ME . If A ∈
ME(IN),we have A = (A(γ) : γ ∈ IN), where for fixed γ ∈ IN, A(γ) =
(Aij(γ) : i, j ∈ E) ∈ME .

Then q ∈ ME(IN) (E = {1, . . . ν}) is the discrete time semi-Markov kernel
relevant to the DTMRP {(yn, Un), n ∈ IN}. We have

q
(r)
ij (γ) = IP(yr = wj , Ur = γ | y0 = wi), (13)

where q(r) is the r- fold convolution of q .Then we can define

ψij(γ) =

γ∑

r=0

q
(r)
ij (γ), wi, wj ∈ W, γ ∈ IN. (14)

We can write

ψij(γ) = qij(γ) +

ν∑

s=1

γ−1∑

z=1

ψis(z)qsj(γ − z), for γ ≥ 1. (15)
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Definition 3 For all r ∈ IN∗, ∀wi, wj ∈W let M
(r)
ij be the number of letters

of the r-th occurrence of wj after wi’s occurrence.

Definition 4 For all Wλ ⊆W we define

MiWλ
= min

n≥1
{Un : yn ∈ Wλ} under the event {y0 = wi}. (16)

We will note Mij for Mi{wj}. Obviously Mij = M
(1)
ij .

If gij(γ) = IP(Mij = γ) and g
(r)
ij (γ) = IP(M

(r)
ij = γ), then

ψij(γ) =

{∑γ
r=0 g

(r)
jj (γ), i = j∑γ

r=0 gij ∗ g
(r)
jj (γ), i 6= j.

(17)

Definition 5 We assume ki = k for all wi ∈ W. We define

Xn = (Jn−k+1, . . . , Jn), n ≥ 0, (18)

with

IP(X0 = uri) = IP(y0 = wi) = IP(J−k+1 = αi1 , . . . , J0 = αik),

IP(X0 = ui) = 0, ∀ ui /∈ W.
Clearly, {Xn, n ≥ 0} is a Markov Chain with state space Ωk =

{u1, . . . , u`k}, where ∀ i = 1, . . . , `k , ui = (αui
1 , . . . , α

ui

k ), αui

ζ ∈ Ω, ∀ ζ =

1, . . . , k and P̃ = (p̃(ui, uj)) = (IP(Xn+1 = uj|Xn = ui)), ∀ ui, uj ∈ Ωk.

Using the above definitions and notations we obtain the following results:

Proposition 3 For every wi, wj ∈ W we have:

qij(γ) =

{
e`k;ri

P̃ e′`k;rj
, γ = 1

e`k;ri
[P̃ΩkW c ][P̃W cW c ]γ−2[P̃W cΩk ]e′`k;rj

, γ ≥ 2
(19)

Proof. It is

qij(1) = IP(X1 = wj |X0 = wi) = e`k;ri
P̃ e′`k;rj

.

For γ ≥ 2 we have

qij(γ) = IP(Xγ = wj , X1 /∈W, . . . ,Xγ−1 /∈W |X0 = wi)

= IP(Xγ = urj , X1 /∈W, . . . ,Xγ−1 /∈ W |X0 = uri)

=
∑

un,us /∈W

IP(Xγ = urj , Xγ−1 = un, Xγ−2 /∈ W, . . . ,X2 /∈ W,X1 = us|X0 = uri)

=
∑

un,us /∈W

IP(Xγ = urj , Xγ−1 = un, Xγ−2 /∈ W, . . . ,X2 /∈ W, |X1 = us, X0 = uri)

IP(X1 = us|X0 = uri)
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that is

qij(γ)

=
∑

un,us /∈W
IP(Xγ = urj , Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W, |X1 = us)

IP(X1 = us|X0 = uri)

=
∑

un,us /∈W
IP(Xγ = urj |Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W,X1 = us)

IP(Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W, |X1 = us)IP(X1 = us|X0 = uri)

=
∑

un,us /∈W
IP(Xγ = urj |Xγ−1 = un)

IP(Xγ−1 = un, Xγ−2 /∈W, . . . ,X2 /∈W, |X1 = us)IP(X1 = us|X0 = uri)

= e`k;ri
[P̃ΩkW c ][P̃W cW c ]γ−2[P̃W cΩk ]e′`k;rj

.

Proposition 4 It is

IP(MiWλ
= γ) =

{
e`k;ri

P̃ΩkWλ
1′
λ
′
, γ = 1

e`k;ri
P̃ΩkW c

λ
[P̃W c

λW
c
λ
]γ−2P̃W c

λWλ
1′
λ, γ ≥ 2.

(20)

Proof. The random variable MiWλ
can be expressed as follows

MiWλ
= min{n ≥ 1 : Xn ∈ Wλ} over {X0 = wi}. (21)

If γ = 1, then

IP(MiWλ
= 1) = IP(X1 ∈Wλ | X0 = wi) = e`k;ri

P̃ΩkWλ
1′
λ.

If γ ≥ 2, then

IP(MiWλ
= γ) = IP(Xγ ∈Wλ, Xγ−1 /∈Wλ, . . . , X1 /∈ Wλ | X0 = wi)

=
∑

ur∈Wλ

IP(Xγ = ur, Xγ−1 /∈Wλ, . . . , X1 /∈Wλ | X0 = wi)

=
∑

ur∈Wλ

∑

us,un /∈Wλ,

IP(Xγ = ur, Xγ−1 = us, . . . , X1 = un | X0 = wi)

= . . . =
∑

ur∈Wλ

∑

us /∈Wλ

∑

un /∈Wλ

IP(Xγ = ur | Xγ−1 = us)

IP(Xγ−1 = us, Xγ−2 /∈Wλ, . . . , X2 /∈Wλ | X1 = un)

IP(X1 = un | X0 = wi)

= e`k;ri
P̃ΩkW c

λ
[P̃W c

λW
c
λ
]γ−2P̃W c

λWλ
1′
λ.
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Campus de Beaulieu,
35042 Rennes Cedex, France
(e-mail: Jian-Feng.Yao@univ-rennes1.fr)

Abstract. We present a new class of Markovian auto-models with a mixed state
space E = {0}∪]0; +∞[ involving both discrete and continuous states. We first
introduce an extension of the Besag’s auto-models to the multivariate case ; then we
define the specific Markovian random field defined on a lattice S, whose components
are valued in E with conditional distribution belonging to an exponential family.
We study two particular examples, based on the use of the exponential distribution
and the Gaussian positive distribution, and look for the admissibility conditions for
such models. Last, we present briefly some experimental results obtained for the
analysis of motion measurements of video sequences.
Keywords: Auto-models, Mixed states.

1 Besag auto-models : multivariate extension

We consider a set of sites S = {1, ..n}, a measurable space (E, E) (usu-
ally a subset of Rd) equipped with the measure ν. The product space is
(Ω,O) = (ES , E⊗S) with the product measure νS = ν⊗S . A random field is
a probability measure µ over (Ω,O) ; we assume that µ admits a probability
density f everywhere positive w.r.t νS .

The set of sites S is equipped with a graph structure G, symmetrical
and reflexive called the neighborhood graph; 〈i, j〉 denotes that i and j are
neighbors, for i 6= j. A non empty set C ⊆ S is a clique if C is a single point
or if all elements of C are pairwise neighbors.

The field is Markovian if all the conditional distributions on the outer
configurations depend on the configurations on the neighborhoods.

Let us note 0 a reference layout of Ω (0 is 0 when E = N, R or R+), then
we can write

µ(dx) = f(x)νS(dx), f(x) = f(0) expU(x)

with U(0) = 0. Moreover, the energy U is the sum of potentials φA, A ∈ C
the set of cliques.
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According to Besag’s definition ([Besag, 1974]), a real-valued field X is
an auto-model if its distribution µ can be written as

U(x) =
∑

i∈S
φi(xi) +

∑

{i,j}
βijxixj ,

with βij = βji. Thus an auto-model is a Markovian field with cliques of at
most two points and linear pairwise interaction potentials.

We denote the conditional law on a site i by fi(xi|.). The following result
characterizes Besag’s auto-models in the d−dimensional case.

Theorem 1 We assume that for each site i, the conditional density belongs
to a multi-parameter exponential family:

ln fi(xi|.) = 〈Ai(.), Bi(xi)〉+ Ci(xi) +Di(.) , Ai ∈ Rd , Bi(xi) ∈ Rd . (1)

with Bi(0) = Ci(0) = 0 for 0 ∈ E. And that the family of sufficient statistics
{Bi(xi)} is regular in the sense that

for all i ∈ S, Span{Bi(xi), xi ∈ E} = Rd .

Then there exist for all i, j ∈ S, i 6= j, a family of vectors αi ∈ Rd and a
family of d× d matrices satisfying βij = βtji such that

Ai(.) = αi +
∑

j 6=i
βijBj(xj) . (2)

Consequently the set of potentials is given by

φi(xi) = 〈αi, Bi(xi)〉+ Ci(xi) , (3)

and
φij(xi, xj) = φij(xi, xj) = Bti(xi)βijBj(xj) . (4)

See [Hardouin and Yao, 2004] for the proof.
Conversely, a Gibbs distribution with potentials (3) and (4) has condi-

tional distributions given by (1) and (2) as soon as the energy U is admissible,
i.e.

∫
Ω expU(x)νS(dx) <∞.

2 Random variable with mixed states

2.1 Distribution of mixed exponential family L(p, ξ) :

We consider X which takes values in E = {0}∪]0,+∞[, equipped with the
measure

ν(dx) = δ(dx) + λ(dx) (5)

where δ is the Dirac measure at 0, and λ is the Lebesgue measure on
B(]0,+∞[).
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We define the random variable X with mixed exponential family distribu-
tion on E. Let p ∈]0, 1[ ; then X = 0 with probability p, and with probability
1 − p, X > 0 follows a distribution which belongs to an exponential family,
with the probability density :

gξ(x) = G(ξ) exp〈ξ, T (x)〉 , x > 0

where T is defined such as T (0) = 0. The probability density of X on E is
(w.r.t. ν) :

fθ(x) = pδ(x) + (1− p)gξ(x)

= p exp

{
(1− δ(x)) ln

(1 − p)G(ξ)

p
+ 〈ξ, T (x)〉

}

= Z−1(θ) exp〈θ,B(x)〉

where θ = (θ1, θ2)
t = (ln (1−p)G(ξ)

p , ξ)t and B = (δ∗, T t)t where we set δ∗ =

1− δ in order to have B(0) = 0.
We denote this mixed distribution by L(p, ξ). Let us precise two particular

cases of further use.
Mixed exponential distribution E(p, λ) :
Let gξ(x) = λ exp{−λx} , x > 0. Then

f(x) = p exp{δ∗(x) ln
(1− p)λ

p
− λx} = Z−1(θ) exp〈θ,B(x)〉

Here θ = (θ1, θ2)
t = (ln (1−p)λ

p , λ)t and the sufficient statistics is B(x) =

(δ∗(x),−x)t. Conversely we have λ = θ2 and p = θ2
θ2+exp θ1

.

Mixed positive Gaussian distribution G(p, σ2)
With probability 1−p, X=|Z| where ZsimN(0, σ2). The probability den-

sity of X is given by f(x) = Z−1(θ) exp〈θ,B(x)〉 with θ = (θ1, θ2)
t =

(ln 2(1−p)
pσ

√
2π
, 1

2σ2 )t and B(x) = (δ∗(x),−x2)t. We get also σ2 = 1
2θ2

and

p = 2
2+

√
2πθ2 exp θ1

.

3 Markovian auto-models with mixed states

We now consider a random field X on S = {1, 2, · · · , n}, X =
(X1, X2, · · · , Xn), in F = ES = ({0}∪]0,+∞[)S.

We assume that the family of the conditional distributions fi(xi|.) belongs
to the family of mixed distributions L(pi(.), ξi(.)) described previously. In
other words, we can write (??) with

ln fi(xi|.) = L(pi(.), ξi(.)) = 〈Ai(.), Bi(xi)〉+ C(xi) +Di(.) ,

with Bi(xi) = (δ∗(xi), T ti (xi))
t. Theorem 1 ensures that there exists vectors

αi ∈ R2 and 2× 2−matrices βij verifying βij = βtji such that
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Ai(.) = θi(.) = αi +
∑

j 6=i βijBj(xj)
and the potentials of the joint energy are given by (3) and (4).

Let us specify the resulting auto-models when we take for the density gξ
of the positive component in each site first the exponential distribution and
next the positive Gaussian distribution. For each example, we give condi-
tions ensuring the admissibility of the models; then we specify them to the
four nearest neighbors system, with or without isotropy. We further use the
resulting models in two different contexts: we look for a “good” suitable set
of parameters of the auto-exponential model in the rainfall framework, and
apply the positive Gaussian auto-model to motion measurements of video
sequences.

3.1 Mixed auto-exponential models

We suppose that the conditional distributions are in the family of mixed
exponential distributions E(pi(.), λi(.)). Then, there exist αi = (ai, bi)

t , βij =(
cij d

∗
ij

dij eij

)
verifying cij = cji , eij = eji and dij = d∗ji such that we can write

the global energy as:

U(x) =
∑

i∈S
αtiB(xi) +

∑

(i,j):〈i,j〉
Bt(xi)βijB(xj) (6)

U(x) =
∑

i∈S aiδ
∗(xi)−

∑
i∈S bixi +

∑
〈i,j〉 cijδ

∗(xi)δ∗(xj)
−∑(i,j):〈i,j〉 dijxiδ

∗(xj) +
∑

〈i,j〉 eijxixj
(7)

We note that potential φ(xi, xj) = xiδ(xj) is not symmetric in (xi, xj).

Proposition 1 We assume that U satisfies the following condition (A) :

(A) :

{∀i ∈ S, ∀A ⊂ ∂i, bi +
∑

j∈A dij > 0

∀i, j ∈ S, eij ≤ 0
(8)

Then the energy U is admissible.

Proof: see [Hardouin and Yao, 2004].
Under condition (A), the model with density defined by f(x) =

Z−1 expU(x) where U satisfies (6) or (7) is called mixed exponential auto-
model.

Conditional distributions:
By construction, for each i, fi(xi|.) sim E(pi(.), λi(.)).
f(xi|xi) = Z−1(θ, xi) exp{θ1(xi)δ∗(xi)− θ2(xi)xi}, where
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θ1(x
i) = ai+

∑

j:〈i,j〉
{cijδ∗(xj)−d∗ijxj} and θ2(x

i) = bi+
∑

j:〈i,j〉
{dijδ∗(xj)−eijxj}

Example 1 : Mixed exponential auto-model with the 4 nearest
neighbors.

We consider S = [1,M ]× [1, N ], and suppose that the energy is isotropic.
Then we can write the energy depending on 5 parameters θ = (a, b, c, d, e) :

U(x) =
∑

i∈S
(aδ∗(xi)− bxi) +

∑

〈i,j〉
{cδ∗(xi)δ∗(xj) + exixj} − d

∑

(i,j):〈i,j〉
xiδ

∗(xj)

(A) : b > 0 , b+ 4d > 0 and e ≤ 0

Conditional distribution is defined by :

f(xi|xi) = Z−1(θ, xi) expUi(xi|xi) ,where Ui(xi|xi) = θ1(x
i)δ∗(xi)− θ2(xi)xi

with :




θ1(x

i) = a+ c(4− vi(0))− dvi(+)
θ2(x

i) = b + d(4− vi(0))− evi(+)
vi(0) =

∑
j:〈i,j〉 δ(xj) and vi(+) =

∑
j:〈i,j〉 xj

Particularly,
(
Xi | xi, Xi > 0

)
simExp(θ2(xi)) and

P
(
Xi = 0 | xi

)
= θ2(x

i) exp{−θ1(xi)}
1+θ2(xi) exp{−θ1(xi)} .

Application: We now assume that the context is rainfall data. We note
xi = 0 when it does not rain at the site i, and xi > 0 otherwise. The
model should satisfy conditions such that the rain increases with vi(+), and
is decreasing w.r.t vi(0), where vi(+) and vi(0) are the cumulated height of
rainfall on the neighbor sites and the number of neighbor sites where it does
not rain. This implies the following constraints on the parameters:

a ∈ R, c > 0, d ≤ 0, b > −4d, e = 0. We remark here that e = 0 ; we
then propose other models involving e 6= 0, which induces cooperation. One
solution is to consider a censored or a truncated exponential distribution on
the positive component, i.e the state space is E = {0}∪]0,K] where K is a
fix positive constant. This model is then admissible without any condition
on the parameters and therefore permits to introduce cooperation between
neighbor sites, via parameter e 6= 0. Another solution which we propose in
the following example is to apply the mixed auto-model feature.

Example 2 : Double mixed exponential auto-model:
E = {0}∪]0,K[∪{K}. We are in the context of a 3-dimensional variable:

let p, q ∈]0, 1[; we set X = 0 with probability p, X = K with probability
q, and X ∈]0,K[ with probability 1 − p − q, according to an exponential
distribution on this interval. Again, Theorem 1 ensures the model is well
defined; moreover, the model is admissible and allows cooperation between
neighbor sites.

3.2 Gaussian positive auto-model

We now suppose that the conditional distributions belong to the family of
positive Gaussian mixed-state distribution G(pi(.), σ

2
i (.)) given above. Then,
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there exist a family of vectors αi = (ai, bi)
t , and matrices βij =

(
cij d

∗
ij

dij eij

)

verifying cij = cji , eij = eji and dij = d∗ji such that we can write the global
energy as:

U(x) =
∑

i∈S aiδ(xi)−
∑

i∈S bix
2
i +

∑
〈i,j〉 cijδ(xi)δ(xj)

−∑(i,j):〈i,j〉 dijx
2
i δ(xj) +

∑
〈i,j〉 eijx

2
i x

2
j

(9)
Let us describe in more details the local distributions. By construction, in
each site i, the conditional distribution is G(pi(.), σ

2
i (.)) with parameters

θi,1(.) = ai +
∑
j 6=i[cijδ(xj)− d∗ijx2

j ]

θi,2(.) = bi +
∑
j 6=i[dijδ(xj)− eijx2

j ]

Particularly, θi,2(.) = 1
2σ2

i (.)
et pi(.) =

2 exp θi,1(.)√
π/θi,2(.)+2 exp θi,1(.)

. It follows that

necessarily for all i and its possible neighboring configuration (.) = (xj , j 6=
i), the variance parameter of the Gaussian component must be positive i.e.

1
2σ2

i (.)
> 0.

Proposition 2 We assume that U satisfies the following condition (B) :

(B) :

{∀i ∈ S, ∀A ⊂ S \ i, bi +
∑

j∈A dij > 0

∀i, j ∈ S, eij ≤ 0
(10)

Then the energy U is admissible. Consequently, the associated positive Gaus-
sian auto-model is well defined.

See [Bouthemy et al., 2004] for the proof.
Let us now describe the particular model using the four nearest neigh-

bors system ; we denote here by {i ± (1, 0), i ± (0, 1)} the four neighbors
of i ; furthermore, we assume that the field is homogeneous in space, i.e.
the parameters are the same for all sites. Moreover, we will allow possible
anisotropy between the horizontal and vertical directions. Under all these
considerations and by the previous results, there exist a vector α = (a, b) and
two 2× 2 matrices

β(k) =

(
ck d

∗
k

dk ek

)
, k = 1, 2

such that ∀i, αi = α, ∀{i, j}, βij = 0 unless i and j are neighbors where

βij = β(1) for j = i± (1, 0), βij = β(2) for j = i± (0, 1)

We need further to set parameters d∗1, d
∗
2, e1, e2 to zero, since otherwise

we get a repulsive field with neighbor sites in competition which is not suited
to the homogeneous motion textures we intend to analyze below.The model
has then 6 parameters (a, b, c1, c2, d1, d2).
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Now we come for an application to video sequences. Temporal textures
(or dynamic textures) designate video contents involving natural (almost sta-
tionary) dynamic phenomena such as rivers, sea waves, moving foliage, etc.
Mixed state auto-models allow us to specify non linear models, to take into
account the spatial context and to introduce both symbolic information (no
motion) and continuous motion values, which is of great interest to handle
dynamic pictures; we do not model the time-varying intensity function but
the motion measurements themselves.

In order to evaluate the performance of the proposed modeling, we exam-
ine if the introduced auto-models can realize two fundamental characteristics
of a homogeneous texture, namely spatial isotropy and spatial stationarity.
For the positive Gaussian auto-models used here, isotropy occurs if (and only
if) c1 = c2 and d1 = d2. The admissibility condition given in the former result
is then reduced to the unique simple condition b > 0.

In each experiment, we estimate the parameters by the usual pseudo-
likelihood method; this method has good consistency properties for classical
one-parameter auto-model and we conjecture that it is still the case for the
multi-parameters auto-models considered here. The full description and dis-
cussion of the empirical results can be found in [Bouthemy et al., 2004].

The first experiment is to consider motion from trees, which is believed
to be spatially isotropic, and close-up shots of a moving escalator, which
is clearly anisotropic (vertical motion). In the first case, we fit both the
6-parameter (a, b, c1, c2, d1, d2) anisotropic (positive Gaussian) auto-model
and the 4-parameter (a, b, c, d) isotropic one. The obtained estimates of c1
and c2 in one hand, and of d1 and d2 in another hand are almost identical,
and are moreover very close to the estimated values obtained for c and d
in the istropic feature. While for the moving escalator, we get significant
differences between c1 and c2 as well as between d1 and d2.

The second experiment was conducted to analyze spatial sationarity. For
a given texture, we divide the motion map into 12 blocks of the same size and
fit an anisotropic positive gaussian auto-model to each block. This has been
applied to sea-waves images and to a river motion texture. The obtained
results show that the 12 sets of the estimated parameters for the sea waves
texture are nearly the same, reflecting the expected spatial stationarity; while
they are significantly different for the river, which confirms the assumption
of non spatial stationarity for this kind of motion texture.

4 Conclusion

We have introduced a new class of random field models, namely mixed state
auto-models. This approach is made possible by extending Besag’s one pa-
rameter auto-models to the multi-parameter case. We provide a construction
of these models and show via the given examples how useful and promis-
ing these mixed state auto-models can be; we point out for instance their
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performance to realize some fundamental characteristics of an homogeneous
dynamic motion texture. We are currently developing other applications of
these new auto-models, namely fitting pluviometric measures; there are many
other possible applications in various domains, as soon as the data involves
both discrete and continuous components.

There are still several questions which need further investigations; first,
the convergence of the pseudo-likelihood has to be established; also, some
efficient Monte Carlo simulation algorithms have to be designed for these
mixed auto-models.
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1 Introduction

Automatic detection and tracking (ADT), as performed in radar and sonar,
process data y(t, ω) depending on time variable t and observation variable
ω, frequency or direction for instance. ADT decides whether signal from an
object to be detected is present or not at any time t and any location ω: this
is detection. Once such a positive decision has been taken at some time t0,
ADT has to estimate the location ω(t) of the signal at further times t ≥ t0:
this is tracking. The detection step is also named track initiation. Track
initiation and tracking are both time association processing. But, because
tracking performs only on the data in the vicinity of the tracks, while track
initiation has to perform on the whole data domain, tracking may use more
computationally intensive algorithms, especially algorithms based on a state
model that maps a space of states {x} for the detected object to the data
domain {ω}. Nevertheless this situation may be paradoxical with respect to
the fact that deciding that some object is present is at least as important
in some applications as once this decision is taken, estimating the state of
the object along time. Indeed the detection performance, expressed in terms
of detection probability and false alarm probability, is fully achieved by the
track initiation step. The continuous increase of the real time computation
power let us to envisage the application of the same kind of principle for track
initiation like for tracking. In this paper we propose such a new algorithm, a
sequential detector based on a hidden Markov model (HMM), that we named
the sequential Markov detector (SMD).

The track initiation in most existing radars and sonars rely on a same
principle: the P out of N detection. It performs on events detected from
single data elements that exceed a detection threshold r1. The integer N
is the duration of the detection test window along the discrete time axis. A
signal is detected when there are events at P times at least within the window.
This criterion may be refined with the supplementary condition that the mean
value of the data corresponding to the highest P events shall be larger than
a second detection threshold r2 > r1. The false alarm probability depends
on r1 and r2 and on the extent δω of the test window in the data domain.
Increasing δω results in increasing both the false alarm probability and the
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capability for accommodating a signal drift along time in the observation
domain. In practice, δω is generally set up at most equal to the resolution of
the sensor and the time duration N is set up small enough so that the signal
drift cannot exceed this extent. Then N may have to be limited to a few
units, a constraint that prevents from taking the full benefit for detection
from long signal duration. Whatever be the P out of N variant used in
practice, N is most often smaller than 10. This may be also a limit related
to the duration of the shortest signal to be detected.

In the “track-before-detect” (TBD) approach for ADT, tentative tracks
are formed before being validated. Because the data are integrated on a
longer time duration according to some model for the dynamics of the object
to be detected, this approach is better suited to low signal-to-noise ratio
condition. This processing is most often done on data blocks of fixed duration.
In [Tonissen and Evans, 1996], the data are integrated along candidate paths
by means of a dynamic programming algorithm. In [Barrett and Holdsworth,
1993], HMM is used for likelihood ratio testing. Sequential detection, which
allows for taking a decision about presence or absence of a signal embedded
in noise, from a variable number of data frames, is proposed for a constant
velocity target model in [Blostein and Richardson, 1994], but the test is
truncated and the data still are structured in blocks of fixed duration.

We introduce in this paper a new track initiation scheme combining HMM
and sequential detection, named the sequential Markov detector (SMD).
HMM allows for testing any path (x(t))t0≤t≤t0+∆t in the state space from
an exact expression of the joint likelihood ratio of this path and the data se-
quence (y(t, ωx(t)))t0≤t≤t0+∆t along the corresponding path (ω(t))t0≤t≤t0+∆t
in the data domain. Like the sequential probability ratio test (SPRT)
[Marano et al., 2005], SMD does not require fixing ∆t. But there is no
fixed fail threshold in SMD, which involves a factor exponentially decreasing
as a function of ∆t controlling an automatic reset process.

We review the principle of HMM detection in part 2 and introduce the
sequential Markov detector in part 3. Application of SMD for detection of
spectral lines in the time-frequency domain is presented in part 4. For this
application, we compare SMD to P out of N by means of a Monte-Carlo
simulation in part 5.

2 HMM detection

We assume that the time behaviour of the object to be detected from its
signal embedded in background noise is a Markov process taking its values
in a finite state space {x1 . . . xN}. Then the a priori probability for any
path X(t0, ∆t) = (t0, ∆t)t=t0...t0+∆t being the path of the object equals the
product of the initial state probability and the probabilities of the transitions
between the successive states x(t−1) and x(t) for t0+1 ≤ t ≤ t0+∆t. The N
initial state probabilities Pn = P [x(0) = xn] and the N2 transition probabili-
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ties Pn,m = P [x(t) = xn|x(t−1) = xm] are known parameters of our Markov
model. We assume that the data serie YX(t0, ∆t) = (y(t, ωx(t)))t=t0...t0+∆t
can be modelled as an independent random process with probability densities
p0 for the background noise and p1 for the mix of noise and signal:

p0(y(t, ωx(t))) ≡ P [y(t, ωx(t))|H0]

p1(y(t, ωx(t))) ≡ P [y(t, ωx(t))|x(t)]

where H0 is the hypothesis that there is no object. Then the joint probability
of X(t0, ∆t) and YX(t0, ∆t) can be written as

P [X(t0, ∆t), YX(t0, ∆t)] = P [y(t0 +∆t, ωx(t0 +∆t))|X(t0, ∆t)]

P [YX(t0, ∆t− 1)|X(t0, ∆t)]

P [x(t0 +∆t)|x(t0 +∆t− 1)]

P [X(t0, ∆t− 1)]

The last condition for our model being an HMM [Rabiner and Juang,
1986] is that the information from the state process about the data at some
time comes from the state at this time. Then the previous equation takes
the following recursive form:

P [X(t0, ∆t), YX(t0, ∆t)] = p1(y(t0 +∆t, ωx(t0 +∆t)))

P [x(t0 +∆t)|x(t0 +∆t− 1)]

P [X(t0, ∆t− 1), YX(t0, ∆t− 1)]

Since we have P [YX(t0, ∆t)|H0] =
∏t=t0+∆t
t=t0

p0(y(t, ωx(t))), we get also
such a recursive form for the likelihood ratio ΛX,Y (t0, ∆t) of (X(t0, ∆t), YX(t0, ∆t)):

ΛX,Y (t0, 0) =
p1(y(t0, ωx(t0)))

p0(y(t0, ωx(t0)))
P [x(t0)]

ΛX,Y (t0, ∆t) =
p1(y(t0 +∆t, ωx(t0 +∆t)))

p0(y(t0 +∆t, ωx(t0 +∆t)))
P [x(t0+∆t)|x(t0+∆t−1)]ΛX,Y (t0, ∆t−1)

For each state xn, let us consider the maximum value of ΛX,Y (t0, ∆t) for
all paths X(t0, ∆t) ending at xn:

Λ(xn, t0, ∆t) ≡ max {ΛX,Y (t0, ∆t)|x(t0 +∆t) = xn}

It can be computed recursively by means of the Viterbi algorithm:

Λ(xn, t0, 0) =
p1(y(t0, ωn))

p0(y(t0, ωn))
Pn

Λ(xn, t0, ∆t) =
p1(y(t0 +∆t, ωn))

p0(y(t0 +∆t, ωn))
max

1≤m≤N
{Pn,m · Λ(xm, t0, ∆t− 1)}
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ωn being the location in the data domain corresponding to the state xn.
By comparing to a threshold the values of Λ(xn, t0, ∆t) for 1 ≤ n ≤ N ,

we perform a detection test that, among all tests operating on the same
time window, maximises the detection probability for a fixed false alarm
probability determined by the detection threshold value. This holds for any
signal starting before t0 and ending after t0 + ∆t. For some given signal,
the best performance is achieved when the processing time window equals
the time interval when the signal is present. In practice, this interval is often
unknown. A way for handling this problem is to perfom the processing for all
possible values of t0 and ∆t. In practice, a trade-off has to be found between
the computation cost and the detection performance by taking (t0, ∆t) from
some reduced subset into the set of the possible values.

3 Sequential Markov detector

SQPRT [Marano et al., 2005] is a detection test that does not require fixing
a priori ∆t. It computes recursively the likelihood ratio of an i.i.d. data
time serie and compares its current value to a downer threshold, the fail
threshold, and an upper one, the detection threshold. If the likelihood ratio
value is smaller than the fail threshold, H0 is decided. If it stands between
both thresholds, the likelihood ratio is multiplied by the likelihood ratio of
the next data element and a new test is performed. If it is higher than
the detection threshold, the signal presence hypothesis H1 is decided. The
false alarm probability Pf = P [H1decided|H0] relates mainly on the detection
threshold value, approximately equal to Pd/Pf , Pd being the desired detection
probability P [H1decided|H1]. The detection probability relates mainly on the
fail threshold, approximately equal to (1 − Pd)/(1 − Pf), close to 1 − Pd if
Pf � 1.

We look now at how SQPRT could be applied to the maximum likelihood
ratio Λ(xn, t0, ∆t) defined in section 2. Testing Λ(xn, t0, ∆t) for detection
is equivalent to testing all the likelihood ratio values of the paths X(t0, ∆t)
ending at state xn. The number of these paths is growing exponentially as a
function of ∆t because of the number of state transitions allowed at each time
step. So does the false alarm probability of the test performed on the maxi-
mum value Λ(xn, t0, ∆t). For making this probability independent on ∆t, we
should decrease by an inverse factor the SQPRT false alarm probability Pf ,
so increase inversely the detection threshold value Pd/Pf . Equivalently the
threshold value may be kept constant and the likelihood ratio multiplied at
each update step by a constant factor K smaller than 1.

In the standard SQPRT, H0 is definitely decided and the test is ended
when the test value goes below the fail threshold approximately equal to
(1 − Pd)/(1 − Pf). This is because of the assumption that either H0 holds
for the whole data serie or H1 does. If the signal may be present only during
some time interval within the time interval of the data, the test must be reset
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once it failed in order to cope with the possibility that the past data might
be noise only and that signal might start at some further time. Then a rather
logical reset process would be to disregard the past data if, by doing so, the
current test value, and consequently the further ones because of the recursive
computation, are increased. Such reset process aims to prevent the signal
detection from being jeopardized by the noise data before the starting time
of the signal.

From the above principles, we can now introduce our new test, the Se-
quential Markov Detector. Its test value Λn(t) at each time t and at each
point of an HMM state space has the following recursive definition:

Λn(0) =
p1(y(0, ωn))

p0(y(0, ωn))
Pn

Λn(t) =
p1(y(t, ωn))

p0(y(t, ωn))
max{K max

1≤m≤N
{Pn,m · Λm(t− 1)}, Pn}

where K is a constant smaller than 1. There is the following relation between
Λn(t) and the maximum likelihood ratio Λ(xn, t0, ∆t) presented in section 2:

Λn(t) = Kt−τn(t)Λ(xn, τn(t), t− τn(t))

where τn(t) is the latest time anterior or equal to t when Λn was reset. As
discussed above, this relation is the one intended for making the false alarm
probability independent on ∆t and the Λn(t) reset condition is that the test
value from the current data only Λ(xn, t, 0) is larger than the test value taking
the past data into account Kt−τn(t−1)Λ(xn, τn(t− 1), t− τn(t− 1)). K is set
up so that the following relation holds:

P [K max
1≤m≤N

{Pn,m · Λm(t− 1)} > Pn|H0] =
1

2

expressing the fact that the probabilities for a path being continued or reset
are equal when there is no signal.

Λn(t) can be computed according to the expression of its above recursive
definition. This computation is quite similar to the Viterbi algorithm, except
for the reset process. In the next paragraph, we show how to apply it to
detection of spectral lines in the time-frequency plane.

4 Application to detection of spectral lines in
time-frequency data

The observed data y(t, f) = |S(t, f)|2 are the square magnitude of the output
of a time sliding Fourier transform performed on a scalar signal. Hence the
observation variable noted previously ω is the frequency, noted from now f .
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We define the state as being the pair composed by the frequency of the signal
to be detected and its time derivative, which we call the slope:

x(t) = (fx(t), ḟx(t))

We assume that the complex noise component of S(t, f) is zero-mean
gaussian with unit variance and that the signal amplitude is constant with
signal-to-noise power ratio r0. Then p0 and p1 are homothetic to centered
and uncentered χ2 laws with 2 degrees of freedom:

p0(y) = exp(−y)
p1(y) = exp(−y − r0) · I0(2

√
r0y)

with I0(z) = 1
π

∫ π
0
ez cos(θ)dθ.

Let us be TFT the length of the sliding time window of the Fourier trans-
form and kt and kf the coefficients such that the time step of the data y(t, f)
equals TFT/kt and the frequency step of the states equals T−1

FT/kf . Then the
slope step is taken equal to (kt/kf )T

−2
FT , the ratio of the frequency step to

the time step. So the state space is a finite grid in the real plane with mesh
(T−1

FT/kf , (kt/kf )T
−2
FT). Within this grid, we define the transition probabilities

Pn,m as following:

if
−1

2kfTFT
≤ fn − fm −

ḟn + ḟm
2

TFT

kt
<

1

2kfTFT

then Pn,m = h

(
kfT

2
FT

kt
|ḟn − ḟm|

)

else Pn,m = 0

where h may be any decreasing function such that

h(0) + 2

∞∑

i=1

h(i) = 1

The above relations means that the probability of the transition from the
state (fm, ḟm) to the state (fn, ḟn) is non zero if and only if the frequency
change fn − fm equals the mean slope value (ḟn + ḟm)/2 multiplied by the
time step TFT/kt within an error less than half the frequency quantization
step T−1

FT/kf . Then the transition probability is a decreasing function of the

absolute value of the slope change ḟn− ḟm. For a given state (fm, ḟm) and a
given slope change ḟn−ḟm, there is only one frequency fn which fulfils the first
relation. Then the last relation is equivalent to the condition

∑
n Pn,m = 1,

which expresses the fact that the sum of the probabilities, conditional with
respect to some state m, of all its possible successors n, equals 1.

In practice the setting of the function h that determines the transition
probabilities may be rather arbitrary because a statistical model for the fre-
quency fluctuation of the signals to be detected is seldom available. The
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broader is the peak of h at 0, the better is the processing capability to cope
with fast fluctuation of the frequency slope, but the lower is the performance
achieved on constant frequency slope signals, especially stable frequency sig-
nals. The performance decrease on stable frequency signals when the model
is changed from a setting suited to them to a setting suited to fluctuating
frequency slope signals is illustrated by results shown in the next paragraph.

5 Performance evaluation

We compared the performances of SMD and P out of N detector by means of
a Monte-Carlo simulation for detection of spectral lines in magnitude-square
FFT data as described in the previous paragraph. The data and the states
have the same time and frequency steps with kt = 2 and kf = 4. Note
that since kt is larger than 1, the assumption of time independent data is not
valid. This deviation with respect to the HMM theoretical frame, rather usual
because the data sampling frequency is above the Shannon bound in many
applications, is not expected to have a significant impact on the performance.

We tested two SMD settings having both their signal-to-noise ratio pa-
rameter r0 equal to 0.5 and uniform probability law for the initial states:
Pn = 1/N for any n. In the first setting, the slope set is {0}. Then our
model is equivalent to the one where the states are the frequencies and Pn,m
equals 1 if n = m and 0 otherwise (h(0) = 1 and h(i) = 0 for i > 0). This set-
ting is suited to detection of stable frequency signals. In the second setting,
the set of the values for the normalised slope kf ḟnT

2
FT/kt is {−2,−1, 0, 1, 2}

and the slope change kf (ḟn − ḟm)T 2
FT/kt takes its value in {−1, 0, 1} with

an uniform probability law: h(0) = h(1) = 1/3 and h(i) = 0 for i > 1. The
SMD output Λn(t) computed in the state space is projected to the frequency
axis according to the relation

D(t, f) = max{Λn(t)|fn = f}

The P out of N detector window covers four frequency channels; so its
bandwidth equals the frequency resolution T−1

FT of the Fourier transform. The
threshold r1 equals 2. The detector output D(t, f) is computed by placing
the (N, 4) window so that one of its points, arbitrarily fixed, is located at
the point (t, f) of the time-frequency data. Then D(t, f) equals the mean of
the P highest events when the P out of N condition is fulfilled and it equals
0 otherwise. Two P out of N detectors were tested: (P,N) = (3, 4) and
(P,N) = (6, 8).

Each value of the detection probability estimate P̂d in tables 1 to 3 is the
mean of the results of 3 independent Monte-Carlo runs, each run involving
two files of 2000×1000 time-frequency complex data. One file consists in noise
only samples S0(t, f). The data S1(t, f) of the second file are samples of the
sum of the noise S0(t, f) and I = 30 test signals having the same detection
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features (signal-to-noise ratio, time duration, frequency fluctuation). Hence
90 test signals were used for each value of the estimate P̂d.

The I test signals in the data S1(t, f) are located in I non-overlapping
time-frequency blocks [t0,min,i, t0,max,i]× [fmin,i, fmax,i] having the same size

∆t × ∆f . The computation of P̂d involves the processing outputs D0(t, f)
and D1(t, f) from the noise only and signal plus noise input data S0(t, f) and
S1(t, f). For one Monte-Carlo run, it has the expression:

P̂d =
1

I2

I∑

i=1

I∑

j=1

∣∣∣∣∣
max{D1(t, fi(t))|t1,min,i ≤ t ≤ t1,max,i} >
max{D0(t, fi(t))|t0,min,j ≤ t ≤ t0,max,j , fmin,j ≤ f ≤ fmax,j}

∣∣∣∣∣

where |true| equals 1, |false| equals 0, [t1,min,i, t1,max,i] is the time interval of
the ith signal included in [t0,min,i, t0,max,i] , and fi(t) is the signal frequency
determined by the relation

fi(t) = arg max
f

{
|S1(t, f)− S0(t, f)|

∣∣∣fmin,i ≤ f ≤ fmax,i

}

The I detection threshold values are the maximum output values on the
I noise-only data blocks. Hence they relate to a mean number of false alarms
per data block equal to 1. We define the false alarm probability Pf,in as the
ratio of the output false alarm rate to the input rate of independent data.
Each data block containing ∆t×∆f independent data elements, we have:

Pf,in =
1

∆t×∆f
Each data block consists in 300 time lines of 200 adjacent frequency channels.
So we have Pf,in = 1/(300× TFT/kt)/(200× T−1

FT/kf ) = 1.3× 10−4.
Defining the false alarm probability with respect to the input data allows

a fair comparison between detectors having different rates of independent
decisions. In order to validate the above method, the detection probability of
the integrator of time constant equal to the signal duration Tsig was estimated
with the above method in the cases of stable frequency signals with Tsig =
100 × TFT (Table 1) and Tsig = 10 × TFT (Table 2). The well-known ROC
curves for the Rice case give the theoretical value of the signal-to-noise ratio
r corresponding to the measured detection performance (P̂d, Pf,out), Pf,out ≈
(Tsig/TFT) × Pf,in being the false alarm probability at the detector output
as considered in these curves. This theoretical value is given in parentheses
below the P̂d value in tables 1 and 2. The difference between both signal-to-
noise ratio values was always found smaller than 1 dB. This difference may
be caused not only by the estimation error on P̂d but also likely by the fact
that in our test we have a random detection threshold and a fixed false alarm
rate, while the ROC curves hold for a deterministic threshold and a random
false alarm rate.

From the results in tables 1 and 2, the cost of not knowing the signal
duration in stable state SMD with respect to the performance achieved by
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10 log10(r) -5 -4 -3 -2 -1 0 1 2 3

integrator 100× TFT 0.53 0.83 0.93 0.98
(SNR(dB) for Pf,out = 0.013) (-5.9) (-4.5) (-3.6) (-2.8)

SMD – stable states 0.30 0.55 0.74 0.90 0.96
SMD – 5 slopes
h(0) = h(1) = 1/3

0.30 0.46 0.60 0.79 0.97

3 out of 4 0.31 0.40 0.50 0.67 0.90

Table 1. P̂d for Pf,in = 1.3× 10−4 – Stable frequency – Tsig = 100× TFT.

10 log10(r) 2 3 4 5 6 7

integrator 100× TFT 0.54 0.88 0.92
(SNR(dB) for Pf,out = 0.013) (1.2) (3.0) (3.2)

SMD – stable states 0.47 0.84 0.90 0.99
SMD – 5 slopes
h(0) = h(1) = 1/3

0.49 0.63 0.89 0.95 0.99

3 out of 4 0.33 0.66 0.79 0.95

Table 2. P̂d for Pf,in = 1.3× 10−4 – Stable frequency – Tsig = 10× TFT.

the time integrator with time constant equal to the signal duration appears
being close to 1 dB when the signal contains 100 independent samples and
smaller than 1 dB when it contains 10 independent samples. The ability
to perform also on fluctuating frequency slope signal with the second SMD
setting is provided with an additional cost standing between 1 dB and 2 dB
in detection of stable frequency signals. Then the gain with respect to 3 out
of 4 detection stands between 3 and 4 dB for 100 independent sample signal
and between 1 and 2 dB for 10 independent sample signal.

Performances on fluctuating frequency signals are presented in Table 3.
The frequency fluctuation is gaussian with standard deviation σf taking val-
ues 0, T−1

FT , 2T−1
FT and 3T−1

FT . The time length of the fluctuation correlation
equals 15 × TFT. As expected, the performance from the integrator with
time constant equal to signal duration is much sensitive to signal frequency
fluctuation. 6 out of 8 detector performs better than 3 out of 4 detector only
when σf is smaller than 2T−1

FT . This illustrates the fact that the N parameter
of the P out of N detector is limited by the expected drift of the signal to
be detected. Anyway SMD still performs significantly better than P out of
N in all test cases.

An example of input and output data is displayed on Figure 1 where,
for illustration clarity, only one signal is embedded in noise, the data for-
mat being the same than the one described above. The signal features are
10 log10(r) = −1 dB, Tsig = 100×TFT and σf = 3T−1

FT . In practice, the SMD
output would be reset in the vicinity of a detection and a specific tracking pro-
cess should be started for maintenance and termination testing of the newly
validated track. This further tracking process, not performed in this work
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σf × TFT 0 1 2 3

integrator 100× TFT 1.00 0.58 0.21 0.14
SMD – 5 slopes
h(0) = h(1) = 1/3

0.79 0.75 0.61 0.53

3 out of 4 0.31 0.28 0.23 0.17

6 out of 8 0.48 0.34 0.20 0.10

Table 3. P̂d for Pf,in = 1.3 × 10−4 – Fluctuating frequency – Tsig = 100 × TFT –
10 log10(r) = −1dB.

Signal+ noise input
|S1(t, f)|2

Zoom 300 times × 200
frequencies

Track: amplified signal
|S1(t, f)− S0(t, f)|2

Red circles: frequency bin
in [1, 1000] of maximum

SMD output D1(t, f)
Zoom 300 times × 200

frequencies

SMD signal + noise
output D1(t, f)

Full time-frequency range
2000 times × 1000

frequencies
Zoom window in red

Fig. 1. Example of input and output data.

entirely devoted to the track initiation problem, would avoid the spreading
of the SMD output peaks seen on Figure 1.

6 Conclusion

We presented a new track initiation method named the Sequential Markov
Detector. It is a “track-before-detect” processing which combines HMM
tracking and sequential detection. The detection test value is the a pos-
teriori likelihood ratio weighted by a factor exponentially decreasing as a
function of the time duration of the tested path in the state space. It is reset
when taking into account only the current data provides a larger value.

This new detector was shown to perform significantly better than the
usual P out of N detector for spectral line detection from time-frequency
data. The margin for further performance improvement from the same kind
of data and the same a priori information about the signal is likely small
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since the detection loss on a stable spectral line with respect to the constant
frequency integrator matched to the signal duration is at most 3 dB for
signal bandwidth-time product at most equal to 100, while at least a part
of this loss is the unavoidable cost for SMD ability to perform on unknown-
duration unstable-frequency signal. Further research should rather to look
at how exploiting richer data, for instance complex spectral data instead
of magnitude data, or more accurate a priori information within the state
model.
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Abstract. This paper decribes a new probabilistic framework for recognizing tex-
tures in images. Images are described by local affine-invariant descriptors and by
spatial relationships between these descriptors. We propose to introduce the use
of statistical parametric models of the dependence between descriptors. Hidden
Markov Models (HMM) are investigated for such a task using recent estimation
procedures based on the mean field principle to perform the non trivial parame-
ter estimation they require. Preliminary experiments obtained with 140 images of
seven different natural textures show promising results.
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1 Introduction

Image descriptors is a key notion in computer vision. Descriptors are local
characteristics whose geometric organization can be very informative when
carrying out pattern recognition tasks. The most important characteristics
for efficient image descriptors are good discrimination, locality (for resistance
to occlusions), and sufficient invariance to various image transformations.
Local descriptors that meet these requirements exist, but incorporating in-
formation about the relative spatial organization of such descriptors is still
an open issue. It is not yet clear which organizational models will prove to
be the most useful, and many statistical issues relating to the estimation and
selection of such models remain to be resolved. In this paper, we propose
organizational models based on Markov Random Fields and we focus on a
texture recognition task as a first investigation of these models. We specify
how to select and estimate such models from the data.

The approach we consider for texture recognition is the use of affine-
invariant region detectors. Such representations have several advantages
but they do not account for the way detected regions are organized within
the image. An attempt to include neighborhood statistics was described in
[Lazebnik et al., 2003a]. This was done by adding in the recognition stage,
a relaxation step [Rosenfel et al., 1976] to refine texture membership prob-
abilities but was not using an explicit organizational model for the data in
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the learning stage. Our claim is that there is some gain in assuming that the
feature vectors are dependent statistical variables and consequently in us-
ing parametric statistical models to account for this dependencies explicitly.
We show that recognition can be improved by using Hidden Markov Models
(HMM) as organizational models when learning the texture classes. Esti-
mating the parameters of such models in this context is not trivial. We use
recent estimation procedures (EM-like algorithms) based on the Expectation-
Maximization (EM) algorithm and on the mean field principle of statistical
physics [Chandler, 1987].

2 Hidden Markov Models for textures

For the feature extraction stage, we follow the texture representation method
described in [Lazebnik et al., 2003a] for its advantages over methods proposed
in recent literature. It is based on an interest point detector that leads to
a sparse representation selecting the most perceptually salient regions in an
image and on a shape selection process that provides affine invariance. Infor-
mally (see [Lindeberg and Garding, 1997] for details), regions are represented
by ellipses of various volume and shape and centered at various locations
(points found by the detector). The neighborhood of a region represented
by a given ellipse can then be naturally computed by adding a constant
amount (15 pixels in our implementation) to the major and minor axes and
to let the neighborhood consists of all points that fall inside this enlarged
ellipse. We can then think of an image as a graph with edges emanating
from the center of each region to other centers within its neighborhood. To
each detected region is then associated a feature vector (descriptor). The
descriptors we use are intensity domain spin images [Lazebnik et al., 2003b]
rescaled to have a constant norm and flattened into 80-dimensional feature
vectors. The basic assumption is that descriptors are random variables with
a specific probability distribution in each texture class. In [Lazebnik et al.,
2003a], the distribution of descriptors in each texture class is modeled as a
Gaussian mixture model where each component corresponds to a sub-class.
This is assuming that the descriptors are independent variables although it
naturally exists strong neighborhood relationships between feature vectors
within the same image. To take that into account, we propose to improve on
the Gaussian mixture model by assuming that for each image from a single
texture, the distribution of descriptors is that of a Hidden Markov Model
(HMM) with K components and appropriate parametrization to be specified
below.

Let x1, . . . , xn denote the n descriptors (80-dimensional vectors) extracted
at locations denoted by {1, . . . , n} from an image. Let m denotes the texture
class of this image. For i = 1, . . . , n, we model the probability of observing
descriptor xi when the image is from texture m as

P (xi|Ψm) =
K∑
k=1

P (Zi = cmk|βm) f(xi|θmk),
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where f(xi|θmk) denotes the multivariate Gaussian distribution with param-
eters θmk namely the mean µmk and covariance matrix Σmk. Notation Zi
denotes the random variable representing the sub-class of descriptor xi. It
can take values in {cmk, k = 1 . . .K} denoting the K possible sub-classes for
texture m. Note that for simplicity we assume K being the same for each
texture but this can be generalized (see section 5). Notation βm denotes
additional parameters defining the distribution of the Zi’s and Ψm denotes
the whole model parameters i.e. Ψm = (θmk, βm, k = 1 . . .K). Our approach
differs from [Lazebnik et al., 2003a] in that our aim is to account for spatially
dependent descriptors. More specifically, the dependencies between neighbor-
ing descriptors are modeled by further assuming that the joint distribution
of Z1, . . . , Zn is a discrete Markov Random Field on the graph defined above.
Denoting z = (z1, . . . , zn) specified values of the Zi’s, we define

P (z|βm) = W (βm)−1 exp(−H(z, βm)),

where W (βm) is a normalizing constant and H is a function assumed to be
of the following form (we restrict to pair-wise interactions),

H(z, βm) =

n∑

i=1

Vi(zi, βm) +
∑

i,j
isimj

Vij(zi, zj, βm),

where the Vi’s and Vij ’s are respectively referred to as singleton and pair-
wise potentials. We write isimj when locations i and j are neighbors on
the graph, so that the second sum above is over neighboring locations. The
spatial parameters βm consist of two sets βm = (αm, IBm) where αm and IBm
are defined as follows. We consider pair-wise potentials Vij that only depend
on zi and zj (not on i and j). Since the zi’s can only take a finite number
of values, we can define a K ×K matrix IBm = (bm(k, l))1≤k,l≤K and write
without lost of generality

Vij(zi, zj, βm) = −bm(k, l) if zi = cmk and zj = cml.
Similarly we consider singleton potentials Vi that only depend on zi so that
denoting by αm a K−dimensional vector, we can write

Vi(zi, βm) = −αm(k) if zi = cmk,
where αm(k) is the kth component of αm. This vector αm acts as weights for
the different values of zi. When αm is zero, no sub-class is favored, i.e. at a
given location i, if no information on the neighboring locations is available,
then all sub-classes appear with the same probability at location i. When
IBm is zero, there is no interaction between the locations and the Zi’s are
independent. When IBm is zero, βm reduces to αm and it comes that for
i = 1, . . . , n and k = 1, . . . ,K,

P (Zi = cmk|αm) = exp(αm(k))P
K
l=1 exp(αm(l))

,

which clearly shows that αm acts as weights for the different possible values
of zi. Conversely, when αm is zero and IBm = β × I where β is a scalar,
the spatial parameters βm reduce to a single scalar interaction parameter β
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and we get the Potts model traditionnaly used for image segmentation. Note
that this model is not necessarily appropriate for textures since it tends to
favor neighbors that are in the same sub-class. In practice we observed in
our experiments that when learning texture classes, IBm could be far from
β× I. Texture m is then represented by an HMM defined by parameters Ψm
being Ψm = (µmk, Σmk, αm(k), IBm, k = 1, . . . ,K).

3 Learning the descriptors distribution and
organization

In a supervised framework, we first learn the distribution for each texture
class based on a training data set. Our learning step is based on an EM-
like algorithm and this framework allows to incorporate unsegmented multi-
texture images. However, we refer to the work of [Nigam et al., 2000] and
[Lazebnik et al., 2003a] for more details on how to implement this general-
ization.
In this presentation the training data consists then of single-texture images
from each texture class m = 1, . . . ,M . Each texture class is learned succes-
sively. Using all the feature vectors and neighborhood relationships extracted
from the images belonging to class m, we estimate an HMM as described in
section 2. The EM algorithm is a commonly used algorithm for parameters
estimation in problems with hidden data (here the sub-class assignments).
For Hidden Markov Random Fields, due to the dependence structure, the
exact EM is not tractable and approximations are required to make the algo-
rithm tractable. In this paper, we use some of the approximations based on
the mean field principle presented in [Celeux et al., 2003]. This allows to take
the Markovian structure into account while preserving the good features of
EM. The procedures in [Celeux et al., 2003] are based on mean field approxi-
mation. More specifically, we used the so-called simulated field algorithm for
it shows better performance in some segmentation tasks (see [Celeux et al.,
2003]). Note that in practice, we had to extend these algorithms to incor-
porate the estimation of matrix IBm and to include irregular neighborhood
structure coming from descriptors locations and not from regular pixel grids
like in [Celeux et al., 2003].

Briefly, these algorithms can be presented as follow. They are based on
the EM algorithm which is an iterative algorithm aiming at maximizing the
log-likelihood (for the observed variables x) of the model under consideration
by maximizing at each iteration the expectation of the complete log-likelihood
(for the observed and hidden variables x and z) knowing the data and a cur-
rent estimate of the model parameters. When the model is an Hidden Markov
Model with parameters Ψm, there are two difficulties in evaluating this expec-
tation. Both the normalizing constant W (βm) and the conditional probabili-
ties P (zi | x, Ψm) and P (zi, zj, j ∈ N(i) | x, Ψm) cannot be computed exactly
(N(i) denotes the neighbors of i). Informally, the mean field approach con-
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sists in approximating the intractable probabilities by neglecting fluctuations
from the mean in the neighborhood of each location i. More generally, we talk
about mean field-like approximations when the value at location i does not
depend on the value at other locations which are all set to constants (not nec-
essarily to the means) independently of the value at location i. These constant
values denoted by z̃1, . . . , z̃n are not arbitrary but satisfy some appropriate
consistency conditions (see [Celeux et al., 2003]). It follows that P (zi | x, Ψm)
is approximated by P (zi | x, z̃j , j ∈ N(i), Ψm) and P (zi, zj, j ∈ N(i) | x, Ψm)
by P (zi | x, z̃l, l ∈ N(i), Ψm) P (zj | x, z̃l, l ∈ N(j), Ψm). Using such approxi-
mations leads to algorithms which in their general form consist in repeating
two steps. At iteration q,

(1) Create from the data x and some current parameter estimates Ψ (q−1)

a configuration z̃
(q)
1 , . . . z̃

(q)
n , i.e. values for the Zi’s. Replace the Markov dis-

tribution P (z|βm) by the factorized distribution
n∏
i=1

P (zi|z̃(q)
j , j ∈ N(i), Ψm).

It follows that the joint distribution P (x, z|Ψm) can also be approximated by
a factorized distribution and the two problems encountered when considering
the EM algorithm with the exact joint distribution disappear. The second
step is therefore,

(2) Apply the EM algorithm for this factorized model with starting
values Ψ (q−1), to get updated estimates Ψ (q) of the parameters.

In particular the mean field algorithm consists in using mean values for
the z̃i

(q)’s while the simulated field algorithm consists in obtaining z̃i
(q)’s by

simulation. In practice, at step (2), performing one EM iteration is usually
enough. In this case the mean field algorithm is the algorithm in [Zhang,
1992]. In Section 5, results are reported for the simulated field algorithm.
Results for the mean field algorithm were at best equivalent. Then, for each
texture, the HMM estimation provides us with estimations for the means
and covariance matrices of the K Gaussian distributions, namely µmk and
Σmk for k = 1, . . .K, but also for the hidden field parameters, matrix IBm
and vector αm. This set of parameters is then associated to the texture class
and used to classify regions in test images in one of the learned textures as
specified in the next section.

For comparison we also consider a different way to learn texture that
do not use the HMM formalism. We used a penalized EM algorithm for
spatial data called NEM for Neighborhood EM [Ambroise et al., 1997]. It
provides a way to add spatial information when dealing with data represented
as independent mixture models. It leads to a simple procedure but is not as
flexible as the HMM approach which includes spatial information directly in
the model. NEM can be seen as intermediate between the use of independent
mixture models as in [Lazebnik et al., 2003a] and our approach. To use
it in our experiments we had to generalize its Potts-like penalization to a
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penalization term appropriate for textures. We used a matrix IB as in Section
2.

A set of parameters is then associated to each texture class and used to
classify regions in test images in one of the learned textures as specified in
the next section.

4 Classification and retrieval

Images in the test set are not labeled and may contain several texture classes.
Our aim is first to classify each region individually in one of the M texture
classes under consideration. Then, each region can possibly be in one of
M×K sub-classes. To identify these sub-classes, the model for the descriptor
distribution has to incorporate the information learned from each texture in
the learning stage. To do so, at recognition time, the descriptors distribution
is assumed to be that of a Gaussian HMM as presented in Section 2 but with
a discrete hidden field taking values in {cmk,m = 1, . . . ,M, k = 1, . . . ,K} i.e.
with M ×K components instead of K in the learning stage. In addition, the
parameters of this HMM are given: for m = 1, . . . ,M and k = 1, . . . ,K, the
conditional distributions f(xi|θmk) are assumed to be Gaussian with means
and covariance matrices learned at learning time. As regards, the hidden field,
the pair-wise potentials are defined through a square matrix of size M ×K
denoted by IB and constructed from the learned IBm matrices as follows: we
first construct a bloc diagonal matrix using the learned IBm as blocs. The
other terms correspond to pairs of sub-classes belonging to different classes.
When only single-texture images are used in the learning stage, these terms
are not available. As mentionned in [Lazebnik et al., 2003a] even when multi-
texture images are used for learning, the estimations for such terms are not
reliable due to the fact that only a few such pairs are present in the training
data. Unless the number of texture classes is very small, it is quite difficult to
create a training set that would include samples of every possible boundary.
In practice the missing values in IB are set to a constant value chosen as a
“smootheness constraint”. The potentials on singletons, which are related
to the proportions of the different sub-classes as mentioned in Section 2 are
fixed to the values learned for each texture. Then the EM-like algorithm of
Section 3 can be used with all parameters fixed to estimate the membership
probability for each of the M × K sub-classes. The algorithm can be seen
as iterations refining initial membership probabilities by taking into account
the learned HMM’s. This is not possible with standard EM for Gaussian
mixtures since without spatial information, when all parameters are fixed,
the algorithm reduces to a single iteration.

Membership probabilities are then also obtained for each texture class.
For each region located at i, we get P (Zi = cmk|xi) for m = 1, . . .M and
k = 1, . . .K and P (Yi = m|xi) if Yi denotes the unknown texture class. We
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have P (Yi = m|xi) =
K∑
k=1

P (Zi = cmk|xi). Determining the texture class

of the region located at i consists then in assigning it to the class m that
maximizes P (Yi = m|xi). At the image level, a global score can be defined
for each texture class. For instance, the score for class m can be computed

by summing over all n regions found in the image, i.e.
n∑
i=1

P (Yi = m|xi), and

the image assigned to the class with the highest score.
Note that in a previous study, the HMM in the test stage was only partly

defined. All parameters were fixed as above except the potentials on sin-
gletons which were estimated using the EM-like algorithm as in Section 3.
This required much more computation and did not lead to better recognition
rates in our experiments, except for some rare cases. However this possibility
would worth further investigation.

5 Experimental Results

Preliminary experiments are made on a data set containing seven different
textures (Figure 1). The data set is partitionned into a training and a test
set containing 10 single texture images each. For simplicity, we set K = 10
for each texture. In some preliminary study we selected varying K using the
Bayesian Information Criterion (BIC) of Schwarz [Forbes and Peyrard, 2003]
but we did not observe significantly better recognition results. For the Gaus-
sian distributions we restrict to diagonal covariance models. For each texture
class m, using BIC we select among these models, the ones with Σmk = σ2

mI
for all k = 1, . . .K. Table 1 shows classification results for individual re-
gions that is the fraction of all individual regions in the test images that were
correctly classified. The “Max likelihood” column refers to the method that
consists in assuming that all texture class has the same probability to occur
in the test image independently of the image. A region is then classified as
belonging to the texture class with the best mixture likelihood (learned pa-
rameters). The “Relaxation” column refers to the method used in [Lazebnik
et al., 2003a]. The procedure uses as initial probabilities the ones that can
be computed from the learned mixture models. These probabilities are then
modified, through a relaxation step [Rosenfel et al., 1976], using some addi-
tional spatial information deduced from the learning stage using co-occurence
statistics. The results in Table 1 show that the rates improve significantly on
the Maximum Likelihood rates for textures 1 to 5 but much less for textures
6 and 7. This points out one drawback of Relaxation which is sensitive to
the quality of the initial probability estimates. The following columns refer
to methods investigated in this paper. When all parameters are fixed, as this
is the case in the test stage, NEM iterations can be reduced to update equa-
tions for the membership probabilities. These equations can be compared to
Relaxation equations which similarly consist in updating membership prob-
abilities. However, a main difference is that NEM is originally made for



Markov Random Fields for Recognizing Textures 1167

mixture models and therefore the mixture model is taken into account at
each iteration. In the Relaxation algorithm, no model assumption is made
and iterations are independent of the model used for the data. In a context
where learning is made by assuming mixture models, using NEM seems then
more consistent and appropriate. Table 1 shows better rates for NEM when
compared to Relaxation. The method using HMM’s is the only one where
the descriptors are modeled as statistically dependent variables. It provides a
way to analyse and control theses dependencies through a number of param-
eters. The “simulated Field” columns refer to our HMM model. When all
parameters are fixed, the Simulated Field algorithm also reduces to update
equations comparable to Relaxation but with the advantage of including the
Markov model explicitly. The rates increase when compared to Relaxation.
When comparing to NEM, rates increase for textures 5 to 7 and decrease
for textures 1 to 4 but on average the Simulated Field algorithm performs
better. As a global comment, one can observe that all methods have more
trouble in recognizing textures 6 and 7. The corresponding data sets both
contain images with very strong luminosity changes and some fuzzy images
suggesting that the descriptors and/or the neighborhood structure we used
may not be invariant enough. These preliminary experiments show however
that there is significant gain in incorporating spatial relationships between
descriptors. It appears that there is some gain in doing that using statistical
parametric models, such as mixture models (NEM) or their extension HMM’s
(Simulated Field Algorithm), in the learning stage as well as in the test stage.

T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

Fig. 1. Samples of the texture classes used in the experiments.

Class T1 T2 T3 T4 T5 T6 T7

Max. Likelihood 48 77 52 56 50 17 30

Relaxation 78 96 72 86 80 19 42

NEM 82 98 78 88 80 20 43

Simulated Field 81 97 77 80 86 26 46

Table 1. Classification rates in % for individual regions of single-texture images.
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6 Conclusions

We based our work on recent techniques for image description going fur-
ther regular grid of pixels to sets of irregularly spaced feature vectors. Our
aim was to show that statistical parametric models could be introduced to
account for spatial or geometric relationships between feature vectors. We
show that Hidden Markov Models were natural candidates and focused on a
texture recognition task as an illustration. For such a task Markov Models
have been used to model grey-level values on regular pixel grids but their
introduction in the context of feature vectors at irregular locations is new.
In this context, they provide parametric models where the parameters have
a natural interpretation. Some of them (the αmk’s) can be related to texture
proportions while others (matrix IB) to pair-wise interactions (see Section
2). In our method, parameters can be estimated or tuned, for instance, to
incorporate a priori knowledge regarding texture proportions or strenght of
interactions. Other methods such as Relaxation are much less readable in
that sense.

Preliminary results are promising and illustrate a general methodology.
It provides a statistical formalism to be investigated in other contexts. Fu-
ture work would be to study its application for object recognition or more
complex classes recognition. Before that, more specific analysis would be
necessary as regards the choice of the neighborhood structure. In particu-
lar, the use of stronger geometric neighborhood relationships that take into
account affine shape while preserving the maximum amount of invariance
would worth additional investigation. Also the methodology presented here
for feature vectors derived from interest points and spin images, could be
investigated with other image description techniques.
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Abstract. This paper deals with the use of multiple criteria decision methods to
evaluate a number of bus routes operating in the territory of Florence, on the basis
of a set of variables describing the effectiveness level of the service.
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1 Introduction

In Italy, legislative decree n. 422/1997 vested regional governments with
the responsibility for programming and financing expenditure decisions. The
Authority also expressed its preference for a less frequent recourse to the use
of public franchise for local transport services in favour of a system of licenses
or permits.

Under this law, a partial liberalization of the local public transport market
and the renewing of fleet occurred. A number of new companies were born
to manage lines pertaining to railway and road transportation.

According to these regulations, the vested organization (Region govern-
ment) must be provided of a support tool in defining the organizational ar-
chitecture of the local transport system. Moreover, the regulation of com-
petition allows for achieving greater overall system efficiency, by offering an
integrated service (tariff integration included) where multimodality can help
in optimizing the use of the system. Hence, at first, it is necessary to set the
commercial value of the running programme which is able to satisfy transport
demand, on the basis of actual operative conditions.

According to the legislative decree n. 422/1997, in several phase con-
cerning both planning and management of local public transport, it becomes
necessary to make evaluations on only a part of the programmed service like
the market value of a single transit line, for example, a bus route. In this
respect, the paper presents the results of a statistical analysis aimed to pro-
vide a performance evaluation of the bus routes operating in the urban and
suburban area of Florence.

At the first step, we considered a set of variables describing the level
of effectiveness of the services. From the use of the multicriteria decision
methods PROMETHEE II (Preference Ranking Organization METHod for
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Enrichment Evaluations), it is possible to derive an ordinal indicator for the
bus routes. Outranking methods like PROMETHEE are decision support
systems but they have also been used to rank alternatives in other kinds
of problems. For example, they were used to evaluate the importance of a
number of service attributes for the measurement of customer satisfaction
[Franceschini and Rossetto, 1997]. In addition, PROMETHEE II is rela-
tively simple in the involvement of criteria importance (weights) and in the
computational procedure.

At the second step, we will briefly discuss the possibility to use the or-
dinal indicator provided by the PROMETHEE with a productivity index
(Km./costs) to obtain an overall performance measure of a bus route.

The paper is structured as follows. In the next paragraph, we briefly de-
scribe the PROMETHEE approach, an outranking method for multicriteria
decision problems. Finally, in the last two paragraphs, the empirical analysis
is presented and discussed.

2 PROMETHEE decision methods

Some of the widely developed methods in the field of decision theory in-
clude utility theory, outranking methods and the Analytical Hierarchy Pro-
cess [Gupta and Berger, 1994], [Roy, 1990]. Within these schools of thought
there are many alternative approaches which correspond to different classes of
problems, or different solution requirements. It is difficult to see how any one
of these theories might become the best one, as each has its own advantages
and disadvantages.

In this paper, we consider the outranking methods. These methods split
the alternatives according to an A is at least as good as B hypothesis, and
then explore the concordance and discordance using a decision algorithm.

A well known outranking method, that is also very intuitive and easy to
use, is PROMETHEE, originally developed by Brans and Vincke [Brans and
Vincke, 1985]. PROMETHEE allows a direct use of the data in a simple mul-
ticriteria table. Instead of having to perform a large number of comparisons,
the decision-maker has to define his own scales of measure (without limi-
tation), to indicate his priorities and his preferences for every criterion (by
focusing on value, without having to worry about the method of calculation).

Let us consider two potential alternative A and B, and one evaluation
criteria f(.). Each single evaluation is expressed by f(A), f(B) and gives a
real number. This criterion may have to be minimized or maximized.

In order to rank the two alternatives, PROMETHEE requests additional
information. For the criterion, a specific preference function must be defined.
For example, we assume that the preference function P(A,B) is such that:

P (A,B) =

{
0 if f(A) ≤ f(B)

p(f(A)− f(B)) if f(A) > f(B)
(1)
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where P (A,B) depends on the difference f(A)− f(B). p(.) is a function
such that: if it is zero, A and B are indifferent choices; if it is close to zero,
there is a weak preference for A; if it is close to 1, there is a strong preference
for A; if the preference function is 1, there is a strict preference for A.

A wide used shape for a preference function is the linear form like, for
example:

p(x) =

{
1 if x > m
x/m if x ≤ m (2)

and x = (f(A)− f(B)) ≥ 0,m > 0.
According with (2), the decision maker progressively prefers A over B for

increasing differences f(A) − f(B). The intensity of the preference progres-
sively grows; when x > m there is strict preference for A.

If there are k criteria and therefore k preference functions pi(A,B), i =
1, ..., k, different weights can be attached to different decision criteria. Such
weights represent the importance of the different criteria in decision making.

These weights are used to derive the outranking index π(A,B) of A over
B, which is:

π(A,B) =

∑k
i=1 wipi(A,B)
∑k
i=1 wi

(3)

This index provides a measure of the preference for A on B over all the
criteria. As 0 ≤ pi(A,B) ≤ 1, expression (3) will assume values between 0
and 1.

In the case of n alternatives, PROMETHEE method calculates positive
and negative preference flows for each alternative. The positive flow of A
expresses how much the alternative A is dominating the others; the negative
flow expresses how much it is dominated by the other ones. Positive and
negative flows for the alternative A are expressed by the following formulas:

φ+(A) =
∑

b

π(A, b) (4)

φ−(A) =
∑

b

π(b, A) (5)

where the summation is over b, that is over the alternatives different from
A. φ+(A) expresses how much A outranks the other alternatives; φ−(A)
expresses how much the other alternatives outrank A.

The version labelled PROMETHEE II provides a complete ranking of the
alternatives on the basis of the net flow:

φ(A) = φ+(A) − φ−(A) (6)

Therefore, we have:

• A outranks B iff φ(A) > φ(B)
• A and B are indifferent alternatives iff φ(A) = φ(B)
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3 The case study: public transport in Florence

In this paragraph we describe the data used for the analysis and the main
features of the Florence public transport system with special reference to
ATAF (Azienda Trasporti Area Fiorentina) that is the main service provider.

Public transport in Florence in almost exclusively based on a system of
bus routes.

ATAF operates with about 450 buses producing more than 18 million
kilometers a year over a total route length of 450 km and serving a population
of more than 580,000 units (inhabitants in the Municipality of Florence and
other municipalities). Since 2001, some of the original ATAF suburban bus
routes have been transferred to a new company (LI.NEA).

The percentage of regular users of ATAF service is about 40% of the
served population. Of these, 67.2% are women and only 39.1% are occupied.
The total population of bus users is characterized by a large presence of not-
occupied individuals. For most of these, bus is the only transportation mean
to move within the Florentine territory.

In 2000, a form of ticket integration was introduced for several of trans-
portation providers (ATAF and other bus services, railways). Anyway, the
use of train or non ATAF providers within the territory around Florence is
rare. There is not an actual intermodal transport as the various transport
modes are not efficiently integrated to provide a user-friendly service.

Data for the empirical analysis are derived from three sources.

• ATAF database. It provides the most important data related with the
structure of the organization, the planned routes and terminals, the net-
work system.
• ATAF customer satisfaction survey. It is a yearly CATI survey on the

total served population (i.e. the inhabitants of the Municipality of Flo-
rence and of the other Municipalities served by ATAF), carried out to
monitor mobility behavior. This data source provides information about
the importance of some items describing the effectiveness of the service
(i.e. the weights for the PROMETHEE analysis).
• Interview of ATAF management staff. This source provides information

about the weights for the PROMETHEE analysis, from the managers’
point of view.

4 The case study: results of the empirical analysis

In this section we describe variables, criteria and preference functions used
for ranking a number of bus routes operating in the territory of Florence.
We considered 16 bus routes, that resulted the most used (in 2002) from the
ATAF customer survey. Moreover, in our analysis, we considered a total of 9
criteria, that cover some features of the transport service. Table 1 describes
the data recorded for each route and the related optimality direction. The
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values related to each of the 16 bus transit lines are derived from internal
agency data.

Criteria Description Users ATAF
weights weights

C1 min Network length/N. stops 0.100 0.101

C2 max N. bus shelters/N. stops 0.100 0.087

C3 max N. stops with schedule information /N. stops 0.075 0.130

C4 max N. of produced runs/N. planned runs 0.050 0.072

C5 max Speed (Km/h) 0.125 0.116

C6 max N. served municipalities/N. municip.s in the network 0.100 0.087

C7 max Pollution limitations 0/3) 0.100 0.130

C8 max Importance for tourism (ordinal 0/3) 0.100 0.130

C9 max Number of passengers 0.250 0.145

Table 1. Criteria for the decision and related scaled weights

Table 1 shows the weight system adopted. Specifically, we considered two
types of weights.

• ATAF weights: they are obtained through an interview to ATAF man-
agers.
• Users’ weights: for C1-C8, they are derived from the customer satisfaction

survey described above; for C9, ATAF weight is attributed also to users.

We computed the mean of the evaluations (attributed by the respondents
on a 10 points scale) about the importance of a number of services charac-
teristics [Zeithaml et al., 1990]. The weights have been proportionally scaled
to sum up 1.

The PROMETHEE method also requires the specification of a preference
function. In this application we adopted the linear form of the following type:

p(x) =

{
0 if x ≤ 0
x/R if x > 0

(7)

where R is the variation range of the criterium variable and x is expressed
according to the maximization or minimization orientation of the criterion.
Note that x/R gives a standardized value as requested by the function p(x)
in formula (2).

Before applying PROMETHEE method,we have conducted a principal
component analysis (PCA) on the variables involved in the decision problem
(Table 1). This analysis is useful to investigate the presence of any conflicting
character of the criteria [Brans and Mareschalet al., 1994]. To facilitate the
interpretation of PCA results, the sign of C1 (which is ’min’ oriented) has
been changed to negative.
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Fig. 1. Biplot from the PCA on criteria data (correlation matrix)

Figure 1 provides an approximate representation of the information re-
lated to this problem, because only 60% of the variance is reproduced by the
first two principal components [Brans and Mareschalet al., 1994]. We can see
that some criteria (lines with arrows)are oriented in the opposite direction.
That is the case, for example, of: C1 vs C6 and C3, C2 vs C7, C5 vs C8
and C9. Some cases are easy to be understood. The opposition of C5 against
C8 and C9 is determined by the fact that bus routes serving the center of
Florence are characterized by a strong importance for tourism (C8), are gen-
erally crowded (C9) and travel at a lower speed (C5). Viceversa occurs for
buses travelling in suburban areas. The numbers in the figure label the 16
bus routes.

In a situation like the one represented in the biplot, the results of a multi-
criteria decision method could be quite sensitive to the weight system. Figure
1 shows also the projection of weights (dot-dash line: users weights, dashed
line: equal weights, solid line: ATAF weights; the last two are partially over-
layed). In the case of a decision problem, one should look at the alternatives
located in the direction of the weights [Brans and Mareschalet al., 1994].
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In the case investigated in the paper, the projection of weights can give an
approximate idea (because only 60% of variance is absorbed by the two com-
ponents) of the compromise resulting in the ranking process and can allow
a comparison among different systems of weights. We can see, for example,
that Ataf and users weights are oriented almost in the same direction.

Table 2 contains the rank of the 16 bus routes, obtained through the
application of PROMETHEE II method with, respectively: equal weights,
users’ weights and ATAF weights.

Table 2 contains also a label indicating the type of bus transit line: R
means radial route, that links the center of the town with suburban sites; L
indicates longitudinal suburban bus route, that links opposite suburban sites
(for example, West-East, North-South, etc.). The radial routes are placed,
on the average, at better rank position than longitudinal routes (mean rank
larger than 9 vs. 7 of the longitudinal transit lines).

Though the presence of some conflicting character among the 9 criteria,
the ranking obtained through different weights are similar. In fact, the rank
correlation coefficient is 0.85, 0.88, 0.91 respectively for equal weights vs
users’ weights rankings, equal weights vs ATAF weights rankings, ATAF
weights vs users’ weights rankings.

Bus Ranks PCA
lines Type Equal Users ATAF Scores Rank

weights weights weights

1 L 10 9 10 0.5792 11
2 L 9 12 9 0,1447 9
3 L 13 13 13 1,2099 13
4 L 11 11 11 0,4738 10
5 R 12 10 12 -0,1094 8
6 L 14 14 14 1,6911 15
7 L 5 2 5 -0,4845 6
8 R 4 6 4 -1,8037 2
9 L 7 5 6 -0,6073 5
10 L 15 16 16 1,4800 14
11 R 16 15 15 1,9793 16
12 L 3 1 3 -1,3787 4
13 R 8 7 7 -0,4356 7
14 R 2 3 2 -1,5765 3
15 R 6 8 8 1,0921 12
16 R 1 4 1 -2,2546 1

L: longitudinal R: radial

Table 2. Results of PROMETHEE II method and subsequent PCA

In order to estimate the market value of a bus route, the effectiveness
measure obtained through the PROMETHEE method is not sufficient be-
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cause also economic features must be considered. In this respect, we have
investigated the relationship between PROMETHEE ranks and the produc-
tivity indicator Km/costs, that is available for each bus route. If we consider
PROMETHEE ranks as a quantitative variable and by using a negative sign
for the variable km/costs (so that it is oriented in the same direction of
PROMETHEE ranks), the correlation is 0.716. In this case, a scalar perfor-
mance measure could be obtained through PCA. The first component absorbs
more than 90% of variance and can summarize the effectiveness and produc-
tivity indicators. Table 2 shows the scores and the related ranks obtained
from PCA.

5 Concluding remarks

The customer and user oriented approach requires the monitoring and mea-
sure of service’s effectiveness. In this paper, effectiveness of bus routes op-
erating in the territory of Florence is based on information derived from a
customer satisfaction survey and internal agency data. A multicriteria de-
cision approach (the PROMETHEE outranking method) has been used to
derive a rank ordering of the different bus routes.

This ranking, together with a measure of productivity, has been used to
provide a measure of overall performance for the bus routes. Of course, the
use of PCA is only a compromise solution.

The empirical analysis here carried out shows a possible use of customer
survey data and internal data in order to estimate the market value of the ser-
vice. In particular, the PROMETHEE method could be a way to synthesize
indicators of different nature and importance.
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Abstract. A queuing system resulting from a semaphorized intersection regulated
by semi-actuated control in a network urban traffic is considered. Modelization of
the queue length and of the delay of vehicles is crucial in the study of the perfor-
mance of intersections equipped with traffic signals. In these systems, the server
(green signal) is desactivated (red signal) during a random period of time. Due to
this particularity, models for classic queues such as M/M/1, M/G/1 and G/M/1
are not appropriate. In the urban traffic literature, the frequent desactivation of
the server as well as the variation of the service period are not well formulated. In
the present work a M/G/1 queue where the server occasionally takes vacations and
the service discipline is a non-gated time-limited policy is analyzed. The present
analysis follows [Leung and Eisenberg, 1991] who consider an application of these
models in telecommunications. Their implementation, given its complexity, is made
possible by using Laguerre functions when looking for an approximate solution of
the differential equations involved. One concludes that the mean delays of vehicles
given by this model are slightly smaller than those obtained by simulation proce-
dures, but they are able to give us a good approximation for larger flows, which is
of interest for traffic engineers, since, in that case, the approximations one can find
in the traffic literature are known not to be adequate.
Keywords: Queues, Server vacations, Traffic models.

1 Introduction

Waiting systems that admit interruptions of service often appear when the
server uses idle periods of time of one queue or one task to serve clients in
another queue or to perform another task. What matters is that, for these
idle periods, the server is not available nor operational for new arrivals to
the system (see e.g. [Doshi, 1986] for an interesting briefing on the subject).
Among other applications these waiting systems appear in the literature as
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models for computer networks and telecommunications, production and qual-
ity control.

Models with interruptions of the server have been analyzed for different
waiting systems, as the M/GI/1 or the GI/GI/1 queues with a single server,
no restrictions existing on the arrivals process or the service time distribution,
as long as the stationarity is maintained. In what regards the pause of the
server, the model may fall into different classes, depending on the situations
that trigger the pause (or vacation) and on the service policy, when the server
returns from a pause and is available for service again.

In the context of urban traffic, modeling the queue length and the waiting
time (delay) of vehicles is fundamental if one wants to study the performance
of semaphorized intersections. Here we are concerned with semi-actuated
intersections, which means that there are a main street and a secondary
street and a sensor is placed in the secondary street, enabling the activation
of the green signal and thus of the vehicles in this street to go through
the intersection. The main difficulties involved in the analysis by means
of the queuing theory come from the need of a good characterization of the
circulating vehicles and drivers and from the fact that the desactivation of
the server for random periods of time (red signal) has to be incorporated in
the behavior of the queue. Due to this, essentially, the M/M/1, M/G/1 and
G/M/1 models do not satisfactorily fit the waiting phenomena in these kinds
of traffic intersections.

A detailed study of semaphorized intersections with a fixed period of green
signal, which is not the case of semi-actuated signals, can be found in [Web-
ster, 1958] where a formula of the delay of traffic which is much used in the
traffic engineering practice is given. The traffic flow that reaches the intersec-
tion is assumed to follow a Poisson distribution and several parameters of the
model are reduced to mean values which are obtained from the results of the
M/D/1 and M/DX/1 queues. Nevertheless, with such models, the regular
but random desactivation of the served can not be well described. Indeed,
as the signal alternates between red and green, modeling a semaphorized
intersection is a problem lying in the class of queuing systems with server va-
cations [Doshi, 1986], with the particularity that the server remains inactive
for random time durations. [Heidemann, 1994] proposes an analytic model
that includes server vacations, starting from the assumption that the arrival
process is Poissonian, that the intersection has a fixed cycle regulation, that
the interval between departure of vehicles is constant and the traffic capacity
is one way only. With these restrictions the probability generating functions
for the measures of performance queue length and delay of a vehicle can be
derived from the associated Markov chains. More recently [Alfa and Neuts,
1995] suggested the use of discrete time Markov arrival processes to describe
the nature of platoons in the traffic flow.

In the present work a M/G/1 model for which the server occasionally
takes a vacation and the service policy is non-gated time-limited is analyzed.
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The term time-limited refers to the fact that the server is available to the
queue for a maximum time duration at each visit (constant Tm). The term
non-gated refers to the fact that clients that arrive while the server is active
are candidates for service during this visit of the server in as much as the
maximum service time Tm is not achieved. Clients are served in a FIFO
regime and the server starts a vacation as soon as all clients in the queue are
served or Tm expires, whatever occurs first. If the queue is empty when the
server returns from a vacation it immediately starts a new vacation.

Our goal is to explore the theory of queues with server vacations, par-
ticularly the work by [Leung and Eisenberg, 1991], to find an approximate
expression for the mean delay of a vehicle in the context of semi-actuated
traffic using the comparison with the results obtained by numerical simula-
tion of an intersection in [Simões et al., 2002] to judge on the appropriateness
of the proposed method.

2 An equation for the amount of work

For the class of models introduced above, the probability density function
(pdf) of the amount of work at an arbitrary instant during a vacation period
of the server is obtained by solving a functional equation that characterises
the amount of work at the exact time the server starts a service period.
Solving this equation, due to its complexity, is done by means of a numerical
technique analogous to the one of [Weeks, 1966], based on the numerical
inversion of the Laplace Transforms (LT).

The complementary of the distribution function of the duration of a ser-
vice period (time between the beginning of service and the instant the queue
becomes empty, assuming that Tm is never achieved) is approximated by a
sum of Laguerre functions. Using the relation between the amount of work at
the beginning of a service period and the duration of the server busy interval,
the functional equation in transformed into a set of linear equations, from
which the solution corresponds to the coefficients of the Laguerre functions
in the expansion just mentioned.

Thus the amount of work in the queue at an arbitrary instant can be
obtained from the equation that runs the amount of work at the instants the
service starts serving the clients. From the decomposition of the amount of
work and the PASTA property [Wolff, 1982], the mean waiting time can be
deduced.

Notation:

x̄, x̄2, X∗(·): mean, second moment and LT of the service time;
ν̄, ν̄2, V ∗(·): mean, second moment and LT of the duration of the vacation;
ūp, fp(·), U∗

p (·): mean, pdf and LT of the amount of work at the beginning
of a service period;

P0(t): probability of the queue being empty at time t.

The following assumptions are made:
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i ) Clients arrive according to a Poisson process with parameter λ and the
service time follows a general distribution for which the first two moments
are finite;

ii ) The system has an infinite waiting room;

iii ) The system is in equilibrium and ρ(= λx̄) <
Tm

Tm + ν̄
;

iv ) The duration of a vacation (random variable) is independent from the
amount of work at the beginning of a service period.

The main theoretical result that we need when dealing with queues with
server vacations is the stochastic decomposition property
[Boxma and Groenendijk, 1987]: if the queue is in equilibrium, the LT of
the amount of work at the beginning of a service period may be written as
the product of the LT of the amount of work at the end of a service period,
U∗(s, Tm), by the LT of the amount of work that arrives during a vacation,
U∗
v (s). Making use of this property the major difficulty in the analysis of

models that have a limited service time lies in the characterization of the
amount of work at an arbitrary instant during a vacation period. In order to
overcome this difficulty performing the following steps is required:

i ) Set up the functional equation that characterizes the amount of work at
the beginning of a service period. The stochastic decomposition property
states that

U∗
p (s) = U∗

v (s) · U∗(s, Tm) . (1)

On the other hand one has U∗
v (s) = V ∗(λ − λX∗(s)) and

U∗(s, Tm) = eŝTm

{
U∗
p (s)− ŝ

∫ Tm

y=0

e−ŝyP0(y)dy

}
, (2)

where ŝ = s− λ+ λX∗(s).
ii ) Equation (2) is solved numerically, given that 1− P0(t) can be approxi-

mated by a weighted sum of Laguerre functions:

P0(t) sim= 1−
N∑

n=0

ane
− t

2T Ln

(
t

T

)
.

Thus

P ∗
0 (s) sim= 1−

N∑

n=0

an
s
(
s− 1

2T

)n
(
s+ 1

2T

)n+1 . (3)

The LT U∗
p (s) is also approximated by means of Laguerre functions:

U∗
p (s) sim= 1−

N∑

n=0

an
ŝ
(
ŝ− 1

2T

)n
(
ŝ+ 1

2T

)n+1 . (4)
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The approximations given in (3) and (4) are used in equation (2), from
which, using (1), one gets:

U∗
p (s) sim= U∗

v (s).eŝTm

{
e−ŝTm + U∗

p (s)−
N∑

n=0

ane
−(ŝ+ 1

2T )TmLn

(
Tm
T

)

−
∫ Tm

y=0

e−ŝy
N∑

n=0

ane
−y/2T

[
1

2T
Ln

( y
T

)
− L′

n

( y
T

)]
dy

}
.(5)

Notice that this equation is linear in the an for a given s with Re(s) ≥ 0.
iii ) The functional equation (5) is transformed into a linear system of equa-

tions, since, by taking s = iω and using N + 1 appropriated values for ω
in equation (5), a set of N + 1 linear equations is obtained (see [Weeks,
1966]). The coefficients an are known by solving this system.

iv ) To end with, by using the decomposition of the amount of work and the
PASTA1 property [Wolff, 1982], the mean amount of work in the system
as seen by a Poisson arrival is given by

ū =
λx̄2

2(1− ρ) +
N∑

n=0

(−1)n(2T )(1− ρ)an − ρν̄ + ρ
ν̄2

2ν̄
. (6)

The mean waiting time of a client is obtained by applying Little’s formula.

3 Application to the control of semi-actuated traffic

As mentioned in the introduction, traffic signals with semi-actuated regula-
tion are frequently used in intersections which consist of a main street and
a secondary street. The actuated phase serves the movement of vehicles
in the secondary street. The control variables that lead the efficiency of a
semi-actuated operation are the regulation plan of the semaphore and the
placement of the sensor. The difficulty in applying the semi-actuated control
is in the selection of an optimum combination of these operations. In the ab-
sence of a service call (non activation of the sensor) the green signal is always
given to the non-actuated phase. As soon as the sensor is activated a change
in the signals occurs. The time interval for this change to occur includes a
yellow period followed by a period of “all red” (cleaning time). During the
activation of the sensor the arrival of a vehicle in the actuated street extends
the interval of green signal of this phase by an amount of time so that the
minimum of green time is exceeded but not the maximum. It means that,
in semi-actuated traffic, the green time is adapted to the demand, having a
minimum and a maximum value. In this way, a larger number of vehicles is
able to pass through the intersection per unit of time.

1 Poisson Arrival See Time Average
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In the present work the intersection illustrated in Fig. 1 is considered.
The sensor is placed 5m away from the stopping line of the secondary street.
The times given to the regulation of the two phases are shown in Table 1. 

 

 
 
 

        5 m 
           

 Sensor 
 

   
  200m 

 
 
 
 

Semaphore  1 

Semaphore  2 

Fig. 1. Scheme of a semi-actuated intersection.

Table 1. Times given to the regulation of the two phases.

Time (sec.) Semaphore 1 Semaphore 2

Green 20 to ∞ 7 to 40
Yellow 3 3
Extension of green – 4
All red 2 2

The degree of saturation, xsat = ρ
Tm + ν̄

Tm
, represents the ratio between

the mean number of vehicles that arrive during a cycle and the maximum
number of vehicles that may pass through the intersection during that period
of time. In the terminology of the queuing systems this parameter is known
as the congestion index.

The mean waiting times estimated by the model presented in Section 2
(referred to as the analytical model) are shown in Fig. 2 as well as the average
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delays experienced by drivers according to the simulation (see [Simões et al.,
2002] for the detailed simulation study). A Dirac function with a mass at the
point 27 and a Gaussian distribution with mean value equal to 2 and variance
0.04 are considered in the analytical model as the laws of the duration of a
vacation (red period) and of the service time, respectively, since these are the
best fit distributions in the case of semi-actuated urban traffic intersections.
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Fig. 2. Comparison between the mean delay estimated by the analytical model and
the simulated mean delay (ν̄ = 27 sec., x̄ = 2 sec. and Tm = 43 sec.).

The results suggest that, for approximately xsat > 0.7, the analytical
model gives good estimates of the mean delay of drivers. For 0.3 < xsat < 0.7,
however, the estimates given by this model are smaller than those obtained
by numerical simulation. This fact may be due to the diversity of reactions
that is typical of drivers behavior and of interactions between vehicles but,
most of all, the fact is that the duration of a vacation (red signal) is not really
bounded, since it is extended until the activation of the sensor, which means
it has no maximum value although it has a minimum.

It is important to remark that when dealing with the analytical model
one should be aware of the importance of choosing adequate values for N
and of the need of a high precision in the computations, as the numerical
method explained here is very sensitive to precision errors. Difficulties in
making these numerical procedures converging are also reported in the liter-
ature[Leung and Eisenberg, 1991] in the case of probability density functions
with jumps or discontinuities (service times or durations of the vacations that
are deterministic). In practice it is very much recommended to validate the
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outputs of the numerical procedures ensuring that the amplitudes of the an’s
are smaller than 10−8.

4 Final comments

An analytical expression for the evaluation of an approximation of the mean
delay of vehicles in semi-actuated traffic was found by applying systems of
queues with server vacations theory, while previous expressions were known
to be inappropriate for the semi-actuated case.

This procedure gives good approximations when the arrival flow is large,
which was not possible with heuristic expressions commonly used in traffic en-
gineering that had been developed for the fixed control case. The expressions
that we give here provide realistic estimates of the mean delay particularly
when the saturation index is below 70%, while for large traffic flows (conges-
tion scenarios) the estimates they provide appear to be smaller than the real
mean delays.

Having in mind improving the reliability of the results presented here
and others that will be obtained in the future, the numerical properties of
the relationship between N and T deserves a careful investigation, aiming
to establish, for different distributions of the service durations, which values
should be given to N and T in order to ensure good results when this method
is applied.
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Abstract. We describe ergodicity and transience conditions for a general two
queue system with multiple service regimes, a dedicated traffic stream for each
queue, a further stream which can be routed to either queue and where completed
jobs can be fed back into the queues. There is only one class of jobs but the ser-
vice times and feedback probabilities depend upon the configuration of the servers.
Several different levels of control of the service regimes are considered. We use the
semi-martingale methods described in [Fayolle et al., 1995] and our results gener-
alise those of [Kurkova, 2001].
Keywords: controlled queue systems.

1 Introduction

In this paper we consider a system which has two queues with servers that
can be configured in several ways. Our main aim is to identify conditions
under which we can give a queue length dependent policy for choosing the
service configurations that guarantees the stability of the system.

The queues have independent Poisson arrival streams with rates λi, i = 1,
2 and there is an independent Poisson arrival stream with rate λ of jobs that
can be sent to either queue (we will call this the routeable stream). We
assume all jobs are of the same class and are served in the order they join
their queues but their service times depend upon their queue and the service
scheme in force while they are being served. Under server configuration k,
at most one job is in service at each non-empty queue and all jobs in queue
i have independent, exponentially distributed service times with mean µ−1

ki ,
i = 1, 2 (so the server configuration k and the destination of a routeable job
determines its service distribution). We label the server configurations by k =
1, . . . , K, the queue to which the routable stream is directed by j = 1, 2 so
that the finite set R of overall management regimes has members η = (k, j).
In addition the system has Jackson-type feedback with probabilities that
depend upon the current management regime. Any job that completes service
at queue i under regime η independently enters queue i′ with probability pηii′ ,
i′ = 1, 2 or leaves the system with probability pηi0 ≡ 1−pηi1−pηi2 ≥ 0. We will
assume throughout this paper that we can instantaneously switch between
different management regimes at the instants just after changes to queue
lengths.
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Example The model described above includes as a special case the model
with two servers, where server i can be used to process jobs at either queue
which it does at rate µi. This gives four service regimes s1s2 = 1 2, 2 1,
1 1 and 2 2 (i.e. server 1 at queue 1, server 2 at queue 2; server 2 at queue
1, server 1 at queue 2; both servers at queue 1; both servers at queue 2).
Given that the service rates are additive we get the pairs (µ1, µ2), (µ2, µ1),
(µ1 + µ2, 0) and (0, µ1 + µ2) respectively.

The question we consider is whether for such a system with a given set
of parameters, the management regime can be changed from time to time to
ensure that the queue lengths remain stable or whether the queue lengths
must grow indefinitely regardless of how the system is managed.

Similar systems but with fixed servers have been studied in the past using
transform methods, often under strong symmetry assumptions on parame-
ters, see [Feng et al., 2002] and [Foley and McDonald, 2001] who give stability
conditions for an n-dimensional JSQ model and carry out the large deviations
analysis of system occupancy for the two dimensional system.

We define the model we consider in section 2 and state our results in
section 3. We omit the proofs here to be able to describe the model in full
length. The proof is done using the semi-martingale methods described in
[Fayolle et al., 1995] and can be found in [MacPhee and Müller, ]. Our results
generalise those of [Kurkova, 2001] as we consider multiple service regimes
and do not require any symmetry.

2 Definitions

We now define the queueing system, its control, and the classes of control
policies that we wish to investigate.

2.1 Events, blocks and control policies

As the Lyapunov function results we use are described in terms of discrete
processes it is convenient to study a discrete time process which we now
describe. To simplify comparison of the process dynamics under different
management regimes we uniformise the continuous time jump process, fol-
lowing Serfozo [Serfozo, 1979], by choosing a constant ρ ≥ maxk{λ + λ1 +
λ2 +µk1 +µk2} and introducing a fictitious bell event which has exponential
inter-event times with rate ρ− (λ+ λ1 + λ2 + µk1 + µk2) at any given queue
lengths when regime (k, j) is used (so the total event rate has the same value
ρ in all states under all regimes). We now consider the uniformised discrete
time process Ξ on state space Z2

0 ≡ {(x, y) ∈ Z2 : x ≥ 0, y ≥ 0}, obtained
by considering the queue lengths at bell events, arrival times of new jobs
and at service completions and consequent re-entry to queues. We will use
α = (x, y) ∈ Z2

0 to denote a typical state vector for Ξ.
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It is also necessary to define the policies by which the management regimes
at each state are selected. Our main interest will be in policies which choose
the same regimes over large sets of states, specifically cone shaped blocks for
which we need some notation. Let ei denote the unit vector in the axis i
direction and for non-zero z ∈ R2 let |z| denote the length of z and argu(z)
the argument relative to non-zero vector u ∈ R2 (the angle anticlockwise
from u to z). For any non-zero u, v ∈ R2 let `(u) = {z ∈ R2 : z = tu, t > 0}
denote the half-line in the direction u and

C(u, v) ≡ {z ∈ R2 : |z| > 0, 0 < argu(z) < argu(v)} (1)

the cone swept anticlockwise from direction u to direction v. The closure of
such a cone will be denoted C̄(u, v). We give specific labels to the positive
parts of the axes, Ai ≡ `(ei) as we will consider them as blocks subsequently.
It will also be convenient to define two special versions of the argument, one
relative to each axis Ai. Let R : R2 → R2 be reflection in the line z1 = z2
i.e. R(z1, z2) = (z2, z1) and define

arg1(z) = arge1(z) , arg2(z) = arg1

(
R(z)

)
(2)

so arg2(z) is the angle measured clockwise from e2 to z.
A policy for controlling this discrete event system is a sequence Π =

{πn : n ≥ 0} of transition probabilities πn from Hn, the process his-
tory at time n, to R, the set of regimes i.e. for any history α0, η0, . . . ,
αn−1, ηn−1, αn the next action is selected according to the distribution
πn(α0, η0, . . . , αn, ·). This definition includes non-stationary, non-Markov
randomised policies though they offer no performance benefits when applied
to stationary Markov processes, see e.g. Blackwell [Blackwell, 1965]. Let ξi(n)
denote the length of queue i at time n and ξ(n) = (ξ1(n), ξ2(n)). A policy
Π along with an initial distribution for the queues determines a stochas-
tic process (Ξ,Π) = {(ξ(n), ηn) : n ≥ 0} which will only be Markov when
πn(α0, η0, . . . , αn, ·) is a distribution dependent only on αn.

A policy Π which selects an action a(α) with probability 1 whenever the
system state is α, where a is a map from Z2

0 toR, is a deterministic stationary
policy. Our main interest is in a class of these that we call block pure policies,
denoted Πb, where the state space Z2

0 is partitioned into a small number
of disjoint blocks, always lines or cones, such that a is constant on each
block C(u, v). We also investigate a generalisation of these, block randomised
policies, denotedΠr, where for each block the distribution πrn(α, ·) is the same
at every state α in the block (so the Πb are degenerate cases of the Πr). With
such policies the process (Ξ,Πr) is Markov due to our assumptions about
Poisson arrivals and exponential service times.

2.2 The queues and their mean drifts

The process (Ξ,Π) has bounded jumps, specifically ±ei and ±(e2 − e1) and
so all moments of its jump distributions exist under any policy but in this two
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dimensional case our results can be stated in terms of their first moments.
For each regime η let

Mη = E(ξ(n+ 1)− ξ(n) | Hn, πn = η) (3)

denote the mean drift vector for any period when the policy selects regime η.
We have, for k = 1, . . . , K at states α ∈ Z2

+ ≡ {(x, y) ∈ Z2 : x > 0, y > 0}

Mη = (Mη
1 ,M

η
2 )

=

{
ρ−1

(
λ+ λ1 + µk2p

η
21 − µk1pη10, λ2 + µk1p

η
12 − µk2pη20

)
, η = (k, 1)

ρ−1
(
λ1 + µk2p

η
21 − µk1pη10, λ+ λ2 + µk1p

η
12 − µk2pη20

)
, η = (k, 2)

(4)

It is convenient to assume that when queue i is empty the policy selects a
regime η chosen from among those with µki = 0 (this is equivalent to having
non-idling servers). This ensures that equation (4) is also correct for histories
ending in states α ∈ A1 ≡ {(x, 0) : x > 0} and α ∈ A2 ≡ {(0, y) : y > 0}
for such service regimes. We will sometimes use the notation M ′ and M ′′ to
denote mean drifts for the system under appropriate regimes for A1 and A2

respectively.
Now consider any policy Π allowing randomisation. The mean drift of

our process Ξ under Π when the current state is α ∈ Z2
+ is a 2-dimensional

vector MΠ lying in the convex set

M =

{∑

η

pηM
η : pη ∈ [0, 1] and

∑

η

pη = 1

}
(5)

the convex hull of the regime mean drifts. The extreme points of M are a
subset of the regime mean drifts Mη. When three or more of the Mη are
distinct it may happen that the two-dimensional interior,

Int2(M) ≡ {z ∈M : B(z, ε) ⊂M for some ε > 0} ,

(where for z ∈ R2
+, B(z, ε) = {z′ ∈ R2 : |z − z′| < ε}) is non-empty.

3 Classification of the system

The behaviour of the system depends on whether the convex set α+M can
be separated from the origin by a line through α. Any set of parameters for
the process (Ξ,Π) falls into one the following four exclusive cases:

C1 (0, 0) = 0 /∈M and there exists a state α ∈ Z2
+ and a line

Lv(α) ≡ {β ∈ R2 : vT (β − α) = 0} (6)

with normal vector v through α separating α+M from the origin 0. If
there exists one such α ∈ Z2

+ then there is an infinite cone of such α.
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C2 0 /∈M and there exists no α ∈ Z2
+ and line Lv(α) which separates α+M

from 0.

C3 Int2(M) is non-empty, 0 ∈ M and there exists no α ∈ Z2
+, v ∈ R2 such

that the line Lv(α) separates α+ Int2(M) from the origin.

C4 0 is a boundary point of M and either Int2(M) = ∅ or the tangent line
to α+M through α separates the origin from α+ Int2(M) for each α in
a cone within Z2

+.

See Figure 1 for examples of C1-C4.

A1

A2

Lv

α

α +M

�

�

0
A1

A2

Lv

α

α +M
�

�

0

A1

A2

α

α +M

�

�

0
A1

A2

Lv

α

α +M

�

�

0

Fig. 1. From top left: C1, C2, and below C3, C4.

Note: the cases in C4 are critical but we will say very little about them in
this paper.

We start stating our results by giving sufficient conditions for instability
or stability respectively of the system under fully randomised controls in cases
C1 and C2 respectively. Next we show that in case C3 there is always a block
pure policy that makes (Ξ,Πb) ergodic and we also show that randomisation
allows the use of fewer blocks. Finally in this section we consider some
situations with even lower levels of control.
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3.1 Fully randomised controls

The following two results apply when even the most general policy Π is used
to control the queueing system. They imply that in cases C1 and C2 the
control policy used does not affect the stability or otherwise of the process.

Theorem 1 If 0 /∈ M and there exists an α ∈ Z2
+ and v ∈ R2 such that

the line Lv(α), see (6), separates α +M from the origin 0 then the process
(Ξ,Π) is unstable, in the sense that the total number of queued jobs almost
surely goes to ∞ linearly in time for any policy Π.

The conditions of the theorem can be pictured in an alternative way.
Specifically there exists a state α ∈ Z2

+ such that the line segment from 0
to α does not intersect α +M (it follows that if there is any such pair α, v
then there is an infinite cone of points α′ such that Lv(α

′) separates 0 and
α′ +M).

Theorem 2 If 0 /∈ M and there is no α ∈ Z2
+, v ∈ R2 such that Lv(α)

separates α +M from 0 then (Ξ,Π) is stable, in the sense that the total
number of queued jobs remains bounded in mean, under every policy Π.

The alternative description of the conditions here is that for every α ∈ Z2
+

the line segment joining 0 to α intersects α+M. From this it follows there
is some v ∈ R2

+ such that 0 and α+M are in the same halfspace created by
Lv(α).

3.2 Block controls

In case C3 it does make a difference which policy is used for running the
system. In fact we can show that block pure policies Πb with at most a
handful of blocks are adequate to ensure stability of the process. Under
policies of this type the process (Ξ,Πb) is Markov so we can now talk about
ergodicity and transience.

Theorem 3 If 0 ∈ Int2(M) then there is a block pure policy Πb with at most
five blocks such that the Markov chain (Ξ,Πb) is ergodic.

Theorems 2 and 3 imply the following result.

Corollary 1 If 0 is a boundary point ofM, Int2(M) is non-empty and there
exists no α ∈ Z2

+, v ∈ R2 such that Lv(α) separates α+ Int2(M) from 0 then
there is a policy Πb with at most three blocks such that (Ξ,Πb) is ergodic.

In Theorem 3 the number of blocks required to achieve ergodicity can be
reduced if block randomised policies Πr are used.

Corollary 2 If 0 ∈ Int2(M) and a block randomised policy Πr is used then
at most four blocks are necessary to ensure that (Ξ,Πr) is ergodic.
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Example [Foley and McDonald, 2001] consider a model which has fixed
servers (their service rate drops to 0 when their queues are empty), no feed-
back and is strictly JSQ. Their stability criterion for N = 2 queues is that
ρmax ≤ 1 where

ρmax = max{λ1/µ1, λ2/µ2, (λ+ λ1 + λ2)/(µ1 + µ2) }.
For the policy which sends the routable stream to the queue with minimum
weighted work our model has two regimes depending upon where the routable
traffic is sent and these have drift vectors

M1 = 1
ρ (λ+ λ1 − µ1, λ2 − µ2) and M2 = 1

ρ(λ1 − µ1, λ+ λ2 − µ2).

As ρ(M2 −M1) = (−λ, λ) ⊥ (1, 1) the line segment joining these two drift
vectors has the form z1 + z2 = (λ + λ1 − µ1 + λ2 − µ2)/ρ which can only
intersect R2

− when ρmax < 1. The case ρmax = 1 is critical and we see that
our conditions are equivalent to those of Foley and McDonald in this case.

The simplicity of the classification based on the convex hull M confirms
that this geometrical approach combined with the Lyapunov function method
is a natural technique for studying stability of multi-queue systems though
of course large deviations results like those [Foley and McDonald, 2001] are
not achievable thisway.

3.3 Low levels of control

The results of [Fayolle et al., 1995] can also be used to classify the process
for any control policy that is block homogeneous for any small number of
blocks. It soon becomes evident to anybody who attempts this that there
are many ways for the process to remain stable and many more for it to
be transient. To illustrate this we now spell out the possible behaviours of
the queueing system with four blocks, specifically the axes A1, A2 and two
cones, C1 = C(e1, d) ∪ `(d) and C2 = C(d, e2) (see (1) for this notation), that
partition Z2

+. The two cones are not assumed to be symmetric i.e. the vector
d ∈ R2

+ need not be parallel to (1, 1).
We assume that in each of the Ai and Ci, i = 1, 2 a single management

regime is used (different blocks may have a common regime) with mean drift
vectors M1, M2 in blocks C1, C2 respectively and M ′, M ′′ in blocks A1, A2

respectively. This assumption about and notation for the regimes on the Ai
we will use in all further sections but the Ci are specific to this section.

We first label the M i according to the angles ϕi they make relative to the
axes Ai, i = 1, 2. For each M i angle ϕi = 0 is in the direction of Ai and ϕ1

increases clockwise while ϕ2 increases anticlockwise i.e. ϕi = 2π − argi(M
i).

We label the directions of theM i as A when 0 < ϕi < π, B when π ≤ ϕi ≤ 3π
2

and D when 3π
2 < ϕi ≤ 2π. The various cases of this model are labelled with

label of M1/label of M2 so a label B/A means M1 has a positive y and a
negative x component and M2 has x component negative with y of either
sign. Figure 2 illustrates this labelling scheme for the directions of the M i

from origins αi.
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A1

C1

A2 C2

A

A

B

B D

α2
�

α1

�

`(d)

Fig. 2. Graphical explanation of the labels.

From the results in [Fayolle et al., 1995] on the random walk in the positive
quadrant, we have (in their terminology): (i) if a drift M i has an A label
then axis Ai is an ergodic face; (ii) that face will be outgoing, ingoing or
neutral according to the sign of the second vector field (which is scalar in
this case); (iii) if M i has a B or D label then face Ai is transient and
there is no second vector field. In this two dimensional case the sign of the
second vector field depends only upon the angles of M ′ and M1 for A1, M

′′

and M2 for A2. As with the angles ϕi it is convenient to name the angles
ψ1 = arg1(M

′) , ψ2 = arg2(M
′′) that M ′, M ′′ make relative to axes A1, A2

respectively, so ψi = 0 is in the Ai direction and ψ1 increases anticlockwise
while ψ2 increases clockwise. Now, following the sign of the second vector
field, we modify the labels for M i, i = 1, 2 to

A+ : ϕi + ψi < π, A− : ϕi + ψi > π, A0 : ϕi + ψi = π (7)

Using this labelling system we can identify 25 different cases to deal with. It
turns out that in many of the cases we get the same result for all choices of
the two cones i.e. all slopes d′ ≡ d2/d1 ∈ (0,∞) of the line `(d) separating
them. Theorem 4 classifies these invariant cases.

Theorem 4 The system is

(1) ergodic in cases A−/A− ∪B, B/A−, B/B with
∣∣∣M

1
x

M1
y

∣∣∣ >
∣∣∣M

2
x

M2
y

∣∣∣
(2) transient in cases A+/A∪B∪D, A∪B∪D/A+, B/B with

∣∣∣M
1
x

M1
y

∣∣∣ <
∣∣∣M

2
x

M2
y

∣∣∣,
D/B, B/D, D/D;

(3) null recurrent in cases A0/A0∪A+ ∪B, A+ ∪B/A0, B/B with
∣∣∣M

1
x

M1
y

∣∣∣ =∣∣∣M
2
x

M2
y

∣∣∣.
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1

2

M
1

1

`(d)

Fig. 3. Example of case D/A− where `(d) is important.

For systems with no control over the service regimes there still may be
some control over the routable traffic stream. The next theorem shows that
there are sets of parameters such that a change to the slope of the switching
line `(d) can change Ξ from a transient to an ergodic process. We describe
in detail only the case D/A0∪A−, depicted in Fig. 3, as case A0∪A−/D is
very similar. The relative slopes of M1, `(d) and M2 are crucial so we label
two key conditions:

E1: M1
2 < d′M1

1 (so `(d) is steeper than M1); E1′: M1
2 > d′M1

1 ;
E2: −M2

2 ≤ d′(−M2
1 ) (including cases with M2

2 ≥ 0 and implies −M2 is not
steeper than `(d)).

Theorem 5 In case D/A0 ∪ A− the ergodicity or non-ergodicity of the
Markov chain Ξ also depends on the slope d′ > 0 of the line `(d) separating
C1 and C2 as follows:

(a) if E1 holds then Ξ is transient,
(b) if E1′ holds then Ξ’s excursions into C1 have finite mean time and Ξ is

(i) ergodic if E2 holds and M2 is A− or if E2 does not hold and
(−M2

2 )M1
1 < M1

2 (−M2
1 ) (so M1 is steeper than −M2);

(ii) null recurrent if E2 holds and M2 is A0 or if E2 does not hold and
(−M2

2 )M1
1 = M1

2 (−M2
1 );

(iii) transient if E2 does not hold and (−M2
2 )M1

1 > M1
2 (−M2

1 ).

The case A0 ∪A−/D is simply the reflection of the above in the line `(1, 1).

Note: this theorem says nothing about the cases where M1 is parallel to
`(d) but in practice this will not be a major problem if the slope of the line
`(d) is under user control.
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Abstract. A common way of allowing heterogeneity between individuals in mod-
els for lifetime data is to introduce an unobservable individual random effect Z. In
a proportional hazards framework, the individual’s hazard becomes zhb(t) where
hb(t) is the baseline hazard. The random variable Z is often assumed to follow
the Gamma or Inverse Gaussian distribution. We develop here diagnostic tests for
these assumptions. One simple graphical diagnostic is based on the form of the
unconditional survival function when hb(t) is assumed to be Weibull. Another plot
uses a closure property of a family of frailty distributions, which implies that the
frailty among survivors at time t has the same form as the original distribution of Z,
with the same shape parameter but different scale parameter. In this method, we
estimate the shape parameter at different times t and examine graphically whether
it is constant. We give simulation results and examples to illustrate these meth-
ods.
Keywords: Lifetime data, frailty, proportional hazards, Burr distribution, Gener-
alized Inverse Gaussian distribution.

1 Introduction

When modelling data obtained from time-to-event studies, it is often found
that there is heterogeneity between individuals, over and above what can be
accounted for by any available covariates. One common way of allowing for
this heterogeneity is to introduce an unobservable individual random effect
Z, the so-called frailty. This is usually assumed to operate in a proportional
hazards framework, so that it acts multiplicatively on the baseline hazard
function hb which is common to all individuals. Thus the hazard function for
an individual with frailty Z = z is given by

h(t|z) = zhb(t)

If there are also measured covariates, the model is usually extended to

h(t|z;X) = zeβ
′
x(t)hb(t)

where x(.) is a q-dimensional vector of possibly time-dependent covariates.
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Introducing heterogeneity in lifetime data by means of an unobserved
quantity in this way was initiated by [Clayton, 1978], [Vaupel et al., 1979]
and [Hougaard, 1984]. The distribution of the random variable Z is often
assumed to be Gamma [Vaupel et al., 1979] or Inverse Gaussian [Hougaard,
1984]. As with any part of the process of statistical modelling, it is desirable
to check that the assumed distribution is supported by the data. The purpose
of the present paper is to develop diagnostic plots for the frailty distribution,
with the emphasis on these two common choices, the Gamma and Inverse
Gaussian. We will be assuming that the baseline hazard function hb has been
specified correctly and that the multiplicative proportional hazards frailty
model is the proper one to describe the data.

2 Diagnostic plots for mixtures

From the proportional hazards assumption, it follows that the conditional
survivor function for an individual with frailty z is

S(t|z) = [Sb(t)]
z

where Sb is the baseline survivor function. In particular, if the baseline model
is taken to be Weibull (η, β), then the survivor function conditional on frailty
z is

S(t|z) = exp(−zs)
where s = (t/η)

β
. If Z has distribution function G on (0,∞), then the

unconditional survivor function is given by
∫ ∞

0

exp(−zs)dG(z)

If G is taken to be Gamma with shape and scale parameters both equal to ν
(so that the mean is one), then

S(t) =
(
1 +

s

ν

)−ν
(1)

(the Burr distribution), while taking G to be Inverse Gaussian with scale 1
and shape λ yields the survivor function

S(t) = exp

(
λ

(
1−

√
2s

λ
+ 1

))
(2)

(In both cases, a constraint has been applied to the parameters of G to make
the model identifiable. Other choices of constraint are possible but make no
difference in principle.)

We now look for appropriate diagnostic plots to enable us to check that
the assumption of one of these distributions is in fact correct. The idea is to
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plot some function of the non-parametric Kaplan-Meier estimate of survival,
Ŝ(t), against some function of t, to obtain the characteristic shape associated
with the distributions (1) and (2).

Taking logarithms of (1), and supposing that s/ν is large enough so that
log(1 + s/ν) ≈ log(s/ν), we see that −logŜ(t) against logt should give a
straight line.

[Wolstenholme, 1999] suggests this plot for the Pareto distribution. This is
the special case of the Burr distribution when the baseline hazard is exponen-
tial, which is a special case of the Weibull (β = 1). However, we observe that
the above approximation is poor for the early failures. These give the plot a
characteristic horizontal section, whose length depends on ν, disappearing as
ν becomes small (high degree of heterogeneity) (Figure 1). When the frailty
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Fig. 1. Diagnostic plot for Burr distribution for various values of the parameter ν.
1000 simulations of samples of size 1000, baseline Weibull parameters 1000 (scale)
and 2 (shape). Type I censoring at t=3000.

distribution is the Inverse Gaussian, taking logarithms of (2) suggests the
plot of log(−logŜ(t)) against logt if λ is large. Under these circumstances,
there is only a small degree of heterogeneity and the distribution will not be
very different from the baseline Weibull distribution. This is the standard
diagnostic plot used to check for the Weibull distribution. It gives a straight
line with slope equal to the shape parameter β. On the other hand, suppose
that λ is large. It is easy to show that in this case the Weibull(η, β) - Inverse
Gaussian(1,λ) mixture tends to the Weibull with scale parameter η/(2λ)1/β

and shape β/2. Thus the same plot gives a straight line with slope β/2. For
intermediate values of λ, the plot should be curved with slope falling from β
to β/2 as time increases. Examples are shown in Figure 2.

3 Closure property of the frailty distributions

To develop another kind of diagnostic plot, we start with a closure property
of Gamma frailty in the proportional hazards model ([Vaupel et al., 1979]).
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Fig. 2. Diagnostic plot for Weibull-Inverse Gaussian mixture for various values of
the parameter λ. Details of simulations as in Figure 1.

Given that the frailty distribution among all individuals is Gamma with scale
parameter κ and shape parameter λ, then the frailty distribution among
the population of survivors at time t is again Gamma with the same shape
parameter λ but different scale parameter given by κ + Hb(t), where Hb(t)
is the cumulative baseline hazard function. This property can be generalized
to a whole family of distributions.

3.1 Generalization of the Gamma frailty property

The Gamma frailty property given by [Vaupel et al., 1979] can be generalized
first to the case of available covariates. More specifically, given that the frailty
distribution is Gamma(κ, λ), then the frailty distribution among survivors at
time t, conditional on the value of the covariates, is Gamma (κ+Hx

b (t), λ),
where Hx

b (t) is given by

Hx
b (t) =

∫ t

0

e β
′
x(u)hb(u)du.

The closure property is not a characterization of the Gamma distribution
only. It is quite easy to show that a similar property holds also for the
Inverse Gaussian and the Generalized Inverse Gaussian (GIG). Furthermore,
a similar property holds for a whole class of distributions that belong to the
exponential family [Hougaard, 1984]. Let frailty Z be a random variable with
distribution F (α) on (0,∞), where α is the parameter vector, with p.d.f. of
the form

fz(z) =
e−[z,g(z)][η1(α),η2(α)]

′

Φ(α)
ξ(z)

which is an exponential family distribution with canonical statistics z and
g(z) [Shao, 1998]. For this frailty distribution the following theorem holds,
which extends Hougaard’s result by including covariates.
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Theorem 1 Given the frailty distribution F (α) with p.d.f. as above, then
under the proportional hazards frailty model the frailty distribution among
survivors at time t is again F (.). The value of η1(α), the element of the
parameter vector corresponding to z, changes, but the components of η2(α)
do not. More specifically, the p.d.f. of frailty among survivors at time t is
given by

fZ|T >t
(z) =

e−[z,g(z)][η∗1(α),η2(α)]
′

Φ∗(α)
ξ(z)

where η∗1(α) = η1(α) +Hx
b (t) and Φ∗(α) = Φ(α)ST (t).

The GIG distribution (and hence the Gamma and Inverse Gaussian distribu-
tions which it includes) belongs to the above class of the exponential family.
Unfortunately, some other distributions, like the lognormal, which are also
widely used as frailty distributions, do not belong to this class because they
do not have z as a canonical statistic. This obstacle can be overcome by con-
sidering a generalized distribution, adding one more parameter [Hougaard,
1986] which will be zero initially. So, the Theorem can be applied to all
distributions F (α) with p.d.f given by

fz(z) =
e−T (z)[η(α)]

′

Φ(α)
ξ(z)

where T (z) does not contain z as a component, since the above distribution
can be seen as a special case of GF (α, β) with p.d.f. given by

fz(z) =
e−[z,T (z)][β,η(α)]

′

ΦG(α, β)
ξ(z)

for β = 0. ΦG(α, β) is the integral over the range of z, R(z), of the numer-
ator of the previous relationship. Applying the Theorem to the distribution
GF (α, 0) shows that the frailty distribution among the survivors at time t
will be again GF but with parameter vector given by (α,Hx

b (t)).

3.2 Plots

Given that the frailty distribution has been chosen correctly, then our above
Theorem shows that the vector η2(α) of the initial parameters does not
change when we restrict our attention to the frailty distribution among those
units that have survived until time t. Let η̂2i(α)|T>t denote component i of
the maximum likelihood estimate of this vector among the survivors at time
t. If our assumption of the frailty distribution is correct, then η̂2i(α)|T>t
for any time t is an asymptotically unbiased estimator of the same quantity
η2i(α). Therefore, a plot of η̂2i(α)|T>t against time should give a straight
line parallel to the time axis.
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For the Gamma(κ, λ) and Inverse Gaussian(κ, λ) distributions of frailty

this plot reduces to λ̂|T>t versus t since η2(κ, λ) = λ. For the GIG(λ, δ, γ), the

proposed plots are of λ̂|T>t and δ̂|T>t against t, since η2(λ, δ, γ) = (λ− 1, δ2)
for this distribution.

In all cases, the maximum likelihood estimates of the model’s parameters
that are required for the plots are obtained by maximising the logarithm of
the usual likelihood function for lifetime data (ti : i = 1, 2...n)

L =
n∏

i=1

{
h(ti)

δiS(ti)
}

where δi is the censoring indicator which takes the value 1 if ti is an observed
lifetime and zero if it represents a right censored observation. The expressions
for S(t) are given above in (1) and (2) for the Gamma and Inverse Gaussian
frailty distributions, respectively, and the hazard function h(t) can be ob-
tained as minus the derivative of logS. We first carry out this estimation
using all the data. Then we select a sequence of convenient time points τj
(j = 1, 2...k) and repeat the estimation k times, using in the ith estimation
only those data points ti satisfying ti ≥ τj .

3.3 Simulations

To illustrate the method, we simulated a set of 1000 uncensored data points
from the Burr distribution (Weibull-Gamma mixture) and produced the
above plot based on repeated estimates of ν. Then we fitted the incorrect
Weibull-Inverse Gaussian mixture to the same data and produced the corre-
sponding plot (Figure 3). Next we repeated the exercise with the roles of the
two distributions reversed. Thus we generated a set of data from the Weibull-
Inverse Gaussian mixture and produced the plots for both the correct model
and for the incorrect Burr distribution (Figure 4). In both cases, the plots
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Fig. 3. Plot defined in Section 3.2, fitting (left) correct Burr distribution, (right)
incorrect Weibull-Inverse Gaussian mixture to data generated from Burr (ν = 1).
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Fig. 4. Plot defined in Section 3.2, fitting (left) incorrect Burr distribution, (right)
correct Weibull-Inverse Gaussian mixture to data generated from Weibull-Inverse
Gaussian mixture (λ = 0.5).

discriminate extremely well between the two frailty distribution; the plot for
the correct distribution is a horizontal straight line as predicted, but the plot
for the incorrect distribution departs clearly from a horizontal line.

4 Example

For a real-data illustration of our methods, we used data on the duration of
a treadmill test undertaken by 978 successive patients at a cardiac clinic in
Athens. Figure 5 shows the simple diagnostic plots that were developed in
Section 2. The plot for the Burr distribution, on the right, has the expected
shape of a straight line preceded by a horizontal section. The plot for the
Weibull-Inverse Gaussian mixture, on the left, is curved as expected, but the
curvature is greater than it should be if this is the correct model. Figure 6
shows the diagnostic plots that were developed in Section 3. These indicate
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Fig. 5. Plots defined in Section 2 for data on 978 cardiac patients. Left: Weibull-
Inverse Gaussian mixture; right: Burr.
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Fig. 6. Plots defined in Section 3 for data on 978 cardiac patients. Left: Weibull-
Inverse Gaussian mixture; right: Burr.

clearly that the assumption of a Gamma distribution for frailty is acceptable,
because the estimates of its shape parameter at different times are scattered
about a horizontal line, but the Inverse Gaussian assumption is not.

5 Further research

Although graphical diagnostics have proved very useful in statistical mod-
elling, it can also be valuable to have formal statistical tests for the presence
of any frailty, thus showing whether or not it is necessary to use the models
considered here. In these models, one parameter of the distribution controls
both the presence and the degree of frailty. For example, when the frailty
distribution is Gamma(ν, ν), the parameter ν controls the amount of frailty
since V (Z) = 1/ν → 0 (ν → ∞). If the basic distribution is Weibull and
the unconditional distribution is therefore Burr, the presence of any frailty
can be examined by testing the null hypothesis ν = ∞ (or 1/ν = 0) by
likelihood-based methods applied to the Burr distribution. The theory for
one of these methods, the score test, was given by [Crowder and Kimber,
1997] for multivariate lifetime data and the details for the univariate case
which we are interested in by [Kimber, 1996]. (In fact, the test also holds
for other Weibull mixtures, not just for Weibull-Gamma = Burr.) Other
likelihood-based tests that can be applied include a Wald test and a likeli-
hood ratio for this parameter. A difficulty that arises is that the null value of
the parameter being tested falls on the boundary of the parameter space. In
such cases, the distribution of minus twice the log likelihood ratio is not given
by the usual chi-squared approximation. Instead, a mixture of chi-squared
distributions usually applies. We intend to complete a study of the likelihood
ratio test for this model and then carry out a simulation study to compare
the properties of the different tests in order to recommend the best one for
use in practice.
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Abstract. Let X1,X2... be a sequence of i.i.d random variables representing suc-
cessive inputs to the moving average process,

Yn =
1

K

K−1X

i=0

Xn−i.

The Yn is off target by Xn if it exceeds a threshold. By introducing a two states
Markov chain, we define “on target significant level” and establish a technique for
evaluating the threshold corresponding to a prescribed on target significant level.
It is proved that in such circumstances for exponential and normal inputs, the
threshold is a linear function in the mean µX1 , where slops and intercepts are also
specified. These relationships can be easily applied for estimating the thresholds.
Keywords: Moving Average, Threshold, On target significant level..

1 Introduction

Let X1, X2, · · · be a sequence of independent and identically distributed ran-
dom variables, and let Yn be the corresponding left sided moving average,
as defined in the abstract. In practice, the input sequence {Xn} may rep-
resent successive loads, excess loads, rain falls, water supply in successive
periods, service time to the nth arrival, etc; and the moving averages are pro-
cesses indicating accumulations of certain number of immediate prior inputs.
Thus by taking into account K − 1 immediate prior inputs to the nth input,
the cumulative value corresponding to the nth input is

∑K−1
i=0 Xn−i, n =

K,K + 1,K + 2, · · · , and Yn = 1
K

∑K−1
i=0 Xn−i, n = K,K + 1,K + 2, · · ·

is a sequence of moving averages. The process Yn is off or on target at the
commencement of the arrival of the (n + 1)th input if Yn > L or Yn ≤ L
respectively. The threshold L is non-random and is considered as a parame-
ter. Our aim in this article is to specify, or estimate, L so that the moving
averages remains (1− a)%, 0 < a < 1, of times on target.

We prove that the status, off or on target, is indeed a two state Markov
chain, and derive formulas for the transition probabilities in terms of the
distribution of the inputs. This allows to define a prescribed “on target
significant level” for the moving averages, and then proceed to introduce a
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method to achieve the aim. We have examined our method for exponential
or normal inputs. Interestingly in these cases L turns out to be linear in the
mean of the distribution of the inputs, µX1 . Point estimation and interval
estimation can be easily established using the derived linear relationships.

The methodology and results presented in this article, we believe, can be
applied in Reliability, Control Theory, System Assessments, and Hydrology.
Moving averages are classical tools in time series, stochastic processes and
scan statistics; and are basis for many linear and nonlinear models. Moving
averages, in the content presented here, had not been treated in other works,
to the best of the authors’ knowledge. The threshold of moving averages, con-
sidered in this article, is different from the threshold moving average which
is a nonlinear model, [G. and Gooijer, 1998]. Two-state Markov chains, in
contents different from the one presented in this article, have been employed
by different authors as underlying probability models of various hydrology
events, [Vogel, 1987]. The works [Banifacio and Salas, 1999] and references
therein are rich in providing applications of these types of probability tech-
niques to hydrology data.

2 A Markov Chain

Let X1, X2, · · · , and Yn be as defined in the Introduction, Define

Vn =

{
0, Yn > L
1, Yn ≤ L , n = K,K + 1, · · ·

We recall that the situation Vn = 0 indicates that Yn is off target by Xn,
while Vn = 1 indicates that it is not. We prove below that {Vn} is indeed a
Markov chain and provide its transition probabilities.

Lemma 1. The process Vn, n = K,K + 1, · · · , is a Markov chain with
transition probabilities.

P00 =

∫ +∞
−∞ [1− F (KL− t)]2fTK−1(t)dt

1− FTK (KL)
, K ≥ 1, (2.1)

P11 =

∫ +∞
−∞ [F (KL− t)]2fTK−1(t)dt

FTK (KL)
, K ≥ 1, (2.2)

where F is the distribution of X1, and TK = X1 +X2 + ...+XK , T0 = 0.

The Lemma 1 can be deduced through classical techniques in probabil-
ity, so its proof is omitted here. By using the transition probabilities, the
stationary distribution of the Markov Chain {Vn} is easily given by

π0 =
P10

P10 + P01
, π1 =

P01

P10 + P01
, (2.3)
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[Karlin and Taylor, 1998]. The return period of the state 0 and state 1 are
respectively m00 = 1

π0
, m11 = 1

π1
, which specify the duration of successive

visits to these states. Other duration are measured by m01 = 1
1−P00

, m10 =
1

1−P11
.

Now we are in a position to define “on target significant level”.

Definition 1.1. We call the (1− a)% the “on target significant level” of the
moving average process {Yn}, where a = π0 is the stationary probability of
the state 0 of the Markov chain {Vn}.

3 Exponential And Normal Inputs

In this section we establish a relationship between the threshold L and the
mean of the distribution of inputs, whenever the distribution is exponential
or normal.

Let us assume loads X1, X2, · · · are i.i.d. exponentially distributed with
parameter λ, E(X1) = 1/λ. The following theorem specifies the appropriate
threshold for the moving average to possess the on target (1−a)% significant
level.

Theorem 3.1. If inputs X1, X2, · · · follow exponential distribution with
parameter λ, then the least value L for the threshold to ensure (1− a)% on
target significant level for the moving average Yn is given by

L =
θ(a,K)

K
(
1

λ
), (3.1).

where θ(a,K) is the positive solution to the equation

π1(θ,K) = 1− a, (3.2)

and π1(θ,K) is given by (2.3) with

P00 = (K − 1)
N(θ,K − 2)

(K − 1)!−G(θ,K − 1)
, θ = λKL, (3.3)

and

P11 = (K − 1)
G(θ,K − 2) +N(θ,K − 2)− 2

K−1e
−θθK−1

G(θ,K − 1)
, θ = λKL,

(3.4)
where

G(θ,K) =

∫ θ

0

xKe−xdx , N(θ,K) =

∫ θ

0

(θ − x)Ke−(θ+x)dx.

Proof. The statement of the theorem indeed indicates the outline of the
proof. By some algebraic simplification, the (2.1) and (2.2) will reduce to
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(3.3) and (3.4) respectively. By examining later relations, we notice that K
and θ = λKL are parameters that are involved in transition probabilities.
This gives L = θ

K (1/λ). But θ can be derived from (3.2) when the on target
significant level is prescribed. Proof is complete.

Remark 3.1. For K = 7, we solved (3.2) for the θ(a,K) with different
values of 1 − a, using Mathematica 3.0, [Wolfram, 1991]. The solutions are
given in Table 1. The transition and stationary probabilities are also plotted
in terms of θ for K = 7, Figure 1. The threshold L in (3.1) is also plotted
in terms of the mean 1/λ, Figure 2. We notice from Fig. 2 that π1(θ, 7) is
strictly increasing, providing a unique solution for θ(a, 7).

1-a 0.9 0.8 0.7 0.6 0.5

θ(a, 7) 8.197 5.651 3.507 1.625 0

Table 1. Exponential Distribution; Significant Levels and Corresponding θ(a, 7) in
(3.2).

Normal Distribution. Suppose the inputs X1, X2... are i.i.d normally
distributed with mean µ and standard deviation σ. Interestingly, in this
case also L is linear in µ. Details are given below.

Theorem 3.2. If inputsX1, X2, · · · follow normal distribution with mean
µ and standard deviation σ, then the least value L for the threshold to ensure
(1− a)% on target significant level for the moving average Yn is given by

L = µ+ η(a,K)σ, (3.5)

where η(a,K) is the solution to the equation

π1(η,K) = 1− a, (3.6)

and π1(η,K) is given by (2.3) with

P00 =
C(η,K)

1− Φ(
√
Kη)

, η =
L− µ
σ

, (3.7)

and

P11 =
B(η,K)

Φ(
√
Kη)

, η =
L− µ
σ

(3.8)

where

C(η,K) =
1√

2π(K − 1)

∫ +∞

−∞
[1− Φ(x)]

2
e−

1
2(K−1)

(x−Kη)2dx,
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Fig. 1. Top Left: P00(θ, 7) ; Top Right: P11(θ, 7); Bottom: π0(θ, 7).

and

B(η,K) =
1√

2π(K − 1)

∫ +∞

−∞
[Φ(x)]

2
e−

1
2(K−1)

(x−Kη)2dx,

Proof. In this case we note that the transition probabilities in (3.7) and
(3.8) are expressed in terms of the parameter η = L−µ

σ . So for given a, the
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Fig. 2. Plots of L in terms of 1/λ for a = 0.9, 0.8, 0.7, 0.6, 0.5.

η(a,K) in (3.5) is the solution to (3.6). The proof is complete.

Remark 3.2. For K = 4, the (3.6) is solved for η(a,K) with different
values for 1 − a, using Mathematica. The version of Mathematica that we
used did not solve the (3.6) directly, so we had to bypass this barrier by
approximating the integrals involved in the equation by corresponding sum-
mations. The solutions are given in Table 2. The transition and stationary
probabilities are also plotted in terms of η forK = 4, Figure 3. The threshold
L in (3.1) is also plotted in terms of the mean µ for σ = 1, Figure 4.
Remark 3.3. The (3.1) and (3.5) can also be used estimation purposes
when L is considered as an unknown parameter. It easily follows that for
exponential and normal inputs, respectively

L̂ =
θ(a,K)

K
x,

L̂ = x+ η(a,K)s.

Remark 3.4. Although the exponential and normal distributions were
treated explicitly, the method, nevertheless, can be carried out for other
distributions in order to identify or estimate the threshold parameter.

1-a 0.9 0.8 0.7 0.6 0.5

η(a) 0.65 0.47 0.28 0.14 0

Table 2. Normal Distribution; Significant levels and corresponding η(a) in (3.6)
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Fig. 4. Plots of L(a, 4) in terms of µ for σ = 1 and a = 0.9, 0.8, 0.7, 0.6, 0.5.
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Abstract. This paper describes the proportional hazard models of right-censored
survival data with Weibull distribution whose parameters vary in the time and
the impact of individual heterogeneity being described by frailty. We obtain the
equations of the maximum likelihood estimators for this model.
Keywords: proportional hazard models, Weibull distribution, frailty.

1 Introduction

The proportional hazard model is found among the most important models
for the survival analysis data. The use of proportional hazard models for
the study of survival times has received a great attention on the part of
researchers, both in their theoretical aspect as well as in their interesting and
numerous applications.

Likewise, an important characteristic of this type of investigations is that
the data are frequently incomplete, meaning that the observation of survival
time is not known for all individuals. These data are known as censored data.

[Aitkin and Clayton, 1980] and [Noura and Read, 1990] study the com-
pletely parametric models with a specified baseline hazard distribution. The
first authors make use of exponential, Weibull, extreme value and generalized
extreme value distributions. The second authors consider the piecewise model
of the baseline hazard distribution and study the case of the Weibull distri-
bution. In both works the presence of censored and uncensored observations
is considered.

Piecewise models are based on the assumption that the parameters that
characterize the base distribution vary with the passing of time. This is the
reason why a partition of the time interval is introduced so as to maintain
the base distribution, although with different parameters on each one of the
intervals.

We have used this method considering that the survival time follows a
Weibull distribution where the parameters chraracterizing the base-line dis-
tribution may vary with time for different intervals but remain constant at
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each interval. The points where the parameters change are called “change-
points”.

Ordinary life table analyses implicitly assume that the population is ho-
mogeneous, an assumption which is usually unrealistic. It is more relevant
to consider the population as a mixture of individuals with different risk, the
heterogeneity being described by a quantity know as the frailty. Models for
heterogeneity have been proposed, for example by [Vaupel et al, 1979] who
introduced an unobserved quantity, that is the so-called frailty. This quan-
tity described risk factors measurable or nonmeasurable, not included in the
model.

The model to describe the population as a mixture assumes that to each
individual corresponds a quantity, the frailty, describing the individual’s rel-
ative risk.

In this work we consider the piecewise model for the Weibull distribution,
the existence of censored observations and also we study the heterogeneity
between individuals by a fraitly that we suppose follow a positive stable
distribution.

2 Model construction

Let the survival time T be a nonnegative random variable that follows
Weibull’s distribution with a survivor function S(t) and a hazard function
h(t). The heterogeneousness of the population is stated by a covariates vec-

tor z = (z1, z2, · · · , zp)Tdescribing the characteristics of both the patient and
the illness.

The hazard function depends in general on both time and on the set of
covariates. The proportional hazard model separates these components as,

h(t; z) = γρ(ρt)γ−1eβ
T z,

where the linear predictor βT z expresses the relative effect of the covariates
z in terms of an unknown parameter vector β = (β1, β2, · · · , βp)T .

The survivor function for these models is:

S(t; z) = exp
[
−(ρt)γ exp

(
βT z

)]
.

The hazard at time t conditional on x for a person with frailty x is assumed
to be of form

h(t, x) = xh(t),

where the non-random function h(t) common for all individuals is indepen-
dent of x and describes the time effect.

Several authors have studied the model with gamma distributed frail-
ties. We consider a stable positive distribution and whose scale factors have
Laplace transform

L(s) = E [exp (−sx)] = exp (−sα) , s ≥ 0,
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where α ∈ (0, 1]
Given the Fraitly x these expressions become

h(t; z,x) = γρ(ρt)γ−1xeβ
T z ,

S(t; z,x) = exp
[
−(ρt)γx exp

(
βT z

)]
.

(1)

In this case, the corresponding survivor function is

S(t; z) =

∫
exp

[
−Λ(t)xeβ

T z
]
f(x)dx, (2)

where Λ(t) is the cumulative hazard function.
If x follows a positive stable function, you get

S(t; z) = exp
[
−
[
exp

(
βT z

)
Λ(t)

]α]
(3)

where α is a parameter coming from the fraitly distribution.
We consider that the parameters that characterize the Weibull distribu-

tion can vary with time. Thus we divide the time axis in k + 1 intervals, by
using the changepoints a1, · · · , ak. For convenience a0 = 0 and ak+1 = ∞.
In each interval (aj−1, aj) the distribution parameters take the values ρj and
γj .

Denoting g(t) = lnΛ(t). In aj−1 < t ≤ aj , g(t) becomes

g(t) = ln [ρjt]
γj , j = 1, . . . , k + 1. (4)

For j = 1, . . . , k, due the continuity of g(t) in the changepoints, has to be
verified

ln [ρjaj ]
γj = ln [ρj+1aj ]

γj+1 , j = 1, . . . , k, (5)

from where we derive that

γj = γ1

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]
, j = 2, . . . , k + 1. (6)

Thus, for a survival time ending at j−th interval,

g(t) = γ1 ln (ρjt)

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]
. (7)

For the i−th individual

g(ti) =

k+1∑

j=1

cijγ1 ln (ρjti)

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]
, (8)

where for j = 1, the product in p is omitted and cij is an indicator variable
defined by:
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cij =

{
1 if aj−1 < ti ≤ aj
0 otherwise

with i = 1, . . . , N and j = 1, . . . , k + 1 where N represents the number of
individuals.

Let Hi = expαg(ti) + βT z and

hi = H ′
i = αg′(ti)Hi = αHi

k+1∏

j=1

[
γ1

ti

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]

]cij

, (9)

the survival and density functions can be expressed by

S(ti; z) = exp [−Hi] ; f(ti; z) = hi exp [−Hi] . (10)

3 Likelihood equations

Suppose that in a data set consisting of N observations, n are uncensored
and m are censored. We define a censor indicator in the following manner:,

ωi =

{
1 if the observation is uncensored (Ti = ti)
0 if it is censored (Ti > ti)

. (11)

If a survival time observation is no censored contributes with f(t) to the
likelihood and if the observation is censored in time t, contributes with S(t).
Thus the likelihood function is,

l =

N∏

i=1

[f(ti; z)]
ωi [S(ti; z)]

1−ωi , (12)

and the log-likelihood function,

L =

N∑

i=1

{ωi lnh(ti; z) + lnS(ti; z)} =

N∑

i=1



ωi


lnα+ α




p∑

s=1

βszis +

k+1∑

j=1

cij

(
γ1 ln (ρjti)

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]

)
 +

k+1∑

j=1

cij ln

(
γ1

ti

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]

)
 −

expα




p∑

s=1

βszis +

k+1∑

j=1

cij

(
γ1 ln (ρjti)

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]

)



 .

(13)
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where for j = 1, the product in p is omitted.
The first derivatives of L with respect to the parameters βs, γ, α and ρ

are :

∂L

∂βs
= α

N∑

i=1

zis (ωi −Hi) para s = 1, . . . , p (14)

∂L

∂γ1
=

N∑

i=1

α



(ωi −Hi)



k+1∑

j=1

cij ln (ρjti)

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]


+

ωi
γ1



 (15)

∂L

∂α
=

N∑

i=1




ωi
α

+ (ωi −Hi)




p∑

s=1

βszis +

k+1∑

j=1

cij

(
γ1 ln (ρjti)

j−1∏

p=1

ln [ρpap]

ln [ρp+1ap]

)





(16)

∂L

∂ρ1
=

1

ρ1

N∑

i=1



αγ1 (ωi −Hi)


ci1 +

k+1∑

j=2

cij
ln (ρjti)

ln (ρ2a1)

j−1∏

p=2

ln [ρpap]

ln [ρp+1ap]


 +

ωi
ln (ρ1a1)

k+1∑

j=2

cij





(17)

∂L

∂ρj
=

1

ρj

N∑

i=1





(ωi −Hi)
αγ1

(ln (ρjaj−1))
2

j−1∏

p=1

ln [ρpap]

j−1∏

p=2

ln [ρpap−1]

×


cij ln

aj−1

ti
+

ln
aj−1

aj
ln [ρj+1aj ]

k+1∑

p=j+1

cip ln (ρpti)

p−1∏

r=j+1

ln [ρrar]

ln [ρr+1ar]


+

ωi
ln (ρjaj−1)


−cij +

ln
aj−1

aj
ln [ρjaj ]

k+1∑

p=j+1

cip








for j = 2, . . . , k + 1 .

(18)

4 Some questions about the equations resolution

The solving of these equations may be performed by general iterative meth-
ods, by directly employing statistical packages such as GLIM or we can study
the behaviour of maximum-likelihood estimators through the simulation.
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Upon the determination of the appropriate number of changepoints and
their locations there are some graphic procedures. In practice it is enough,
in most cases, to consider only one or two changepoints. Moreover, it must
be indicated that the physical nature of the problem also sometimes permits
on the location of the possible changepoints.
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Abstract. In this paper, we deal with a continuous-time software reliability model
designed by Littlewood. This model may be thought of as a partially observed
Markov process. The EM-algorithm is a standard way to estimate the parameters of
processes with missing data. The E-step requires the computation of basic statistics
related to observed/hidden processes. In this paper, we provide finite-dimensional
non-linear filters for these statistics using the innovations method. This allows to
plan the use of the filter-based EM-algorithm developed by Elliott.
Keywords: Filtering, Hidden Markov process, Point process, Innovations method.

1 Introduction

A major issue in software reliability modeling is the calibration of the models
from data. This is well documented in the so-called “black-box approach”.
We refer to [Ledoux, 2003] and references therein for details. To the best of
our knowledge, no statistical procedure has been proposed in the architecture-
based approach for assessing the reliability of a software. A standard model
in this context was provided by Littlewood [Littlewood, 1975]. It has inspired
most other works [Goseva-Popstojanova and Trivedi, 2001]. Littlewood pro-
posed a Markov-type reliability model for modular softwares. For a software
with a finite number of modules:

– the structure of the software is represented by a finite continuous time
Markov chain X = (Xt)t≥0 where Xt is the active module at time t.
The generator of X is denoted by Q and its state space is assumed to be
U := {ei, i = 1, . . . , n}.

– When module ei is active, the failure times are part of a homogeneous
Poisson Process with intensity µ(i).

– When control switches from module ei to module ej , a failure may happen
with probability µ(i, j).

– When a failure appears, the time to recover a safe state is neglected. A
failure does not affect the execution dynamics of the software.

– All failure processes are assumed to be independent, given a sequence of
activated modules.
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Let us denote the number of observed failures over [0, t] by Nt. It can be
seen that (Nt, Xt)t≥0 is a Markov process with state space N×U . It has the
following generator

A =




D0 0 0 · · ·
D1 D0

. . .
. . .

...
. . .

. . .
. . .


 (1)

when the states are listed in lexicographic order and the matrices D0 and D1

are defined by

if j 6= i : D0(j, i) := Q(j, i)(1− µ(j, i)) D1(j, i) := Q(j, i)µ(j, i),

D0(i, i) := −
∑

j 6=i
Q(j, i)− µ(i) D1(i, i) = µ(i).

The nonnegative number D0(j, i) (j 6= i) represents the rate at which X
jumps from state ei to ej with no failure event. The entry D1(j, i) is the rate
at which X jumps from state ei to state ej with the occurrence of one failure.
Note that Q = D0 +D1. The distribution function of the counting variable
Nt may be numerically evaluated using the uniformization technique. But
this requires the knowledge of the non-negative parameter vector

θ = {Dk(j, i), k = 0, 1 i, j = 1, . . . , n}.
In general, we can obtain a priori estimates for θ using procedures reported in
[Goseva-Popstojanova and Trivedi, 2001]. They are based on data collected
at earlier phases of the software life cycle (validation phases, integration
tests,. . . ). Sometimes, these estimates might appear to be rough estimates
when the software is in operation. The only available data is the observation
of failure events. In that perspective, the process (N,X) should be thought
of as a partially observed Markov process or a hidden Markov process. The
observed process is the failure point process (Nt)t≥0 and the state or hidden
process is the finite Markov process (Xt)t≥0. The EM-algorithm is a standard
way to estimate the parameters of hidden Markov processes. Elliott proposed
a filter-based EM-algorithm in [Elliott et al., 1995]. That is, the standard
forward-backward form of the E-step of the algorithm is replaced by a single-
pass procedure that involves finite-dimensional filters for various statistics
related to the observed/hidden processes. The aim of this paper is to provide
such finite-dimensional filters for Littlewood’s model.

We point out that we deal with a failure point process that is a Markovian
Arrival Process (MAP) as defined by Neuts [Neuts, 1989]. The Littlewood
model has the (doubly stochastic) Poisson process (driven) modulated by a
Markov process as a special instance (setting parameters µ(·, ·) to 0). Statis-
tical estimation for the MAP has been recently developed in the continuous-
time context (see [Asmussen, 2000, Klemmm et al., 2003, and references
therein]. All these works use the forward-backward procedure. The numeri-
cal experiments reported in their studies show that EM-algorithm works well
in general.
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2 Finite-dimensional filters

Main notation and convention

– Vectors are column vectors. Row vectors are denoted by means of the
transpose operator (.)T.

– 1k is a k-dimensional vector with each entry equals to one.
– We denote the left limit of function f at t by ft−.

For any function t 7→ ft, ∆ft := ft − ft− for t > 0 is the jump of the
function at time t. We set ∆f0 := f0.

– The state space of X is U := {ei, i = 1, . . . , n}, where ei is the ith vector
of the canonical basis of Rn. With this convention,

1{Xt=ei} = 〈Xt, ei〉, 1T

nXt = 1

where 〈·, ·, 〉 is the usual scalar product in Rn.
– All processes are assumed to be defined on the same probability space

(Ω,F ,P). The internal filtrations of processes N and (N,X) are denoted
by FN = (FNt )t and F = (Ft)t respectively. These filtrations are assumed
to be complete.

– For any integrable adapted random process (Zt)t≥0, the conditional ex-

pectation E[Zt | FNt ] is denoted by Ẑt.

2.1 Basic material on the observed/hidden processes

We report here a semi-martingale representation of the basic statistics of
the Littlewood’s model for which filters will be derived. Due to the special
structure of generator A of (N,X) (see (1)), N and the following counting
processes are easily interpreted to be counters of specific transitions in (N,X)

NX,ji
t :=

∑

0<s≤t
〈Xs−, ei〉〈Xs, ej〉 =

∫ t

0

〈Xs−, ei〉〈ej , dXs〉

L1,ji
t :=

∑

0<s≤t
〈Xs−, ei〉〈Xs, ej〉∆Ns =

∫ t

0

〈Xs−, ei〉〈Xs, ej〉dNs

j 6= i L0,ji :=
∑

0<s≤t
〈Xs−, ei〉〈Xs, ej〉(1 −∆Ns) = NX,ji

t − L1,ji
t

and Nt(x, y) is the number of transitions of (N,X) from state x to state y at
time t. It is well known that [Bremaud, 1981]

Mt(y, x) := Nt(y, x)−
∫ t

0

A(y, x) 1{(Ns−,Xs−)=x}ds

is a F-martingale. In other words, the F-semi-martingale (or Doob-Meyer

here) decomposition of N(y, x) is Nt(y, x) =
∫ t
0 1{(Ns−,Xs−)=x}A(y, x)ds +
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Mt(y, x). Then, it is easily seen that the F-semi-martingale decomposition
of the counting processes above are

Nt =

∫ t

0

λsds+Mt with λs := 1T

nD1Xs− (2)

NX,ji
t :=

∫ t

0

Q(j, i)〈Xs−, ei〉ds+MNX(j,i)
t

Lk,jit :=

∫ t

0

Dk(j, i)〈Xs−, ei〉ds +MLk,ji

t k = 0, 1 (3)

whereM,MNX(j,i),MLk,ji are F-martingales.
The last statistics that we need, is the sojourn time of X in any state ei

in the interval [0, t]

O(i)
t :=

∫ t

0

〈Xs−, ei〉ds

The basic semi-martingale decomposition of the Markov process X is [Bre-
maud, 1981]

Xt =

∫ t

0

QXs−ds+MX
t . (4)

We recognize in (4) and (2) a standard representation of a continuous-time
hidden Markov process, with X as the state process and N the observed
process. The observation and state “noises” are correlated here.

2.2 The EM-algorithm

We briefly explain the EM-algorithm for our continuous-time hidden Markov
model. We refer to [Klemmm et al., 2003] for full details. For a fixed param-
eter vector θ, we denote the underlying probability measure and associated
expectation respectively by Pθ and Eθ. X0 or its probability distribution x0

is assumed to be known. The observed data are supposed to be the inter-
failure durations {t1, . . . , tK} where tK = t. The likelihood function for the
complete data (N,X) up to time t under Pθ is

Lt(θ;N,X) :=

n∏

i,j=1,

D1(j, i)
L

1,ji
t

n∏

i,j=1,j 6=i
D0(j, i)

L0,ji
t

n∏

i=1

eD0(i,i)O(i)
t

n∏

i=1

x0(i)
〈X0,ei〉.

The formulas for estimating θ from the observations Ns, s ≤ t are obtained
using the following iterative procedure:

i ) Initialization : Choose θ0
ii ) E-step. Set θ := θl. Compute the so-called pseudo-log-likelihood Q(· | θ)

defined by
Q(θ∗ | θ) := Eθ

[
logLt(θ

∗;N,X) | FNt
]

(5)

where θ∗ := {D∗
k(j, i), i, j = 1, . . . , n; k = 0, 1}.
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iii ) M-step. Determine θl+1 maximizing the function (5).
iv ) Return in 2 until a stopping criterion is satisfied.

For the M-step, it is easily seen that

i, j = 1, . . . , n D∗
1(j, i) =

L̂1,ji
t

Ô(i)
t

, D∗
0(j, i) =

L̂0,ji
t

Ô(i)
t

, i 6= j. (6)

An appealing property of the EM-algorithm is that the sequence of estimates
{θl, l ≥ 0} gives a nondecreasing values of the likelihood function with equal-
ity iff θl+1 = θl (under mild conditions). Note that the zero entries of Dks
are preserved by the procedure above.

As a result of the procedure above, we have to compute the estimates
in (6). The standard way is to use the Baum-Welch implementation of the
EM-algorithm (also referred to as the “forward-backward” technique). This is
what is done in the previously mentioned works [Asmussen, 2000, Klemmm et
al., 2003]. Using the filter-based approach pioneering by Elliott [Elliott et al.,
1995], the estimates in (6) are computed from the filters given in Theorem 1.
The basic difference with the standard Baum-Welch method is that only one
pass through the data set is needed for the filter-based method.

2.3 The results

We use a trick proposed by Elliott. We compute the following filters

N̂X,jiXt, Ô(i)Xt and L̂1,jiXt

which turn to be finite-dimensional. Then, we have

N̂X,ji
t = 1T

nN̂
X,jiXt, Ô(i)

t = 1T

nÔ(i)Xt, and L̂1,ji
t = 1T

nL̂1,jiXt.

A filter equation for L0,ji
t Xt (j 6= i) can be derived as that of Theorem 1 or

using the fact that L̂0,jiXt = N̂X,jiXt − L̂1,jiXt.

Theorem 1 Let λ̂t := 1T

nD1X̂t−. The fundamental FN -martingale (Nt −∫ t
0 λ̂sds)t≥0 is denoted by (M̂N

t )t≥0.

i ) Estimator for the state. We have for any t ≥ 0

X̂t = X̂0 +

∫ t

0

QX̂s−ds+

∫ t

0

D1X̂s− − X̂s−λ̂s

λ̂s
dM̂N

s . (7)

ii ) Estimator for the number of jumps of X from ei to ej . We have for any
t ≥ 0

N̂X,jiXt =

∫ t

0

QN̂X,jiXs−ds+

∫ t

0

Q(j, i)〈X̂s−, ei〉ds ej

+

∫ t

0

D1N̂X,jiXs− − N̂X,jiXs−λ̂s

λ̂s
dM̂N

s .

(8)
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iii ) Estimator for the sojourn time to ei. We have for any t ≥ 0

Ô(i)Xt =

∫ t

0

QÔ(i)Xs−ds+

∫ t

0

〈X̂s−, ei〉ds ei

+

∫ t

0

D1Ô(i)Xs− − Ô(i)Xs−λ̂s

λ̂s
dM̂N

s .

(9)

iv ) Estimator for the number of joint transitions. We have for t ≥ 0

L̂1,jiXt =

∫ t

0

QL̂1,jiXs−ds+

∫ t

0

D1(j, i)〈X̂s−, ei〉ds ej

+

∫ t

0

D1(j, i)〈X̂s−, ei〉 ej +D1L̂1,jiXs− − L̂1,jiXs−λ̂s

λ̂s
dM̂N

s .

(10)

Remark 1 The filters for the statistics of an MMPP may be obtained from
the previous theorem. We have D1 = Diag(µ(i)).

Proof. A proof of (7) may be found in [Gravereaux and Ledoux, 2004]. In

the sequel,M (resp. M̂) will denote a generic F (resp. FN)-martingale. The
proof of (9) is as follows. An integration by parts gives

O(i)
t Xt =

∫ t

0

O(i)
s−dXs +

∫ t

0

Xs−dO(i)
s + [O(i), X ]t︸ ︷︷ ︸

0

=

∫ t

0

QO(i)
s Xs−ds+

∫ t

0

〈Xs−, ei〉eids+M from (4). (11)

The FN -optional projection of the equation above, is

Ô(i)Xt =

∫ t

0

QÔ(i)Xs−ds+

∫ t

0

〈X̂s−, ei〉ei + M̂. (12)

The integral representation of FN -martingales says that M̂ in the right hand
side member above, has the form [Bremaud, 1981]

∫ t

0

G(i)
s dM̂N

s .

Thus, the proof will be complete if we prove that

G(i)
s =

D1Ô(i)Xs− − Ô(i)Xs−λ̂s

λ̂s
. (13)
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The product NtÔ(i)Xt has the form from an integration by parts

NtÔ(i)Xt =

∫ t

0

Ns−dÔ(i)Xs +

∫ t

0

Ô(i)Xs−dNs + [N, Ô(i)X]t

=

∫ t

0

Ns−[QÔ(i)Xs + 〈X̂s−, ei〉 ei]ds+ M̂ from (12)

+

∫ t

0

Ô(i)Xs−λ̂sds+ M̂

+

∫ t

0

G(i)
s λ̂sds+ M̂ (14)

Note that O(i) has continuous paths so that ∆O(i)
s = 0. Next, the product

Nt(O(i)
t Xt) is with an integration by parts

NtO(i)
t Xt =

∫ t

0

Ns−d(O(i)X)s +

∫ t

0

O(i)
s−XsdNs

=

∫ t

0

Ns−[QO(i)
s−Xs− + 〈X̂s−, ei〉 ei]ds+

∫ t

0

O(i)
s−XsdNs from (11).

Let us compute the last term in the equality above:
∫ t

0

O(i)
s−XsdNs =

∑

0<s≤t
O(i)
s−Xs∆Ns =

∑

j

ej
∑

k

∫ t

0

O(i)
s−dL1,jk

s

=

∫ t

0

O(i)
s−
∑

j

ej
∑

k

D1(j, k)〈Xs−, ek〉ds+M from (3)

=

∫ t

0

O(i)
s−D1Xs−ds+M.

Then, we deduce from the last equality that

NtO(i)
t Xt =

∫ t

0

Ns−[QO(i)
s−Xs− + 〈Xs−, ei〉 ei]ds+

∫ t

0

O(i)
s−D1Xs−ds+M.

The FN -optional projection of the previous formula leads to a second decom-

position of the special semi-martingale NtÔ(i)Xt

NtÔ(i)Xt =

∫ t

0

Ns−[QÔ(i)Xs− + 〈X̂s−, ei〉 ei]ds+

∫ t

0

D1Ô(i)Xs−ds+ M̂.

(15)
We know that the bounded variations part of the decomposition of a special
semi-martingale is unique. Then, we can identify the corresponding terms
in the decompositions (14) and (15), that is the Lebesgue integrals. The
expression (13) of the gain G(i) follows easily.

Formulas (10) and (8) are shown in the same way. Their proofs are not
reported here for saving space.
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3 Conclusion

The Littlewood’s software reliability model may be thought of as a partially
observed Markov process. The contribution of this paper is to provide finite-
dimensional non-linear filters for various statistics associated with this model.
These filters are the first step in view of implementing the filter-based form
of the EM-algorithm proposed by Elliott [Elliott et al., 1995]. We mention
that basic extensions may be obtained following the guidelines of this paper.
We can derive filters for the general class of MAP’s. The case of occurrences
of failures in clusters can also be included in the discussion. We just have to
consider N as a multivariate point process of failures. From the numerical
point of view, a second step in implementing the filter-based approach would
be to find the so-called robust versions of the non-linear filtering equations
obtained here. Then, robust numerical algorithms may be expected. We refer
to [James et al., 1996] for a detailed discussion of such a time discretization
approach. In this perspective, we mention that it should be desirable to
obtain Zakäı form for our filters. Such a form can be derived from our results.
The details will be reported elsewhere.
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Abstract. Two distinct methods of construction of some interesting new classes of
multivariate probability densities are described and applied. As common result of
both procedures, two n-variate pdf classes are obtained. The classes are considered
as multivariate generalizations of the classes of univariate Weibullian and gamma
pdfs. Example of an application of the obtained n-variate pdfs to the problem of
modeling the reliability of multicomponent systems with stochastically dependent
life-times of their components is given. Possibility to construct an extension of the
considered random vectors to stochastic processes is communicated. Application
of the so obtained (ex-Weibullian) stochastic processes as highly non-Markovian
but simple models for maintenance of systems, with a history of all past repairs
recorded, is presented.
Keywords: multivariate probability density, system reliability and maintenance
modeling, highly non-Markovian models, n-variate ex-exponential, ex-Weibullian,
ex-gamma pdfs, pseudoaffine transformations on Rn.

1 On pseudoaffine transformations

Suppose T1, T2, . . . , Tn are independent random variables and for each
i = 1, . . . , n, Ti has a pdf that belongs to one of the following four classes of
probability distributions: Gaussian, exponential, Weibullian or gamma (i.e.,
all Ti ’s are assumed to be in exactly one of the above classes). To any so
defined random vector (T1, T2, . . . , Tn) apply a member from the following
new class of Rn → Rn pseudoaffine transformations (see [Filus and Filus,
2001b], [Filus and Filus, 2003b]) defined by the following scheme (recall that
the well known ordinary affine transformations in Rn are usually understood
to be compositions of nonsingular linears and translations on Rn):
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X1
d
= φ0T1 + ψ0,

X2
d
= φ1(X1)T2 + ψ1(X1), (1)

. . . . . . . . .

Xn
d
= φn−1(X1, . . . , Xn−1)Tn + ψn−1(X1, . . . , Xn−1),

where φ0, ψ0 are constants, with φ0 6= 0, and the functions

φ1(x1), . . . , φn−1(x1, . . . xn−1), ψ1(x1), . . . , ψn−1(x1, . . . , xn−1),

called parameter functions, are assumed to be continuous at least with respect
to each of their arguments x1, . . . , xn−1 separately, whenever present. It is
also assumed that, for j = 1, . . . , n − 1, φj(x1, . . . , xj) 6= 0. In general,
especially in reliability applications of the models to appear in this text, both
the following conditions: φj(0, . . . , 0) = 1, and ψj(0, . . . , 0) = 0 should hold
too. If ψ0 = ψ1(x1) = ψ2(x1, x2) = . . . = ψn−1(x1, . . . , xn−1) ≡ 0, then the
scheme (1) reduces to the pattern that will be called ‘(diagonal) pseudolinear’
as it is a generalization of linear mappings in Rn. As it can easily be shown
all the transformations (1) are easily reversible and the jacobians of their
inverses have remarkably simple product form:

∂(t1, . . . , tn)/∂(x1, . . . , xn) = [φ0]
−1 · [φ1(x1)]

−1 · · · [φn−1(x1, . . . , xn−1)]
−1.

Our aim is to investigate the joint pdfs of the random vectors (X1, . . . , Xn),
which are the images of the random vectors (T1, . . . , Tn) under the trans-
formations (1). These can easily be obtained using standard methods, and
accordingly to the class the distributions all Ti ’s belong to, one obtains
generalizations of those classes i.e., n-variate ex-normal , ex-exponential, ex-
Weibullian or ex-gamma pdfs respectively.

The ex-normals (under the name “pseudonormals”) were explored in
[Filus and Filus, 2000], [Filus and Filus, 2001b], [Filus and Filus, 2001a]
(see also [Kotz et al., 2000], pages 217-218). The other classes will be inves-
tigated in this paper in association with system reliability and maintenance
modeling.

2 The n-variate three parameter ex-Weibullian
probability densities

Suppose the transformations (1) are applied to the random vectors
(T1, . . . , Tn) whose independent marginals are distributed according to, in
general distinct, three parameter Weibull pdfs f1(t1), . . . , fn(tn) respectively.
Thus, for i = 1, . . . , n we have:
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fi(ti) =

{
(γi/βi)(ti − αi)γ(i)−1 exp [−(ti − αi)γ(i)/βi], for ti > αi,

0, elsewhere,
(2)

where the convention γ(i) = γi is to be adopted. The densities (2) will also be
denoted by W (αi;βi, γ(i)). Using standard procedures one easily obtains the
pattern, for ex-Weibullian pdfs of the random vectors (X1, . . . , Xn) present
in the formula (1), in the following factored form:

g(x1, . . . , xn) = g1(x1) · g2(x2|x1) · · · gn(xn|x1, . . . , xn−1). (3)

As it turns out, all the n factors are Weibullian pdfs. So the (initial) pdf of
X1 is

g1(x1) = W (φ0α1 + θ0;β1(φ0)
γ(1), γ(1)), (4)

while for each j = 2, . . . , n, the conditional pdf gj(xj |x1, . . . , xj−1) present in
(3) is also Weibullian with respect to xj alone i.e.,

gj(xj |x1, . . . , xj) = W (φj−1(x1, . . . , xj−1) · αj + θj−1(x1, . . . , xj−1) ; (5)

βj · [φj−1(x1, . . . , xj−1)]
γ(j), γ(j)

)

or, more concisely, as well as more generally (see further the “method of
parameter replacement”), as:

gj(xj |x1, . . . , xj−1) = W (Aj(x1, . . . , xj−1);Bj(x1, . . . , xj−1), γ(j)). (6)

In practical situations the values x1, . . . , xj−1 may often be considered ‘fixed’
(at the “time instant” j ).

3 Pseudogamma probabitity densities

The pattern (1), when applied to the random vectors of independent ran-
dom variables (T1, . . . , Tn) distributed as three parameter gammas, produces
other interesting class of joint probability distributions of the random vectors
(X1, . . . , Xn). As before, denote the pdfs of the n random variables Ti by
fi(ti) for i = 1, . . . , n. This time we have:

fi(ti) =





[
Γ (γi) · (βi)δi)

]−1
(ti − αi)δ(i)−1 exp [−(ti − αi)/βi], for ti ≥ αi,

0, elsewhere,

(7)
where the constants αi are the shift parameters, and the positive reals βi
and δ(i) are the scale and the shape parameters respectively. Denote the
pdfs fi(ti) in (7) by G(αi;βi, δ(i)). The method of the construction of the
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joint pdf of any random vector (X1, . . . , Xn) defined by (1) is exactly the
same as that for the ex-Weibullians. The general formula for the joint pdf
g(x1, . . . , xn) of (X1, . . . , Xn) has also the factored form (3). Now g1(x1) is
the gamma pdf:

G(θ0 + |φ0|α1; |φ0|β1; δ(1)), (8)

while for j = 2, . . . , n, the conditional pdfs in (3) are:

gj(xj |x1, . . . , xj−1) = G (θj−1(x1, . . . , xj−1) + |φj−1(x1, . . . , xj−1)| · αj ; (9)

|φj−1(x1, . . . , xj−1)| · βj ; δ(j)) ,

or in a more general form:

gj(xj |x1, . . . , xj−1) = G(Aj(x1, . . . , xj−1);Bj(x1, . . . , xj−1); δ(j)). (10)

They are the ordinary three parameter gamma densities each considered as
a function of the argument xj only. For this reason the so obtained n-variate
pdfs are proposed to be called ex-gamma.

4 Comments

A. Notice that in both the new pdf classes construction, described above, the
vectors of shape parameters (γ(1), . . . , γ(n)), (δ(1), . . . , δ(n)) in ex-Weibullian
and ex-gamma cases respectively are invariant with respect to the pseu-
doaffines (1). Therefore their values may stand as a criterion for classifi-
cation of the ex-Weibullians or ex-gammas. In particular, the vector shape
parameters (1, . . . , 1) uniquely determines the class of the two or one pa-
rameter ex-exponentials (the set theoretical intersection of ex-Weibullians
and ex-gammas classes), while the vector (2, . . . , 2) determines subclass of
ex-Rayleigh among the ex-Weibullians.

B. Occasionally, it is worth to mention an interesting theoretical fact that
for any random vector (T1, . . . , Tn) having ex-Weibullian or ex-gamma pdf its
image (X1, . . . , Xn) under (1) is also ex-Weibullian or ex-gamma respectively
(see [Filus and Filus, 2003b] for more details ).

C. Each of the considered above n-variate three parameters ex-Weibullian,
as well as, each of the ex-gamma pdfs are uniquely determined by one of the
two sets of the formulas i.e., by (1), (3), (4), (5) together with (2), or by
(1), (3), (8), (9) with (7) respectively. The method described above will be
called “transformation method”. The use of the pseudoaffine transformations
is mathematically an elegant way to define ex-Weibullians or ex-gammas.
There is also another way to obtain the same pdfs, namely when the formula
(1) in the above two lists is dropped. Moreover, significantly wider classes
of ex-Weibullians and ex-gammas, that properly contain the corresponding
classes defined by the transformation method may be obtained. This will
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happen when one replaces the defining formulas (5) and (9) by more gen-
eral (6) and (10). Actually, in this case, both the classes of the pdfs are
uniquely determined by a choice of the corresponding classes of functions
Aj(x1, . . . , xj−1), Bj(x1, . . . , xj−1). The considered classes of the pdfs may
even be more extended if, in (6) and (10) respectively, also the set of (con-
stant) shape parameters γ(j) is enlarged by properly chosen set of “shape
parameter functions” Cj(x1, . . . , xj−1). Therefore two distinct methods of
the construction are available. The second method that relies on a proper
conditioning, we propose to call “method of parameters replacement”. The
type of conditioning we apply somehow corresponds to the conditioning pat-
tern used, for example, in [Arnold et al., 1992], as well as in [Arnold and
Strauss, 1988], [Arnold and Strauss, 1991] and in many other related papers
(see references in the first cited position). On the other hand, those ideas
essentially differ from the ones, described in our work. In the setting, out-
lined above, the following two rules make our conditioning method distinct
from these presented in the above references: a) the predetermined order in
conditioning (see formula (3)), with exactly n− 1 conditional pdfs chosen to
be specified, is imposed b) these n− 1 conditional pdfs are always completed
by exactly one (initial) marginal pdf (g1(x1) in (3)). This is noteworthy that,
using the method of parameter replacement, the resulting n-variate pdfs are
uniquely characterized and constructed in a very simple way by (3), (4) and
(6) in the Weibullian case, and by (3), (8) and (10) in the gamma case re-
spectively. Briefly speaking, this second method of construction allows, in
a largely “arbitrary” but unique way, to achieve the modeling goals simply
by replacing some constant parameters in pdfs, say, fj(tj) of the, already
considered, independent random variables Tj, by properly chosen continuous
functions of the arguments, say, x1, . . . , xj−1, while ‘formally’ replacing tj by
xj .

5 On reliability applications

Constructions of the new pdfs, carried out in this work, have their origin (see
[Filus and Filus, 2003b]) in the set of problems associated with stochastic
modeling of reliability of multicomponent parallel systems with stochastically
dependent life times X1, . . . , Xn of the components (for reliability references
see for example [Barlow and Proschan, 1975]). As models for such systems
the joint probability distributions of the component life times are frequently
applied (see, for example [Freund, 1961], [Marshall and Olkin, 1967], [Lu,
1989], and others; see also [Filus, 1991]; for much more exhaustive references
see [Kotz et al., 2000]). Even as in the past more then four decades, numer-
ous models in the form of multivariate probability distributions have been
invented, various types of old and new physical or biological systems still
require models of that type. The two classes of multivariate pdfs here pre-
sented are (to our best knowledge) new as both: the mathematical entities,
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and as a way of stochastic description of physical dependencies between the
components. Roughly speaking, in the models of stochastic dependencies,
presented, an assumed mechanism of system behavior relies on the following:
if one (or more) of the system components, say, ei fails then some survived
component (or set of components) ej ( j 6= i; i, j = 1, . . . , n) keeps a memory
of the (random) time Xi of their mutual cooperation that affected conditional
pdf gj(xj |xi) (one of those given by (5), (6) or (9), (10)) of its life time Xj ,
given Xi = xi < Xj . It is assumed that the component ei by its activity
changes the environment or work conditions of the component ej. The con-
tinuous influence of ei on ej causes either an improvement or a deterioration
in the components ej functioning, so that these changes, during the time
Xi = xi, cause the life time Xj of ej to become statistically longer or shorter
than its “original” life times, say, Tj , under “laboratory conditions” ( i.e., in
an absence of any other component influences). The underlying Weibullian
and gamma conditional pdfs were already discussed in this text. Notice also
that the laboratory condition life times T1, . . . , Tn may be considered to be
independent Weibullian or gamma as those described in Section 1. Here,
physical act of installation of the set of separate components into a real sys-
tem may be thought off as, in a way, corresponding to the mathematical
relationship (1) between the random vectors (T1, . . . , Tn) and (X1, . . . , Xn).
For a more exhaustive description of such systems together with a stochastic
reasoning, on how to model them, see [Filus and Filus, 2003b].

6 On ex-Weibullian stochastic processes

The dimension n of the space Rn associated with the pattern of the pseu-
doaffine transformations (1) may be extended, in a natural way, to infinity
(i.e., by letting n → ∞ ). In such a case the infinite version of (1) may be
specified as follows:

X1
d
= φ0T1 + ψ0,

. . . . . . . . .

Xj
d
= φj−1(X1, . . . , Xj−1)Tj + ψj−1(X1, . . . , Xj−1), (11)

. . . . . . . . .

where j = 2, 3, . . .
Using (11) one obtains new classes of stochastic processes {X1, X2, . . .}

corresponding to some well known processes {T1, T2, . . .} chosen. When as-
suming that all the random variables T1, T2, . . . are independent Weibullian a
class of ex-Weibullian random processes {Xj}, with discrete time j = 1, 2, . . .
is obtained. Notice that, also in a more general case, if all the parameter
functions φj−1(·), ψj−1(·) depend on Xj−1 only, while all the input random
variables T1, T2, . . . are independent, the obtained stochastic process (includ-
ing the ex-Weibullian) will be Markovian (see Proposition 1 in [Filus and
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Filus, 2003a]). For such a Markovian case new extensions of the (discrete
and continuous time) normal, in particular extensions of the Wiener stochas-
tic processes, are presented in [Filus and Filus, 2003a]. On the other hand, a
variety of non-Markovian cases are available too. In the next, an application
of the above ex-Weibullian model to some maintenance problems associated
with repairable systems will be presented. For this purpose the stochas-
tic processes, chosen as models, will be deliberately assumed to be highly
non-Markovian in the sense that all the parameter functions in the defining
formula (11) will essentially depend on all the ‘previous’ random variables
X1, . . . , Xj−1.

7 The maintenance models

Suppose, that after each failure, a system is repaired with a possibility of
a choice among a finite number of kinds of repair available. These repairs
differ each other by a quality of the repair on one side and by costs on the
other. For simplicity, the state of the system at any time is assumed to be
known. Also, the time- length of repairs are not included in this simplified
setting. Let the stochastically dependent times of system functioning between
(j − 1)-th and j-th failure be modeled by Xj, j = 1, 2, . . . One of the basic
features of the emerging new methodology is the following. Suppose that,
for some j, a (j − 1)-th failure occurred. Also suppose, all the “maintenance
history” of the system performance i.e., the times X1, X2, . . . , Xj−1 of work
between the previous failures, and the corresponding sequence of kinds of
repair r1, r2, . . . , rj−2 applied, is recorded. One of the main questions, that
may arise at this point, can be stated as follows: what would be the pdf
(or just an expectation) of the time Xj ‘from now’ to the next failure, if
an rj−1-th kind of the repair would be chosen? To get an answer, in the
considered framework, one of the Weibull conditional pdfs g(xj |x1, . . . , xj−1)
of Xj, given by (5) or (6) may be applied as a proposed model. In particular,
one may consider the following conditional pdf:

gj(xj |x1, . . . , xj−1) = (12)[
λ
(
1 + a1,k(1)x

β1

1 + a2,k(2)x
β
2 + · · ·+ aj−1,k(j−1)x

β
j−1

)]
xγ−1
j

exp
{
−
[
λ
(
1 + a1,k(1)x

β1

1 + a2,k(2)x
β
2 + · · ·+ aj−1,k(j−1)x

β
j−1

)]
xγj

}
,

where all the coefficients present in (12) are positive, and each coefficient
ai,k(i) depends on the choice of rk(i)-th kind of repair that took place directly
after an i-th failure, i = 1, . . . , j − 1. If one seeks the best policy for choices
of the repairs after the failures a set of optimization problems emerges. In
particular, a possible aim, that may be considered, would be to balance
system efficiency (in sense of maximizing length of the times X1, X2, . . . )
against total cost of the repairs, in order to attain a maximal expected profit
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from the systems exploitation. Other model, an alternative to (12), can also
be considered using the following class of the conditional (Weibullian in xj)
pdfs:

gj(xj |x1, . . . , xj−1) = (13)[
λ exp

(
b1,k(1)x

β1

1 + b2,k(2)x
β
2 + · · ·+ bj−1,k(j−1)x

β
j−1

)]
xγ−1
j

exp
[
−λ exp

[(
b1,k(1)x

β1

1 + b2,k(2)x
β
2 + · · ·+ bj−1,k(j−1)x

β
j−1

)]
xγj

]
,

where the coefficients bi,k(i), (i = 1, . . . , j − 1) are arbitrary (possibly also
negative). Somewhat simplified versions of the models (12), and (13) one
obtains if only the conditional expectations of the life times are of interest.
Then, for j = 2, 3, . . . we have the regressions

E[Xj |x1, . . . , xj−1] = (14)
[
λ
(
1 + a1,k(1)x

β1

1 + a2,k(2)x
β
2 + · · ·+ aj−1,k(j−1)x

β
j−1

)]−1/γ

Γ (1 + 1/γ),

and

E[Xj |x1, . . . , xj−1] = (15)
{
λ exp

[
b1,k(1)x

β1

1 + b2,k(2)x
β
2 + · · ·+ bj−1,k(j−1)x

β
j−1

]}−1/γ

Γ (1 + 1/γ).

Obviously the expectations (14), (15) correspond to the pdfs (12), (13) re-
spectively. Both cases simplify to the exponential cases when γ = 1.

8 Analytic examples

Because of the space limitation we only mention that numerous nice examples
of the new bivariate pdfs with easy analytical calculations can be given. For
more on that we refer readers to [Filus and Filus, 2003b].
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Pérez-Ocón, Rafael1, Montoro-Cazorla, Delia2, and Ruiz-Castro, Juan Eloy1

1 Departamento de Estad́ıstica e I.O. Universidad de Granada. Spain
(e-mail: rperezo@ugr.es, jeloy@ugr.es ; http://www.ugr.es/ sim jeloy)

2 Departamento de Estad́ıstica e I.O. Universidad de Jaén. Spain
(e-mail: dmontoro@ujaen.es)

Abstract. We study an n-unit system. The system functions as long as there is
one unit online and the others in warm standby. When a unit fails it goes to re-
pair. There is a repairman. The units are repaired following the arrival order. The
operational and repair times follow phase-type distributions. The warm-standby
units have a lifetime exponentially distributed. We construct the Markov model
that govers the system and calculate performance measures. The mathematical ex-
pressions are algorithmically and computationally implemented, using the Matlab
programme.
Keywords: Reliability, Availiability, Markov process, Rate of occurrence of fail-
ures (Rocof), Level-Dependent-Quasi-Birth-and-Death process.

1 Introduction

The literature on reliability systems concerning with Markov processes is
related to systems with units having exponentially distributed lifetimes or
extensions of it, such as Erlang, generalized Erlang or hyperexponential. It
is known that the phase-type distributions (PH-distributions) constitute a
large class that contains all the previous ones. This class has been studied
in detail by [Neuts, 1981] and it has been recently applied in reliability by
[Pérez-Ocón and Montoro-Cazorla, 2004a], [Neuts et al., 2000], [Pérez-Ocón
and Montoro-Cazorla 2004b].

When PH-distributions are involved in the modelization of systems, the
generator of the Markov model that governs the system in certain finite cases
has a tri-diagonal block structure, which characterizes the classes of quasi-
birth-and-death processes (QBD processes) and level-dependent quasi-birth-
and-death processes (LDQBD processes).These processes have been studied
in [Latouche and Ramaswami, 1999] and oftenly considered in queueing the-
ory ([Bright and Taylor, 1997], [Naoumov, 1997] and references therein).
However, we have no information concerning the application of these pro-
cesses in reliability theory. Recently, a multiple cold standby system involv-
ing PH distributions and governed by a QBD process has been studied by
[Pérez-Ocón and Montoro-Cazorla, 2004b] . In the present paper we extend
that work considering the system in warm standby, being the lifetime of
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the units in standby exponentially distributed. The stochastic process that
governs the system results then a LDQBD process.

For this system, the stationary probability vector, the availability, and the
rate of occurrence of failures are calculated. In addition, the distributions
of the up and down periods are determined. The steady-state probability
vector is calculated following the general methodology provided by [Naoumov,
1997] for solving linear systems with tri-diagonal block matrices. A numerical
example is presented

We summarize the following definitions used in the paper.

Definition 1 The distribution H(·) on [0,∞[ is a phase-type distribution
(PH-distribution) with representation (α, T ), if it is the distribution of the
time until absorption in a Markov process on the states {1,. . . ,m,m+1} with
generator by blocks (

T T 0

0 0

)

and initial probability vector (α, αm+1),where α is a row m-vector. We as-
sume that the states {1,. . . ,m} are all transient and m+1 absorbent. The
distribution H(·) is given by

H(x) = 1− α exp(Tx)e, x ≥ 0.

It will be denoted that H(·) follows a PH(α, T ) distribution.

Definition 2 A level-dependent quasi-birth-and-death process (LDQBD pro-
cess) on the state space E = {(i, j), 0 ≤ i ≤ n, 1 ≤ j ≤ m}, is a Markov
process the infinitesimal generator of which is given by

Q =




B0,0 B0,1

B1,0 A1
1 A1

0

A2
2 A2

1 A2
0

. . .
. . .

. . .

An−1
2 An−1

1 Bn−1,n

Bn,n−1 Bn,n




(1)

The general definition of these type of processes can be modified depend-
ing on the boundary behavior. If we put Ak0 = A0, A

k
1 = A1, A

k
2 = A2,

k = 1, 2, . . . , n− 1, we get a QBD process.

Definition 3 If A and B are rectangular matrices of dimensions m1 ×m2

and n1 × n2 respectively, their Kronecker product A ⊗ B is the matrix of
dimensions m1n1 ×m2n2, written in compact form as (aijB).
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2 The model

Let us consider a repairable n-system, with one unit online and the rest in one
of the following three situations: in warm standby, being repaired or waiting
for repair. There is one repairman, which serves following the arrival order
of the units. The unit online has a lifetime distributed as a PH(α, T ) with
m operational phases. The units in warm standby have lifetime distributed
following exp(λs). The repair time follows a distribution PH(β, S) with k
repairing phases. The repair is as good as new. These times are independent.
If there is a unit online and a repair is completed, it goes to standby. When
all the units are non-operational and a repair is completed, the repaired unit
becomes the unit online.

For introducing a Markov model it is necessary to identify exponentially
distributed states in the evolution of the system. These will be the operational
and repair phases. Thus, the states will be triplets indicating theses phases
and the number of non-operational units. The state spaces is given by S =
S1 ∪ S2 ∪ S3,with

S1 = {(0, j), 1 ≤ j ≤ m},
S2 = {(i, j, l), 1 ≤ i ≤ n− 1, 1 ≤ j ≤ m, 1 ≤ l ≤ k},
S3 = {(n, l), 1 ≤ l ≤ k},

where i denotes the number of non-operational units, j the operational phase
of the online unit, and l the repair phase of the unit under repair. The system
macro-states are given in the set S = {i, i = 0, 1, . . . , n}.

The infinitesimal generator, Q, is calculated from the transition rates
among the macro-states. This generator is composed of blocks and the matrix
is like the one given in (1), with the blocks in (2).

In the expressions below, the matrix I denotes the identity matrix of
appropriate order.

B0,0 = T − (n− 1)λsI,

B0,1 =
[
T 0α+ (n− 1)λsI

]
⊗ β,

B1,0 = I ⊗ S0,

A2 = I ⊗ S0β,

A
(i)
1 = [T ⊕ S]− (n− i− 1)λsI, i = 1, 2, . . . , n− 1 (2)

A
(i)
0 =

[
T 0α⊗ I

]
+ (n− i− 1)λsI, i = 1, 2, . . . , n− 2

Bn−1,n = T 0 ⊗ I,
Bn,n−1 = S0α⊗ β,
Bn,n = S.
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3 Stationary probability vector

We use π = (π0, π1, . . . , πn−1, πn) to denote the stationary-probability vector,
which satisfies the matricial equation πQ = 0, subject to the normalization
condition πe = 1.

To solve resulting system we use previous results ([Naoumov, 1997],
Proposition 18). It is obtained that the stationary vector can be recursively

obtained in terms of π0 and rate matrices as πj = π0

∏j−1
k=0Rk, j = 1, . . . , n,

being

Rn−1 = −Bn−1,nB
−1
n,n,

Rn−2 = −A(n−2)
0 (A

(n−1)
1 +Rn−1Bn,n−1)

−1,

Rj−1 = −A(j−1)
0

(
A

(j)
1 +RjA2

)−1

, j = n− 2, . . . , 2

R0 = −B0,1(A
(1)
1 +R1A2)

−1

The vector π0 is determined by the equation π0(B0,0 +R0B1,0) = 0 sub-

jected to the normalization condition π0

(∑n
j=0

∏j−1
i=0 Ri

)
e = 1.

4 Performance measures

The performance measures will be given by means of the stationary prob-
ability vector and, consequently, from the matrices R. Below two of these
measures appear, the availability and several rates of occurrence of failures:
for the unit online and for the system.

The availability of the system is the probability that the system will be
operational, thus:

A =

n−1∑

i=0

πie = π0

(
n−1∑

i=0

i−1∏

k=0

Rk

)
e = 1− πne.

We now calculate the rate of occurrence of failures for the unit online,
whose expression results:

v1 = π0T
0 + π0

(
n−1∑

i=1

i−1∏

k=0

Rk

)
(T 0 ⊗ e).

The mean number of times that the system is down per unit time.is given
by

ν2 = πn−1(T
0 ⊗ e) = π0

(
n−2∏

k=1

Rk

)
(T 0 ⊗ e).
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5 Distributions of the up and down periods

It is useful to know the distribution of the times during the system is opera-
tional or is being repaired in the long run. These are of special importance in
systems that require a high reliability. We will show that these random times
follow PH-distributions. In the references we have found different ways to
define an up period. One is the timespan between the point at which all the
units are initially operational (macro-state 0) and the point at which all the
units are not operational by first time (macro-state n). Another definition is
the timespan between the instant in which an unit completes its repair while
the others are non-operational (the system enters the macro-state n−1 from
n) and the instant in which for the first time the system is non-operational
(enters the macro-state n). For calculating the distribution function of this
time, we consider a modified Markov process from the original, with the same
operational macro-states and identifying the non-operational macro-states in
a new absorbent macro-state that will be denoted by n∗. The up period is the
time up to the absorption by the macro-state n∗, and thus the distribution
will be a PH-distribution. The generator Q∗ of this new Markov process is
derived from the expression (1) where the block Bn,n−1 is a null row vector,
Bn,n = 0 and Bn−1,n is replaced by the column vector Bn−1,ne.

The representation of the up period is (γu,Lu), matrix Lu being the one
calculated from Q∗ eliminating the row and the column corresponding to the
macro-state n∗. The initial conditions need to be chosen so as to reflect the
physical conditions of the system at time t = 0. If all units are operational
at this point, the initial vector can be chosen as (α, 0, . . . , 0). Choosing this
definition we focus on the initial warranty period of the system, that is,
the time to system failure given that initially all the units are operational.
However, if we consider the second definition of the up period given above,
the initial vector can be chosen as (0, . . . , 0, α⊗ β). It is possible to express
the initial condition in terms of the stationary probability vector, then, the
initial vector considering the first definition above can be chosen as

γu =

[
π0

π0e
,0

]
.

The operational mean time is

MTTF = −γuL−1
u e.

The down period begins when the only operational unit fails (the rest are
in repair or waiting for repairing), and finishes at the point when the first
repair is completed. This period follows a PH(γd, S), where γd is determined
as follows. Let γd(l) 1 ≤ l ≤ k, be the stationary probability that the unit
under repairing occupies the phase l. The system initiates its down-period
in the infinitesimal interval (t, t+ dt) with probability πn(T 0 ⊗ e)dt, then,
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n = 10

π0 0.0004 * *

πn 0.0463 0.0142 0.0115

n = 50

π0 * * *

πn 0.0470 0.0144 0.0117

n = 20

π0 * * *

πn 0.0468 0.0144 0.0117

n = 100

π0 * * *

πn 0.0471 0.0144 0.0117

Table 1. Stationary probabilities π0, πn for different values of n

γd(l) =

∑
j πn−1(j, l)T

0
j

πn−1(T 0 ⊗ e) , 1 ≤ l ≤ k,

being πn−1(j, l) the probability that at any time n − 1 components of the
system are down with the unit online in phase j and the unit under repair in
phase l. The initial vector yields then

γd = (γd(l))1≤l≤k.

The mean time that the system remains down is given by

MTTD = −γdS−1e.

6 Numerical application

In this section we apply the calculations performed above to a practical case,
preserving the notation of the previous ones. We consider the following rep-
resentations for the PH-distributions of the operational and repair times.

α = (1, 0, 0) β = (1, 0, 0)

T =



−0.0027 0.0027 0

0 −0.008 0.008
0 0 −0.02878


 , S =



−0.02 0.02 0
0.01 −0.08 0.07
0.005 0 −0.1


 .

Let us study the behavior of the system defined in Section 2 with these
numerical values for different number of units n. The stability of the measures
in terms of the number of units is calculated. The failure rate for the units
in standby will be λs = 0.03.

In Table 1 we present the values of π0 and πn for different values of
n, showing that for n close to 20 the probabilities remain stable when n
increases. The values of π0 are very close to 0 for n ≥ 20, and the ones
corresponding to πn tends to (0.0470,0.0144,0.0117) when n increases.

These values indicate that there are frequently non-operational units, and
the system is down with a probability close to 7.31% when there a few units.
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n A v1 v2 MTTF ρ L

10 0.928 0.002 0.001 828.193 0.999 8.659

20 0.927 0.002 0.001 842.439 1 18.534

30 0.927 0.002 0.001 851.241 1 28.402

50 0.927 0.002 0.001 862.998 1 48.128

Table 2. Performance measures for different number of units

In Table 2 we present the performance measures that have been intro-
duced in previous sections. We use ρ to denote the utilization factor, that is,
the proportion of time that the repairman is busy, and L denotes the mean
number of non-operational units. MTTF is the mean time of the up period.

The availability decreases slightly when the number of units increases, and
stabilizes at around the 92.7%. The different rate of occurrence of failures
change slowly with n. The mean number of units failing per unit time in-
creases softly; for example, for a system with 30 units, the mean time between
two consecutive unit failures is about 75.757 t.u. The utilization factor of the
repairman is very near to 1, so that the repair system is almost saturated,
and the mean number of units in the repair channel consequently increases.
The mean number of total failure per unit time of the system is 0.001.

Final note. Taking λs = 0 in our model we have an 1-out-of-n-system,
where one unit is online and the others in cold standby. Thus, the stochastic
process that governs the system is a quasi-birth-and-death process (QBD
process), that has been studied in [Pérez-Ocón and Montoro-Cazorla, 2004a].
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Abstract. In the literature, a lot of effort has been devoted to develop effective
estimation and inference methods for the accelerated failure time (AFT) model for
right censored data. In the talk, we will give a review on the recent development
on the estimation and inference methods for the AFT model based on the work in
[Jin et al., 2003] and [Jin et al., 2004].
Keywords: Accelerated failure time model, Right censoring, Rank estimation,
Least squares method.

Right censored data are common in many scientific fields. The right
censored data consist of (Xi, Yi, δi), i = 1, · · · , n, where X is a p-dimensional
covariate, Y = min{T,C}, with T being the response variable and C being
the censoring variable, and δ = 1{T ≤ C} being the indicator of censoring.

The accelerated failure time (AFT) model is of the same form as usual
linear regression model:

logTi = XT
i β0 + εi (1)

where β0 is the unknown true p×1 parameter of interest and εi (i = 1, · · · , n)
are unobservable independent random errors with a common but completely
unspecified distribution function. (Thus, the mean of ε is not necessarily 0).
The AFT model is an attractive alternative to the popular Cox proportional
regression model, [Cox, 1972].

Several approaches have been proposed for the estimation and inference on
the AFT model in the literature. Rank-based methods were studied [Tsiatis,
1990], [Wei et al., 1990], [Lai and Ying, 1991], [Lai and Ying, 1992], [Lin
and Geyer, 1992], [Ying, 1993], [Fygenson and Ritov, 1994], among many
others. Least squares based and M -estimation methods were investigated
by [Miller, 1976], [Buckley and James, 1979], [Koul et al., 1981], [Ritov,
1990] and [Lai and Ying, 1991], among many others. Despite theoretical
advances, all these approaches are numerically complicated and difficult to
implement, especially when the number of covariates is large. These are due
to the non-differentiability and non-monotonicity of the estimating functions.
Furthermore, the covariance matrices of the estimators are rather difficult



1250 Jin, Z.

to obtain because they involve nonparametric estimation of the underlying
unknown density function for ε.

Recently, we have developed new rank-based and least squares estimation
and inference method for the AFT model [Jin et al., 2003], [Jin et al., 2004].
In [Jin et al., 2003], a class of rank-based estimating functions are developed.
The functions are monotone and can be easily solved by linear programming
technique. The covariance matrix of the parameter estimators are obtained
by a resampling method. In [Jin et al., 2004], a numerically easy to imple-
ment least squares method is developed and a resampling method sharing
the similar spirit in the rank-estimation is also proposed.

In the talk, we will give a review on the recent development on the esti-
mation and inference methods for the AFT model.
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Abstract. Adaptive design is a trial design that allows modifications to some as-
pects of the trial after its initiation without undermining the validity and integrity
of the trial. Adaptive design makes it possible to discover and rectify inappropri-
ate assumptions in trial designs, lower development costs and reduce the time to
market. It has become very attractive to the pharmaceutical industries. In this
paper, adaptive designs for clinical trials with multiple endpoints including binary,
ordinal, normal, and survival responses are studied using computer simulations.
Keywords: Adaptive design, Sequential design, Adaptive randomization.

1 Overview of Adaptive Design

Drug development is a sequence of complicated decision-making processes.
Options are provided at each stage and decisions are dependent on the prior
information and the probabilistic consequence of each action (decision) taken.
This requires the trial design to be flexible such that it can be modified
during the trial process. Adaptive design emerges for this reason and has
become very attractive to pharmaceutical industries. An adaptive design is a
design that allows modifications to some aspects of the trial after its initiation
without undermining the validity and integrity of the trial. The following are
the examples of modifications to a trial.

• Sample size re-estimation

• Early stopping due to efficacy or futility

• Adaptive randomization

• Dropping inferior treatment groups

There are several methods available for adaptive designs such as the
Fisher’s combination of independent p-values [Bauer and Kohne, 1994], Brow-
nian motion [Lan and Demets, 1988] [Lin et al., 1999], conditional power
approach [Proschan and Hunsberger 1995], [Babb and Rogatko, 2004], and
approach using down-weighting later-stage data [Cui et al., 1999] have been
used in group sequential and adaptive designs. However, in this paper, we
will discuss the use of computer trial simulation (CTS) for adaptive design.
CTS provides a unique and powerful tool for achieving the optimal design.
An overall process of an adaptive design is depicted in figure 1.

0 Invited paper for International Symposium on Applied Stochastic Models and
Data Analysis, France, May 2005.
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Fig. 1. Overview of Adaptive Design.

2 Utility-Based Trial Objective

A clinical trial typically involves multiple endpoints such as efficacy, safety
and cost. Therefore a single measure, i.e., utility index, which summaries
the effects of major endpoints is desirable. The trial objective then becomes
to find the dose or treatment with the maximum response probability (rate).
The response probability is defined as Pr(u >= c) where u is utility index
and c is a threshold. The utility index is the weighted average of trial end-
points such as safety and efficacy. The weights and the threshold are often
determined by experts in the relevant field.

3 Dose-Response Model

The response of an ongoing trial can be modeled using a function. We find
that the following so-called hyper-logistic function can be used model many
different response shapes. The hyper-logistic function is defined by the
probability of response

Pr(x = 1) = (a1 exp(a2x) + a3 exp(−a4x))
−a5

The modeling can be on a continual basis, i.e., the model is updated when
new response data become available. This approach refers to the continual
re-assessment method (CRM), which can be either Bayesian or frequentist
based method. If the observed the responses are used as the basis for an
adaptation instead of modeled or predicted response, we call it null-model
approach.

4 Adaptation Rules

4.1 Randomization Rules

It is desirable to randomize more patients to superior treatment groups.
This can be accomplished by increasing the probability of assigning a pa-
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tient to the treatment group when the evidence of responsive rate increases
in a group. The response-adaptive randomization rule can be Randomized-
Play-the-Winner (RPW) [Rosenberger and Lachin, 2002], or Utility offset
model.

Response-adaptive randomization requires unblinding the data, which
may not feasible at real time. There is often a delayed response, i.e., ran-
domizing the next patient before knowing responses of previous patients.
Therefore, it is practical to unblind the data several times during the trial,
i.e., group sequential response-adaptive randomization, instead of fully se-
quential adaptive randomization.

4.2 Early Stopping Rules

It is desirable to stop trial when the efficacy or futility of the test drug
becomes obvious during the trial. To stop a trial prematurely, we provide
a threshold for the number of subjects randomized and at least one of the
following:

(1) Utility rules: The difference in response rate between the most respon-
sive group and the control group exceeds a threshold and the corresponding
two-sided 95% näıve confidence interval lower bound exceeds a threshold.

(2) Futility rules: The difference in response rate between the most re-
sponsive group and the control is lower than a threshold and the correspond-
ing two-sided 90% näıve confidence interval upper bound is lower a threshold.

4.3 Rules for Dropping Losers

In addition to the response-adaptive randomization, you can also improve the
efficiency of a trial design by dropping some inferior groups (losers) during the
trial. To drop a loser, we provide two thresholds for (1) maximum difference
in response rate between any two dose levels, and (2) the corresponding two-
sided 90% näıve confidence lower bound. We may choose to retain all the
treatment groups without dropping a loser, and/or to retain the control group
with a certain randomization rate for the purpose of statistical comparisons
between the active groups and the control.

4.4 Sample Size Adjustment

Sample size determination requires anticipation of the expected treatment ef-
fect size defined as the expected treatment difference divided by its standard
deviation. It is not uncommon that the initial estimation of the effect size
turns out to be too large or small, which consequently leads to an underpow-
ered or overpowered trial. Therefore, it is desirable to adjust the sample size
according to the effect size for an ongoing trial.
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The sample size adjustment is determined by a power function of treat-
ment effect size, i.e.,

N = N0

(
E0max

Emax

)a
(1)

where N is the newly estimated sample size, N0 the initial sample size,
and a a constant. The effect size Emax is defined as

Emax =
pmax − p1

σ2
; σ2 = p̄(1− p̄); p̄ =

pmax + p1

2
;

pmax and p1 are the maximum response rates, respectively, and the control
response rate, and E0 max is the initial estimation of Emax.

5 Response-Adaptive Randomizations

The conventional randomization refers to any randomization procedure with
a constant treatment allocation probability such as simple randomization.
Unlike the conventional randomization, response-adaptive randomization is a
randomization in which the probability of allocating a patient to a treatment
group is based on the response of the previous patients. The purpose is
to improve the overall response rate in the trial. There are many different
algorithms such as random-play-the-winner (RPW), the utility-offset model
and the maximum utility model.

5.1 Random-Play-the-Winner (RPW)

Fig. 2. Random-Play-the-Winner

The generalized RPW denoted by RPW (n1, n2, ..., nk; m1, m2, ..., mk)
can be described as follows.
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(i) Place ni balls of the ith color (corresponding to the ith treatment) into
a urn (i = 1, 2, ..., k), where k is number of treatment groups. There are
initially N =

∑
ni balls in the urn.

(ii) Randomly choose a ball from the urn. If it is the ith color, assign the
next patient to the ith treatment group.

(iii) Add mk balls of the ith color to the urn for each response observed in
the ith treatment. This creates more chances for choosing the ith treatment.

(iv) Repeat Steps (ii) and (iii).

When ni = n and mi = m for all i, we simply write RPW (n,m) for
RPW (n1, n2, ..., nk; m1, m2, ..., mk).

5.2 Utility-Offset Model (UOM)

To have a high probability of achieving target patient distribution among the
treatment groups, the probability of assigning a patient to a group should be
proportional to the corresponding predicted or observed response rate minus
the proportion of patients that have been assigned to the group.

5.3 Maximum Utility Model (MUM)

Maximum utility model for the adaptive-randomization always assigns the
next patient to the group that has the highest response rate based on current
estimation of either the observed or model-based predicted response rate.

6 Null Model versus Model Approach

It is interesting to compare model and null-model approaches. When sample
size is larger than 20 per group, there is no obvious advantage by using the
model-based method with respect to the precision and accuracy (Table 1).
Therefore, null-model approach will be used in the subsequent simulations.

Dose Level 1 2 3 4 5

Target rate 0.02 0.07 0.37 0.73 0.52

Simulated rate 0.02 0.07 0.36 0.73 0.52

Predicted rate 0.02 0.07 0.40 0.65 0.41

Standard deviation 0.00 0.02 0.11 0.09 0.04

Number of subjects 1.02 2.48 12.6 20.5 13.4

Table 1. Comparisons of Simulations Results
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7 Test Statistic

It is very interesting to know that the choice of test statistics for hypothesis
tests is very flexible if the analysis is carried out through computer simula-
tions. The only requirement is that the test statistic should be a monotonic
function of both the treatment effect δ and sample size n, which can be, for

example,
√
nδ the treatment difference or the effect size

√
nδ
σ , where σ is the

standard deviation of δ. Using computer simulation, it is easy to generate
the distributions of the test statistic under the null hypothesis and alternative
hypothesis or any other specified conditions for the monitoring purpose.

8 Bias in Rate Estimation and Alpha Adjustment

The commonly used estimators that are based on the assumption of indepen-
dent samples are often biased in the case of adaptive design. The bias could
be as much as 20

The α-adjustment is required when (i) there are multiple comparisons
with more than two groups are involved, (ii) There are interim looks, i.e.,
early stopping for futility or efficacy, or (iii) There is a response-dependent
sampling procedure such as response-adaptive randomization and unblinded
sample size re-estimation. When samples or observations from the trial are
not independent, the response data is no longer normally distributed. There-
fore, the p-value from a normal distribution assumption should be adjusted
or equivalently the alpha should be adjusted if the p-value is not adjusted.
For the same reason, the other statistic estimates from normal assumption
should also be adjusted.

9 Simulation Examples

To investigate the effect of the adaptations, we will compare the classic, group
sequential and adaptive designs with regards to their operating characteristics
using computer simulations. In what follows, each example represents a
different trial design. All simulations are performed using ExpDesign Studio
(www.CTriSoft.net) [CTriSoft, Intl. 2005]

Examples 1 to 3 will use the following scenario: Assume a phase II oncol-
ogy trial with two treatment groups¿ The primary endpoint is tumor response
(PR and CR) and the estimated response rates for the two groups are 0.2
and 0.3 respectively. We use simulation to calculate the sample size required,
given that one-sided alpha = 0.05 and power = 80%.

Example 1: Conventional Design with Two Parallel Treatment
Groups

A classic fixed sample size design with 600 subjects will have a power of
81.4% at one-sided α = 0.025. The total number of responses per trial is 150
based on 10,000 simulations.
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Example 2: Flexible design with Sample Size Re-estimation

Power of a trial is heavily dependent on the estimated effect size; therefore
it is desirable to have a design that allows modification of sample size at
some point during the trial. Let us re-design the trial in example 1 such that
it allows a sample size-re-estimation and then study the robustness of the
design.

In order to control the family-wise error rate (FWE) at 0.025, the alpha
must be adjusted to 0.023 which can be obtained by computer simulation
under the null hypothesis. The average sample size is 960 under the null
hypothesis. Using the algorithm for sample size re-estimation (1), where
E0 max = 0.1633 and a = 2, the design has 92% power with an average
sample size of 821.5.

Now assume the initial effect sizes are not 0.2 versus 0.3 for the two
treatment groups. Instead, they are 0.2 and 0.28 respectively. We want to
know what the power of the flexible design pertains. Keep everything the
same (Also keep Eo max 0.1633), but change the response rates to 0.2 and
0.28 for the two dose levels and run the simulation again. It turns out that
the design has 79.4% power with an average sample size of 855.

Given the two response rates 0.2 and 0.28, the design with a fixed sample
size of 880 has a power of 79.4%. We can see that there is a saving of 25
patients by using the flexible design. If the response rates are 0.2 and 0.3,
for 92.1% power, the required sample size is 828 with the fixed sample size
design, which means that the flexible design saves 6-7 subjects. A flexible
design increases power when observed effect size is less than expected, while
a traditional design with a fixed sample size either increases or decreases the
power regardless of the observed effect size when the sample increases.

Example 3: Adaptive Design Permitting Early Stopping and
Sample Size Re-estimation

It is some time desirable to have a design permitting both early stopping
and sample size modification.

With an initial sample size of 700 subjects, a grouping size of 350, and a
maximum sample size of 1000. The one-sided adjusted alpha is found to be
0.05. The simulation results are presented in the following.

The maximum sample size is 700. The trial will stop if 350 or more are
randomized and one of the following criteria is met. (1) The efficacy (utility)
stopping criterion: The maximum difference in response rate between any
dose and the control is larger than 0.1 with the lower bound of the two-sided
95% naive confidence interval larger than or equal to 0.0. (2) The futility
stopping criterion: The maximum difference in response rate between any
dose and the control is smaller than 0.05 with the upper bound of the one-
sided 95% naive confidence interval smaller than 0.1. The sample size will be
re-estimated at the time when there are 350 subjects randomized.
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When the null hypothesis is true (p1 = p2 = 0.2), the average total
number of subjects for each trial is 398.8. The probability of early stopping
for efficacy is 0.0096. The probability of early stopping for futility is 0.9638.

When the alternative hypothesis is true (p1 = 0.2, p2 = 0.3), the average
total number of subjects for each trial is 543.5. The total number of responses
per trial is 136. The probability of correctly predicting the most responsive
dose level is 0.985 based on observed rates. The probability of early stopping
for efficacy is 0.6225. The probability of early stopping for futility is 0.1546.
The power for testing the treatment difference is 0.842.

Examples 4 to 6 are for the same scenario of the six arm study with
response rates 0.5, 0.4, 0.5, 0.6, 0.7, and 0.55 for the 6 dose levels from dose
1 to 6, respectively.

Example 4: Conventional Design with Multiple Treatment
Groups

With 800 subjects, 0.5 response rate under Ho, and grouping size of 100,
we found the one-sided adjusted α to be 0.0055. The total number of re-
sponses per trial is 433. The probability of correctly predicting the most
responsive dose level is 0.951 based on observed rates. The power for testing
the maximum effect comparing any dose level to the control is 80%. The
powers for comparing each of the 5 dose levels to the control are 0, 0.008,
0.2, 0.796, and 0.048, respectively.

Example 5: Response-Adaptive Design with Multiple Treat-
ment Groups

To further investigate the effect of Random-Play-the-Winner randomiza-
tion RPW(1,1), a design with 800 subjects, grouping size of 100, and a re-
sponse rate of 0.2 under null hypothesis is simulated. The one-sided adjusted
α is found to be 0.016. Using this adjusted alpha and response rates 0.5, 0.4,
0.5, 0.6, 0.7, and 0.55 for the dose levels 1 to 6, respectively, the simulation
indicates that design trial has 86% power and 447 responders per trial on
average. In comparison to 80% power and 433 responders for the design with
simple randomization RPW(1,0), the adaptive randomization is superior in
both power and number of responders. The simulation results also indicate
there are biases in the estimated mean response rates in all dose levels except
dose level 1, where a fixed randomization rate is used.

Dose level 1 2 3 4 5 6

Response rate 0.5 0.5 0.5 0.5 0.5 0.5

Observed rate 0.50 0.49 0.49 0.49 0.49 0.49

Table 2. Design with RPW(1,1) under Ho
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Dose level 1 2 3 4 5 6

No. of subjects 200 74 100 133 176 116

Response rate 0.5 0.4 0.5 0.6 0.7 0.55

Observed rate 0.50 0.39 0.49 0.59 0.7 0.54

Table 3. Design with RPW(1,1) under Ha

The average total number of subjects for each trial is 800. The total
number of responses per trial is 446.8. The probability of correctly predicting
the most responsive dose level is 0.957 based on observed rates. The power
for testing the maximum effect comparing any dose level to the control (dose
level 1) is 0.861 at a one-sided significant level (alpha) of 0.016. The powers
for comparing each of the 5 dose levels to the control are 0, 0.008, 0.201,
0.853, and 0.051, respectively.

Example 6: Adaptive Design with Dropping Losers
Implementing the mechanism of dropping loser can also improve the effi-

ciency of a design. With 800 subjects, grouping size of 100, a response rate
of 0.2 under the null hypothesis, and fixed randomization rate in dose level 1
at 0.25, an inferior group (loser) will be dropped if the maximum difference
in response between the most effective group and the least effective group
(loser) is larger than 0 with the lower bound of the one-sided 95% naive con-
fidence interval larger than or equal to 0. Using the simulation, the adjusted
alpha is found to be 0.079. From the simulation results below, more biases
can be observed with this design. The design has 90% power with 467 re-
sponders. The probability of correctly predicting the most responsive dose
level is 0.965 based on observed rates. The powers for comparing each of the
5 dose levels to the control (Dose level 1) are 0.001, 0.007, 0.205, 0.889, and
0.045, respectively. The design is superior to both RPW(1,0) and RPW(1,1).

Dose level 1 2 3 4 5 6

Response rate 0.5 0.5 0.5 0.5 0.5 0.5

Observed rate 0.50 0.46 0.46 0.46 0.46 0.46

Table 4. Bias in Rate with dropping losers under Ho

10 Summary

From classic design to group sequential design to adaptive design, each step
forward has an increased complexity and at the same time improves the effi-
ciency of clinical trials. Adaptive design can increase the number of responses
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Dose level 1 2 3 4 5 6

No. of subjects 200 26 68 172 240 95

Response rate 0.5 0.4 0.5 0.6 0.7 0.55

Observed rate 0.50 0.37 0.46 0.57 0.69 0.51

Table 5. Bias in Rate with dropping losers under Ha

in a trial and provide more benefits to the patient in comparison to the classic
design. With sample size re-estimation, an adaptive design can preserve the
power even when the initial estimations of treatment effect and its variability
are inaccurate. In the case of a multiple-arm trial, dropping inferior arm
or response-adaptive randomization can improve the efficiency of a design
dramatically. Finding analytic solutions for adaptive designs is theoretically
challenging. However, computer simulation makes it easier to achieve an op-
timal adaptive design. It allows a wide range of test statistics as long as they
are monotonic functions of treatment effects. Adjusted alphas and p-values
due to response-adaptive randomization and other adaptations with multiple
comparisons can be easily determined using computer simulations. Unbias in
point estimation with adaptive design has not completely revolved yet using
computer simulations. However, the bias can be ignored in practice by using
a proper grouping size (cluster) such that there are only a limited number of
adaptations (< 8).
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Abstract. Incorporating marker information into analysis of lifetime data is
a topic treated in the current literature in many different ways. In this paper
we apply a Bayesian approach to the model introduced by Whitmore, Crowder and
Lawless in 1998. In their model they assumed that observable marker process and
a latent “true” degradation process together follow a bivariate Wiener process with
marker value available at the failure time with censoring. Using data augmenta-
tion method for the latent degradation for surviving subjects we construct a full
Bayesian model with a closed form posterior distribution. As a sampling procedure
we use Metropolis-Hastings within Gibbs algorithm. The model and estimating
procedure are applied to a simulated data set from the original article by Whit-
more, Crowder and Lawless in order to evaluate the performance of our algorithm.
Our method appears to work well, while allowing also to incorporate prior informa-
tion on the parameters of the model, which can be available from previous studies
in similar populations.
Keywords: Marker, Degradation, Latent Models, Bayesian Inference.

1 Introduction

1.1 Markers, degradation and thresholds

Many articles in the literature have focused on incorporating auxiliary in-
formation, such as markers, in modelling lifetime data. For good reviews,
see Fleming, Prentice, Pepe and Glidden [Fleming et al., 1994], Lefkopoulou
and Zelen [Lefkopoulou and Zelen, 1995], Jewell and Kalbfleisch [Jewell and
J.D. Kalbfleisch, 1996], Shi, Taylor and Munoz [Shi et al., 1996], among oth-
ers. On the basis of both proportional and additive hazards models, Lin,
Fleming and DeGruttola [Lin et al., 1997] incorporated a time-varying co-
variate marker as a marker process and considered a variety of models for
the marker process.

Another school of thought, represented by the work of Whitmore [Whit-
more, 1979], [Whitmore, 1995], Doksum and Hoyland [Doksum and Hoyland,
1992], Doksum and Normand [Doksum and Normand, 1995], Lu [Lu, 1995],
and Whitmore and Schenkelberg [Whitmore and Schenkelberg, 1997], con-
siders several models that relate the occurrences of failure events directly to
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an observable degradation process. An assumption in many of these mod-
els is that an event occurs when observable degradation reaches a threshold.
Hence, these models were also referred to as “first-passage time”, or “first-
hitting time” models (Lee and Whitmore [Lee and Whitmore, 2003]).

Instead of a single observable degradation process to model event occur-
rences, Whitmore, Crowder and Lawless [Whitmore et al., 1998] (abbreviated
herein as WCL) introduced the joint distribution of an observable marker pro-
cess and an unobservable degradation process. Specifically, they assume that
the observable marker process and a latent but unobservable “true” degrada-
tion process together follow a bivariate Wiener process. This bivariate model
deals with more realistic situations where failure is not deterministically re-
lated to an observable marker. The bivariate model also allows us to evaluate
the reliability of the observed marker values in the assessment of the latent
degradation of a subject. Although most of the earlier papers assume that
degradation follows a Wiener process, other forms of degradation processes
have recently been considered. Lawless and Crowder [Lawless and Crowder,
2004] used a gamma increment process; and Aalen and Gjessing [Aalen and
Gjessing, 2004] modelled survival data using an Ornstein-Uhlenbeck process.

1.2 Motivation of the proposed Bayesian methods

Most of the papers listed above formulated their models and estimation proce-
dures using a conventional frequentist paradigm. On the basis of the univari-
ate degradation model discussed by Lu [Lu, 1995], Pettit and Young [Pettit
and Young, 1999] adopt a conventional Bayesian approach. Using uniform
priors for the threshold level and proper priors for parameters of degradation,
Pettit and Young derived inferences for parameters of both the degradation
process and the threshold level to make predictions regarding future events.
They used a Gibbs sampler to sample from the posterior distributions of
model parameters and estimated predictive distributions of failure times. For
a newly enrolled subject, they estimated future degradation levels at different
times using estimated parameters averaged over all samples. They applied
their methods to a simulated dataset obtained from Lu [Lu, 1995] and com-
pared their results to those obtained by using ML estimators. The paper
by Pettit and Young, however, considered only the univariate degradation
model.

In this article, we consider the use of Bayesian inference procedures for
joint modelling of marker and degradation processes using the bivariate
methodology introduced by Whitmore, Crowder, and Lawless (WCL) [Whit-
more et al., 1998]. Unlike the conventional Bayesian methods adopted by
Pettit and Young, we needed to incorporate the data augmentation tech-
nique into our Bayesian models in order to derive the likelihood function in
closed form.
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We use a full Bayesian approach to make inferences on parameters of both
the marker and degradation processes. Also, for surviving subjects, we can
model the distribution of residual survival times. For newly enrolled subjects,
we can predict their failure times. For subjects expected to survive until a
given time with a given marker value, we can predict degradation levels. We
applied our model to a simulated dataset from WCL.

2 Short Review of the Bivariate Marker and
Degradation Model

The bivariate threshold model introduced by WCL assumes that every
subject is represented by a path of a bivariate Wiener process W(τ) =
{X(τ), Y (τ)}, τ > 0, with initial values W(0) = {X(0), Y (0)} = {0, 0}, drift

µ = (µX , µY ) with nonnegative µX , and covariance matrix Σ =

∣∣∣∣
σXX σXY
σXY σY Y

∣∣∣∣ .
The component X(τ) represents the latent process of an unobservable degra-
dation (disease) state of a subject and component Y (τ) denotes a marker
process that is correlated with the degradation process X(τ). The strength
of the association between the two components of the bivariate Wiener pro-
cess is described by the correlation coefficient ρ. The subject fails when the
degradation process X(τ) reaches a failure threshold a > 0 for the first time.
We denote this first-hitting time by the random variable S. It is well known
that, when X(τ) follows a Wiener process, its first-hitting time S has an
inverse Gaussian (IG) distribution with corresponding parameters (see, e.g.,
Chhikara and Folks[Chhikara and Folks, 1989]).

Each subject is observed during a fixed period of time [0, t] with one of
two possible outcomes:
(1) failing subject – subject fails at some time s ∈ [0, t];
(2) surviving subject – subject is alive and censored at the time t.

For surviving subjects, the marker component Y (·) is measured at the end
of the observation period t. For failing subjects, the marker component Y (·)
is measured at the failure time.

As a result, the observed data consists of the following forms.
(1) For failing subjects:

i ) failure time S = s < t,the first-passage time for the degradation X ,
ii ) value y = Y (s), of the marker component Y at the failure time s ,
iii ) X(s) = a, since failure is the first–passage to the threshold a;

(2) For surviving subjects:

i ) time t < S, which implies that X(τ) < a for τ ∈ [0, t],
ii ) value y(t) of the marker component Y at the time t.

The model also assumes that the latent degradation component has a non-
negative drift µX ≥ 0 so as to ensure that all subjects will fail within a finite
time period with probability 1.
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The corresponding probability distributions for failing and surviving sub-
jects were derived in WCL.

3 The Proposed Bivariate Model with Data
Augmentation for the Degradation Process

Two approaches are possible to relate survival information to the latent degra-
dation.

i ) Consider only the observed data, and obtain a marginal p.d.f. of
the marker component for a surviving subject (see [Whitmore et al.,
1998], 2.10). This strategy will result in a rather complicated combina-
tion of the p.d.f. and c.d.f. of normal distributions with different means
and covariances;

ii ) Alternatively, one can augment unobserved degradation values for sur-
viving subjects and treat these values as additional parameters.

In this article, we will take the second approach and construct a full
Bayesian model based on complete likelihood function.

3.1 Data augmentation

Assume that there are n independent subjects, and each subject could be
observed during a fixed time period [0, Ti], i = 1, . . . , n. Let Si denote
the random failure time variable for the ith subject, i = 1, . . . , n. If the
ith subject failed at time Si = si ≤ Ti, the marker value Y (si) = yi is
measured. If the ith subject did not fail during the observation period, then
the survival time Si is unobserved, and the marker value is measured at Ti
with Y (Ti) = yi. Let δi = I(Si < Ti), i = 1, . . . , n, be a censoring indicator.

We define a stopping time for the ith subject as ti =

{
si, if δi = 1,
Ti, if δi = 0.

Thus, for n subjects, there are three vectors of length n of completely
observed data, as follows.

• a vector of stopping times t = (t1, t2, . . . , tn),
• a vector of censoring indicators δ = (δ1, δ2, . . . , δn),
• a vector y = (y1, y2, . . . , yn) of values of the Y –component of the Wiener

process W(τ) at stopping times.

The latent degradation component X is observed only for the failed (δi =
1) subjects and is equal to the failure threshold a. Thus the observed data
are

Dobs = (t, y, δ, (X(ti) : δi = 1)).

To get the “complete” data, we augment the observed data with latent degra-
dation levels for surviving subjects as described below.
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The augmented vector of the X–components for all n subjects is defined

as x = (x1, x2, . . . , xn), where xi =

{
a, if δi = 1,
augmented value xi, if δi = 0.

Thus, through data augmentation, we get an additional parameter vector
xs = {xi : δi = 0} of length n− k, where k =

∑n
i=1 δi.

3.2 Likelihood function for augmented data

Using the “complete” data consisting of D = (t, x, y, δ), we can easily derive
from WCL (2.5), (2.7) and (2.12), and the condition µX ≥ 0, the likelihood
function for the augmented set of parameters µ,Σ, a, xs:

L (µ,Σ, a, xs | Dobs) = (1)

×
∏

δi=1

pf (yi, ti | µ,Σ, a)
∏

δi=0

ps(xi, yi, ti | µ,Σ, a)I(µX ≥ 0).

Examination of densities pf (· | ·) and ps(· | ·) shows that they are
overparameterized, and, without loss of generality, we can fix the failure
threshold a = 1. To simplify notation, we denote the bivariate vector
wi = (xi, yi), i = 1, . . . , n. Thus

L (µ,Σ, a, xs | Dobs) = L(µ,Σ, xs | Dobs) =

=
ak

(2π)n|Σ|n/2
n∏

i=1

t−1−δi

i · exp

(
−

n∑

i=1

(wi − tiµ)Σ−1(wi − tiµ)′

2ti

)
I(µX ≥ 0)

×
∏

δi=0

((
1− exp

(
−2a(a− xi)

tiσXX

))
I(xi ≤ a)

)
. (2)

The introduction of augmented latent variables resulted in a likelihood
function with a closed form and three groups of parameters, namely a 2–
dimensional vector of drift parameters µ, a 2× 2 symmetric positive definite
covariance matrix Σ, and a (n− k)–dimensional vector of augmented degra-
dation values xs.

4 The Prior and Posterior Distributions

To facilitate a Bayesian inference procedure, we need to specify prior dis-
tributions. Note, that conditionally on µ and Σ the prior distribution of
augmented vector xs is fully accounted for by the Wiener process model. We
propose to use independent prior distributions for each group of parameters
µ and Σ because they are related to different features of the trajectories of
the Wiener process: drift describes the average path, whereas variance is
responsible for the variability of each individual path. Therefore, the joint
prior distribution has the following form:

π(µ, Σ, xs) = π(µ)π(Σ)π(xs | µ, Σ). (3)
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Taking into account that the distribution of xs is defined by the model,
the joint posterior distribution has the form

ppost(µ, Σ, xs | Dobs) ∝ L(µ,Σ, xs | Dobs) · π(µ)π(Σ). (4)

It could be shown that, under some weak restrictions on observed data,
and proper π(µ) and π(Σ), the joint posterior distribution will be proper.

The proper prior distributions could be made by the choice of hyperpa-
rameters to be noninformative or informative, depending on availability of a
priori information on marker behavior or/and patient population. Since the
main part of the likelihood has a Gaussian form (though truncated for µX
in the current formulation of the model), we suggest using traditional prior
distributions for the class of Gaussian models:

π(µ) ∝ exp

(
−1

2
(µ− µ0)Σ

−1
0 (µ− µ0)

′
)
I(µX ≥ 0), (5)

π(Σ)simInverse Wish2(l, R). (6)

5 Predictive distributions of survival times

For surviving subject i, the predictive distribution for residual time sresi is :

p(sresi | Dobs) =

∫ ∫ ∫
p(sresi | µ,Σ, xi)ppost(µ,Σ, xs | Dobs)dµ dΣ dxs. (7)

where p(sresi | µ, Σ, xi) =
a− xi√

2πσXX(sresi )3
exp

(
− (a− xi − µXsresi )2

2σXXsresi

)
.

The integral over the measure generated by the joint posterior distribution
of the parameters can be estimated as a mean of the density p(sresi | µ, Σ, xi)
over a sample from the joint posterior distribution.

For a newly enrolled subject, the predictive distribution for survival time
p(s | Dobs) have the same analytical forms as for residual survival times with
initial degradation level x(0) = 0. The same estimation procedure applies.

6 Computational Implementation

We designed our computational model to be analytically convenient for
the implementation of a Gibbs sampler to draw samples from the joint pos-
terior distribution. We suggest using a form of Gibbs sampling, that allows
sampling from conditional distributions for blocks of variables. There are
three natural groups of parameters: µ, Σ, and xs. In section 4 we specified
the joint prior distribution for the parameters. From the analytical form of
the joint posterior distribution we can see that the conditional posterior dis-
tributions for parameters µ and Σ are the products of respective conditional
posterior distributions with flat priors and the respective prior distributions.
The conditional posterior distribution for the vector of augmented values xs
is a product of conditional posterior distributions of its components.
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6.1 Conditional posterior distributions for µ, Σ, and xs

It can be easily shown that the conditional posterior distribution for µ with
a flat improper prior is a truncated (µX ≥ 0) bivariate normal distribution
with location parameter µflat = w̄/t̄, covariance parameter Σµ = 1

nt̄Σ,
where w̄ = 1

n

∑n
i=1 wi, t̄ = 1

n

∑n
i=1 ti.

For priors (5) and (6) the conditional posterior distribution for µ is also
a truncated (µX ≥ 0) bivariate normal with location parameter µ′

post =

Σµpost(Σ
−1
µ µ′

flat +Σ−1
0 µ′

0), covariance parameter Σµpost = (Σ−1
µ +Σ−1

0 )−1.

The convenient way to specify the prior distributions for covariances is to

specify them for the inverse matrices. Let denoteΣ−1 = IΣ =

∣∣∣∣
iσXX iσXY
iσXY iσY Y

∣∣∣∣,
so that ρ = −iσ2

XY /
√
iσXXiσY Y . The kernel for the posterior conditional

distribution of IΣ with a flat prior can be written as

K(IΣ) = |IΣ|n2
∏

δi=0

(
1− exp

(
− 2a(a− xi)iσXX(1− ρ2)

ti

))
(8)

× exp
(
− 1

2
tr
(
IΣ · SE

))
, where SE =

n∑

i=1

1

ti
(wi − tiµ)′(wi − tiµ).

For a Wishart prior for IΣ corresponding to (6) with hyperparameters
l,and R the kernel for the posterior conditional distribution of IΣ is

Kpost (IΣ) = |IΣ|n+l−3
2

∏

δi=0

(
1− exp

(
− 2a(a− xi)iσXX(1− ρ2)

ti

))
(9)

× exp

(
−1

2
tr
(
IΣ · R−1

post

))
, where Rpost =

(
SE +R−1

)−1
.

The kernel for a conditional posterior distribution of the component xi of
the augmented vector xs for a surviving subject i (δi = 0) is

K(xi) = exp

(
− (xi − µX.Y (ti))

2

2tiσXX.Y

)(
1− exp

(
−2a(a− xi)

tiσXX

))
× I(xi ≤ a),

where µX.Y = µXti + σXY /σY Y (yi − µY ti), σXX.Y = σXX(1− ρ2). (10)

6.2 Sampling Schemes for the Conditional Posterior
Distributions

As a sampling scheme we propose to use Metropolis-Hastings within Gibbs
(MHwG) algorithm, described in Section 6.2 of Chib and Greenberg [Chib
and Greenberg, 1995], for three “natural” groups of parameters: µ, Σ, and
augmented values xs of the process component X(t) at the censoring time
t. It can be applied to a joint distribution that has one of its conditional
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distributions in an analytical form that makes it difficult to develop a direct
sampling procedure. The MHwG algorithm is a Gibbs sampler that allows
sampling the intractable conditional distribution using a Metropolis-Hastings
algorithm, whereas all other conditional distributions are sampled directly.
For the joint posterior distribution (4) with suggested priors the covariance
matrix of the Wiener process Σ has an intractable conditional posterior dis-
tribution, drift parameter µ could be sampled directly. For independent com-
ponents of vector xs, we construct a convenient rejection sampling scheme.

7 Analysis of Simulated Data Set

In order to test the performance of our Bayesian scheme, we applied it to
the simulated dataset obtained from WCL (see Table 5.1) and compared
their ML estimates of parameters µ and Σ to the estimates based on the
introduced Bayesian procedure. This dataset was generated by simulating
a Wiener process W = {X,Y } with parameters (µX , µY , σXX , σY Y , ρ) =
(.1, 1., .42, .12, .75). Fifty sample paths were generated by running steps with
time increments dt = .01 until the cumulative sums exceeded the threshold
level 1 or the number of steps reached 1000, which was equivalent to truncat-
ing the paths at time T = 10. The generated dataset contains 12 truncated
observations.

Since we were interested in comparing our inference procedure to the max-
imum likelihood estimation of parameters from WCL, we needed to spec-
ify a noninformative set of priors. We chose the parameters for the priors
(5) and (6) to make them noninformative comparing to the data. It can
be shown that the location parameter µ0 = (0, 0) and the covariance ma-

trix Σ0 =

(
100 0
0 100

)
for (5), and l = 3 with the “covariance” matrix

R = 100.0

(
1 −ρ
−ρ 1

)
with ρ = 0 for (6) will be sufficiently noninforma-

tive for the WCL dataset. The correlation 0 here corresponds to an a priori
hypothesis of no association between the marker and the degradation.

The MHwG algorithm was implemented in S-Plus.
We ran one simulation chain of 12,000 iterations, starting with overdis-

persed initial values. We considered the first 2000 iterations a “warm-up
run” and used the next 10, 000 iterations for inference . The plots of traces
of simulated values for parameters µ, augmented latent degradation levels for
survivors at the time of censoring, as well as variances and correlation looked
rather homogeneous, and allowed us to conclude that the simulation chain
has converged.

In Table 1 we present the true parameter values, the ML estimates from
WCL, and the values of parameters µX , µY , σX =

√
σXX , σY =

√
σY Y ,

and ρ estimated from the simulated Markov chain, We remind that the like-
lihood function in WCL is the likelihood for the observed data. Bayesian
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estimates of parameters are sample means based on all simulated samples,
even for parameters with large autocorrelation, because it was shown by S.
N. MacEachern and L. M. Berliner [MacEachern and Berliner, 1994] that
subsampling leads to less efficient estimates. Numbers in parenthesis repre-
sent the standard errors of the estimates based on an estimate of the inverse
observed information matrix for ML estimates from WCL, and the estimates
of the standard deviations of the posterior distributions of parameters. Based
on the full sampled chain we calculated standard deviations as square roots
from variance estimates. Median estimations are also based on the full chain.
High density intervals are estimated by 250–th and 9750–th respective order
statistics.

Table 1. True Values and Estimates for the Parameters of the Process

True Estimates
Values from WCL Bayesian

Parameter ML(SD) Mean(SD) Median 2.5% 97.5%

µX 0.1 0.120(0.023) 0.121(0.022) 0.122 0.077 0.164
µY 1.0 1.012(0.005) 1.012(0.005) 1.012 1.002 1.022
σX .4 0.364(0.039) 0.354(0.036) 0.352 0.289 0.424
σY .1 0.089(0.008) 0.088(0.008) 0.088 0.075 0.107
ρ .75 0.737(0.063) 0.721(0.063) 0.729 0.600 0.828

Analysis of autocorrelation functions of parameter samples for µ, σXX ,
σY Y , ρ and xs indicates that samples of location parameters µ and augmented
degradation levels xs are relatively uncorrelated, whereas samples for σXX ,
σY Y , and ρ have significant autocorrelations.

To check the stability of the behavior of the samples of σXX , σY Y and
ρ we analyzed subsamples of σX , σY and ρ with lags 20 and 50, which are
practically uncorrelated. The results are presented in Table 2. It can be

Table 2. Comparison of Estimates σX , σY and ρ by subchains

True Estimates
Values from WCL Full Chain Every 20th Every 50th

Parameter ML(SD) Mean(SD) Mean(SD) Mean(SD)

σX .4 0.364(0.039) 0.3539(0.0358) 0.3529(0.0355) 0.3515(0.0344)
σY .1 0.089(0.008) 0.0882(0.0084) 0.0878(0.0082) 0.0881(0.0088)
ρ .75 0.737(0.063) 0.7208(0.0633) 0.7206(0.0616) 0.7227(0.0596)

seen that mean values and standard deviations are practically unchanged.
Histograms for subsamples, which are not presented here, are also similar to
those based on full simulated sample.
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Abstract. The aim of this paper is a complete statistical analysis of the two di-
mensional discrete wavelet transform, 2D DWT. This analysis represents a gener-
alization of the statistical analysis of the 1D DWT, already reported in literature.
The probability density function, the correlation and the first two moments of the
coefficients of the 2D-DWT are computed. The asymptotic behaviour of this trans-
form is also studied. The results obtained were used to design a new denoising
system dedicated to the processing of SONAR images.
Keywords: Discrete Wavelet Transform, Asymptotic analysis, convergence speed.

1 Introduction

The 2D DWT is a very modern mathematical tool. It is used in compression
(JPEG 2000), denoising and watermarking applications. To exploit all its
advantages, it must be carefully analyzed. The aim of this paper is the study
of this transform from the statistical point of view. Such a complete study
was not already reported.

2 The 2D DWT

In this paper the most commonly used 2D DWT is considered. It is built
with separable orthogonal mother wavelets, having a given regularity. At
every iteration of the DWT, the lines of the input image (obtained at the
end of the previous iteration) are low-pass filtered with a filter having the
impulse response m0 and high-pass filtered with the filter m1. Then the lines
of the two images obtained at the output of the two filters are decimated
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with a factor of 2. Next, the columns of the two images obtained are low-
pass filtered with m0 and high-pass filtered with m1. The columns of those
four images are also decimated with a factor of 2. Four new sub-images
(representing the result of the current iteration) are generated. The first one,
obtained after two low-pass filterings, is named approximation sub-image (or
LL image). The others three are named detail sub-images: LH, HL and HH.
The LL image represents the input for the next iteration. In the following,
the coefficients of the DWT will be noted with xD

k
m, where x represents

the image who’s DWT is computed, m represents the iteration index (the
resolution level) and k = 1, for the HH image, k = 2, for the HL image,
k = 3, for the LH image and k = 4, for the LL image. These coefficients are
computed using the following relation:

xD
k
m [n, p] =

〈
x (τ1, τ2) , ψ

k
m,n,p (τ1, τ2)

〉
(1)

where the wavelets can be factorized:

ψkm,n,p (τ1, τ2) = αkm,n,p (τ1) · βkm,n,p (τ2) (2)

and the two factors can be computed using the scale function ϕ (τ) and the
mother wavelets ψ (τ) with the aid of the following relations:

αkm,n,p (τ) =

{
ϕm,n (τ) , k = 1, 4
ψm,n (τ) , k = 2, 3

(3)

βkm,n,p (τ) =

{
ϕm,n (τ) , k = 2, 4
ψm,n (τ) , k = 1, 3

(4)

where:

ϕm,n (τ) = 2−
m
2 ϕ(2−mτ − n) (5)

ψm,n (τ) = 2−
m
2 ψ
(
2−mτ − n

)
(6)

3 The pdfs of the wavelet coefficients

These pdfs can be computed following the description of the 2D DWT given
in the previous paragraph. In fact each sub-image has its own pdf. The
pdfs computation is based on the relation between the pdfs of the random
variables from the input and the output of a digital filter. This is a sequence of
convolutions which number is equal with the number of the filter coefficients.
The pdfs of the wavelet coefficients, xD

k
m, can be expressed with the aid of

the pdf of the input image, x, using the relation, [1]:

f
xDk

m
(a) = ?

M(k)
q1=1 ...?

M0
rm=1fd(k, q1, r1, ..., qm, rm, a) (7)



A Statistical Analysis of the 2D Discrete Wavelet Transform 1277

where:

fd (k, q1, ..., rm, a) = G (k, q1, ..., rm) fx (G (k, q1, ..., rm) a) (8)

and:

G (k, q1, ..., rm) =
1

F (k, q1, r1)
m∏
l=2

m0 [ql]m0 [rl]
(9)

where:

F (k, q1, r1) =





m0 [q1]m0 [r1] , for k = 4
m0 [q1]m1 [r1] , for k = 3
m1 [q1]m0 [r1] , for k = 2
m1 [q1]m1 [r1] , for k = 1

(10)

M0 represents the length of the impulse response m0,M1the length of m1

and the numbers of the first two groups of convolutions in relation (7) are
given by the relation:

M (k) =





M0, for k = 4
M0, for k = 3
M1, for k = 2
M1, for k = 1

and N (k) =





M0, for k = 4
M1, for k = 3
M0, for k = 2
M1, for k = 1

(11)

In conformity with (7), each pdf of the wavelet coefficients is a sequence of
convolutions. Hence, the random variable representing the wavelet coeffi-
cients can be written like a sum of independent random variables. So, the
central limit theorem can be applied. This is the reason why the pdf of the
wavelet coefficients tends asymptotically to a Gaussian, when the number
of convolutions in (7) (the DWT iterations number) tends to infinity. This
number depends on the mother wavelets used and on the number of iterations
of the DWT. For mother wavelets with a long support, this number becomes
large very fast (for a small number of iterations). The mother wavelet with
the shortest support is the Haar mother wavelets. We have computed, using
the relation (7), the pdfs of the coefficients of the 2D DWT of an image, con-
taining a noise distributed following a log − gamma distribution, using the
Haar mother wavelets. The support of the mother wavelets used in practice
is longer than the support of the Haar mother wavelets, considered in this
theoretical case. The difference between the pdfs of the wavelet coefficients
obtained after the second iteration and Gaussians is small in this case. So,
after two iterations, the pdfs of the wavelet coefficients can be considered
Gaussians. For the first two iterations, heavy-tailed models must be con-
sidered. Finer analysis, measuring the distance between the real pdfs and
Gaussians, are performed in [Foucher and al., 2001], [Achim and al., 2003]
and [Xie and al., 2002].
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4 The correlation of the wavelet coefficients

The input image, x, represents, in general, the sum of the useful image, s, and
of the noise image, n. Because these two random signals are not correlated,
the correlation of the wavelet coefficients of the image x, is the sum of the
correlations of the wavelet coefficients of the useful image and of the noise
image. The correlation function of the wavelet coefficients can be computed
using the following relation:

Γ
xDk

m
[n1, n2, p1, p2] = E

{
xD

k
m [n1, p1]

(
xD

k
m [n2, p2]

)∗}

=

∫

R4

E {x (τ1, τ2)} · ψk∗m,n1,p1 (τ1, τ2) · ψkm,n2,p2 (τ3, τ4) dτ1dτ2dτ3dτ4 (12)

or:

Γ
xDk

m
[n1, n2, p1, p2] =

1

4π2

∫

R2

γx
(
2−mν1, 2

−mν2
)
·

·
∣∣α2

{
ψk (ν1, ν2)

}∣∣2 · e−j[ν1(n2−n1)+ν2(p2−p1)]dν1dν2 (13)

where the first factor under the integral from the right hand side represents
the power spectral density of the input image and the second factor represents
the power spectral density of the one dimensional mother wavelets used. In
the following, the influence of each of these two factors will be analyzed. For
the beginning, the influence of the first factor is considered. If the input
image is a white noise, with a known variance, z, it can be written:

γn
(
2−mν1, 2

−mν2
)

= z (14)

and the expression of the wavelet coefficients of the input noise image corre-
lation function becomes:

Γ
nDk

m
[n1, p1] = z · δ [n1] · δ [p1] (15)

This relation was obtained applying some very well known results from har-
monic analysis: the Wiener-Hincin identity and the symmetry theorem. A
magic property of the orthogonal wavelet bases (the samples of the correla-
tion functions of the corresponding mother wavelets and scaling functions,
taken at integer moments, are discrete-time unit impulses) was also used.
Hence, the correlation of the wavelet coefficients of a white noise image do
not depends on the regularity of the one dimensional mother wavelets used.
The same result can be obtained taking in (13) the limit for m (number of
iterations) tending to infinity. Indeed, under the integral from the right hand
side of (13), only the power spectral density of the input image depends on
m. After the limit computation, this function becomes a constant, like in the
case when the input image is a white noise. Asymptotically, the 2D DWT
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transforms every colored noise into a white one. Hence this transform can
be regarded as a whitening system, for any regularity of the one dimensional
mother wavelets used. So, the wavelet coefficients sequences of the noise
component of the input image are white noise sub-images, having the same
variance. In the following, some considerations about the influence of the
second factor of the product under the integral from the right hand side of
the relation (13), will be made. This second factor takes into account the
specific of the one dimensional mother wavelets used. It explains how the
regularity of the wavelet decomposition affects the coefficients correlation. It
can be proved that the convergence speed to a white noise (when m tends
to infinity) increases when the regularity (the length of the filters m0 and
m1) increases. So, the convergence speed to a Gaussian white noise can be
increased using one dimensional mother wavelets with higher regularity. The
first and second order moments of the wavelet coefficients can be computed
using the following relations.

E
{
xD

k
m [n1, p1]

}
= E

{∫

R2

x (τ1,τ2) · ψk∗m,n1,p1 (τ1, τ2) dτ1dτ2

}
= (16)

=

{
0, k = 1, 2, 3
2m · µx, k = 4

Only the means of the images formed with the approximation wavelet
coefficients are not nulls. The mean of the DWT of the noise component of
the input image is given by the relation:

E
{
nD

k
m [n1, p1]

}
=

{
0, k = 1, 2, 3
−2m · µn, k = 4

(17)

In practice the number of iterations of the DWT is important. The dimen-
sions of the image built with the approximation wavelet coefficients obtained
after the last iteration are smalls. This is the reason why this image is not
filtered in the denoising applications based on the use of the DWT. The
variance of the wavelet coefficients of the noise component can be computed
using the relation:

σ2
xDk

m
= E

{∣∣
xD

k
m [n1, p1]

∣∣2
}

= Γ
xDk

m
(0, 0) =

=
1

4π2

∫

R2

γx (2mν1, 2
mν2) ·

∣∣α2

{
ψk (ν1, ν2)

}∣∣2 dν1dν2

The DWT of the input noise component, n, has a variance given by:

σ2
nDk

m
=

{
z, k = 1, 2, 3
z − 22mµ2

n, k = 4
(18)

This variance is constant for all the images formed using detail wavelet coeffi-
cients. Hence, it can be estimated using the first HH image. This estimation
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can be used for the filtering of any other detail image, formed with the detail
wavelet coefficients obtained at any iteration. The correlation of the DWT
of s is given by:

Γ
sDk

m
[n1, p1] = 22m · Γs [2mn1, 2

mp1] (19)

its mean by:

E
{
sD

k
m [n1, p1]

}
=

{
0, k = 1, 2, 3
2m · µs, k = 4

(20)

and its variance, by:
σ2

sDk
m

= 22m · σ2
s (21)

So, the variance of the detail wavelet coefficients sequences obtained start-
ing from the useful component of the input image increases when the iteration
index increases. All the relations established in this paragraph were used in
[Isar and Moga, 2004], for the design of a denoising system for SONAR im-
ages.

5 Conclusion

A complete analysis of the 2D DWT was reported. It is proved that the 2D
DWT asymptotically converges to the 2D Karhunen-Loève transform. So,
the DWT of a colored noise image, with a given probability density function,
converges asymptotically to a white Gaussian noise. This is a generalization
of the results reported in [Isar and al., 2002], where the case of the 1D DWT
was considered. Another reference for the statistical analysis of the 1D DWT
is [Pastor and Gay, 1995]. The asymptotic analyses of 1D DWT and 2D DWT
have similar results. The pdfs of both wavelet transforms converge asymp-
totically to Gaussians. Both wavelet transforms converge asymptotically to
the corresponding Karhunen-Loève transforms, for any regularity of the one
dimensional mother wavelets used. The convergence speed to a Gaussian
white noise can be improved increasing the regularity of the one dimensional
mother wavelets used. Both wavelet transforms convert a white noise into a
white noise with the same variance. All the other results of the statistical
analyses of the 1D DWT and 2D DWT (pdfs, correlations, moments) are
also similar. Based on the statistical analysis reported in this paper, a new
denoising system was built in [Isar and Moga, 2004]. Its performances for
the treatment of the SONAR images are also reported. This statistical anal-
ysis can be used for compression or watermarking purposes also. Statistical
analyses of other wavelet transform will be reported soon.
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Abstract. One of the biggest constraints to study meteorological fields is due to
the fact that the ground-based meteorological network does not operate over a
common time period of adequate length. In general, the biggest drawback is that
recorded data available must be gap-filled and quality controlled (coherent and
consistent) to provide a reliable continuous reference daily/monthly/yearly time
series. Hence, this paper is addressed to procedures for reconstruction and evalua-
tion of extremes air temperature time series obeying a sequential strategy divided
in two moments: (1) the interpolation considering the cross-correlation and the
autocorrelation time-memory; and (2) the spatial interpolation procedure based
upon the “optimum distance” between stations. The latter is accomplished sub-
dividing areas of a 2D region into triangles (simplex) to assess the interpolation
structure that make use of the altitude of stations as a weight correction factor.
Hence, an integrated model for the restoration of time series was developed, which
conjugates small-scale space-time interaction between meteorological stations. To
validate this work-algorithm, the diagnostic of extreme air temperatures was ac-
complished based on the analysis of daily time series (1941-2001) from eighteen
meteorological stations placed in the Lisboa (Portugal) metropolitan region. As
expected, this innovator and robust reconstruction method has good performance,
since more information is introduced in the decision-making system.
Keywords: autocorrelation, bias, barycentric coordinates, statistical quality con-
trol, time series reconstruction.

1 Introduction

In general, the biggest drawback in climate time series research and diagnos-
tic is that recorded data available must be gap-filled and quality controlled
(coherent and consistent) to provide a reliable continuous reference daily
⇒ monthly ⇒ yearly time series (control or reference series). Hence, this
manuscript is addressed to stochastic procedures for reconstruction and eval-
uation (quality control) of extremes air temperature time series. For this
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reason, we have created a Time Series Reconstruction via Integrated (Inter-
active) Modelling algorithm: MIRS, an integrated model for the restitution
of time series, which conjugates small-scale “space-time interaction” between
meteorological stations, Fig.1. It is basically subdivided in two major steps:
(1) The temporal linear interpolation, considering the time-memory; and (2)
The spatial linear interpolation based upon the “optimum distance” between
stations. The time series have been recovered and the empirical mean squared
error (MSE) has been evaluated, taking into account the comparison between
records in local neighbourhood (time and space small-scale) presenting the
same climatic (seasonal) characteristics.

Throughout this work some predictors for spatiotemporal processes will
be derived. It is realised on bases of linear techniques and assuming some
conditions for the processes under study. First, it is important to formalise
the notion of spatiotemporal process. Hence, consider a random function
{Z(s, t) : s ∈ D ⊆ <n; t = 0,∓1. ∓ 2, ...}, realizations of a spatiotemporal
stochastic process. Thus, for fixed t,{Z(s, t) : s ∈ D} ≡ {Zt(s) : s ∈ D}
is a purely spatial processes and for a fixed location s ∈ D, {Z(s, t) : t =
0,∓1.∓2, ...} ≡ {Zs(t) : t = 0,∓1.∓2, ...}is a time series. Hence, a spatiotem-
poral stochastic process is simply an infinite, possibly correlated, sequence
of spatial processes in time or vice-versa. For our purpose we will make the
distinction between space-partial trajectories {Z(t) : t = 0,∓1.∓2, ...} (recon-
struction on temporal domain) and time-partial trajectories {Z(s) : s ∈ D}
(reconstruction on spatial domain) of the spatiotemporal stochastic process
[Kyriakidis and Journel, 1999].

Let Ẑ(x0) the predictor of a random function on partial trajectories
based on the realisations {Z(x1), Z(x2), ..., Z(x2)}; the prediction error as-
sociated is defined as ε(x0) = Ẑ(x0) − Z(x0) and the mean squared error,

which is interconnected with the prediction’s quality, is MSE
[
Ẑ(x0)

]
=

E
[
Ẑ(x0)− Z(x0)

]2
. The best prediction function in terms of the minimum

MSE [Graybill, 1976] is given by:

ψ0 [Z(x1), Z(x2), ..., Z(xn)] = E [Z(x0)|Z(x1), Z(x2), ..., Z(xn)] ,

and the best linear prediction function is:

ψ∗
0 [Z(x1), Z(x2), ..., Z(xn)] = λ0 +

n∑

i=1

λiZ(xi), λi ∈ <, i = 1, 2, ..., n,

where Ẑ(x0) = λ0 +
n∑
i=1

λiZ(xi). Moreover, it is well-known that the

MSE can be written as follows: MSE
[
Ẑ(x0)

]
= V ar

[
Ẑ(x0)− Z(x0)

]
+

B2
[
Ẑ(x0)− Z(x0)

]
. An optimum predictor must be unbiased and ψ∗

0 is

unbiased B
[
Ẑ(x0)− Z(x0)

]
= 0, since
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Fig. 1. Map of Lisboa metropolitan area with the location of the automatic meteorological stations of the
urban network. Identification of the eighteen meteorological stations and their respective altitudes: 1. Torres-
Vedras/Dois-Portos (ID: #139) – 150m; 2. Salvaterra de Magos (ID: #141) – 5m; 3. Colares Sarrazola (ID:
#148) – 55m; 4. Sintra (ID: #149) – 200m; 5. Cabo da Roca (ID: #150) – 142m; 6. Paiã/Escola-Agŕıcola
(ID: #153) – 70m; 7. Sacavém (ID: #155) – 9m; 8. Cabo Ruivo (ID: #157) – 16m; 9. Sassoeiros (ID: #160)
– 50m; 10 – Lisboa/Tapada-da-Ajuda (ID: #162) – 37m; 11. Lavradio (ID: #166) – 6m; 12. Sintra/Granja
(ID: #532) – 134m; 13. Montijo/Base-Aérea (ID: #534) – 14m; 14. Lisboa/Geof́ısico (ID: #535) – 77m; 15.
Lisboa/Portela (ID: #536) – 103m; 16. Alverca/Base-Aérea (ID: #537) – 2m; 17. Ota/Base-Aérea (ID: #539)
– 40m; 18. Lisboa/Gago-Coutinho (ID: #579) – 104m.

E {ψ0 [Z(x1), Z(x2), ..., Z(xn)]} = E {E [Z(x0)|Z(x1), Z(x2), ..., Z(xn)]} = E [Z(x0)]

Then ψ∗
0 is the best linear unbiased predictor (BLUP) of Z(x0). There-

fore, minimise the MSE is reduce the variance of prediction: V ar [ε(x0)] =

V ar
[
Ẑ(x0)− Z(x0)

]
and {ε(x0)}, ∀x0 unsampled points, determine series

of uncorrelated random variables, supposed to be a zero mean and constant

variance - white noise. Moreover, Ẑ(x0) = λ0 +
n∑
i=1

λiZ(xi) + ε(x0), where

n∑
i=1

λiZ(xi) is considered the large scale trend surface (1st order component in

time or space domain; defined by the wide meaning neighbourhood influence
zone) and ε(x0) the local component (2nd order factor) or residuals.

2 Daily Reconstruction

2.1 Temporal Domain

The reconstruction model is based on: (1) the use of the own series for filling
records without information, considering the strong daily relationship of the
internal variation between minimum and maximum air temperature, this
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association can be verified performing the cross-correlation function analysis
between both air temperature attributes for each station in time t = t0, the
antecedent t - 1 and the subsequent t+1 values (two-day time influence); (2)
and (3) the use of the serial correlation, considering the strong connection
between a record in time t, the antecedent t-2, t-1 and the subsequent t + 1,
t + 2 values (four-day time influence). Hence, the autocorrelation and the
partial autocorrelation functions are applied for each series of data, whenever
an isolated missing value is found, taking into consideration a second order
autoregressive (AR(2)) model [Box et al., 1994].

The coefficient of correlation is used as a measure of the strength of lin-
ear association between both variables, a measure of the interdependence of
two random variables that ranges in value from -1 to +1, indicating perfect
negative correlation at -1, absence of correlation at zero, and perfect positive
correlation at +1. The cross-correlation function is a standard method of
estimating the degree to which two series are correlated.

Particularly, in this first reconstruction phase, three lags (days) are con-
sidered, taking into account the presumed strong linear association between a
record in timet, the previous t - 1 and the subsequent t+ 1 observed values:

β1(t) = λ1 · TMAX(t− 1) + λ2 · TMAX(t) + λ3 · TMAX(t+ 1)

α1(t) = λ1 · TMIN(t− 1) + λ2 · TMAX(t) + λ3 · TMIN(t+ 1),

X̂(t) = TMIN(t) = [α1(t) + β1(t)] + ε(t) (1)

β2(t) = λ1 · TMIN(t− 1) + λ2 · TMIN(t) + λ3 · TMIN(t+ 1),

α2(t) = λ1 · TMAX(t− 1) + λ2 · TMIN(t) + λ3 · TMAX(t+ 1),

Ŷ (t) = TMAX(t) = [α2(t) + β2(t)] + ε(t) (2)

where λ1 = ρ̂(−1)
(ρ̂(−1)+ρ̂(0)+ρ̂(1)) , λ2 = ρ̂(0)

(ρ̂(−1)+ρ̂(0)+ρ̂(1)) , λ3 =
ρ̂(1)

(ρ̂(−1)+ρ̂(0)+ρ̂(1)) and ε(t) denote the empirical series of uncorrelated random

variables (residues), whose the ensemble is supposed to be a white noise. It
is well known that this prediction method is not optimum at all, since it
considers that the attributes are correlated when a linear change in one vari-
able is associated with a change in another one - an unrealistic assumption
for daily temperature extremes. The serial correlation is the correlation of a
variable with itself over successive time intervals. In climatology we use serial
correlation to determine how well the past climate could predicts the future
climate and impacts. When the correlation is calculated between a series and
a lagged version of itself it is called autocorrelation. The autocorrelation is a
correlation coefficient. However, instead of correlation between two different
variables, the correlation is between two values of the same variable at times.
A high correlation is likely to indicate a periodicity in the signal of the corre-
sponding time duration. The partial autocorrelations, like autocorrelations,
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are correlations between sets of ordered data pairs of a time series; partial
autocorrelations measure the strength of relationship with other terms being
accounted for. In practice, for daily data, only two lags are necessary to be
considered, taking into account the presumed strong association between a
record in time t, the previous (t - 2, t - 1) and the subsequent (t + 1, t + 2)
observed values (to get supplementary available information – backward and
forward second order autoregressive AR(2) predictor):

α(t) =
ϕ̂(−2).X(t− 2) + ϕ̂(−1).X(t− 1) + ϕ̂(1).X(t+ 1) + ϕ̂(2).X(t+ 2)

ϕ̂(−2) + ϕ̂(−1) + ϕ̂(1) + ϕ̂(2)

⇓
α(t) = λ1.(X(t− 2) +X(t+ 2)) + λ2.(X(t− 1) +X(t+ 1)),

X̂(t) = α(t) + ε(t), (3)

whereλ1 = ϕ̂(2)
2ϕ̂(1)+2ϕ̂(2) , λ2 = ϕ̂(1)

2ϕ̂(1)+2ϕ̂(2) and the ensemble ε(t) is supposed

to be a white noise process. The partial autocorrelation at a lag κ is the
correlation between residuals at time t from an autoregressive model and
observations at lag κ with terms for all intervening lags present in the au-
toregressive model. The PACF associated to a stochastic process is defined as
a sequence of ϕ̂(κ)’s obtained by the resolution of the Yule-Walker equations
for κ = 1,2,3,...:

α(t) =
ϕ̂(−2).X(t− 2) + ϕ̂(−1).X(t− 1) + ϕ̂(1).X(t+ 1) + ϕ̂(2).X(t+ 2)

ϕ̂(−2) + ϕ̂(−1) + ϕ̂(1) + ϕ̂(2)

⇓
α(t) = λ1.(X(t− 2) +X(t+ 2)) + λ2.(X(t− 1) +X(t+ 1)),

X̂(t) = α(t) + ε(t), (4)

whereλ1 = ϕ̂(2)
2ϕ̂(1)+2ϕ̂(2) , λ2 = ϕ̂(1)

2ϕ̂(1)+2ϕ̂(2) and the ensemble ε(t) is supposed to

be a white noise process. It is furthermore well known that these of prediction
linear methods (2) and (3) are not favourable at all, while they consider that
the extremes attributes are correlated when a linear change in one day is as-
sociated with a change in the adjacent two days - an improbable postulation,
mainly considering severe events. However, we also believe that is worthwhile
to make an effort in this direction for regular time series reconstruction.

We considered a ”bivariate linear interpolation”, for reconstructing daily
extreme air temperatures, since for each t - 1 ,t and t + 1 three values (2
of TMIN and 1 of TMAX or vice versa) were available; once verified the
strong correlation (in phase - same day) between TMIN and TMAX and a
less strong or even weak one (out of phase). If we had used an in phase model
we would have a colinearity problem due to the great dependence between
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the meteorological variables, implying a certain redundancy. So the 1-day
lag would be strongly satisfactory for our “bivariate linear interpolation”. It
was done in the practice, and the equations 3 and 4 are reliable interpola-
tions scheme to reconstruct these kind of meteorological variables taking into
account the coupled phenomena.

When all these linear interpolation approaches are applicable and appro-
priate (the weighted correlations are statistically significant) the decision-
making criterion is based on the minimum empirical MSE among the en-
sembles. These temporal stochastic reconstructions were achieved for overall
meteorological stations data series. In Fig.2 we cover the residuals graphical
summary that includes: histogram with an overlaid normal curve, box-plot,
95% confidence intervals for the means and 95%confidence intervals for the
median. The graphical summary also displays a table of descriptive statis-
tics. No more than 0.3% of the missing values (Tab.1) records were recovered
considering the temporal domain! Hence, let us move now to the spatial ap-
proach.

2.2 Spatial Domain

The reconstruction model is based on two influence factors: (1) the Euclidean
and angular distances, defining a triangle-based network and the areas of each
elementary cell (2D simplex); and (2) the Euclidian distance between stations
and the respective difference between altitudes (heights). The objective of
the first scheme is to construct elementary cells (simplex structure) by tri-
angulation of the convex sub-region S ⊆ <2 and the interpolating tool is
adopted using the areas of a region subdivided in triangles. The Voronoi
region of an object is the region of space closer to the given object than
to any other object of the sample. The set of Voronoi triangulations for a
set of spatial objects, called a Voronoi diagram (also known as a Dirichlet
tessellation or Thiessen polygons), provides a partition of a point-pattern
according to its spatial structure. Features of this kind can also be used
for analysis of the underlying point process. In practice, the triangulated
network of a sub-region of the two-dimensional convex envelope must be de-
termined. Then, let m ≥ 3 events of a random sample over a sub-region
S ⊆ <2 and assume that the two-dimensional convex hull of this sub-region
has area |A| and that the partition produces (M = 2m - ν - 2) triangles,
where ν is the number of extreme points of the two-dimensional partition
of the unityA, with areas|A1|, |A2|, ..., |A2m−ν−2|, respectively. Hence, for
this schematic prediction we employ the following topological concepts. The
tessellation and oriented areas - A closed ensemble K of the n−dimensional
space <n is convex if for any x ∈ K, y ∈ K and 0 ≤ λ ≤ 1, the linear
combination{λx+ (1− λ) y ∈ K}. A point $ ∈ K is an extreme point of K
if it may not be written as a convex combination of κ different elements of $.
A two-dimensional convex envelope of a finite set C = {p1, p2, ..., pm} of m
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events of <n is defined as the set of all the convex combinations of elements:

conv(C) = {
m∑

i=1

λipi|λi ≥ 0 and
n∑

i=1

λi = 1}. (5)

The polygon C = {p1, p2, ..., pm} is convex if, and only if, each internal
angle is convex, i.e., if each triangle pi−1, pi, pi+1 has the same polygon ori-
entation. A triangle (the 2D simplex structure) defines a coordinate system
in the plane (Farin, 1993). Let us consider pi−1, pi, pi+1 non-collinear events
onto a triangle ∆ ⊂ <2. Each point p ∈ ∆ ⊂ <2 can be written as a unique
linear combination satisfying

{
3∑

i=1

λipi : λi ≥ 0 and
3∑

i=1

λi = 1}. (6)

The parameters (λ1, λ2, λ3) are the barycentric coordinates of p (the
relative centroids) in relation to(pi−1, pi, pi+1). For (p, pi−1, pi, pi+1) with
p = (x, y) andpj = (xji, yji) , j = i−1, i, i+1, the parameters (λi−1, λi, λi+1)
satisfying some initial conditions are solutions of the system represented be-
low:




λi−1xi−1 + λixi + λi+1xi+1 = x
λii−1yi−1 + λiyi + λi+1yi+1 = y
λi−1 + λi + λi+1 = 1

. (7)

The determinant (∆) of the solution matrix of the system above is the
scalar 2S,

∆ =

∣∣∣∣∣∣

xi−1 xi xi+1

yi−1 yi yi+1

1 1 1

∣∣∣∣∣∣
= 2S, (8)

where S is the area of the triangle (pi−1, pi, pi+1). The values of each one of
the elements (λi−1, λi, λi+1) can be determined by Cramer’s rule:

λi−1 =
Sp pi pi+1

Spi−1 pi pi+1

=
Si−1

S
, λi =

Spi−1 p pi+1

Spi−1 pi pi+1

=
Si

S
, λi+1 =

Sp′−1 pi p

Spi−1 pipi+1

=
Si+1

S
.

(9)

The system (10) determines oriented areas. The weights λj , j = i − 1, i, i + 1
are positive if and only if Sj , j = i − 1, i, i + 1, and S has the same orienta-
tion (signal). The barycentric linear interpolation can be used to determine, for
continuous phenomena, the unknown values at unsampled points in the spatial
point pattern. The barycentric interpolation - Neighbour relationships can also be
weighted. Weights based on barycentric coordinates are the subject of this section.
Given an ensemble C = {x1, x2, ..., xm} of events and real valuesf(xi), i = 1, ..., m,
a piecewise linear function F(x) , defined inside an adequate domain D, such
asF (x) =

P
f (xi), i = 1, ..., m, can be obtained. The natural choice for this
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domain D is a conv(C). However, given a pointx ∈ conv(C), the calculation of
F(x) is not obvious. The basic idea is to writex ∈ conv(C) as a disjoint union of an
ensemble of triangles (the simplex). Based on the construction of this triangle net-
work, given x ∈ conv(C), it can be determined whether x belongs to a particular
triangle pi−1, pi, pi+1, and then F(x) can be computed using equations (7), (8) and
(9). The fundamental step in this approach consists of solving the related problem
of the triangulation of an ensemble C = {x1, x2, ..., xm} based on the construction
of conv(C). Notice that, on a two-dimensional space, the triangulation does not
exhibit the property of unicity (i.e. there are several ways to triangulate a convex
network). However, it is possible to determine the optimal number of triangles on
the conv(C). Hence, a robust first-order scheme based on barycentric coordinates
is used to interpolate the observations at elementary cell vertices on a denser grid.
For each unsampled location, the values are evaluated and updated by linear inter-
polation using the values at the vertices of the triangle. Notice that the precision
of the linear interpolation can be estimated with the same properties as the kriging
methodology; and without loss of generality the variogram model can be considered
linear.

When this approach is legitimate (the weights can be determined, i.e., we can
define a triangular network do interpolate the unknown inner point) the stochastic
reconstruction is achieved for a particular meteorological station (Fig.3), presenting
missing values, represented in the barycentric coordinates system [Lucio and Brito,
2004]. In effect, the spatial linear interpolation is the representation of the data
as a parametric model plus a random process function of spaceẐ(s) = µ(s) + ε(s).

The parametric model µ(s) =
nP

i=1

λiZ(si), representing the smooth variation and

ε(s) the deviations fromµ(s).

To clarify the interpolation scheme, consider an ensemble and suppose that we
would like to know an attribute value over the point P = (303.8825 , −141.2425),
this point is undoubtedly inside the triangle with vertices Pi−1 = (−2436.0075 ,
3814.9875), Pi = (1959.3325, 348.9375), Pi+1 = (172.7925, −4022.4825), with total
area equal to 12, 703, 497. The barycentric coordinates satisfy the systems (10),
and the output of the program (algorithm in S-Plus) gives the solution: λ1 =
3,180,636
12,703,497

= 0.2503748, λ2 = 3,946,190
12,703,497

= 0.3106381, λ3 = 5,576,670
12,703,497

= 0.438987,

with
i+1P

j=i−1

λj = 1. Taking an associated continuous function into account, e.g.

temperature, we obtain an estimate for each point using barycentric interpolation.

This estimate value is given by the expression Ẑ(s) =
i+1P

j=i−1

λjZ(sj), where Z(sj)

is the attribute observed on Pj . Hence, in our illustration, let Z (Pi−1) = 18oC,
Z (Pi) = 20oC and Z(Pi+1) = 25oC:

ˆZ(P ) = 0.2503748 × 18oC + 0.3106381 × 25oC + 0.438987 × 20oC = 21.05244oC.

The second phase considers the Euclidian distance between stations: ∆δ2 and the
respective difference between altitudes (heights): ∆z2, calculated for each pair

of stations (∆zj,k = zk − zj ,∆δj,k =
q

(xk − xj)2 + (yk − yj)2,j, k = 1, ..., 18) to

construct the matrix Ω = 1
∆h2 (the inverse of the hypotenuse: ∆h2 = ∆δ2 +∆z2)

that is used as an issue to recover the missing values and factor corrector for the
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barycentric interpolation. The value to be predicted for a station meteorological
(κ ∈ K, where K is a closed ensemble), which has no record in a day t is based on
the weighted sum (

ω[i,j]P
j

ω[j,κ]
) of the values of the records of all other available stations

(i 6= j = 1, ..., m) at the same instant t using the idea of “nearest neighbourhood”
and the symmetric weight matrix is given by:

Ω =

2
6664

0 ω[2,1] · · · ω[m,1]

ω[1,2] 0 · · · ω[m,2]

...
...

. . .
...

ω[1,m] ω[2,m] · · · 0

3
7775 . (10)

In fact, we consider that height is a dependent variable of longitude (x ∈ K)
and latitude (y ∈ K) in terrain surface (this idea is widespread used in mapping)
and apply the information λκ,j =

ω[i,j]P
j

ω[j,κ]
as an improvement factor after 2D linear

interpolation based on barycentric coordinates [Farin, 1993]. Consequently,

Ẑ(κ) = Ẑ0(κ) +
X

j

λκ,jZ(j) + ε(κ). (11)

where Ẑ0(κ) is the result of the barycentric interpolation (when applicable, other-
wise it is zero) and Z(j) are the contributors (with valuable data) meteorological
stations.

Moreover, our method allows us to determine an interpolation criterion, simi-
lar to kriging methodology [Kyriakidis and Journel, 1999] since the variogram has
to be linear, based on the barycentric coordinates in influence zones. The MSE
can be considered independent (uncorrelated) and approximately zero-centred. In
addition, they give us an idea about the spatial interpolation misfit based on the
variance of prediction. This stochastic reconstruction was achieved for overall me-
teorological stations data series. In practice, the available records of a station are
used to predict the extreme air temperature attributes of the missing value records,
considering the neighbourhood and the own station historical records.

As a result of these applications all the series were recovered, except for the first
six months of 1997 (181 days without available observations), observed data do not
exist in any station or at least it is presumed to not exist. So, we now consider the
monthly model identification and characterisation of extreme time series making
use of an appropriated forecast model, which might be extrapolated to high levels of
the climatological process: the autoregressive integrated moving average (ARIMA)
modelling (cf. [Box and Jenkins, 1976]).

THE SCHEME:

DAILY DATA ⇒ MONTHLY DATA

TMIN ⇒ Min {TMIN}, Mean {TMIN} and Max {TMIN},

TMAX ⇒ Min {TMAX}, Mean {TMAX} and Max {TMAX}.

In this work, no more than the extremes was analysed. This stochastic re-
construction was achieved for overall meteorological stations data series and the
reference period of validation was 1992-1996.
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3 Conclusions

These time series recoverable approach is a very simple way to offer high efficiency
results for a low computational cost. Furthermore, this alternative method allows
barycentric interpolation of the unsampled points into a two-dimensional simplex
(triangular) framework. Moreover, our method allows us to determine an inter-
polation criterion, similar to kriging methodology since the variogram has to be
linear, based on the barycentric coordinates in influence zones. Nevertheless, we
can identify two main sources of uncertainties:

i ) The induced error when applying the autocorrelation function in the recon-
struction of the daily series varies between -3oC and 3oC;

ii ) The error generated when estimating values of the air temperature for miss-
ing values record considering the spatial reconstruction depends on certain
expected conditions. When few stations contribute for filling the gaps, the
associate error presents fail values, e.g. for the last 5 years only two stations
present records (Lisboa/Geof́ısico - urban and Lisboa/Gago-Coutinho - subur-
ban); the result under the “heat island effect” may overestimate (contaminate)
the calculated values for the other stations;

iii ) The integration of new parametrization on the spatial interpolation procedure,
like land declination, ocean/river distance can reduce the error associated with
this step.
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Fig. 2. The residuals graphical summary for TMIN (left) and TMAX (right):
Lisboa/Geof́ısico (535), Lisboa/Gago-Coutinho (579), Torres-Vedras/Dois-Portos
(139) and Sintra/Granja (532).
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Fig. 3. Original meteorological data time series size. In darkish empty cells –
complete year of records with good-quality information for TMIN and/or TMAX;
in white and darkish filled cells – number of records without information in a year
and “complete” year without records, respectively. Note that the data series from
Lisbon/Gago-Coutinho (579) has no data for the period that precedes 1982.

Fig. 4. The geographical position of the eighteen meteorological stations (the data
labels) in (a) the UTM transform system and (b) the barycentric coordinates sys-
tem. The altitude (data label on the left side) representation of the network super-
imposed over the barycentric coordinates system (c).
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Abstract. This paper describes techniques for estimation, prediction and simu-
lation of two-parameter lognormal diffusion random fields which are diffusions on
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1 Introduction

Lognormal random fields represent the technically more complex stage of
lognormal modelling. Problems as parameter estimation, lognormal simple
kriging, estimation based on lognormal maximum entropy, among others, are
generally undertaken by simply considering the lognormal random field as the
exponential transformation of a Gaussian random field, without reference to
any specific diffusion structure. This latter approach, however, constitutes
an important alternative in relation to modelling, parameter estimation and
inference, analysis of first passage through barriers, associated Îto equations
and derivation of discrete simulation schemes, etc.

Among the contribution to theoretical foundations for diffusion random
fields, see [Nualart, 1983]. In this context, [Gutiérrez et al., 2004] conside-
red lognormal random field models which are diffusions on each coordinate.
Involving exogenous factors affecting the drift term, the drift and diffusion
coefficients, which characterize a two-parameter lognormal diffusion under
certain conditions, were estimated by maximum likelihood. For data on a
regular grid, an alternative method was proposed to estimate the diffusion
coefficient.

In this work, the estimates of the drift and the diffusion coefficients given
in [Gutiérrez et al., 2004] are used for obtaining predictions and conditional

? This work has been partially supported by projects BFM2002-03633 and
BFM2002-01836 of the DGI, Spain.
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simulations. The contents are organized as follows. First, the 2D lognormal
random field model is introduced. Second, estimation of the drift and diffu-
sion coefficients based on a discrete finite set of data is given. Finally, aspects
related to kriging and conditional simulation are addressed and illustrated.

2 Lognormal Diffusion Random Fields

Lognormal diffusion processes are commonly used in the analysis of economic
variables. When the parameter space is a subset of R2

+, [Nualart, 1983]
introduced a class of two-parameter random fields which are diffusions on
each coordinate and satisfy a particular Markov property related to partial
ordering in R2

+. Using this theory, we can introduce a 2D lognormal diffusion
random field as follows.

Let
{
X (z) : z = (s, t) ∈ I = [0, S]× [0, T ] ⊂ R2

+

}
be a positive-valued

Markov random field, defined on a probability space (Ω,A, P ), where
X (0, 0) is assumed to be constant or a lognormal random variable with
E [lnX (0, 0)] = φ0 and var (lnX (0, 0)) = σ2

0 . The distribution of the ran-
dom field is determined by the following transition probabilities:

P (B, (s+ h, t+ k) | (x1, x, x2) , z) =

P [X (s+ h, t+ k) ∈ B | X (s, t+ k) = x1, X (z) = x,X (s+ h, k) = x2] ,

where z = (s, t) ∈ I, h, k > 0, (x1, x, x2) ∈ R3
+ and B is a Borel subset. We

suppose that the transition densities exist and are given by

g(y, (s+ h, t+ k) | (x1, x, x2) , z)

=
1

y
√

2πσ2
z;h,k

exp




−1

2




ln
(

yx
x1x2

)
−mz;h,k

σz;h,k




2



,

for y ∈ R+, with

mz;h,k =

∫ s+h

s

∫ t+k

t

ã (σ, τ) dσdτ, σ2
z;h,k =

∫ s+h

s

∫ t+k

t

B̃ (σ, τ) dσdτ,

and ã, B̃ being continuous functions on I. Under these conditions we can
assert that {X (z) : z ∈ I} is a lognormal diffusion random field. The one-
parameter drift and diffusion coefficients associated are given by

a1 (z) x :=

(
ã1 (z) +

1

2
B̃1 (z)

)
x, B1 (z)x2 := B̃1 (z) x2,

a2 (z) x :=

(
ã2 (z) +

1

2
B̃2 (z)

)
x, B2 (z)x2 := B̃2 (z) x2,

where
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ã1(s, t) =

∫ t

0

ã (s, τ) dτ, B̃1(s, t) =

∫ t

0

B̃ (s, τ) dτ,

ã2(s, t) =

∫ s

0

ã (σ, t) dσ, B̃2(s, t) =

∫ s

0

B̃ (σ, t) dσ,

for all z = (s, t) ∈ I, x ∈ R+.
The random field {Y (z) : z ∈ I} defined as Y (z) = lnX (z) is then a

Gaussian diffusion random field, with ã and B̃ being, respectively, the drift
and diffusion coefficients, and ã1, ã2, B̃1 and B̃2 being the corresponding one-
parameter drift and diffusion coefficients. Furthermore, if z, z′ ∈ I, z = (s, t),
z′ = (s′, t′) , then

mY (z) := E [Y (z)] = φ0 +

∫ s

0

∫ t

0

ã (σ, τ) dσdτ,

σ2
Y (z) := var (Y (z)) = σ2

0 +

∫ s

0

∫ t

0

B̃ (σ, τ) dσdτ,

cY (z, z′) := cov (Y (z) , Y (z′)) = σ2
Y (z ∧ z′) ,

where we write z ∧ z′ for (s ∧ s′, t ∧ t′), with ‘∧’ denoting the minimum.
Under suitable regularity conditions, it is possible to obtain a SPDE for-

mulation for a two-parameter diffusion RF. In fact, we need hypotheses I-V
to be satisfied, in order to apply Theorem 2.8 of [Nualart, 1983]. These hy-
potheses and the uniqueness of solution have been proved by the authors to
hold for the lognormal diffusion RF considered. Thus, there exists a two-
parameter Wiener RF {W (z) : z ∈ I} (adjoining, if it is necessary, a new
probability space) such that {X (z) : z ∈ I} is the only diffusion RF satisfy-
ing the following partial SPDE:

∂2X(s, t)

∂s∂t
−X−1 (s, t)

∂X(s, t)

∂s

∂X(s, t)

∂t
− ∂a2 (s, t)

∂s
X(s, t) =

(
∂B2 (s, t)

∂s
+B1 (s, t)B2 (s, t)

)1/2

X(s, t)
∂2W (s, t)

∂s∂t
.

This aspect is not essential for the approach considered in this work, although
it provided an alternative interesting interpretation of the RF formulation
considered.

Henceforth we will assume that the conditions usually considered for esti-
mation of the drift and diffusion coefficients in the one-parameter case hold;
that is, P [lnX (0, 0) = φ0] = 1 (i.e. σ2

0 = 0) and σ2
Y (z) = B̃st, z = (s, t) ∈ I.

3 Estimation of the Drift and Diffusion Coefficients

Let {X (z) : z ∈ I} be a lognormal diffusion random field. Data X =(X (z1),
..., X (zn))

t are assumed to be observed at known spatial locations z1 =
(s1, t1), z2 = (s2, t2) , ..., zn = (sn, tn) ∈ I. Let x = (x1, x2, ..., xn)

t
be
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a sample. Let us consider the log-transformed n−dimensional random vec-
tor, Y = (Y (z1) , Y (z2) , ..., Y (zn))

t
= (lnX (z1) , lnX (z2) , ..., lnX (zn))

t =
lnX, and the log-transformed sample, y = (y1, y2, ..., yn)

t
= lnx. We denote

mY = (mY (z1) , ...,mY (zn))
t
, ΣY =

(
σ2
Y (zi ∧ zj)

)
i,j=1,...,n

.

3.1 MLE for the Drift and Diffusion Coefficients Using
Exogenous Factors

Suppose that the drift coefficient ã of Y is a linear combination of se-
veral known functions, set {h1 (z) , ..., hp (z) : z ∈ I}, with real coefficients
φ1,..., φp :

ã (z) =

p∑

α=1

φαhα (z) , z ∈ I.

Defining, for z = (s, t) ∈ I,

f0 (z) = 1, fα (z) =

∫ s

0

∫ t

0

hα (σ, τ) dσdτ, α = 1, ..., p,

the mean of Y is given by

mY (s, t) = φ0 +

p∑

α=1

φα

∫ s

0

∫ t

0

hα (σ, τ) dσdτ =

p∑

α=0

φαfα (z) .

Thus, denoting F = (f0, f1, ..., fp), with fα = (fα (z1) , fα (z2) , ...., fα (zn))
t
,

for α = 0, 1, ..., p, and φ = (φ0, φ1, ..., φp)
t, we have

mY = (φ0f0 + φ1f1 + ...+ φpfp) = Fφ.

Let us write

ΣY = B̃M :=B̃




s1t1 (s1 ∧ s2) (t1 ∧ t2) · · · (s1 ∧ sn) (t1 ∧ tn)
(s1 ∧ s2) (t1 ∧ t2) s2t2 · · · (s2 ∧ sn) (t2 ∧ tn)

...
...

. . .
...

(s1 ∧ sn) (t1 ∧ tn) (s2 ∧ sn) (t2 ∧ tn) · · · sntn


 .

With this notation, the MLE for the drift and diffusion coefficients are,
respectively,

φ∗ =
(
φ∗0, φ

∗
1, ..., φ

∗
p

)t
=
(
FtM−1F

)−1
FtM−1 lnx (1)

and

B̃∗ =
1

n
(lnx−m∗

Y )tM−1 (lnx−m∗
Y ) , (2)

where m∗
Y = Fφ∗.
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3.2 Estimation of the Drift and Diffusion Coefficients from Data
on a Regular Grid

Suppose now that the data are obtained on a regular grid in R2
+. Let z = (s, t)

be a point in a set S of locations included in the regular grid and let us denote
the 2D four-point increment of Y by

Y (∆hk (z)) = Y (s+ h, t+ k)− Y (s, t+ k)− Y (s+ h, t) + Y (s, t) ,

for h, k > 0. Taking into account that the variance of this increment,

var (Y (∆hk (z))) = σ2
z;h,k =

∫ s+h

s

∫ t+k

t

B̃ (σ, τ) dσdτ = B̃hk,

does not depend on the location z, but only on the area hk, the diffusion
coefficient B̃ can be estimated using a similar approach to Matheron’s esti-
mator for the variogram (see, for example, [Cressie, 1993]), considering here
2D four-point increments, as follows.

Under the implicit condition that zi = (si, ti) < zj = (sj , tj), we denote

[zi, zj ] = {(si, ti) , (si, tj) , (sj , si) , (sj, tj)} .

The estimator, for z = (s, t), is

v̂ar (Y (∆hk (z)))

=
1

|N (hk)|
∑

N(hk)

(Y (s+ h, t+ k)− Y (s, t+ k)− Y (s+ h, t) + Y (s, t)

−mY (s+ h, t+ k) +mY (s, t+ k) +mY (s+ h, t)−mY (s, t))
2
,

where

N (hk) ≡ {(zi,zj) : [zi, zj ] ∈ S, (sj − si) (tj − ti) = hk, i, j = 1, ..., n}

and |N (hk)| is the number of different elements of N (hk). If the mean is
unknown, it can be estimated using (1) by m∗

Y (z) =
∑p

α=0 φ
∗
αfα (z).

4 Numerical Examples

In this section we describe some numerical examples illustrating estimation
for a lognormal diffusion random field under the approaches considered and
an example of prediction and conditional simulation. First, using simulated
data on a regular grid, the two estimation methods for the diffusion coefficient
respectively described in Sections 3.1 and 3.2 are compared, considering the
case of known non constant mean (for the associated Gaussian random field).
Second, we obtain a conditional simulation for a lognormal diffusion random
field.
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The parameter space considered is I = [0, 1.65]× [0, 1.05]. Realizations
are generated on a regular 19×19 grid, S, with SW corner at the origin (0, 0)
and NE corner at point (1.65,1.05). Parameter estimates, kriging predictions
and simulations are obtained on this grid based on the data X, consisting of
the values corresponding to the 7× 7 regular grid, subset determined by the
same corner points. We will obtain unconditionally simulated realizations by
the method of unconstrained simulation described in [Christakos, 1992].
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Fig. 1. Contour-level plot of 49 values generated (simulation 1) for the lognormal
diffusion random field (known non constant mean case)

Sim. no. B̃∗ B̃∗∗ Sim. no. B̃∗ B̃∗∗

1 1.1115 0.8199 9 0.9911 0.8236

2 1.0605 0.5584 10 0.9909 0.4597

3 1.2060 1.0004 11 1.0107 0.4792

4 1.2153 0.5457 12 0.9016 0.3990

5 1.1324 0.8595 13 0.8914 1.5703

6 0.8309 0.6103 14 1.1850 0.9163

7 0.6138 0.3944 15 0.9870 1.2419

8 1.3243 0.4456 16 1.0684 1.1750

Table 1. Estimates of B̃ by the two methods considered, for 16 simulations of the
lognormal diffusion random field (known non constant mean case)

We consider a lognormal diffusion random field with non constant mean,
with φ0 = 0.25, ã (z) = −2, for all z ∈ I, and B̃ = 1. Table 1 gives the esti-
mates of B̃∗ and B̃∗∗ obtained for 16 independent unconstrained simulations
for this random field, assuming that the mean of the associated Gaussian
random field is known.
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From the results obtained in both cases studied, we can observe that the
maximum likelihood estimation method overall provides more accurate es-
timates for the diffusion coefficient than the alternative method based on
evaluation of 2D four-point increments. A similar behavior has been ob-
served in several other cases studied by the authors. Lack of stability in the
estimate B̃∗ can be possibly overcome by robust estimation of the slope of
v̂ar (Y (∆hk (z))) vs. hk instead of using the least-squares approach.
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Fig. 2. Contour-level plot of the 361 predictions obtained by simple lognormal
kriging using the 49 values plotted in Figure 1

As for simulation, we have considered a practical method for generating
conditional simulations that combines unconditional simulation and kriging,
described in [Yuh-Ming and Hugh Ellis, 1997]. This technique yields an
unbiased conditional simulation (with respect to sample data) and reproduces
conditional variances. We can summarize the procedure as follows:

Step 1 Predict {ŷ (zi) : zi ∈ S} based on the data Y and on the predictor
of simple lognormal kriging.

Step 2 Calculate unconditionally simulated realizations {yu (zi) : zi ∈ S}
based on the method of unconstrained simulation and using the estimates
given in (1) and (2).

Step 3 Calculate the set of predictions
{
ŷu (zi) : zi ∈ S

}
based on the data

{yu (zi) : zi ∈ G} and on the predictor of simple lognormal kriging.
Step 4 Calculate conditional simulation realizations of Y by

yc (zi) = yu (zi) +
[
ŷ (zi)− ŷu (zi)

]
, ∀zi ∈ S.

Step 5 Calculate conditional simulation realizations of X by

xc (zi) =
exp {yu (zi)} exp {ŷ (zi)}

exp
{
ŷu (zi)

} ≡ xu (zi) x̂ (zi)

x̂u (zi)
, ∀zi ∈ S.

For the example of prediction and conditional simulation we consider the
previous diffusion. That is, a lognormal diffusion random field with non
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constant mean, φ0 = 0.25, ã (z) = −2, for all z ∈ I, and B̃ = 1. Using
the 49 values obtained from simulation 1 (see Figure 1) we have obtained
B̃∗ = 1.1115 and using this estimate we have calculated 19 × 19 predictions
by simple lognormal kriging. The results are plotted in Figure 2.
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Fig. 3. Contour-level plot of the 361 simulations obtained by conditional simulation
using the 49 values plotted in Figure 1

Figure 3 displays a contour-level plot for the 19×19 conditional simulation
realization based on the data of simulation 1, and Figure 4 displays the
original contour-level plot.
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Fig. 4. Contour-level plot of the 361 values (including the 49 values used for esti-
mating B̃) generated (simulation 1) for the 2D lognormal diffusion considered



1302 Gutiérrez et al.

5 Conclusions

In this paper we study prediction and conditional simulation for a 2D log-
normal diffusion random field, including exogenous factors in its formulation.
This is an important case of random fields which are not intrinsically station-
ary, then well-known related techniques cannot be applied. Such models are
useful to represent diffusion-type positive valued characteristics, like pollu-
tant indicators in environmental studies. The approach considered allows us
to use well-known techniques for estimation and prediction, such as simple
kriging, and for conditional simulation.

Possible extensions under investigation by the authors include conside-
ration of non-constant diffusion-type values at the boundary axes as well as
higher-dimension spatial and spatio-temporal formulations. Also, develop-
ment of validation techniques in this context would be most important for
real applications.
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Abstract. This paper deals with the construction of approximate numerical pro-
cesses of mixed diffusion models under spatial uncertainty in the diffusion coefficient
and the source term. After discretization, the stochastic discrete problem is solved
using a stochastic separation of the variables method.
Keywords: diffusion, discrete approximation, stochastic process.

1 Introduction

Mathematical models are useful to describe reality up to certain point. In-
dividual behaviour may be erractic, but aggregate behaviour is often quite
predictable. Spatial uncertainty is frequent in Geostatistics descriptions of
natural variables. Examples of such variables are, pressure, temperature and
wind velocity in the atmosphere, concentrations of pollutants in a contamined
site, see [Chilés and Delfiner, 1999]. Wave propagation problems in random
media have been studied in [Keller, 1963]. A different approach to numer-
ical stochastic methods for diffusion models where the spatial uncertainty
is a Brownian motion is developed in [Kloeden and Platen, 1992] using Ito
stochastic calculus. In this paper we study stochastic diffusion problems of
the form

ut = [p(x)ux]x + F (x, t) , 0 < x < 1 , t > 0 (1)

a1u(0, t) + a2ux(0, t) = 0 , t > 0, |a1|+ |a2| > 0, (2)

b1u(1, t) + b2ux(1, t) = 0 , t > 0, |b1|+ |b2| > 0, (3)

u(x, 0) = f(x) , 0 ≤ x ≤ 1, (4)

where the diffusion coefficient p(x) is assumed to be a stochastic process
and for each t fixed, F (x, t) is also a stochastic process. Here f(x) is a
deterministic function and h1 and h2 are constants. Chance of randomness
can affect in any of the following ways:

• uncertainty as to the diffusion properties of the medium which the diffu-
sion takes place,
• random variations of the internal influences of the system undergoing

diffusion,
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• random external sources to the medium in which the diffusion takes place.

For the particular case where F (x, t) = 0 and p(x) is a constant random
variable, problem has been recently treated in [Cortés et al., 2005a].

This paper is organized as follows. Section 2 studies random discrete
Sturm-Liouville problem and random discrete Fourier series. In section 3
the way for obtaining an exact series solution process is summarized and
problem (1)-(4) is discretized and an explicit solution process of the stochastic
discretized model is given by means of a random eigenfunctions method.
Section 4 includes an illustrative example.

2 Random discrete Sturm-Liouville problems

For the sake of clarity in the presentation we recall some concepts, notations
and results related to the mean square stochastic calculus, that may be found
in [Soong, 1973]. Let (Ω,F , P ) be a probability space. A real random variable
(r.v.) Y : Ω → R is said to be continuous if its distribution function FY is
continuous and almost everywhere differentiable. In this case, its density
function is defined by

gY (y) =
dFY (y)

dy
.

If Y satisfies the additional property

E
[
Y 2
]

=

∫ +∞

−∞
y2gY (y)dy < +∞, (5)

then Y is said to be a second order random variable (2-r.v.) and the integral
in (5) is the expectation of Y 2. If {p(x)}x∈I is a real stochastic process on
the probability space (Ω,F , P ), we say that it is a second order process
(2-s.p.), if E

[
p2(x)

]
< +∞, for all x ∈ I.

Throughout this paper a random variable will mean a 2-r.v. and a stochas-
tic process will denote a 2-s.p. If {p(x)}x∈I is a 2-s.p., its covariance function
is the deterministic function Γpp(r, s) = E [p(r)p(s)] − E [p(r)]E [p(s)], for

(r, s) ∈ I × I. If Y is a 2-r.v., then ‖Y ‖ =
√
E [Y 2] is a norm and the set of

all 2-r.v.’s endowed with this norm is a Banach space denoted by L2, [Soong,
1973, chap.4]. From the Cauchy-Schwarz property in L2, we recall that if X
and Y are two 2-r.v.’s in L2, then

‖XY ‖ ≤ ‖X‖ ‖Y ‖ . (6)

A sequence of 2-r.v.’s {Yn} converges in mean square (m.s.) to a 2-r.v. Y as
n→∞ if

lim
n→∞

‖Yn − Y ‖2 = lim
n→∞

E
[
|Yn − Y |2

]
= 0. (7)
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This type of convergence is called mean square convergence. A 2-s.p.
{p(x)}x∈I is m.s. continuous if, for x, x+ τ ∈ I, one satisfies

lim
τ→0
‖p(x+ τ) − p(x)‖ = 0. (8)

Let N be the set of all natural numbers including zero. If a < b are two
natural numbers in N , we denote N(a, b) = {a, a+ 1, . . . , b}.

Let p(i), r(i) be 2-r.v., p(i) : Ω → R, r(i) : Ω → R such that

p(i)(ω) > 0 , ω ∈ Ω , i ∈ N(0,K)
r(i)(ω) > 0 , ω ∈ Ω , i ∈ N(1,K)

}
(9)

and let α, β be real numbers. If ∆ denotes the forward difference operator
defined by ∆u(i) = u(i + 1) − u(i), then a boundary value problem of the
form

∆ (p(i− 1)∆u(i− 1)) + λr(i)u(i) = 0 , i ∈ N(1,K)
u(0) = αu(1) , u(K + 1) = βu(K) ,

}
(10)

is called a random discrete Sturm-Liouville problem. Note that for each event
ω ∈ Ω, the problem

∆ (p(i− 1)(ω)∆u(i− 1)) + λr(i)(ω)u(i) = 0 , i ∈ N(1,K)
u(0) = αu(1) , u(K + 1) = βu(K) ,

}
(11)

is a deterministic discrete Sturm-Liouville problem, see [Agarwal, 1991,
p.663]. A problem (11) has exactly K real eigenvalues λm(ω), 1 ≤ m ≤ K,
which are distinct, and corresponding to each eigenvalue λm(ω) there ex-
ist an eigenfunction φm(i)(ω), i ∈ N(1,K). These eigenfunctions φm(i)(ω),
1 ≤ m ≤ K are mutually orthogonal with respect to weight function r(i)(ω),
i.e.,

K∑

l=1

r(l)(ω)φµ(l)(ω)φν(l)(ω) = 0 , if µ 6= ν. (12)

In particular, these eigenfunctions φm(i)(ω) are linearly independent on the
set N(1,K). Eigenpairs (λm(ω), φm(i)(ω)) of the Sturm-Liouville problem
(11) for each ω ∈ Ω, are easily computed as eigenpairs of the matrix eigen-
value problem

R−1(ω)A(ω)u = λu , (13)

where

R(ω) = diag (r(1)(ω), r(2)(ω), . . . , r(K)(ω)) , (14)

and if we denote

s(i)(ω) = p(i)(ω) + p(i− 1)(ω) , i ∈ N(1,K)
s(1)(ω) = s(1)(ω)−αp(0)(ω) , s(K)(ω)=s(K)(ω)−βp(K)(ω)

}
, (15)
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A(ω) is the symmetric tridiagonal matrix

A(ω)=




s(1)(ω) −p(1)(ω) 0 · · · 0

−p(1)(ω) s(2)(ω) −p(2)(ω)
. . .

...

0
. . .

. . .
. . . 0

...
. . . −p(K − 2)(ω) s(K − 1)(ω) −p(K − 1)(ω)

0 · · · 0 −p(K − 1)(ω) s(K)(ω)




(16)
Thus, the eigenvalues and eigenfunctions of the random discrete Sturm-
Liouville problem (10) are random variables whose statistical properties are
determined by those of the random coefficients. See [Boyce, 1960] for the
treatment of analogous of continuous Sturm-Liouville stochastic problems.

Under previous hypotheses and notation, if {u(i); 1 ≤ i ≤ K} is a finite
sequence of r.v.‘s, or a discrete stochastic processes defined on a common
sample space Ω, then for each ω ∈ Ω the function {u(i)(ω); i ∈ N(1,K)}
admits a series representation

u(i)(ω) =

K∑

m=1

cm(ω)φm(ω)(i) , i ∈ N(1,K) (17)

where

cm(ω) =

∑K
i=1 r(i)(ω)φm(i)(ω)u(i)(ω)
∑K

i=1 r(i)(ω) (φm(i)(ω))2
, (18)

is called the m-th discrete Fourier coefficient of u(i)(ω) with respect to
{φm(i)(ω); 1 ≤ m ≤ K} and (17) is the discrete Fourier series of the
deterministic function {u(i)(ω); i ∈ N(1,K)}, see [Agarwal, 1991, p.675].

Summarizing, under hypotheses (9) the random discrete Sturm-Liouville
problem (10) admits exactly K real random eigenvalue variables λm, 1 ≤
m ≤ K and K real random eigenfunction variables φm(i), 1 ≤ m ≤ K, so
that each realization of problem (10), for ω ∈ Ω fixed, described by (11),
represents a deterministic discrete Sturm-Liouville problem. In a analogous
way, given a discrete stochastic process {u(i); i ∈ N(1,K)} defined on Ω,
the m-th Fourier coefficient cm defined by (18) is a random variable and

u(i) =

K∑

m=1

cmφm(i) , (19)

is the random Fourier series representation of the process
{u(i); i ∈ N(1,K)} with respect to the random eigenpairs (λm, φm(i)) of
the random Sturm-Liouville problem (10).
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3 Approximating stochastic diffusion processes

An exact theoretical series solution process u(x, t) of problem (1)-(4) of form

u(x, t) =
∑

n≥1

ϕn(x)bn(t), (20)

can be obtained using a random continuous eigenfunction method, where
(λn, ϕn(x)) is the random normalized eigenpair sequence associated to the
Sturm-Liouiville problem

[p(x)X ′]
′
+ λX = 0, 0 < x < 1 (21)

a1X(0) + a2X
′(0) = 0, (22)

b1X(1) + b2X
′(1) = 0, (23)

and bn(t) is the random variable defined by

bn(t) = αne
−λnt +

∫ t

0

e−λn(t−s)γn(s)ds, (24)

γn(t) =

∫ 1

0

F (x, t)ϕn(x)dx, (25)

αn =

∫ 1

0

f(x)ϕn(x)dx. (26)

Under appropriate hypotheses it can be proved that u(x, t) given by (20)-
(26) is a well defined mean square convergent series, termwise mean square
partially differentiable satisfying (1)-(4). In order to prove this fact it is nec-
essary to find bounds of the eigenpairs (λn(ω), ϕn(x, ω)) of each deterministic
realization

[p(x)(ω)X ′]′ + λX = 0, 0 < x < 1,
a1X(0) + a2X

′(0) = 0,
b1X(1) + b2X

′(1) = 0,





using results of section 10.12 and 10.13 of [Birkhoff and Rota, 1965], the
ideas developed in [Weinberger, 1965, p.135-137] and [Cortés et al., 2005b]
for deterministic eigenfunction method. For the sake of limitation in the
extension of this paper we omit technical details of the proof, under the
hypotheses

F (x, t) m.c. continuous (27)

F (x, t) twice m.c. differentiable with respect to x (28)
∫ 1

0

∂2F

∂x2
(x, t)dx uniformly bounded inL2 with respect to t ∈ [0,∞[ (29)

a1F (0, t) + a2Fx(0, t) = 0, (30)
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b1F (1, t) + b2Fx(1, t) = 0. (31)

We considering a stochastic discretization of the problem (1)-(4). Let us
subdivide the domain [0, 1]× [0,+∞[ into equal rectangles of sides ∆x = h,
∆t = k, and introduce coordinates of a typical mesh point P (ih, jk); let us
also put u(ih, jk) = U(i, j), F (ih, jk) = F (i, j) and f(ih) = f(i). Let us
approximate the partial derivatives

ut(ih, jk) ≈
U(i, j + 1)− U(i, j)

k
; ux(ih, jk) ≈

U(i+ 1, j)− U(i, j)

h

[p(x)ux]x (ih, jk) ≈ 1

h2

{p(i)U(i+ 1, j)− (p(i) + p(i− 1))U(i, j)

+p(i− 1)U(i− 1, j)},

and consider the discrete stochastic partial difference mixed problem

−a {p(i)U(i+ 1, j)− [p(i) + p(i− 1)]U(i, j) + p(i− 1)U(i− 1, j)}
+ [U(i, j + 1)− U(i, j)] = kF (i, j) , i ∈ N(1,K) , j ≥ 0 (32)

αU(1, j) = U(0, j) , j ≥ 0 , (33)

U(K + 1, j) = βU(K, j) , j ≥ 0 , (34)

U(i, 0) = f(i) , 1 ≤ i ≤ K , (35)

a = k
h2 = ∆t

(∆x)2
, h = 1

k , 1 ≤ i ≤ K j ≥ 0

α = a2

a2−a1h
, β = b2−b1h

b2
.

}
(36)

Firstly, we seek solutions of (32) with F = 0, of the form

U(i, j) = H(i)G(j) , 1 ≤ i ≤ K j ≥ 0 , (37)

satisfying (33)-(34),

−a{p(i)H(i+ 1)− [p(i) + p(i− 1)]H(i)

+p(i− 1)H(i− 1)}G(j) = −H(i) [G(j + 1)−G(j)] ,(38)

H(0) = αH(1) , H(K + 1) = βH(K) . (39)

Adding the term aλG(j)H(i) to both members of (38), where λ is a real
parameter, the resulting equation can be written in the form

−a {p(i)H(i+ 1)− [p(i) + p(i− 1)− λ]H(i) + p(i− 1)H(i− 1)}G(j)

+H(i) {G(j + 1)− (1 − aλ)G(j)} = 0. (40)

Note that equation (40) holds true if

p(i)H(i+1)−[p(i) + p(i−1)− λ]H(i)+p(i−1)H(i−1)=0, 1 ≤ i ≤ K , (41)
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and
G(j + 1)− (1− aλ)G(j) = 0 , j ≥ 0 . (42)

Note that equation (41) together with (39) defines a random discrete Sturm-
Liouville problem. Under hypothesis (9), such problem admits exactly K real
distinct random eigenvalues functions λm, 1 ≤ m ≤ K, and corresponding to
each eigenvalues r.v. λm there exists an eigenfunction r.v. φm(i), 1 ≤ i ≤ K.
Now let us seek a solution process of the unhomogeneous problem (32)-(35)
of the form

U(i, j) =
K∑

n=1

φn(i)bn(j) , (43)

where bn(j) are r.v. to be determined for 1 ≤ n ≤ K, j ≥ 0 and {φn(·)}Kn=1

are chosen so that they are orthonormal with respect to the weight function
r(i) = 1.

Let us take j fixed, and using the results of the section 2, let us consider
the random discrete Fourier series expansion of the process F (·, j), see (17)-
(19), given by

F (i, j) =

K∑

n=1

γn(j)φn(i) ; γm(j) =

K∑

n=1

F (n, j)φm(n) , (44)

with 1 ≤ i ≤ K, j ≥ 0. Substituting (43) and (44) into (32) and taking
account that (λm, φm(·)) is a random eigenpairs of problem (10), it follows
that

K∑

n=1

[bn(j + 1)− (1 − aλn)bn(j)− kγn(j)] φn(i) = 0 . (45)

Note that (45) holds if bn(j) satisfies the random difference equation

bn(j + 1)− (1− aλn)bn(j) = kγn(j) , 1 ≤ n ≤ K , j ≥ 0 . (46)

The solution of the analogous deterministic problem, see [Agarwal, 1991,
p.68], suggests the solution

bn(j) = (1 − aλn)jbn(0) +

j−1∑

l=0

k(1− aλn)j−1−lγn(l) , j ≥ 1 . (47)

¿From the initial condition U(i, 0) = f(i), one gets

bn(0) =

K∑

i=1

f(i)φn(i) = αn , 1 ≤ n ≤ K , (48)

and by (43), (47), (48) one gets the approximating stochastic process

U(i, j) =

K∑

n=1

αn(1− aλn)jφn(i) + k

K∑

n=1

j−1∑

l=0

(1− aλn)j−1−lγn(l)φn(i) . (49)
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Once we have the approximating stochastic diffusion process (49) we may
compute the expectation E [U(i, j)] and the variance V [U(i, j)] assuming
the knowledge of the N -density function of both process p(x) and F (x, t), for
a fixed value of t. In the following section an illustrative example is included.
From the computational point of view the stability condition requires an
appropriate size of the parameter a = k

h2 = ∆t
(∆x) so that

|1− aλn| < 1, 1 ≤ n ≤ K. (50)

This condition guaranties that the values of any realization of the discrete
process U(i, j) remain bounded.

4 Numerical example

Let us consider the stochastic problem

ut = [p(x)ux]x + 4tv3 sin

(
3π

2
x

)
, 0 < x < 1 , t > 0

u(0, t) = 0 , t > 0,

ux(1, t) = 0 , t > 0,

u(x, 0) = 1 , 0 ≤ x ≤ 1,

where p(x) = v + cos (vx), v is an uniform random variable defined on the
interval [0, 1] and with the notation of section 3 we have α = 0, β = 1. In

the following tables we compare the expectation value Ê [U(x, t)] and the

variance V̂ [U(x, t)] of the discrete approximate process U(i, j) given by (49)
at the points

{(
i
10 , 1

)
; 1 ≤ i ≤ 9

}
taking an appropriate time discretization

∆t = 1/400 and several different space discretization ∆x = h so that the
stability condition (50) is satisfied. This allows the comparison of the
computed values in order to show the changes with respect to the uncertain
variable x.

Note that the discrete approximate process U(i, j) in our example is a
function of the random variable v. Hence

E [U (i, j)] =

∫ 1

0

U (i, j) (v)dv (51)

V [U (i, j)] = E
[
U (i, j)

2
]
− (E [U (i, j)])

2

=

∫ 1

0

U (i, j)
2
(v)dv −

(∫ 1

0

U (i, j) (v)dv

)2

(52)

In the tables the numerical integration of previous expressions (51) and
(52) are performed using composite Simpson’s rule with 10 points.



Approximating processes of stochastic diffusion models 1311

(x, t) bE [U(x, t)] bu(i, j) bV [U(x, t)]

(1/10, 1) 0.0068 0.0055 1.9× 10−5

(2/10, 1) 0.0135 0.0108 7.5× 10−5

(3/10, 1) 0.0198 0.0159 1.6× 10−4

(4/10, 1) 0.0257 0.0206 2.7× 10−4

(5/10, 1) 0.0310 0.0249 3.9× 10−4

(6/10, 1) 0.0356 0.0286 5.1× 10−4

(7/10, 1) 0.0393 0.0316 6.2× 10−4

(8/10, 1) 0.0421 0.0339 7.1× 10−4

(9/10, 1) 0.0439 0.0353 7.7× 10−4

Table 1. Numerical results for K = 40, a = 1/4.

(x, t) bE [U(x, t)] bu(i, j) bV [U(x, t)]

(1/10, 1) 0.0066 0.0053 1.8× 10−5

(2/10, 1) 0.0130 0.0104 7.2× 10−5

(3/10, 1) 0.0192 0.0153 1.5× 10−4

(4/10, 1) 0.0249 0.0198 2.6× 10−4

(5/10, 1) 0.0300 0.0239 3.7× 10−4

(6/10, 1) 0.0344 0.0275 4.9× 10−4

(7/10, 1) 0.0380 0.0304 5.9× 10−4

(8/10, 1) 0.0406 0.0325 6.8× 10−4

(9/10, 1) 0.0423 0.0339 7.3× 10−4

Table 2. Numerical results for K = 80, a = 1/4.
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Abstract. In this paper, we study the nonparametric estimation of the regression
function for dependent data with measurement errors in responses and covariates.
The usual assumption in the errors-in-variables problem of indepedent errors can
be replaced by dependent errors when the data are time series. Both cases are
examined, and it is considered for first time the effect of measurement errors in
responses when we are estimating nonparametrically the regression function.
Keywords: Deconvolution, nonparametric estimation, α−mixing, noisy observa-
tions, regression function, uniform convergence.

1 Intoduction

Let {(Xi, Yi)}, i ≥ 1, be a strictly stationary process, where (Xi, Yi) takes
values in IRd × IR, d ≥ 1, and has probability density function (pdf) f(x, y).
Consider the deconvolution model

Zi = Yi + ηi, and Si = Xi + εi, (1)

where the noise processes {ηi}, and {εi}, i ≥ 1, are independent of the pro-
cesses {Yi} and {Xi}, i ≥ 1, respectively. In addition, we assume that the
marginal distributions of the noise processes {ηi} , i ≥ 1, and {εi} , i ≥ 1,
are known, and also the components εi1, ..., εid of the random vector εi are
indentically distributed according to a r.v. ε. Models of this type and the
deconvolution problems to which they lead arise in a variety of contexts in
economic statistics, biostatistics, and various other fields. For example, if
d = 1 in (1), Xi may represent the true income of a household at time i
measured with error εi, Yi its expenditures for some good which is subject to
the measurement error ηi, and Si, Zi its measured income and expenditures,
respectively. The interested reader may find additional applications of this
problem in [Carroll et al., 1995].

On the basis of the observations (Z1, S1), ..., (Zn, Sn), the problem is that
of providing nonparametric estimate of the kth conditional moment function
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m(k;x) = E(Y k/X = x), where Y and X are distributed as the r.v.’s Yi and
Xi, respectively. For the special case, k = 1, this problem was extensively
studied in the literature and also when the covariates Xi are measured with
some noise (i.e. ηi ≡ 0, εi 6= 0). See, for example, [Carroll et al., 1995], [Fan
and Masry, 1992] and [Ioannides and Alevizos, 1997].

Here, we investigate the more complicate deconvolution model defined as
in (1).

If we were using a Nadaraya-Watson type estimator, this problem could
not be solved since for k = 1 the noise could not be extracted from the re-
sponses. Instead to use a Nadaraya-Watson type estimator, we construct first
an estimator f̂n(y/x) for the conditional density of Y given X , fY/X(y/x), on
the basis of our osbervations (Z1, S1), ..., (Zn, Sn). Then one natural estima-

tor of m(k;x) is obtained if we integrating apropriate the quantity ykf̂n(y/x)
with respect to y. Because the type of this estimator was first introduced for
uncontaminated data by [Roussas, 1969], we call it Roussas’s estimator. In
order to construct an estimator for fY/X(y/x), the introduction of some nota-

tion and related concepts is necessary. Let Φ̃K1(t) and Φ̃K2(τ) be the Fourier

transforms of the univariate kernel density functions K̃1(x) and K̃2(y), and

let Φ̃ε(t) and Φ̃η(τ) be the characteristic functions of the noise variables ε
and η, respectively. Then, as in [Fan, 1991], we define the corresponding
deconvoluting kernel functions by the following relations,

W̃1n(u) =
1

2π

∫

IR

e−iut
Φ̃K1(t)

Φ̃ε(
t
hn

)
dt, W̃2n(v) =

1

2π

∫

IR

e−ivτ
Φ̃K2(τ)

Φ̃η(
τ
hn

)
dτ, (2)

where 0 < hn ↓ 0. Thus the deconvoluting nonparametric estimator for the
conditional density function is given by:

f̂n(y/x) =
f̂2n(x, y)

f̂1n(x)
, (3)

where f̂1n(x) = 1
nhd

n

∑n
i=1W1n(x−Si

hn
) and

f̂2n(x, y) = 1

nhd+1
n

∑n
i=1W1n(x−Si

hn
)W̃2n(y−Zi

hn
) with W1n(x) =

∏d
j=1 W̃1n(xj).

Consequently the Roussas’s estimator for the kth conditional moment is
defined as follows:

mn(k;x) =

∫ Bn

−Bn

ykf̂n(y/x)dy

=
1

hn

n∑

i=1

W1n(
x−Si

hn
)
∫ Bn

−Bn
ykW̃2n(

y−Zi

hn
)dy

∑n
i=1W1n(x−Si

hn
)

, (4)
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where Bn goes to infinity as n→∞. We integrate the quantity ykW̃2n(y−Zi

hn
)

from −Bn to Bn, since this is not in general integrable. The proposed esti-
mator can be used in certain prediction problems.

[Ioannides, 1999] proved that the modal regression estimator can be
used for extracting the noises from both variables Y and X . [Hannan,
1963] and [Robinson, 1986] treating this problem in the case by which
m(1;x) = E(Y/X = x) is the simple linear regression model. This paper
attempts to study this problem in a more general setting using the Roussas’s
estimator (4).

In most publications on nonparametric deconvolution problems, a distinc-
tion is made between the case, where the noise characteristic functions Φ̃ε(t)

and Φ̃η(τ) decay for large |t| and |τ | either algebraically (ordinary smooth
case) or exponentially (supersmooth case).

In the case by which the noise variables follow an ordinary smooth
distribution, one of our main results is that the rates of the uni-
form strong convergence for the Roussas’s estimator in (4) is of order

max{( logn

nh
[(d+2β)+1+2β′]
n

)
1
2 , hn} with β and β′ positive numbers greater than 1

denoted the degree of smoothness of the noise variables ε and η, respectively.
See, also, Assumption (A5) in the Appendix. This rates is better than the rate

max{( logn

nh
2[(d+2β)+1+2β′]
n

)
1
4 , hn} found for the modal estimator in [Ioannides,

1999]. In the noiseless case our rate becomes of order max{( logn

nhd+1
n

)
1
2 , hn},

which is essentially the optimal rate of f̂2n(x, y) for estimating the pdf f(x, y),

and it is slight weaker than the optimal rate max{( logn
nhd

n
)

1
2 , hn}, obtained by

the Nadaraya-Watson estimator.

The case where the noise variable has a super smooth distribution can be
treated similarly, but the a.s. convergence rate is expected to be of logarith-
mic order.

Another interesting aspect of this paper is that we are not dealing only
with independent measurement errors, but in general we allow them to be
dependent. Usually in nonparametric deconvolution problems it is assumed
that the noise process cosists from i.i.d. r.v.’s, avoiding correlated noise as is
considered by [Hannan, 1963] and [Robinson, 1986]. Assuming that the joint
stochastic process {(Xi, εi, Yi, ηi)}, i ≥ 1, is a strong mixing process and the
noise process {(εi, ηi)}, i ≥ 1 either consists from i.i.d. r.v.’s or dependent
indentical r.v.’s we are proving the strong consistency of Roussas’s estimator
with the above rates under some mixing conditions which are weaker for the
i.i.d measurement errors case.

This paper is organized as follows. The main result, Theorem 3.1, is
given in Section 3, while some preparatory lemmas are given in Section 2.
All the asssumptions made in this paper are given at the end of the paper in
Appendix.
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2 Some preliminary results

Set

RBn
n (k;x) =

1

hd+1
n

n∑

i=1

W1n(
x− Si
hn

)

∫ Bn

−Bn

ykW̃2n(
y − Zi
hn

)dy, (5)

then the Roussas’s estimator mn(k;x) can be written as

mn(k;x) =
RBn (k;x)

f̂n(x)
.

Now, for k > 0, denote by Ck the Cube in IRd which is the Cartesian product
of d copies of [−k, k]. Then working similar as in [Roussas, 1990], dividing
[−k, k] into bn subintervals each of length δn, and taking Jnl, l = 1, ..., N
the sets into which Ck is divided. Let xnl arbitrary points in Jnl. Pick
k sufficiently large, so that J ⊂ Ck, J compact subinterval of IRd. Then,
clearly,

|mn(k;x)−m(k;x)| ≤ |f̂−1
n |{|ERn(k;x)− ERBn

n (k;x)|
+ |RBn

n (k;x)−RBn
n (k;xnl)|

+ |ERBn
n (k;x)− ERBn

n (k;xnl)|
+ |ERBn

n (k;x)−R(k;x)|+ |R(k;x)||f̂n(x) − f(x)|
+ |RBn

n (k;xnl)− ERBn
n (k;xnl)|}, (6)

with R(k;x) =
∫
IR
ykf(x, y)dy, and

Rn(k;x) = 1

hd+1
n

∑n
i=1K1(

x−Xi

hn
)
∫
IR y

kK̃2(
y−Yi

hn
)dy.

Lemma 2.1. Under Assumptions (A1)(ii)-(iv), and (A6)(ii),

one has

|ER̂n(k;x)− ER̂Bn
n | ≤ cBk−sn ,

for all x in IRd, and s > k.

Lemma 2.2. Under Assumptions (A2), and (A5), it holds:

|RBn
n (k;x)−RBn

n (k;x′)| and |ER̂Bn
n (k;x)−ER̂Bn

n (k;x′)| are bounded by

c1B
k
nh

−(d(β+1)+β′+2)
n

∑d
i=1 |xi − x′i|, for any x, x′ ∈ IRd, and c1 > 0.

Lemma 2.3. Under Assumptions (A1)(ii)-(iii), it holds

|ER̂n(k;x)−R(k;x)| ≤ c2hn,

for all x ∈ IRd, and some c2 > 0.
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Lemma 2.4. (i) Under Assumptions (A1)(i)-(iv), (A4), (A5), and if the
noise processes {εi} and {ηi}, {i ≥ 1}, consists from i.i.d. r.v.’s, then

lim
n→∞

sup
IRd

nhd(1+2β)+1+2β′

n V ar(RBn
n (k;x)) < c′,

for some c′ > 0.

(ii) Under the additional Assumption (A1)(v), one has

lim
n→∞

sup
IRd

nhd(1+2β)+1+2β′

n V ar(RBn
n (k;x)) < c′,

for some c′ > 0.

Lemma 2.5. Under Assumptions (A1), (A4), (A5) and (A6) one has

|RBn
n (xnl)− ERBn

n (xnl)| = O

[
(

logn

nh
d(1+2β)+1+2β′

n

)
1
2

]
, a.s.

Lemma 2.6. Under Assumptions (A1), (A4), (A5) and (A6) one has

|f̂n(xnl)− Ef̂n(xnl)| = O

[
(

logn

nh
d(1+2β)+1+2β′]
n

)
1
2

]
, a.s.

3 Main Result

The main result of this paper is the following theorem whose proof is a
consequence of the preliminary results established. More precisely, one has:

3.1 Theorem

Under Assumptions (A1)-(A6), then

supx∈J |mn(k;x)−m(k;x)| ≤ O(hn) +O

[
(

logn

nh
d(1+2β)+1+2β′

n

)
1
2

]
, a.s.

Proof: The proof follows from Lemmas 2.1-2.6, in conjunction with the
relation (6) using the same technique as in [Roussas, 1990] and [Ioannides,
1999].
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4 Appendix

The basic assumptions under which the a.s. uniform convergence of mn(k;x)
is established.

Assumption (A1)

(i) The process {(Xi, Yi, εi, ηi)}, i ≥ 1, is strictly stationary.
(ii) The processes {(Xi, Yi)}, i ≥ 1, and {(εi, ηi)}, i ≥ 1, are independent.
(iii) The processes {εi}, i ≥ 1, and {ηi}, i ≥ 1, are independent.
(iv) The process {(Xi, Yi, εi, ηi)}, i ≥ 1, is α−mixing with mixing coefficient

α(i) = O(i−k), k > 1 + 2
δ , δ > 0.

(v) The process {(Xi, Yi, εi, ηi)}, i ≥ 1, is α−mixing with mixing coeffi-

cient α(i) satisfying the requirement 1

h
(2dβ+2β′)
n

∑∞
j=h−d−1

n
α(j)

2
2+δ < ∞,

for hn → 0, and cn →∞, as n→∞.

Assumption (A2)

(i) The probability density f(x) of X satisfies the Lipschitz condition of
order 1 on IRd.

(ii) inf
x∈J
|f(x)| > 0, where J is a compact subset of IRd.

(iii) The quantity R(k;x) satisfies the Lipschitz condition of order 1 on IRd.

Assumption (A3)

The kernel functions K̃i(.), i = 1, 2 are bounded probability density func-

tions on IR with
∫
IR |u|K̃1(u)du <∞ and

∫
IR |v|K̃2(v)dv <∞.

Assumption (A4)

(i) The characteristic functions Φ̃ε(t) and Φ̃η(τ) satisfy Φ̃ε(t) 6= 0, Φ̃η(τ) 6=
0 for all t and τ .

(ii) |t|β |Φ̃ε(t)| > d, d > 0, |t|β
′

|Φ̃η(τ)| > d′, d′ > 0, for large t and τ ,
and for some positive β , β′.

(iii) The joint characteristic function of ε1 and εj is ordinary smooth of order
2β.

(iv) The joint characteristic function of η1 and ηj is ordinary smooth of order
2β′.

Assumption (A5)

The characteristic functions Φ̃K1(t) and Φ̃K2(τ) satisfy the requirements:∫
|t|1+βΦ̃K1(t)dt <∞,

∫
|τ |1+β′

Φ̃K2(τ)dτ <∞.
Assumption (A6)

(i) E|Y |s ≤ ∞, for s > 1, and x ∈ E ⊂ IRd.
(ii) supx∈IRd [

∫
|y|sf(x, y)dy] <∞, for some s > 1.
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Abstract. We examine a discrimination rule for time series data generated by a
GARCH(1,1) process that classifies a sample into a group in terms of its uncondi-
tional variance. A simulation study indicates that our rule is more efficient than
a benchmark rule in all cases, except from a narrow range of alternatives lying on
the right side of the null.
Keywords: Local heteroscedasticity, Discrimination rule, Likelihood ratio.

1 Introduction

In analyzing high frequency financial time series data, the common practice is
to examine the first differences of the logged observations, known as returns.
Contrary to the raw prices, returns are considered to be more amenable to
statistical manipulations. Under some fundamental economic hypotheses,
they form a sample of uncorrelated second order stationary series.

However, if we look at a typical returns plot of reasonable length, we
shall observe clusters of different variation, which, at a first sight, may cast
some doubt on the issue of the conventional equal variance perception. The
main characteristics of this idiosyncratic regular local heteroscedasticity are
captured by the widely used GARCH models introduced by [Bollerslev, 1986].
For a returns series, the variance is of practical interest, since it is widely
considered as a measure of the risk involved on investing on the particular
stock, [Tsay, 2002].

If we want to classify such a series in terms of its variance into one of two
groups, in principle we can treat it as an independent sample from identi-
cally distributed observations and apply the usual discriminant function, see
[Johnson and Wichern, 1992]. However, because of the presence of the local
heteroscedasticity, and the fact that independence and normality are chal-
lenged both on empirical and theoretical basis, we were motivated to seek
discrimination rules which take these facts into account.

In this paper we introduce a likelihood ratio type discrimination rule to
classify a GARCH(1,1) process into two categories. Since it is the uncondi-
tional long term variance which is mainly of interest, the test concentrates on
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this aspect. Methods and theory for discriminating processes on an overall
basis, mainly of the linear type, are reviewed by [Taniguchi and Kakizawa,
2000] and [Shumway and Stoffer, 2000].

In the sequel, in Section 2 we discuss the discrimination rule for an ap-
propriately parameterized GARCH(1,1) model. In Section 3 we present the
results of a simulation study comparing our approach against the benchmark
rule of independent and identically distributed, iid, observations. The final
section summarizes our conclusions and suggestions.

2 The GARCH(1,1) Discrimination Rule

Let Yt, t = 1, 2, ..., n, be a set of normally distributed iid observations. Sup-
pose one samples from either of two groups, G1 : N(0, σ2

1) or G2 : N(0, σ2
2).

The conventional likelihood ratio based rule, see [Johnson and Wichern,
1992], states that

classify the sample as belonging to G1 when lnL1

L2
≥ 0,

while
classify the sample as belonging to G2 when lnL1

L2
< 0, (1)

where Lj is the sample likelihood value, supposing it comes from Gj , j = 1, 2.
More precisely, the discriminant function is

ln
L1

L2
= −T

2
ln
σ2

1

σ2
2

− 1

2

t=T∑

t=1

y2
t

(
1

σ2
1

− 1

σ2
2

)
. (2)

On the other hand, suppose our data are generated by a stationary
GARCH(1,1) process, [Bollerslev, 1986],

Yt = ut,

ut = εth
1/2
t , εt

iid
simN(0, 1),

ht = a0 + a1u
2
t−1 + b1ht−1, (3)

εt independent of ht, and a0 > 0, a1, b1 ≥ 0, are constant parameters. It is
easy to see that the unconditional variance of Yt is

σ2 = E(Y 2
t ) =

a0

1− a1 − b1
,

and that, although Yt are uncorrelated, they are not independent and nor-
mally distributed, see [Hamilton, 1994], amongst many others. Since σ2 is
the parameter of our prime interest, we reparameterize the model in terms
of σ2, writing

ht = σ2(1− a1 − b1) + a1u
2
t−1 + b1ht−1. (4)
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Group Gj , j = 1, 2, is described as the set of all possible GARCH(1,1) models
that have the same variance σ2

j , j = 1, 2. We are interested to allocate a
sample Yt, t = 1, 2, ..., T , to one of the G1 and G2 groups in terms only of its
variance σ2. The a1 and b1 parameters, parameterizing the dynamic behavior
of the conditional variance, are a sort of nuisance parameters.

The likelihood based rule will remain as in (1), but the likelihood ratio in
(2) is modified to take into account the special form of our heteroscedastic
data. Noting that the conditional distribution of Yt given ht is a normal
N(0, ht), the decomposition of the likelihood function of a time series process
yields the discriminant function

ln
L1

L2
= −1

2

T∑

t=1

(
ln
h1t

h2t

)
− 1

2

T∑

t=1

y2
t

(
1

h1t
− 1

h2t

)
. (5)

3 Simulation Study

We carried out a simulation study to assess the GARCH discriminant func-
tion in (5) against (2), which we consider as a sort of benchmark rule. The
experimental data come from the GARCH(1,1) model in (3) with its con-
ditional variance reparameterized as in (4). Examining real daily or weekly
series of stock or exchange rate returns, we calculated their free variance to
be of the order of 5 · 10−5. We considered that as a typical variance value of
real life data, and in our experiments we set the variance of group G1 equal
to this value, that is σ2

1 = 5 · 10−5. The remaining parameters a1 and b1 take
a range of values within what is considered as typical in the relative litera-
ture. We mention that the condition for (3) to be stationary is a1 + b1 < 1.
Usually, in real series applications, the sum of a1 and b1 lies close to 1, and
a1 is always smaller than b1. When a1 + b1 = 1 the model is still stationary,
but with infinite variance and therefore makes no sense for our study.

Models 0 1 2 3 4 5

Parameters
a1 0.00 0.10 0.10 0.40 0.40 0.40
b1 0.00 0.50 0.80 0.50 0.55 0.58

Sum 0.00 0.60 0.90 0.90 0.95 0.98

Table 1. Models tested in the simulation

The criterion to assess our findings was the error rate P (2|1), that is the
probability to allocate a sample to G2 when it truly comes from G1. These
probabilities are reported in the corresponding tables and are calculated by
repeating the same experiment 300 times. Factors we felt that might be of
influence in the efficiency of the discrimination rules were the sample size
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T , the magnitude of the alternative variance in G2, and the combination
of the a1 and b1 values. The simulation study was designed to take into
consideration all these factors. In Table 1 we present only a few selected
combinations of a1 and b1 values from those examined, declared as models 0
to 5. Practically, Model 0 is an iid series.

σ2
2 1 2 3 4 4.5 4.9 5.1 5.5 6 7 8 9

series length

GARCH rule
300 .000 .053 .313 .500 .550 .567 .417 .393 .350 .300 .277 .250

1000 .000 .007 .127 .400 .513 .560 .417 .383 .337 .280 .227 .193

benchmark rule
300 .000 .000 .003 .107 .317 .487 .420 .240 .107 .020 .003 .000

1000 .000 .053 .313 .013 .143 .460 .397 .160 .010 .000 .000 .000

Table 2. Error rates for Model 5. Alternative variance values should be multiplied
by 10−5. The true variance of the series is 5 · 10−5

Before presenting our results, we clarify the computational flow of our
procedure. Once we had in hand a series from G1, we maximized L1 with
respect to a1 and b1 considering σ2 known and equal to σ2

1 = 5 · 10−5. Next,
we maximized L2 for a1 and b1 setting now σ2 = σ2

2 , one of the alternatives. A
conjugate gradient routine was written to maximize the loglikelihoods, after
transforming a1 and b1 so that the restrictions, a1, b1 ≥ 0 and a1+b1 < 1 were
fulfilled. If maximization of both L1 and L2 was terminated successfully, then
(5) was calculated and the series was classified into G1 or G2 accordingly.

The most definite of our conclusions is that both rules perform better as
alternative variance σ2

2 takes values further away from σ2
1 . Also, the P (2/1)

error rate improves with the sample size, and this can be seen for the case
of Model 3 in Table 2. Since the general pattern of P (2/1) is the same for
either T = 300 or T = 1000, for reasons of space economy, we report more
detailed results in Table 3 only for T = 1000.

Concerning the effect of the sum α1 + β1, the error rate for both rules
increases as α1 + β1 approaches unity. For models with the same sum, the
rate is worse for larger α1, see for instance Model 2 versus Model 3 in Table 3.
This can be explained by the fact that larger α1 implies wider local variance
bursts.

Regarding the relative performance of the GARCH rule against the bench-
mark rule, which is of the main interest in our study, there is not a clear pat-
tern for the whole range of alternatives. The GARCH rule is always better
than the benchmark for σ2

2 smaller than the true σ2
1 = 5 · 10−5. For a range

of alternatives from 5.1 ·10−5 to approximately 10 ·10−5, the benchmark rule
outperforms the GARCH rule. This can be seen graphically in Fig.1 for the
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σ2
2 : 1 2 3 4 4.5 4.9 5.1 5.5 6 7 8 9

GARCH rule
model 0 .000 .000 .003 .020 .133 .447 .413 .170 .133 .000 .000 .000
model 1 .000 .000 .000 .023 .190 .473 .410 .210 .070 .003 .000 .000
model 2 .010 .000 .000 .117 .316 .483 .447 .310 .197 .073 .027 .000
model 3 .000 .007 .127 .400 .513 .560 .417 .383 .337 .280 .227 .193
model 4 .000 .090 .363 .500 .570 .563 .420 .387 .350 .280 .260 .240
model 5 .090 .487 .663 .740 .783 .787 .193 .177 .167 .143 .110 .080

benchmark rule
model 0 .000 .000 .000 .013 .143 .460 .397 .160 .010 .000 .000 .000
model 1 .000 .000 .000 .030 .197 .480 .410 .207 .057 .003 .000 .000
model 2 .003 .000 .000 .137 .350 .500 .423 .297 .163 .037 .033 .000
model 3 .000 .033 .290 .051 .610 .677 .303 .257 .227 .197 .167 .133
model 4 .010 .307 .557 .710 .737 .747 .233 .213 .200 .180 .163 .133
model 5 .370 .690 .790 .827 .840 .853 .140 .133 .117 .103 .087 .083

Table 3. Error rates for models 0 to 5. Alternative variance values should be
multiplied by 10−5. The true variance of the series is 5 · 10−5.

case of Model 3. The superiority of the benchmark rule grows larger as the
sum α1 + β1 approaches unity.
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Fig. 3. Smoothed frequency curve from 2000 replications from the GARCH rule,
Model 5, σ2

2 = 7 · 10−5.

Moving farther to the right of σ2
1 , the pattern is reversing. Fig.2 illustrates

the case for Model 5. Note that error rates in this interval are not reported
in Table 3. We can not explain this behavior. Finally, Fig.3 gives a smoothed
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plot of the distribution of (5) for Model 5 with σ2
2 = 7 · 10−5. The simulated

distribution was plotted from 2000 replications.

4 Conclusions

We conducted an empirical study classifying GARCH(1,1) time series data
on the basis of their unconditional variance. The procedure may prove useful
to classify financial returns data into different risk groups.

The GARCH rule is better than the benchmark rule, except from a small
range of alternatives starting from the null σ2

1 and going approximately up
to σ2

2 = 2σ2
1 . This is a point that deserves further investigation, and a proper

derivation of the distribution of (5) may shed some light.
Rule (5) generalizes easily for higher order GARCH models, although for

most applications a simple GARCH(1,1) suffices. Experience with real data
could allow us to cross examine rule (5) with other risk classifying criteria,
such as the β coefficient value provided by financial econometric theory.
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Abstract. In this work, time series analysis and control charts are used to devise a
real-time monitoring strategy in a BTA deep-hole-drilling process. BTA deep-hole-
drilling is used to produce holes with high length to diameter ratio, good surface
finish and straightness. The process is subject to dynamic disturbances usually
classified as either chatter vibration or spiralling. In this work, we will focus on
chatter which is dominated by single frequencies. The results showed that the
proposed monitoring strategy can detect chatter and that some alarm signals are
related to changing physical conditions of the process.
Keywords: Drilling process, Time series, Control charts.

1 Introduction

Deep hole drilling methods are used for producing holes with a high length-
to-diameter ratio, good surface finish and straightness. For drilling holes
with a diameter of 20 mm and above, the BTA (Boring and Trepanning
Association) deep hole machining principle is usually employed. The
working principle is shown in Figure 1. The process is subject to dynamic

Guiding

pad 2

Drill bush

Pressure head

Boring

bar

Guiding

pad 1

Brazed

tip

Inlet for

cutting fluid

BTA threadDrill head

Chip mouth

Fig. 1. BTA deep hole drilling, working principle

disturbances usually classified as either chatter vibration or spiralling.
Chatter leads to excessive wear of the cutting edges of the tool and may
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also damage the boring walls. Spiralling damages the workpiece severely.
The defect of form and surface quality constitutes a significant impairment
of the workpiece. As the deep hole drilling process is often used during
the last production phases of expensive workpieces, process reliability is of
primary importance and hence disturbances should be avoided. Therefore, it
is necessary that a process monitoring system be devised to detect dynamic
disturbances.

In this work, we will focus on chatter which is dominated by single fre-
quencies, mostly related to the rotational eigenfrequencies of the boring bar.
Therefore, we propose to monitor the amplitude of the relevant frequencies
in order to detect chatter vibration as early as possible. Firstly, models that
describe the process are reviewed in section 2. In section 3, the proposed
monitoring strategy is discussed. Time series analysis is used in section 4 in
order to identify the transition to chatter and to check basic assumptions of
the application of control charts. Finally, the control charts are applied to
real data in section 5.

2 Process models

[Weinert et al., 2002] used the van der Pol equation to describe the transition
from stable operation to chatter in one frequency

d2M(t)

dt2
+ h(t)(b2 −M(t)2)

dM(t)

dt
+ w2M(t) = W (t), (1)

where t ∈ [0,∞), M(t) is the drilling torque, b ∈ R, the frequency w ∈
[200,2500], h(t) : R → R is an integrable function and W (t) is a white noise
process. [Theis, 2004] described the main features of the variation of the
amplitudes of the relevant frequencies, using a logistic function. He showed
that his approximation is directly connected to the proposed model. In fact,
he considered M(t) as a harmonic process

M(t) = R(t)cos(w + φ),

where φ is the corresponding phase. He showed that

2
dR(t)

dt
+ h(t)R(t)

(
b2 − R(t)2

2

)
=
W (t)

w
. (2)

is the amplitude-equation for the differential equation in (1) if there is only
one frequency present in the process. From equation (2), the observed vari-
ation in amplitude of the relevant frequencies may be described by

Rt = (1 + at)Rt−1 − atbtR3
t−1 + εt, (3)

where at and bt are time varying parameters and εt is normally distributed
with mean 0 and variance σ2

ε .
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3 Monitoring the residuals

For the monitoring procedure, the model given by equation (3) is approxi-
mated by its linear autoregressive part

Rt = (1 + at)Rt−1 + εt,

and this AR(1) model is used to calculate the residuals. In fact, it is known
that the nonlinear term −atbtR3

t−1 becomes important when there is chatter.
The empirical evidence of this approximation is studied in section 4 using real
data. The idea behind residual control charts is if the AR(1) model fits the
data well, the residual will be approximately independent. Then, traditional
control charts designed to monitor independent data can be applied to the
residuals. Generally, residual control charts are designed for processes where
stationarity in the steady state is assumed, which means that a unique model
parameter for the whole process is used. For this reason a window of the T
recent observations is used to estimate parameters a, β and σε of the linear
regression model

Rt = β + (1 + a)Rt−1 + εt, (4)

where β is included because there is a general shift in the amplitudes after
depth 35 mm due to a change in the physical conditions of the process, see
section 4.2. The residuals are calculated using

et = Rt − (1 + ât−1)Rt−1 − β̂t−1, (5)

where ât−1 and β̂t−1 are estimates of the regression parameters a and β at
time t− 1. The choice of β̂t−1 and ât−1 is motivated by the fact that using
the estimated parameters at time t to calculate the residuals and to set the
control limits may rather serve to mask changes than to detect them, see
[Messaoud et al., 2004b]. In this work, two control charts are considered:
the residual Shewhart and a nonparametric EWMA based on standardized
sequential ranks.

3.1 The residual Shewhart

The residual Shewhart control chart operates by plotting residuals et given
by equation (5). It signals that the process is out of control at time t when
et is outside UCL and LCL, given by

LCL = −kσ̂ε,t−1 and UCL = kσ̂ε,t−1,

where σ̂ε,t−1 is the estimated standard deviation of the regression 4 at time
t − 1 and k is a constant. The choice of k is discussed later. Also, we used
σ̂ε,t−1 to avoid the masking problem.
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For the residual Shewhart charts, it is assumed that the residuals are
normally distributed. Thus, the statistical properties of these charts are
exact only if this assumption is satisfied. In practice, it is well known that
this assumption rarely holds. Therefore, a distribution-free control chart, the
EWMA based on sequential ranks, is used to monitor the process.

3.2 The EWMA chart based on sequential ranks

[Hackl and Ledolter, 1992] consider a nonparametric control chart procedure
for individual observations that use the “standardized rank” of the observa-
tions among the recent group of T observations. For this chart, the sequential
rank R∗

t is the rank of et among the most recent T (T > 1) observations et,
et−1, . . . , et−T+1. That is,

R∗
t = 1 +

t∑

i=t−T+1

I(et > ei),

where I(.) is the indicator function. The standardized sequential rank R
(T )
t

is defined as

R
(T )
t =

2

T

(
R∗
t −

T + 1

2

)
.

The control statistic Qt is the exponentially weighted moving averages
(EWMA) of standardized ranks, computed as follow

Qt = (1 − λ)Qt−1 + λR
(T )
t ,

where Qt,1 is a starting value usually set equal to zero, and 0 < λ < 1 is a
smoothing parameter. The two sided EWMA chart signals that the process is
out-of-control when Qt is outside −h and h defined to be equal ±HσQ, where
σQ and H are the standard deviation of Qt and a constant, respectively. The
choice of h is discussed later. For more details about this chart, see [Hackl
and Ledolter, 1992] and [Messaoud et al., 2004b].

4 Time series analysis of the residuals

[Messaoud et al., 2004b] used the two control charts to monitor the variation
in amplitudes of frequency 703 Hz, which is among the eigenfrequencies of
the boring bar. The data, 1662 observations, are obtained in an experiment
with feed f = 0.185 mm, cutting speed vc = 90 m/min and amount of
oil V̇oil = 300L/min. For more details, see [Weinert et al., 2002]. In this
experiment chatter is dominated by the frequency 703 Hz. Figure (2) shows
the amplitude of frequency 703 Hz. The transition from stable operation to
chatter occurs before depth 300 mm. Indeed, by eye inspection, the effect
of chatter in this experiment is apparent on the bore hole wall after depth
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Fig. 2. Amplitude of frequency 703 Hz

300 mm. Therefore, only the first 1000 observations (depth ≤ 300 mm) are
considered. Figure (3) shows the residuals calculated using equation (5).
Note that the first 100 residuals are calculated using

et = Rt − (1 + â100)Rt−1 − β̂100,

where â100 and β̂100 are estimates of the regression parameters a and β at
time 100.

4.1 Transition from stable state to chatter

In order to investigate the ability of the different control charts to detect
chatter, it is important to identify the transition from stable operation to
chatter. For this reason, [Messaoud et al., 2004b] studied the mean and
variance of frequency 703 Hz. Moreover, the authors applied the Teräsvirta-
Lin-Granger statistical test for nonlinear dependence in the residuals, see
[Teräsvirta et al., 1993]. As mentioned the nonlinear term −atbtR3

t−1 of
model given by equation (3) becomes important when the process is unstable.
The nonlinearity test is used for residual nonlinear structure, after linear
structure has been removed by fitting the AR(1) model. The idea behind this
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test is by fitting the linear AR(1) model to the data, the inherent nonlinearity
structure has been swept into the residuals. The authors used different time
windows of length 100 observations to test for neglected nonlinearity for the
regression (3). The results confirms that the nonlinear term −atbtR3

t−1 is
not important when the process is stable and showed that a change occurs
in the process at depth 252.91 mm. This change may indicate the presence
of chatter or that chatter will start in a few seconds.

4.2 Independence and normality assumptions of the residuals

[Messaoud et al., 2004b] used the Ljung-Box test in order to check the in-
dependence assumption of the residuals. In fact, if the AR (1) model fits
the data well, the residuals will be “approximately” independent. This is a
basic assumption for the application of the two control charts. In fact, it is
known that the performance of control charts is affected by the autocorrela-
tion in the observations. In our process, the presence of autocorrelation in
the residuals is destructive to the success of the proposed quality control pro-
cess. Furthermore, the authors checked the normality assumption using the
Shapiro-Wilks test. This assumption is very important only for the Shewhart
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chart, see section 3. The results shows that the residuals are independent.
However, the hypothesis of normality is rejected.

5 Choice of the control charts parameters and results

Knowing that the transition to chatter occurs at depth 252.91 mm, only the
first 900 observations (depth ≤ 270 mm) are considered for the application
of the different control charts. For the reference sample, usually sample of
100-200 observations is used in SPC applications. In this work, the T = 100
recent observations Rt−T+1, . . . , Rt are used to estimate the parameters of
the AR(1) model and to calculate the residuals. A larger sample cannot be
used because the monitoring procedures should start before depth 35 mm
(observation 120). In fact, chatter may be observed after that depth because
the guiding pads of the BTA tool leave the starting bush, which will be
discussed next.

5.1 Choice of the control charts parameters

Usually, the performance of control charts are evaluated by the average run
length (ARL). The run length is defined as the number of observations that
are needed to exceed the control limit for the first time. The ARL should be
large when the process is statistically in-control (in-control ARL) and small
when a shift has occurred (out-of-control ARL).

The parameters of the different control charts are selected so that all con-
trol charts have the same in-control ARL equal to 370. This choice should
avoid many false alarm signals because all control charts are applied to 900
observations. A value k = 2.95 is used for the residual Shewhart control
charts. For the EWMA chart, we used λ = 0.1, 0.3 and 0.5. The correspond-
ing values for h are respectively 0.349, 0.629 and 0.786.

5.2 Results

Table 1 shows the out of control signals for depth ≤ 270 mm . Table 1 shows
that all control charts (except the EWMA charts with λ=0.1 and 0.3) signal
at 32 ≤ depth ≤ 35 mm. As mentioned before the guiding pads leave the
starting bush approximately at depth 32 mm, which induce an increase in
the process mean and variance for the amplitude of the frequency 703 Hz.
This increase explains that all control charts have picked up these changes
very quickly. All control charts (except the EWMA charts with λ=0.1 and
0.3) signal at 110 ≤ depth ≤ 125 mm . It is known that depth 110 mm is
approximately the position where the tool enters the bore hole completely.
Theis (2004) noted that this might lead to changes in the dynamic process
because the boring bar is slightly thinner than the tool and therefore the
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pressures in the hole may change. The important out of control signals are
produced at 250 ≤ depth ≤ 255 mm. As discussed, it is showed that the
transition from stable operation to chatter have occurred at depth 252.91 mm.
Therefore, in this experiment chatter may be avoided if corrective actions are
taken after this signal.

Table 1. Out of control signals of the different control charts applied to the am-
plitude of frequency 703 Hz using window length T=100 (depth ≤270 mm)

Hole depth Observation Residual EWMA
(mm) number Shewhart

λ = 0.1 λ = 0.3 λ = 0.5

≤32 ≤107 0 0 0 0
32-35 108-117 2 0 0 1
35-45 118-150 7 14 4 2
45-70 151-249 1 0 1 1
70-110 250-366 1 0 0 0
110-125 370-416 1 0 0 1
125-200 417-665 4 8 3 2
200-250 666-832 5 1 0 0
250-255 833-849 2 1 3 2
255-260 850-865 0 0 0 0
260-270 866-898 1 0 0 0

Total 24 24 10 9

Note: The shaded lines refer to the the three physical conditions of the process
(i.e., guiding pads leave the starting bush, the tool is completely in the hole and
transition from stable operation to chatter)

In this experiment, the EWMA control chart with λ=0.5 is the best, and
should be chosen among the three EWMA charts considered in this work.
Indeed, only 9 out of control signals are produced and all changes of the
physical conditions of the process are detected. In practice, a procedure
to choose the smoothing parameter λ is required. As noted in section 5.3,
the Residual Shewhart control chart produces more signals than the EWMA
control chart with λ=0.5. This may be due to its sensitivity to the normality
assumption.

5.3 Multivariate monitoring

In this work, the results showed that chatter can be detected only by mon-
itoring the variation in amplitudes of frequency 703 Hz. This conclusion is
expected because this frequency is the relevant frequency in this experiment.
However, in practice there are more relevant frequencies and chatter may
be observed at the beginning of the drilling process immediately after the
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guiding pads have left the starting bush, with high and low frequencies, see
[Weinert et al., 2002]. Thus, an SPC procedure that monitors all the rele-
vant frequencies is necessary. [Messaoud et al., 2004a] used a multivariate
distribution-free EWMA control chart to monitor the drilling process. This
chart is based on sequential rank of data depth measures. The results showed
that it can detect chatter vibrations.

6 Conclusion

This work showed that using time series analysis and control charts, a reli-
able on-line monitoring system in the BTA process is proposed. The results
showed that the proposed monitoring strategy detect chatter and that some
out-of-control signals are related to physical conditions of the process (i. e.
guiding pads leave the starting bush, the tool is completely in the hole).
Therefore, real-time implementation of this monitoring strategy can be guar-
anteed.
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Abstract. Chaotic behavior of a generalized rational (GRM1) innovation diffusion
model is studied. The deterministic continuous version of this model was proposed,
analyzed and applied in earlier publications. Here, the chaotic behavior is expressed
through the discrete alternative of the continuous GRM1 model. The model shows
symmetric and non-symmetric behavior expressed by a parameter σ. In this ar-
ticle it is found that when the diffusion parameter b and the parameter σ verify
the relation b/σ ≥ 2 then the chaotic aspects of the model appear. A method is
proposed for fitting the model to the data. Time series data expressing the cumu-
lative percentage of steel produced by the oxygen process in various countries are
used. Characteristic graphs of the chaotic behavior are given and applications are
presented.
Keywords: Chaotic modeling, Diffusion modeling, Speed of diffusion, Innovation
diffusion, Non-linear models, Chaotic oscillations.

1 Introduction

It’s become a commonplace to call this the information age, but an even more
appropriate name might be the information age. In 1997, for example, the
U.S. Patent and Trademark Office received 237.000 patent applications, a
15% increase from the year before. Also in 1997, the agency granted 124.127
patents, a record number and an increase of 16% from the volume it recorded
at the beginning of the decade in 1991, a year that had also set a record for
patent activity. At individual companies, the pace of innovation is even
greater. In 1998, IBM Corp. received 2.657 patents for inventions, an in-
crease of 54% from the number it won in 1997, according to a preliminary
tally from the patent office. This was not a one-time surge, as IBM has been
the leading recipient of U.S. patents for six consecutive years. And IBM was
not alone in recording huge increases in U.S. patent activity last year: Sony
Corp.’s patent number rose 53%, Eastman Kodak Co.’s 41%, and Motorola
Inc.’s 33%, [Maguire and Hagen, 2001]. While not all patents translate into
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new products or new production methods, these figures clearly demonstrate
a tendency, and this explosion of innovation activity presents significant chal-
lenges. One of the special challenges firms face in this decade is the challenge
of designing, manufacturing, and distributing products in a global market-
place. If customers want new products, and they do, then companies have
no choice but to gear up their processes to provide innovative features and
the latest designs. This mean that companies must have a proper way to
describe the competitive dynamics in a market, [Modis, 1997] and to predict
how these new products or production methods will move in the market-
place. One of these methods is described in this paper. A model is proposed
and some empirical data are explored. In earlier publications several inno-
vation diffusion models where presented, analyzed and applied to real life
data [Bass, 1969], [Mahajan and Schoeman, 1977], [Sharif and Kabir, 1976],
[Skiadas, 1985], [Skiadas, 1986], [Skiadas, 1987], [Modis and Debecker, 1992].
A main direction of these applications was focused of the non-symmetric be-
havior of the models expressed by specific parameters. A relatively simple
but very flexible model was proposed in an earlier publication based on a
family of Generalized Rational Models, [Skiadas, 1985], [Skiadas, 1986], to
express asymmetry during the innovation diffusion process. This model is
expressed by the following differential equation:

ḟ = b
f(F − f)

F − (1 − σ)f
(1)

Where f is the number of adopters at time t, F is the total number of
potential adopters, b is the diffusion parameter, and σ is a dimensionless
parameter. This model has a point of infection varying from 0 to F when pa-
rameter σ decreases from∞ to 0. Another interesting property of parameter
σ is that it gives a measure of the asymmetry of the model. Perfect symme-
try appear for σ = 1 when equation 1 reduces to equation 2 expressing the
popular logistic model:

ḟ = bf

(
1− f

F

)
(2)

For the last model it is easy to show that, by using the transformation:

ḟ =
df

dt
≈ ∆f

∆t
=

ft+1 − ft
(t+ 1)− t = ft+1 − ft (3)

it is expressed by the following difference equation:

ft+1 = ft + bft

(
1− ft

F

)
(4)

Bifurcation and further chaotic behavior appear when 2 < b ≤ 3. Various
applications of the logistic model in several disciplines showed that parameter
b of the logistic model lies in very low limits lower that unity. Thus by
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using the logistic model it is not possible to express chaotic behavior in real
situations as the estimated values of parameter b fail to reach the limit at
which chaotic behavior appear. On the other hand provided data for various
cases show that oscillations and chaotic behavior appear quite frequently and
especially when the diffusion process is close to the upper limit F . Moreover
when the logistic model is applied in the form:

Xt+1 = bXt(1 −Xt) (5)

Where Xt = ft/F then, bifurcation and chaotic behavior appears when
3 < b ≤ 4.

Chaos appears for very high values of b, which are not reasonable for real
situations. Clearly the model form (4) is more correct as a discrete logistic
model expressing behavior similar to the continuous model resulting from
differential equation 2. This can be found in an older application done by
[Nash, 1976]. The aim of this paper is to show that the model (1) exhibits
chaotic behavior for values of parameter b that are quite low and are in
accordance to the values estimated in real situations. This is achieved by the
help of the flexible parameter σ, which gives a measure of the asymmetry of
the model. The chaotic behavior of the model is analyzed and illustrated by
using significant graphs. Finally, real life applications are presented.

2 The Generalized Rational Model

The model proposed is a discrete version of the continuous one expressed by
equation 1. By introducing the approximation of ḟ from equation 3 in the
differential equation 1 the following difference equation results:

ft+1 = ft + b
ft(F − ft)

F − (1− σ)ft
(6)

Some interesting properties of this model are illustrated in Figures 1to 3.
In Figure 1a the proposed model shows the classical sigmoid form, whereas

in Figure 1b the bifurcation appear as a simple oscillation. In Figure 1c
a more complicated oscillation with four distinct oscillating levels appears,
whereas in Figure 1d - 1f a total chaotic form appears. In all cases presented
here the starting value is f0 = 1, the upper limit F = 100, b = 0.3 and σ
takes various values. The value selected for b is within the range 0.1 to 0.5,
which is valid in real situations. By varying the dimensionless parameter σ
several forms of the model appear.

A very important point is the estimation of the values of parameters b
and σ for which bifurcation appear. The presence of the first oscillations and
the onset to chaos, which follows, is a very important point when studying
innovation diffusion systems. According to the theory of chaotic models,
bifurcation for the model (6) starts when:
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Fig. 1. GRM1 model for a) b = 0.3 and σ = 2 and b) b = 0.3 and σ = 0.13
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Fig. 2. GRM1 model for a) b = 0.3 and σ = 0.12 and b) b = 0.3 and σ = 0.10

0

20

40

60

80

100

120

0 10 20 30 40 50 60

Number of iterations

V
a
lu

e
s
 
o
f
 
G

R
M

1
 
m

o
d
e
l

0

20

40

60

80

100

120

0 20 40 60

Number of iterations

V
a
lu

e
s
 
o
f
 
G

R
M

1
 
m

o
d
e
l

Fig. 3. GRM1 model for a) b = 0.3 and σ = 0.09 and b) b = 0.3 and σ = 0.08
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f́ t+1 = −1, ft+1 = ft (7)

By applying equations 7 to equation 6 results the following relation for
parameters b and σ:

b

σ
= 2 (8)

When b/σ > 2 then oscillation and chaotic behavior appear by gradually
augmenting the fraction b/σ . When σ = 1 which is the case for the logistic
model bifurcation appear for values of b > 2.

It is also possible to obtain analytic form for the values of ft after the
first bifurcation point and before the second. To achieve this we consider
that ft+2 = ft . The exact formula is given by:

ft = F
(b + 2)±

√
b(b+2)(b−2σ)

(b−2σ+2)

2(b+ σ − 1)
(9)

For the logistic model σ = 1 and thus equation 9 reduces to:

ft = F
(b+ 2)±

√
(b + 2)(b− 2)

2b
(10)

When b > 2σ in equation 9 or b > 2 in equation 10 the system oscillates
at the values of ft given by the above formulas respectively. When b is higher
of the values expressing the second bifurcation point four distinct oscillating
levels appear and later eight and finally 2n points. For sufficient specifically
high values of b, n is very high and the system exhibits chaotic oscillations.

3 Parameters’ Estimation of GRM1 Model

The parameters of the discrete GRM1 model are estimated by an Iterative
non-linear regression analysis algorithm by minimizing the sum of squared
errors (S = SSE):

S =
∑

ε2t =

n∑

t=1

(yt − ft)2 (11)

where εt is the error term of the stochastic equation:

yt = ft +

n∑

i=1

ϑft
ϑai

∆ai + εt (12)

yt denotes provided data and ft is calculated for every t from equation 6,
given a set of initial values of parameters ai. The estimation of parameters
is highly sensitive in the presence of oscillations and chaotic oscillations in
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the provided data. For a better fitting it was decided to use the non-linear
estimation method proposed by Nash for the discrete Logistic model for only
three parameters of the model and retaining the dimensionless parameter σ.
This parameter is gradualy changed as the iterative procedure proceeds until
the sum of squared errors is minimized. The starting values of the partial
derivatives need the estimation of the following forms given a set of initial
values for the parameters of the model:

ϑf1
ϑb

=
f0(F − f0)

F − (1− σ)f0
(13)

ϑf1
ϑf0

= 1 + b
F 2 − 2Ff0 + (1 − σ)f2

0

(F − (1− σ)f0)
2 (14)

ϑf1
ϑF

= bσ

(
f0
F

)2

(15)

After the above estimation of the initial values of the parial derivatives the
iterative procedure continues the estimation by using the following formulae:

ϑft+1

ϑb
=
ϑft
ϑb

(1 + bkt) +
ft(F − ft)

F − (1− σ)ft
(16)

ϑft+1

ϑf0
=
ϑft
ϑf0

(1 + bkt) (17)

ϑft+1

ϑF
=
ϑft
ϑF

(1 + bkt) +
bσf2

t

(F − (1 − σ)ft)
2 (18)

where:

kt =

(
F 2 − 2Fft +

(1− σ)ft
F − (1− σ)ft

)2

(19)

4 Illustrations

Time series data expressing the cumulative percentage of steel produced by
the oxygen process in various countries are used from an earlier application,
[Poznanski, 1983]. Figure 4 illustrates the diffusion of Oxygen steel technol-
ogy in Spain from 1968 to 1980, for a number of 13 years. The actial data
include 18 years but, it is more appropriate to study the last part of the time
series data as this part shows the characteristic oscillations that are of special
interest in this study. The small cycles indicate the actual data, the dotted
line chracterizes the path of the logistic model and the simple line is for the
GRM1 model.

Parameter estimates and the sum of squared errors are summarized in
Table 1. The parameter b for the Logistic model is relatively high but is far
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Fig. 4. Spain, Oxygen Steel Process (1968-1980)

Model b l F σ(b/σ) SSE

Logistic 0.6309 24.373 51.474 - 72.838

GRM1 0.2331 25.779 51.736 0.084 (2.775) 41.748

Table 1. Parameter Estimates and Sum of Squared Errors (SSE) for Logistic and
GRM1 Models in Spain from 1968 to 1980

away from the value needed for the start of bifurcation (b = 2). The form of
the logistic path presented in the Figure 4 has a smouth form. The model
fail to express the oscillating behavior of the actual case studied. Instead the
GRM1 model shows a value for the parameter b lower to that of the Logistic
model but the extra parameter σ accounts for the presence of oscillating and
further of chaotic behavior as the fraction b/σ = 2.775 > 2. The estimated
values for the parameters l and F are very close for both models. The ability
of GRM1 model to follow the oscillating behavior of actual data is illustrated
in the above Figure and is also expressed by the strong improvement of the
Sum of Squared Errors (SSE).

Figure 5 illustrates the diffusion of oxygen steel technology in Italy from
1970 to 1980. The process ends in an oscillating form. The discrete Logistic
fails to express these oscillations whereas the discrete GRM1 shows a consid-
erable flexibility to approximate the real data. The sum of the squared errors
is very low in the case of GRM1 model compared to that of the Logistic as
is demonstrated in Table 2. The fraction b/σ = 3.5292 for the GRM1 model
accounts for the chaotic behavior.

The actual data for the diffusion of the oxygen steel process in Luxemburg
are of considerable interest as they cover the scale from 1.5 % during 1962 to
that of 100 % in 1980 (Figure 6). The GRM1 model showed a good flexibility
as it covers the fast growth process in the first stages of the diffusion process
followed by a sudden turn to the high platform of 100%. The small also
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Fig. 5. Italy Oxygen Steel Process (1970-1980)

Model b l F σ(b/σ) SSE

Logistic 0.5447 35.957 44.473 - 15.330

GRM1 0.08823 36.0402 44.4614 0.025 (3.5292) 7.431

Table 2. Parameter Estimates and Sum of Squared Errors (SSE) for Logistic and
GRM1 Models in Italy from 1970 to 1980

flictuations at the end of the process are also simulated quite well as the
fraction b/σ = 3.609 accounts for the chaotic region of the model. Figure 6
illustrates the case of Luxemburg for the following estimated values for the
parameters: b = 0.1931, l = 7.968, F = 99.669 and σ = 0.0535. The mean
squared error is MSE = 20.872.
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Fig. 6. Luxemburg Oxygen Steel Process (1962-1980)



Chaotic Innovation Diffusion Model 1349

The flexibility and the ability of GRM1 model to simulate growth pro-
cesses that show at the end of the process oscillations and also chaotic oscil-
lations is demonstrated in the following case of the diffusion of oxygen steel
technology in Bulgaria from 1968 to 1978 (see Figure 7). The estimated pa-
rameters have values b = 0.04046, l = 49.2425, F = 58.412 and σ = 0.012.
The sum of squared errors is SSE = 21.431 and the fraction b/σ = 3.3718
indicates that the model behave in the chaotic region.
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Fig. 7. Bulgaria Oxygen Steel Process (1968-1978)

5 Summary and Conclusions

A nonsymmetric innovation diffusion model is presented and analyzed regard-
ing the chaotic behavior. It is shown that this model exhibits bifurcation and
further chaotic behavior for some values of the fraction b/σ of the parameters
b and σ. Real time-series data are used and parameters are estimated by an
Iterative non-linear algorithm showed that in some cases the model performs
oscillations (the fraction b/σ has values higher than 2) whereas in other cases
the model showed the classical sigmoid form.
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Abstract. The objective of this paper is to investigate the impact of the time-
delay effect on the diffusion of mobile telecommunication services in EU. It has
been proved from several studies that the time-delay between the awareness and
the adoption phase of mobile services-potential users determines the speed of the
mobile telecommunication service diffusion and can be used effectively for ranking
or cluster purposes in cases when the diffusion of a new product in different countries
is studied. The proposed modeling approach originates from the well-known logistic
model where it is assumed that the ordinary contagion process does not take place
instantly but after some certain amount of time. A proper modification of the
proposed model described by a time lag ordinary differential equation can be solved
analytically and its properties for several parameters’ combination are investigated.
Moreover, a new diffusion speed index is proposed and the correlation between the
time-delay index and the proposed diffusion speed index is examined. Finally the
model is applied to real data concerning the mobile services diffusion in fifteen
counties of EU from 1990 to 2002. Based on the estimated parameters of the model
produced for each country a ranking and a clustering of the EU countries based on
their derived diffusion speed and time-delay indexes are provided.
Keywords: Time-delay model, Diffusion speed, Innovation diffusion modeling,
Technology marketing-management, Modeling Telecommunication services.

1 Introduction

Today, forecasting technology in economic activity is no more avoidable than
in forecasting weather in daily life. In fact, voluminous literature has ex-
plored different growth-curve models in forecasting the diffusion process of
new technologies. Early contributions to this subject are attributed to sci-
entists who noted the analogy between the epidemic process and the social
adoption process [Griliches, 1957], [Mansfield, 1961], [Bass, 1969], [Fisher
and Pry, 1971], [Blackman, 1972], [Sharif and Kabir, 1976], [Sharif and Ra-
manathan, 1984]. They came to a general agreement that the proportion of
adopters rises at an accelerating rate during the early stages of the diffusion
process and then at a declining rate until the population of potential adopters
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has been exhausted. Later, economists and technologists joined the field to
predict the marketability of new products, trajectory of technology process,
penetration rate of the advanced manufacturing technologies ([Skiadas, 1985],
[Skiadas, 1986], [Skiadas, 1987], [Kumar and Kumar, 1992] and [Mead and
Islam, 1998]). Initiated with a simple logistic function, various curves have
been empirically derived to investigate the patterns of technological growth
process. These curves differ from one another in terms of number of param-
eters, the point of inflection, the symmetric or non-symmetric shape of their
shape, etc.

This paper is using an earlier developed approach ([Poznanski, 1983],
[Skiadas, 1986]) originating from the logistic innovation diffusion model which
incorporates the time-delay between the awareness and the adoption phase
during the classical contagion process between the adopters and the potential
adopters of a new technology. It has been proven that the time-delay affects
the performance of a new technology launching and speed and it can be used
for comparison purposes, in order to study the innovation diffusion among
groups of potential adopters with different characteristics. The proposed
model can be solved analytically and presents very attractive properties well
documented in the field of innovation diffusion representation. Additionally,
an expression on the relationship between the time-delay parameter and the
diffusion speed is presented. The time-delay innovation diffusion model is
applied to the data of mobile telephony services diffusion in EU-15, in order to
determine the existence of penetration patterns in relation to the time delay
between the awareness and the adoption phase of the potential adopters.
Finally, the outcomes are used for a ranking of the investigated countries.

2 A model expressing the time-delay of
adoption-diffusion process

The diffusion of an innovation in a stable and homogeneous system with no
external influence is traditionally expected to follow a symmetric S-shaped
pattern represented by the well known logistic curve [Griliches, 1957]. More
specifically, let Xt denote the number of agents that have adopted the new
technology in time t. Let X∗ denote the total number of potential adopters.
Then the following o.d.e expresses the dynamics of the innovation diffusion
process through the contagion process between the adopters and the potential
adopters:

dXt

dt
=

b

X∗ ·Xt · (X∗ −Xt) (1)

which implies that b represents the growth rate of the numbers of adopters
relative to the proportion of agents who have not yet adopted the innova-
tion. The innovation’s penetration level follows an S-shaped pattern with
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maximum diffusion speed reached when half of the total number of potential
adopters has adopted the new technology.

This traditional approach in defining the innovation diffusion process as-
sumes that the process takes place in a stable and homogeneous system in
which the innovation spreads without any affection of the system’s structure.
In such cases the diffusion follows a symmetric pattern similar to those pro-
vided by eq. (1). The symmetry is also retained in the presence of external
influences (e.g. promotional activities) which are not acting directly to the
system’s structure. However, many studies have proven that the presence
of symmetry is not the general rule in innovation diffusion process ([Maha-
jan et al., 1961], [Skiadas, 1985], [Skiadas, 1986], [Skiadas, 1987]). In the
majority of new technology penetration patterns the asymmetry is caused
by several factors such as cultural status, economic conditions, demograph-
ics (population density, urbanization, and educational level), governmental
policy, technology utility, technology familiarity, etc. [Bakalis et al., 1997].
The incorporation of such a critical aspect of the diffusion process into the
process representation efforts not only provides more flexible models but can
also lead to the revelation of several interesting properties of the innovation
diffusion process.

Equation (1) assumes an immediate interaction between the adopters and
the potential adopters of a new product leading to a symmetric diffusion
pattern. However, this assumption is not always true since there is always a
time-delay between the time of interaction occurrence and the adoption time.
Thus, the potential adopters X∗ − Xt at time t interact with the adopters
Xt−T at time t−T Taking into account the above consideration, the original
logistic model takes the following form:

dXt

dt
=

b

X∗ ·Xt−T · (X∗ −Xt) (2)

where T is the mean value of all time-delays occurring between the
adopters and the potential adopters of the technology under investigation.
Equation (2) cannot be easily handled and therefore an appropriate trans-
formation is needed in order to have an approximate solution. By applying
the Taylor series expansion to the expression Xt−T we have:

Xt−T = Xt − T ·
dXt

dt
+

T 2

2
· d

2Xt

dt2
− T 3

3!
· d

3Xt

dt3
+ · · · (3)

Provided that the parameter T is not to large compared to the total time
interval, the two first terms of the whs of equation (3) could be retained.
Then the equation (3) can be written as:

Xt−T = Xt − T ·
dXt

dt
(4)

Introducing equation (4) into equation (2) the following delay ordinary
differential equation (ODE) results:
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dXt

dt
=

b

X∗ ·
[
Xt − T ·

dXt

dt

]
· (X∗ −Xt) (5)

The appropriate rearrangements in equation (5) yields:

dXt

dt
=

b

1 + b · T ·
Xt · (X∗ −Xt)

X∗ − b·T
1+b·T ·Xt

(6)

Setting

b∗ =
b

1 + b · T (7)

and then

b∗ · T = 1− σ (8)

equation (6) takes the form:

dXt

dt
= b∗

Xt · (X∗ −Xt)

X∗ − (1− σ) ·Xt
(9)

Equation (9), is a special case of a family of generalized innovation diffu-
sion models proposed by [Skiadas, 1985], [Skiadas, 1986] aiming to represent
the innovation diffusion process. When σ = 1 then equation (9) results in
the above described logistic model, whereas when σ = 0 it results in the ex-
ponential model. The solution of ODE (9) has given by Skiadas (1985) and
has the following form:

ln(Xt)− σ · ln(X∗ −Xt) = ln(X0)− σ · ln(X∗ −X0) + b · t (10)

whereX0 represents the numbers of adopters at time t = 0. The inflection
point of the above model is given by [Skiadas, 1985] and has the following
form

Xinf = X∗ · 1−
√
σ

1− σ (11)

The inflection point is considered as measure of asymmetry in every tech-
nology diffusion case. Equation (11) reveals that the proposed model is very
flexible since the inflection point takes values from 0 to X∗ depending on
the values of parameter σ. When σ = 1, then Xinf = X∗/2 which is the
inflection point of the logistic model.
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3 Pattern identification in mobile telephony diffusion
in EU-15

3.1 Model Identification Results

Mobile Telecommunications has recently developed into a popular innova-
tion of diffusion studies field. In fact, researchers have conducted studies
on a national level ([Wright et al., 1997], [Frank, 2003]), a multinational
level ([Gruber and Verboven, 2001], [Gruber, 2001])and on a worldwide level
[Dekimpe and Sarvary, 1996]. These, multinational or cross-country studies
examine the reasons and dynamics behind the differences in the adoption
or diffusion processes of a set of countries. The present approach is trying
to identify the existence of standardized patterns in mobile telephony diffu-
sion in EU-15 due to the different time-delay effects between adopters and
potential adopters during the contagion process.

The available data express the penetration level of mobile telephony in
EU-15 from 1990 until 1992 and has been taken from OECD communication
outlook (2000, 2001, and 2002). The proposed model is applied to the avail-
able data by using an appropriate non-linear regression algorithm [Skiadas,
1987]. The results for the fifteen countries under investigation are summa-
rized in Table 1.

As it can be seen, the model identification performance is very good since
it explains for every country more than 99% of the process variance. The
parameter σ is statistically significant for every country showing that the
assertion of the existence of time-delay between the awareness and adoption
phases is true. Based on the outcomes, the time-delay varies from 0.33 yrs
to 1.79 yrs. Figure 1 illustrates the time-delay parameters for each country
under investigation. Among the countries with the smaller time-delay pa-
rameter are Portugal, France and Greece, while the countries with the bigger
time-delay parameter are UK, Luxembourg, Germany, and Denmark, Swe-
den. It is obvious that a catching-up process is present in the diffusion of
mobile telecommunications (Gruber and Verboven, 2001), since the countries
with high technology level or countries which belong to the originators of the
mobile technology present a bigger time-delay parameter than other countries
which develop the industry later on. Finally, three countries present almost
symmetric diffusion pattern (inflection point around 50% of the saturation
level) while all the others not.

3.2 Time-Delay Effect and Speed of Diffusion

It is interesting to examine the relationship between the time-delay effect
and the speed of the diffusion process. A frequently utilized measure for the
speed is the reciprocal of characteristic duration, a measure expressing the
time required to grow from 10% to 90% of the estimated saturation level.
Solving Eq. (10) w.r.t. 1/t yields:
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Country X0 b∗ X∗ σ V (et) MSE Var Expl. T Xinf

Austria 0,059 0,701 82,459 0,230 1,648 1,141 99,89% 1,10 56%
(0,025) (0,050) (1,026) (0,073)

Belgium 0,067 0,620 78,790 0,146 0,110 0,076 99,99% 1,38 57%
(0,007) (0,0010) (0,354) (0,015)

Denmark 1,878 0,357 95,520 0,416 2,987 2,068 99,72% 1,64 58%
(0,451) (0,041) (15,076) (0,340)

Finland 1,674 0,447 88,994 0,655 2,267 1,569 99,82% 0,77 49%
(0,390) (0,046) (4,198) (0,253)

France 0,016 0,819 67,193 0,699 0,315 0,218 99,96% 0,37 37%
(0,06) (0,049) (1,246) (0,135)

Germany 0,048 0,652 69,997 0,048 3,938 2,726 99,60% 1,46 57%
(0,023) (0,100) (1,404) (0,015)

Greece 0,229 0,768 89,000 0,617 0,477 0,220 99,97% 0,50 50%
(0,055) (0,044) (2,242) (0,134)

Netherlands 0,046 0,693 74,422 0,137 1,756 1,216 99,85% 1,24 54%
(0,023) (0,056) (0,964) (0,063)

Ireland 0,132 0,589 76,599 0,141 0,531 0,368 99,96% 1,46 56%
(0,028) (0,025) (0,595) (0,040)

Italy 0,221 0,579 94,533 0,364 0,356 0,246 99,98% 1,10 60%
(0,033) (0,019) (0,998) (0,051)

Luxembourg 0,223 0,534 99,556 0,101 4,891 3,386 99,74% 1,68 77%
(0,085) (0,041) (2,257) (0,049)

Portugal 0,030 0,801 85,127 0,738 0,613 0,425 99,95% 0,33 46%
(0,012) (0,053) (1,656) (0,151)

Spain 0,027 0,750 83,563 0,473 2,236 1,548 99,82% 0,70 50%
(0,010) (0,083) (2,943) (0,200)

Sweden 3,150 0,330 99,392 0,447 1,881 1,302 99,84% 1,68 60%
(0,460) (0,029) (9,747) (0,214)

UK 0,204 0,538 81,853 0,039 2,358 8,556 99,04% 1,79 69%
(0,091) (0,101) (2,486) (0,011)

Table 1. Parameter Estimates, MSE, and % Variance Explained for the Diffusion
of Mobile Telephony in EU-15 (standard errors in parentheses).

SPD =
1

t
= b∗ ·

[
ln
Xt

X0
+ σ · ln X

∗ −Xt

X∗ −X0

]−1

(12)

where for each country X0 represents the 10% of the saturation level and
Xt represents the 90% of the saturation level. Figure 2 illustrates the results
concerning the speed of mobile telephony penetration for each country under
investigation.

Figure 3 illustrates the mobile telephony speed of EU-15 countries w.r.t.
their estimated time-delay effect.
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Fig. 1. Time-Delay Parameters for EU-15
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Fig. 3. Time-Delay and Speed of Mobile Telephony Diffusion for EU-15

From the above three figures, it can be seen that the time delay effect in
the contagion process has a negative impact on product’s penetration rate,
at least in the medium phases of the diffusion process.

It could be beneficial in future research efforts to identify and include
into the model the market factors affecting the magnitude of the time-delay
parameter in order that technology marketing functions to be able to facilitate
product’s marketability.

4 Conclusions

This paper proposed a new modeling approach for the investigation of the
diffusion of mobile telecommunications services in EU-15. It was found that
the proposed model which incorporates the notion of the time-delay between
the awareness and the adoption phases of a new product plays an important
role in studies of new product penetration in different groups of potential
agents. The model was applied to the data of mobile telecommunication in
EU-15 and the time-delay effect was used for the ranking of the countries
under investigation with respect to their ability to adopt and diffuse the new
technology. Furthermore, a new speed index was developed aimed to measure
the speed of innovation diffusion. The relationship between the speed of the
diffusion and the time-delay effect was studied revealing that they are related
in a quadratic mode i.e. as the time-delay effect of diffusion increases the
speed of diffusions decreases in a quadratic mode.
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Abstract. Business units, which work in a competitive economy, are faced with in-
tensifying pressure. Greek businesses have undergone a rapid economic and political
development over the last forty years. The relevant sectors constitute an important
object of study. The process industries are forced to adopt advanced techniques
to improve their global competitiveness due to the increased competition and in-
creasingly environmental regulations. Long range predictive control algorithms are
considered by industry to improve the overall plant operability, efficiency and con-
trol performance. Many processes have nonlinear and dynamic character. It is
difficult to analyze and model using conventional techniques. A new generation of
techniques came as an alternative. Soft computing represents one of them. The
objectives of this research were threefold: to analyse the economic development of
Greek non-metallic sector, to predict its manufacturing index using an Artificial
Network with a Fuzzy Inference System (ANFIS) and to compare its forecasting
accuracy with various time-series forecasting methods (AR and ARMA). A data
set of monthly observations of the manufacturing index is considered. All data is
publicly available, and the concerned factors are generally thought to have poten-
tially explaining or predicting capabilities with respect to the industry growth. The
data has been generated by the economic market system. The data were available
from 1986 to 2002.
Keywords: ANFIS, Neuro-fuzzy, Forecasting, Manufacturing index.

1 General considerations

Business units, which work in a competitive economy, are faced with intensi-
fying pressure. The soft computing approaches are useful due to a high level
of uncertainty in dynamic economic processes. The organization’s top man-
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agement is required to not only assess its position, but also to understand
the differences inter-firms and inter-industries [Wu et al., 2001].

Artificial intelligence methods have been developed for many business
problems. Recent studies have shown that neural networks represent a fore-
casting technique which is superior to nearly all existing methods such con-
sensus estimates, statistical modelling and simulation [Milam, 1998].

The use of neural networks in economics is still in its relative initial stages.
However, in spite of this, a substantial amount of research has been conducted
and the number of publications is very extensive. [Moody, 1993] presented
empirical results to forecast the U.S. index of industrial production and ar-
gued that superior performance can be obtained using state-of-the-art neural
network models than using conventional linear time series and regression
methods. [Dilli and Wang, 2002] presented an application of the ARIMA
model to forecast the production level of the construction industry. [Dilli
and Wang, 2003] applied the neural networks to forecast the production level
of construction industry. The objective of their paper has been to develop
an empirical model for the construction industry in China, which best fits,
the data under study and gives better prediction values with minimum er-
rors. The model has to help the planners and the policy makers to formulate
proper policies and programs to promote the industry.

The manufacturing index
The index of manufacturing production (IMP) measures changes in the quan-
tity of commodities produced by different producers. It reflects the trends
in a constant basket of goods produced by establishments employing a spe-
cific number of workers (for example establishments employing 50 or more
workers). Nowadays, in Greece, the manufacturing index is compiled from
production data covering more than 1 800 factories, selected by branch ac-
cording to their size (average annual employment of 10 persons and over)
(National Statistical Service of Greece (NSSG).

Olga Christodoulaki [Christodoulaki, 1999] presented an analysis of man-
ufacturing output in Greece during the interwar period. The literature usu-
ally sees the 1920s as a landmark in the industrialisation of the country and
a time when Greek manufacturing achieved an ”unprecedented prominence”
[Mazower, 1992]. The Supreme Economic Council constructed the first index
of industrial production in Greece in the 1930s. This index is described as a
weighted volume index, which includes approximately 80% of the total indus-
trial production. It comprised eleven industrial sectors including electricity
after 1925. An index constructed by the National Statistical Service was
based on up to 61 items. These goods are primarily agricultural products. A
few goods from the secondary sector are included, mainly products of food
processing industries as well as some imported foodstuffs.

Non-metallic mineral sector
In recent years, a new business environment has been taking shape. The fac-
tors, which played an important role, are higher levels of uncertainty, global
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competition and the European perspective. Strength refers not only to mar-
ket share but covers the issue of the production cost. The production centres
shifted to cheaper areas. The construction industry affects EU’s economy to
a large extent. It has attained a significant level of competitiveness at the
same level as other sectors in the economy at a national or local level. Ex-
ports in metallic mineral and non-metallic mineral products within the EU
are double than the level of imports from outside EU.

Changes have occurred in the non-metallic minerals market. The Greek
cement and building materials market, was expected to be more connected
with the technical constructing market as has already happened in other
countries. The profits incurred a reduction due to a decline of building ac-
tivity, recession of the demand regarding products in the European market,
and an intensified competition from abroad. Producers were obliged to ab-
sorb the biggest part of the incremental production cost when the cost of the
production factors increased, in order not to suffer losses in sales and market
shares (Federation of Greek Industry, 2000).

2 Methods

Artificial Intelligence forecasting techniques have been receiving much atten-
tion lately. They have been cited to have the ability to learn like humans, by
accumulating knowledge through repetitive learning activities. Their appli-
cation in the prediction of economic indicators and financial indices has been
demonstrated. [Ranasinghe et al., 1999]

a. Fuzzy logic. Fuzzy logic gives a means of representing uncertainty. It
is useful in reasoning with the imprecise data. Fuzzy logic is the convenient
way to map the input space to an output space. Fuzzy inference systems (FIS)
can express human expert knowledge and experience by using fuzzy inference
rules represented in ”if-then” statements. The fuzzy inference process has
five steps: fuzzify inputs, apply fuzzy operator, apply implication method,
aggregate all outputs and defuzzify. In order to obtain a good FIS it is
necessary that the researchers possess domain knowledge; the knowledge has
to be represented in a symbolic form, be complete, correct and consistent.
Unfortunately, fuzzy inference systems tend to become incomplete because
experts are reluctant to disclose all the knowledge. In addition it is difficult
to express it in a symbolic form. [Nishina and Hagiwara, 1997]

b. Neural networks. Between the biologically inspired computing mod-
els there are the artificial neural networks. Artificial NN doesn’t approach
the complexity of the brain, but have two key similarities: the building blocks
are simple computational devices and the connections between neurons deter-
mine the function of the network. Layers of neurons form a neural network. A
layer includes the weight matrix, the summers, the bias vector b, the transfer
function and the output vector [Hagan et al., 1996].



1364 Atsalakis et al.

c. Neuro-fuzzy. Neuro-Fuzzy systems use NNs to extract rules and
membership functions from input-output data to be used in a Fuzzy Infer-
ence System. Using this approach, the black box behaviour of NNs and the
problems of finding suitable membership values for FL, are avoided. NFS are
suited for applications where user interaction in model design or interpreta-
tion is desired. One of the most important NFS is ANFIS.

d. ANFIS. Fuzzy inference systems using neural networks were proposed
to avoid the weak points of fuzzy logic. The biggest advantage is that they
can use the neural networks’ learning capability and can avoid rule-matching
time of an inference engine in the traditional fuzzy logic system. Functionally,
there are almost no constraints on the node functions of an adaptive network
except piecewise differentiability. Structurally, the only limitation of network
configuration is that it should be of feedforward type. Due to this minimal re-
striction, the adaptive network’s applications are immediate and immense in
various areas. A class of adaptive networks, which are functionally equivalent
to fuzzy inference systems, is presented bellow[Jang, 1993]:

We assume the FIS under consideration has two inputs and one output.
Suppose that the rule base contains two fuzzy if-then rules of Takagi and
Sugeno’s type:

Rule1: If x is A1 and y is B1 then f1 = p1 · x+ q1 · y + r1

Rule2: If x is A2 and y is B2 then f2 = p2 · x+ q2 · y + r2
The node functions in the same layer are of the same function family as
described below:
Layer 1: Every node in this layer is a square node with a node function.

O1
i (x) = µAi(x) where x− the input to node i, Ai− the linguistic label

(small, large, etc.) associated with this node function. In other words, O1
i is

the membership function of Ai and it specifies the degree to which the given
x satisfies the quantifier Ai . Usually is chosen µAi(x) to be bell-shaped with
maximum equal to 1 and minimum equal to 0, such as the generalized bell
function

µAi(x) =
1

1 +

[(
x−ci

ai

)2
]bi

where ai, bi, ci is the parameter set.
As the values of these parameters change, the bell-shaped functions vary ac-
cordingly, thus exhibiting various forms of membership function on linguistic
label Ai . Parameters in this layer are referred to as premise parameters.
Layer 2: Every node in this layer is a circle node labeled

∏
, which multi-

plies the incoming signal and sends the product out.
Layer 3: Every node in this layer is a circle node labeled N. The i− th node
calculates the ratio of the i− th rules firing strength to the sum of all rules’
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firing strengths:

wi =
wi

w1 + w2
, i = 1, 2

For convenience, output of this layer will be called normalized firing strengths.
Layer 4: Every node i in this layer is a square node with a node function

O4
i (x) = wi · fi = wi(pi · x+ qi · y + ri)

where: wi is the output of layer 3 and pi, qi, ri is the parameter set.
Parameters in this layer will be referred to as consequent parameters.
Layer 5: The single node in this layer is a circle node labeled

∑
that computes

the overall output as the summation of all incoming signals, i.e.,

O5
i (x) =

∑

i

wi · fi =

∑

i

wi · fi
∑

i

wi

3 Results and discussions

The object of this research consists of forecasting the manufacturing index
for the non-metallic minerals sector from Greece. The forecasting was done
using an adaptive neural network with fuzzy inference system. ANFIS uses
a hybrid-learning algorithm to identify the membership function parameters
of single-output, Sugeno type fuzzy inference systems (FIS). The model was
applied for the period 1986-2002. The minimum value of the manufacturing
index was 62,1 and the maximum 132,6. The index was less than 100 in
87 months and between 100 and 120 in 43 months. The sector established
significant development, reflected in an index greater than 120 only in 26
months in the analyzed interval.

It worked with different numbers of membership functions: two, three,
four, five and seven. Different types of membership functions were also cho-
sen - gbellmf, gaussmf, trimf and trapmf The model has one input - the
previous value of the manufacturing index of the analyzed sector. The lin-
guistic expressions (small, big, low, high) were transformed into fuzzy sets
using membership functions. However, a weak point was the volume of data.
Had it been possible to obtain more data, the results could have been more
accurate. The model almost always predicted the correct trend of the man-
ufacturing index.

The final model was chosen according to the smallest value of er-
rors. The best results were obtained working with four triangular
membership functions. The characteristics of the model for the case
of the minimum errors are 20 nodes, 8 linear parameters, 12 nonlin-
ear parameters, 155 training data pairs, 59 checking data pairs and 4
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fuzzy rules (their number being obtained with the formula 22 = 4 −
number of membership functionsnumber of imputs).

The scatter plot (figure 1) is a powerful tool, which allows viewing entire
data set at once. It displays the relationships between the input and output
and identifies the outliers.

Fig. 1. Scatter plot of input data

The values predicted by the adaptive neural network with fuzzy infer-
ence system were compared with the data set. The forecasting accuracy was
evaluated by undertaking the comparison with the AR and ARMA methods.
The graphical representation of the errors and the comparison between the
actual values and the ANFIS predicted values are presented in figure 2

Fig. 2. Error evolution (a) and the comparison between the actual values and the
ANFIS values (b) non-metallic

The model displayed a high degree of prediction of the correct trend. The
results are better in the first part. Another observation is that at the begin-
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ning, the model more accurately forecasted the decrease of the manufacturing
index, but afterwards it was able to predict its growth.

The training error, checking error and the step-size are illustrated in fig-
ure 3. The training errors are comprised in the interval (8,55; 8,6). The
checking errors decreased after 5 epochs by increasing the number of epochs
and remained constant after 20 epochs.

Fig. 3. The error curves and the step-size

The results derived from the application of the adaptive network with
fuzzy inference system were compared with those obtained with the use of
traditional methods. The comparison of the ANFIS model with the AR
and ARMA models is presented in table 1. The comparison was done using
relative measures of forecasting accuracy dealing with errors. The measures
used in the comparative study are the root mean square error (RMSE), mean
absolute error (MAE) and mean absolute percentage error (MAPE). These
measures and their application to forecasting have been discussed by many
authors [Makridakis et al., 1983][Goh, 1996].

The following ideas can be drawn from the above analysis:

• the application of ARMA took on the smallest RMSE. AR ranked second,
followed by the adaptive neural network with fuzzy inference system;

• from the point of view of MAE, the situation was the same. ARMA was
ranked first. The second MAE value was obtained for AR, while ANFIS
gave the worst value;
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Errors ANFIS AR ARMA

RMSE 12.3264 10.6575 10.4546

MAE 9.3513 8.1903 8.1755

MAPE 9.0386 8.4242 8.4588

Table 1. Comparison ANFIS - AR - ARMA for the non-metallic sector

• from the point of view of MAPE, the order of ranking remained un-
changed comparing with RMSE and MAE.

4 Conclusions

This research aimed to prove that a neuro-fuzzy approach could be used
to forecast the manufacturing index. The weak aspects of other forecasting
methodologies for time series could be overcome with the proposed adaptive
network with fuzzy inference system (ANFIS). The data available in the form
of input output pairs could be used in the ANFIS with relative ease.

Finally, it goes without saying that one of the major limitations of this
study is that the practical implementation of the aforementioned approach
requires further study and experimentation.
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Abstract. Linear systems of equations, with uncertainty on the parameters, play
a major role in various problems in economics and finance. In this paper fuzzy
linear systems of the general form A1x + b1 = A2x + b2, with A1, A2, b1 and b2
matrices with fuzzy elements, are solved by means of a nonlinear programming
method. The relation between this methodology and the algorithm proposed in
[Muzzioli and Reynaerts, 2004] is highlighted. The methodology is finally applied
to an economic and a financial problem.
Keywords: Fuzzy linear systems, fuzzy vector, nonlinear programming.

1 Introduction

Several problems in economics and finance boil down to the solution of a
system of linear equations. When we only have some vague knowledge about
the actual value of the parameters, it may be convenient to represent some
or all of them with a fuzzy number. For such a fuzzy linear system Ax = b,
where the elements aij of the n∗nmatrix A and the elements bi of the n-vector
b are fuzzy numbers, the following solutions have been proposed: the classical
solution XC , the vector solution XJ and the marginal solutions XE and XI

(see [Buckley and Qu, 1991]). In [Muzzioli and Reynaerts, 2004] this method
is extended to the more general fuzzy system of equationsA1x+b1 = A2x+b2,
with A1, A2, b1 and b2 matrices with fuzzy elements. Further it is proved
that the systems Ax = b and A1x + b1 = A2x + b2 have the same vector
solution if A1 − A2 = A and b2 − b1=b. Finally an algorithm to find the
vector solution, is introduced.

The aim of this paper is to investigate the solution of the fuzzy linear
system by means of a nonlinear programming method and to highlight the
relation between this methodology and the algorithm proposed in
[Muzzioli and Reynaerts, 2004].

The plan of the paper is the following: in section 2 we recall the vector
solution XJ and the algorithm in order to get this solution. In section 3 we



Fuzzy systems 1371

show that the algorithm boils down to a nonlinear programming problem and
we work out the Kuhn-Tucker conditions. In section 4 we apply the method
to several examples. The last section concludes.

2 The vector solution of the fuzzy system
A1x + b1 = A2x + b2

A (triangular) fuzzy number f is defined by three numbers (f1, f2, f3). An
α-cut, α ∈ [0, 1], of f is the interval [f(α), f(α)], with:

f(α) = (1 − α)f1 + αf2 f(α) = (1− α)f2 + αf3

In [Muzzioli and Reynaerts, 2004] we prove that the system Ax = b (where
A is a n∗n- matrix of fuzzy numbers and b a n-vector of fuzzy numbers) and
all linear systems A1x+ b1 = A2x+ b2, where A1 −A2 = A and b2 − b1 = b,
have the same vector solution XJ , as defined by [Buckley and Qu, 1991] if
all matrices A(0) with A(0)ij ∈ aij(0) are nonsingular.

The α-cuts of XJ are the following sets:

XJ(α) = {x ∈ Rn | A(α)x = b(α), A(α)ij ∈ aij(α), b(α)i ∈ bi(α)}
The marginals of XJj , j = 1, 2, . . . , n, are obtained by projecting XJ on the
coordinate axes. In the same paper we consider the following simple algo-
rithm which finds directly the marginals of the vector solution XJ for each
unknown. One solves 2n(n+1) systems, for each α-cut, where each element
of the extended coefficient matrix of those systems is either the lower or the
upper bound of the α-cut of the corresponding element of the original fuzzy
extended coefficient matrix. The final solution for each unknown, is investi-
gated by taking the minimum and the maximum of the solutions found in each
system for this unknown. Since for all parameters aij , bi, [aij(α1), aij(α1)] ⊂
[aij(α1), aij(α1)] and [bi(α1), bi(α1)] ⊂ [bi(α1), bi(α1)] if α1 > α2, the mini-
mal (resp. maximal) value of x∗k(α1) is always greater (resp. smaller) then
the minimal value of x∗k(α2) and thus [x∗k(α1), xk(α1)

∗] ⊂ [x∗k(α2), xk(α2)
∗].

This has as concequence that x∗k(1) ∈ [x∗k(0), x∗k(0)], for all k and thus
the solution of the algorithm is always a fuzzy number. This procedure
ensures that all possible solutions, consistent with the parameters of the
system, are taken. A simplification of the previous method is to find the
solutions for α = 1 and α = 0 and impose ex post a triangular form on the
solution, whenever xj(1) ∈ [xj(0), xj(0)], for all j. In order to find xj(1),
for all j, one just solves the crisp system, substituting α = 1 in the fuzzy
system. In order to find [xj(0), xj(0)], for all j, one applies the algorithm
for α = 0. If xj(1) ∈ [xj(0), xj(0)], for all j, then one takes as solution the
triangular fuzzy numbers (xj(0), xj(1), xj(0)).



1372 Reynaerts and Muzzioli

3 The nonlinear programming method

The algorithm can be considered as n nonlinear programming problems
where:

• the object functions, x∗k(b1, . . . , bn, a1,1, . . . , ann), k = 1, 2, . . . , n are the
solutions of the system of equations considered as functions of the coef-
ficients,

• with constraints:

b1(α) ≤ b1 ≤ b1(α) . . . bn(α) ≤ bn ≤ bn(α)

a1,1(α) ≤ b1 ≤ a1,1(α) . . . an,n(α) ≤ an,n ≤ an,n(α)

The object functions should as well be minimized as maximized to find the
extremes of the α-cuts of the solution.

The Kuhn-Tucker conditions should be verified for extrema. The La-
grange functions are the following for all k = 1, 2, . . . n:

Lk(b1, . . . , bn, a1,1, . . . , ann) = x∗k(b1, . . . , bn, a1,1, . . . , ann

− λ1(b1 − b1(α)) − . . .− λn(bn − bn(α))

− λn+1(a1,1 − a1,1(α)) − . . .− λn(n+1)(ann − ann(α))

The (necessary) Kuhn-Tucker conditions for a maximum (resp. minimum)
are:

bi(α) ≤ bi ≤ bi(α) (bi − bi(α))
∂Lk
∂bi

= 0,
∂Lk
∂bi
≤ 0 (resp. ≥ 0),

λi
∂Lk
∂λi

= 0, λi ≥ 0 (resp. ≤ 0), ∀i = 1, 2, . . . , n

aij(α) ≤ aij ≤ aij(α) (aij − aij(α))
∂Lk
∂aij

= 0,
∂Lk
∂aij

≤ 0 (resp. ≥ 0),

λi∗n+j
∂Lk

∂λi∗n+j
= 0, λi∗n+j ≥ 0 (resp. ≤ 0), ∀i, j = 1, 2, . . . , n

Since the partial derivatives are:

∂Lk
∂bi

=
∂x∗k
∂bi
− λi ∀i,

∂Lk
∂aij

=
∂x∗k
∂aij

− λi∗n+j ∀i, j

∂Lk
∂λi

= −(bi − bi(α)) ∀i, ∂Lk
∂λi∗n+j

= −(aij − aij(α)) ∀i, j
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the Kuhn-Tucker conditions for a maximum (resp. minimum) are:

bi(α) ≤ bi ≤ bi(α) λi ≥ 0 (resp. ≤ 0)

(bi − bi(α))(
∂x∗k
∂bi
− λi) = 0 (1)

∂x∗k
∂bi
− λi ≤ 0 (resp. ≥ 0) (2)

λi(bi − bi(α)) = 0, ∀i = 1, 2, . . . , n (3)

aij(α) ≤ aij ≤ aij(α) λi∗n+j ≥ 0 (resp. ≤ 0)

(aij − aij(α))(
∂x∗k
∂aij

− λi∗n+j) = 0 (4)

∂x∗k
∂aij

− λi∗n+j ≤ 0 (resp. ≥ 0) (5)

λi∗n+j(aij − aij(α)) = 0, ∀i, j = 1, 2, . . . , n (6)

For a maximum (resp. minimum) the following cases can occur:

• Suppose that ∂xk

∂bi
> 0 (resp. < 0) then from (2) it follows that ∂xk

∂bi
≤

(resp. ≥)λi and thus λi 6= 0. Then from (3) one concludes that b∗i = bi(α).
• Suppose that ∂xk

∂bi
< 0 (resp. > 0) then, since λi ≥ (resp. ≤) 0 it

follows that ∂xk

∂bi
6= λi and thus from (1) one concludes that b∗i = bi(α).

• Suppose that ∂xk

∂bi
= 0 then the Kuhn-Tucker conditions are the following:

(bi − bi(α))λi = 0, λi ≥ 0, λi(bi − bi(α)) = 0

and thus the necessary conditions hold for all bi ∈ [bi(α), bi(α)].

The same cases, with analogous conclusions, occur for the coefficients aij .

4 Economic examples

(1) The market price of a good and the quantity produced are determined
by the equality between supply and demand. Demand is the amount of a
good that consumers are willing and able to buy at a given price. Supply is
the amount of a good producers are willing and able to sell at a given price.
Suppose that demand and supply are linear functions of the price:

{
qd = a ∗ p+ b

qs = c ∗ p+ d
,

where qs is the quantity supplied, that is required to be equal to qd, the
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quantity demanded, p is the price and a, b, c and d are coefficients to be
estimated. Suppose that we have only some imprecise data on the relation
between the quantity supplied and demanded at a given price, then we can
naturally describe the parameters by fuzzy numbers. Due to the equilibrium
conditions, the following fuzzy linear system should be solved:

{
x1 = a ∗ x2 + b

x1 = c ∗ x2 + d

This corresponds (see [Muzzioli and Reynaerts, 2004]) to find the vector
solution of the fuzzy system:

{
x1 − a ∗ x2 = b

x1 − c ∗ x2 = d

If one applies the nonlinear programming method, the following object func-
tions should be maximized (resp. minimized):

x1(a, b, c, d) =
bc− ad
c− a x2(a, b, c, d) =

b− d
c− a

with constraints:

a ≤ a ≤ a(< 0) (0 <)b ≤ b ≤ b
(0 <)c ≤ c ≤ c d ≤ d ≤ d(< 0)

First of all we calculate the partial derivatives of the object functions:

∂x1

∂a
=
c(b− d)
(c− a)2

∂x1

∂b
=

c

(c− a)

∂x1

∂c
=
−a(b− d)
(c− a)2

∂x1

∂d
=
−a

(c− a)
∂x2

∂a
=

(b− d)
(c− a)2

∂x2

∂b
=

1

(c− a)
∂x2

∂c
=
−(b− d)
(c− a)2

∂x2

∂d
=

−1

(c− a)
Since ∂x1

∂a > 0 one obtains the maximum of x1 for amax = a and the minimum
for amin = a.
Since ∂x1

∂b > 0 one obtains the maximum of x1 for bmax = b and the minimum
for bmin = b.
Since ∂x1

∂c > 0 one obtains the maximum of x1 for cmax = c and the minimum
for cmin = c.
Since ∂x1

∂d > 0 one obtains the maximum of x1 for dmax = d and the minimum
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for dmin = d.
Since ∂x2

∂a > 0 one obtains the maximum of x1 for amax = a and the minimum
for amin = a.
Since ∂x2

∂b > 0 one obtains the maximum of x1 for bmax = b and the minimum
for bmin = b.
Since ∂x2

∂c < 0 one obtains the maximum of x1 for cmax = c and the minimum
for cmin = c.
Since ∂x2

∂d < 0 one obtains the maximum of x1 for dmax = d and the minimum

for dmin = d.
The solution to the system is:

([
bc− ad
c− a ,

bc− ad
c− a ], [

b − d
c− a,

b− d
c− a ])

(2) The binary tree model of Cox et al. (1979) is used to price options and
other derivative securities. A European call option is a financial security that
provides its holder, in exchange for the payment of a premium, the right but
not the obligation to buy a certain underlying asset at a certain date in the
future for a specified priceK. In the binary tree model of [Cox et al., 1979] the
following assumptions are made: (A1) the markets have no transaction costs,
no taxes, no restrictions on short sales, and assets are infinitely divisible; (A2)
the lifetime T of the option is divided into N time steps of length T/N ; (A3)
the market is complete; (A4) no arbitrage opportunities are allowed, which
implies for the risk-free interest factor, 1 + r, over one step of length T/N ,
that d < 1 + r < u, where u is the up and d the down factor. The European
call option price at time zero, has a well-known formula in this model,

EC(K,T ) =
1

(1 + r)N

N∑

j=0

(
N

j

)
pjup

N−j
d

(
S(0)ujdN−j −K

)
+
,

where K is the exercise price, S(0) is the price of the underlying asset at time
the contract begins, pu and pd are the resp. up and down risk-neutral transi-
tion probabilities. Fundamental for the option valuation is the derivation of
the risk neutral probabilities, which are obtained from the following system:

{
pu + pd = 1

upu + dpd = 1 + r.
(7)

The solution is given by:

pu =
(1 + r)− d
u− d pd =

u− (1 + r)

u− d .

In order to estimate the up and down jump factors from market data, the
standard methodology (see Cox et al. (1979)) leads to set:

u = eσ
√
T/N , d = e−σ

√
T/N ,
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where σ is the volatility of the underlying asset.
If there is some uncertainty about the value of the volatility, then it is

also impossible to precisely estimate the up and down factors.
[Muzzioli and Reynaerts, 2004] suggest to model the up and down jump
factors by triangular fuzzy numbers.

A fuzzy version of the two equations of the system (7) should now be
introduced. This can be done (for each equation) in two different ways, since
for an arbitrary fuzzy number f there exists no fuzzy number g such that
f + g = 0 and for all non-crisp fuzzy numbers f + (−f) 6= 0:

pu + pd = (1, 1, 1)

pu = (1, 1, 1)− pd

respectively

upu + dpd = (1 + r, 1 + r, 1 + r)

upu = (1 + r, 1 + r, 1 + r)− dpd

where pu and pd are the fuzzy up and down probabilities and u and d are
triangular fuzzy numbers.

Therefore the linear system (7) can be rewritten in four different ways:

{
pu + pd = 1

upu + dpd = 1 + r,
(8)

{
pu = 1− pd
upu + dpd = 1 + r,

(9)

{
pu = 1− pd
dpd = (1 + r) − upu,

(10)

and {
pu + pd = 1

dpd = (1 + r) − upu.
(11)

Different solutions to the same fuzzy linear system have been found in Muzzi-
oli and Torricelli (2001), and in [Reynaerts and Vanmaele, 2003], by solving
system (8) and system (9), respectively.

It is easy to see that the four systems have no classical solution, therefore
we investigate the vector solution.

If one applies this algorithm to the financial example, one should solve
the following systems: {

pu + pd = 1

upu + dpd = 1 + r.
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{
pu + pd = 1

upu + dpd = 1 + r.
{
pu + pd = 1

upu + dpd = 1 + r.
{
pu + pd = 1

upu + dpd = 1 + r.

The solutions to those systems are resp.:
{
pu = (1+r)−d

u−d
pd = u−(1+r)

u−d .

{
pu = (1+r)−d

u−d
pd = u−(1+r)

u−d .



pu = (1+r)−d

u−d
pd = u−(1+r)

u−d .

{
pu = (1+r)−d

u−d
pd = u−(1+r)

u−d .

The final solution is obtained by taking the minimum and maximum for each
unknown:





pu = min( (1+r)−d
u−d , (1+r)−d

u−d , (1+r)−d
u−d , (1+r)−d

u−d )

pu = max( (1+r)−d
u−d , (1+r)−d

u−d , (1+r)−d
u−d , (1+r)−d

u−d )

pd = min(u−(1+r)
u−d , u−(1+r)

u−d , u−(1+r)

u−d , u−(1+r)

u−d
pd = max(u−(1+r)

u−d , u−(1+r)
u−d , u−(1+r)

u−d , u−(1+r)

u−d ).

Therefore, the vector of fuzzy numbers:

(
[ (1+r)−d

u−d , (1+r)−d
u−d ]

[u−(1+r)
u−d , u−(1+r)

u−d ]

)
,

is a solution to the system.
Note that the algorithm boils down to the following nonlinear program-

ming problems (for each α):

maxu,d (resp.minu,d)
1 + r − d
u− d

where (1 + r ≤)u ≤ u ≤ u
and d ≤ d ≤ d(≤ 1 + r)
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maxu,d(resp.minu,d)
u− (1 + r)

u− d
where (1 + r ≤)u ≤ u ≤ u

and d ≤ d ≤ d(≤ 1 + r)

Since ∂pu

∂u = d−(1+r)
(u−d)2 < 0 the maximum of pu is obtained for umax = u and

the minimum for umin = u.
Since ∂pu

∂d = (1+r)−u
(u−d)2 < 0 the maximum of pu is obtained for dmax = d and

the minimum for dmin = d.
Since ∂pd

∂u = (1+r)−d
(u−d)2 > 0 the maximum of pd is obtained for umax = u and

the minimum for umin = u.

Since ∂pd

∂d = u−(1+r)
(u−d)2 > 0 the maximum of pd is obtained for dmax = d and

the minimum for dmin = d

5 CONCLUSIONS

In this paper we have investigated the solution of a fuzzy linear system
of equations by resorting to a non-linear programming methodology.

We have applied the methodology proposed to two important economic
applications.
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Abstract. Certain aspects of input control of a non-homogeneous Markov System
(NHMS) using fuzzy set theory and fuzzy reasoning are presented in this paper.
This is an effort to provide strategies that direct the changes that take place in
the population structures of a Fuzzy Non-homogeneous Markov System (F-NHMS)
towards a desirable direction. Our goal is to maintain the population structure of
the system, N(t), between two given population structures, N1 and N2, which is
a very important issue in practical applications. More specifically, we study the
aspect of attainability in a F-NHMS and give the input probability vector that
achieves our aim. Maintainability is also studied by providing a necessary and
sufficient condition such that N(t) lies between the two population structures, for
each t. Finally, an illustrative example is provided.
Keywords: Markov systems, Fuzzy system models, Control theory.

1 Introduction - Problem statement

Let us first give a short description of a NHMS [Vassiliou, 1982]. Con-
sider a population, which is stratified into classes according to different
characteristics and let S = {1, 2, ..., n} be the set of states of the sys-
tem, which are assumed to be exclusive and exhaustive. Let also N(t) =
[N1(t), N2(t), ..., Nn(t)] be the expected population structure of the system
at time t, where Ni(t) is the expected number of members in state i at
time t. Let T (t) denote the total number of members in the system and
∆T (t) = T (t + 1) − T (t). Let us assume that the individual transitions
between the states occur according to the sequence of matrices {P(t)}∞t=0

and that {po(t)}∞t=0 is the sequence of input probability vectors. Sup-
pose, moreover, that the members that leave the system are transferred
in a state n + 1 denoting the external environment of the system and let
{pn+1(t)}∞t=0 be the sequence of loss probability vectors. Also assume that
qij(t) = pij(t) + pi,n+1(t)poj(t), then we define the sequence of matrices
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Q(t) = P(t) + p′
n+1(t)po(t) = {qij(t)}i,j∈S , where (·)′ denotes the trans-

pose of the respective vector. {Q(t)}∞t=0 defines uniquely a non-homogeneous
Markov chain, which is called the embedded non-homogeneous Markov chain.
The (i, j) -element of Q(t) represents the total transition probability from
state i to state j, in the time interval (t − 1, t]. The expected number of
members in the various states at time t is given by:

N(t) = N(t− 1)Q(t− 1) +∆T (t− 1)po(t− 1), or (1)

N(t) = N(t− 1)P(t− 1) +R(t− 1)po(t− 1), (2)

whereR(t) denotes the expected number of new members in the system at time
t. In order to apply the model of a NHMS, qij(t) (or pij(t)) and poi(t) must
be determined, ∀ i, j = 1, 2, ..., n and ∀t. This estimation obviously depends
on statistical data analysis, it can be accomplished whenever enough data
is provided and obviously introduces uncertainty due to measurement errors
and lack of data. This is the main reason for considering fuzzy logic and fuzzy
reasoning in Markov systems. In [Symeonaki et al., 2000], [Symeonaki et al.,
2002] the concept of a F-NHMS was introduced. The asymptotic behaviour
and variability of the system was provided, but this is only the initial step.
We need to proceed in the opposite direction, since the projected structures
will seldom coincide with what is desired. In this paper the goal is given
and the objective is to provide the input probability vector that achieves the
desired goal and the conditions under which the goal is maintained. More
specifically, the objective here is to develop a useful methodology for obtain-
ing the transition and input probabilities and provide thereafter the input
probability vector such that the population structure of the system lies be-
tween two given population structures. A different approach to a similar end
can be found in [Hartfiel, 1994]. In this paper the problem is expanded to
population systems and more specifically to NHMS, where the transition, in-
put and loss probabilities depend on time t. The present paper is organized
as follows. In Section 2, a description of a F-NHMS is provided and the neces-
sary parameters of the system are given. More specifically, attainability and
maintainability in a F-NHMS is discussed. Section 3 provides an illustrative
example of the conclusions of Section 2.

2 Input Control of a F-NHMS

In this section the central problem of input control of a F-NHMS with
S = {1, 2, ..., n} is discussed. It is assumed that the transition probability
pij(t) is a function of the population parameters (e.g. Longevity, Mortal-
ity, Fecundity, etc) of the system, i.e. pij(t) = fij(pp1, pp2, ..., ppl), where:∑

j∈S fij(pp1, pp2, ..., ppl) ≤ 1, for any value of the population parameters
pp1, pp2, ..., ppl. The idea of the population parameters of the system was
firstly presented in [Symeonaki et al., 2000] and [Symeonaki et al., 2002].
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Each population parameter depends on the values of the basic parameters
of the system. In order to determine the population parameters from the
basic parameters of the system a Fuzzy Inference System (FIS) is used. The
structure of a F-NHMS is illustrated in Figure 1.

Fig. 1. The structure of the F-NHMS

Assume that the values of the i− th basic parameter of the system range
between two values αi and bi, i.e. the values of the i − th basic parameter
belong to the closed interval [αi, bi]. A fuzzy partition A(i) of order di on
the domain [αi, bi] is defined and a fuzzy partition B(j) of order rj is also
defined on the universe of discourse of the j− th population parameter. The
fuzzy partitionsA(i) andB(j) are linguistic representations of their universe of
discourses, therefore their elements are linguistic terms like ”LOW”, ”HIGH”,
etc. The relationship of the crisp universe of discourses is represented using
linguistic rules, that derive from the symbolic knowledge that the experts of
the system possess and define a mapping of the fuzzy partitions A(i) to the
fuzzy partitions B(j). This mapping is said to be a fuzzy association and
represents the empirical, linguistic rules. As long as the elements of A(i) and
the elements ofB(j) have a linguistic meaning, heuristic or empirical linguistic
rules can be used in order to describe the input-output relationship. We
assume that all fuzzy partitions are complete [Stamou and Tzafestas, 1999].
The number of all different rules in the system is denoted by k and we can see
that k = d1d2 · · · dm. We denote by wi(t) the degree in which the rule i fires
at time t. Each rule corresponds to a matrix Pi and it can easily be proved
by induction that if we use as t−norm the product, then

∑k
i=1 wi(t) = 1.

Therefore, for each t, the transition matrix P(t) is of the form:

P(t) =

k∑

i=1

wi(t)Pi, (3)

with Pi1
′ ≤ 1′ and

∑k
i=1 wi(t) = 1, for each t = 0, 1, 2, ..., and 1′ =

[1, 1, ..., 1]′. Following the same reasoning for the sequence of input prob-
ability vectors, the vector po(t) is of the following form, for each t:

po(t) =

m∑

i=1

ui(t)poi
, (4)



1382 Symeonaki and Stamou

poi
1′ = 1′,

∑m
i=1 ui(t) = 1, for each t = 0, 1, 2, ..., and ui(t) is the degree in

which the rule i for the input probability vector po(t), fires. Therefore, from
(2) the expected number of members in the various states of the system at
time t, is given by:

N(t) = N(t− 1)
k∑

i=1

wi(t)Pi + R(t− 1)
m∑

i=1

ui(t− 1)poi
, or (5)

N(t) = N(0)
t−1∏

τ=0

k∑

i=1

wi(τ)Pi +
t∑

τ=1

R(τ − 1)
m∑

i=1

ui(τ − 1)poi

t−1∏

j=τ

k∑

i=1

wi(j)Pi.

(6)
Let Mn,m(F ) define the set of all n×m matrices with elements from the field
F .

Definition 1 [Hartfiel, 1994]: Let two vectors p, q ∈ M1,k(R) for which it
is p ≤ q. The set of all vectors x ∈M1,k(R), which are such that p ≤ x ≤ q,
is called box(p, q), i.e. box(p, q) = {x : p ≤ x ≤ q}.

Now let N1,N2 be two population structures such that N1 ≤ N2. Then
a NHMS is said to be stably controllable if we can maintain the population
structure of the system between the desired structures N1 and N2 i.e. if:
N1 ≤ N(t) ≤ N2, ∀t = 0, 1, 2, ... . More specifically:

Definition 2 [Symeonaki, 1998]: If ∀t = 0, 1, 2, ... there exists an input vec-
tor po(t), such that for each N(t) ∈ box(N1,N2), there exists a R(t) such
that:

N(t)P(t) +R(t)po(t) ∈ box(N1,N2), (7)

then the NHMS is called stably controllable.

Definition 3 [Hartfiel, 1994]: A vector x ∈ M1,k(R) is called (α − Q)−
feasible, if xQ ≤ αQ, α ∈ R+.

Assume now that:

Pmin ≤ P(t) ≤ Pmax, ∀t = 0, 1, 2, ..., (8)

where: Pmin =
∑k
i=1 wmini(t)Pi and Pmax =

∑k
i=1 wmaxi(t)Pi. Notice that

this condition is not restrictive since in practice arbitrary movement would
be highly undesirable if not impossible. Moreover, the condition applies to
real applications where the exact transition probabilities cannot possibly be
estimated. We assume now that P(t) = Pmax, for some t and that the
population structure N1 is (1 − Pmin)− feasible. The following theorem is
now proved.
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Theorem 1 (attainability): Let a F-NHMS, which satisfies the above condi-
tions. If:

po(t) =
1

R(t)
uB

where:

u = (αi), ∀i = 1, 2, ..., 2k,

B = [N1Pmin,N2Pmax] = [bi], ∀i = 1, 2, ..., 2k, bi = Xi − Zi,
and N2 is (1−Pmax)− feasible, then N(t) ∈ box(N1,N2).

Proof. Let us assume that the structure N2 is (1−Pmax)− feasible. Therefore
N2Pmax ≤ N2. Moreover, from the hypothesis we have that N1Pmin ≤ N1.
Let N(t) ∈ box(N1,N2). Thus, from (8) we conclude that:

N(t)P(t) ∈ box(N1Pmin,N2Pmax). (9)

Let Xi be the vertices of box(N1,N2) and Zi the vertices of
box(N1Pmin,N2Pmax). It is assumed that the vertices are being numbered
respectively, i.e.

(Zi)j =

{
(N1Pmin)j , iff (Xi)j = (N1)j
(N2Pmax)j , iff (Xi)j = (N2)j .

(10)

Given that N(t)P(t) ∈ box(N1Pmin,N2Pmax), the vector N(t)P(t) ∈
box(N1Pmin,N2Pmax) can be written as:

N(t)P(t) =

2k∑

i=1

αiZi.

Let u = (αi) for i = 1, 2, ..., 2k, B = [N1Pmin,N2Pmax,N1,N2] = [bi] for
i = 1, 2, ..., 2k, where bi = Xi − Zi and let s be the sum of the elements of
the (1× k)−vector uB. Therefore, if 1

R(t)uB, we have that:

N(t)P(t) +R(t)po(t) =
2k∑

i=1

αiZi +
2k∑

i=1

αi(Xi − Zi) =
2k∑

i=1

αi(Xi) (11)

i.e. N(t)P(t) ∈ box(N1,N2). Therefore, N(t+ 1) ∈ box(N1,N2).

A necessary and sufficient condition that the system is stably controllable is
given in the following theorem.

Theorem 2 (maintainability): A F-NHMS is stably controllable if and only
if the population structure N2 is (1 − Pmax)− feasible, where Pmax =∑k

i=1 wmaxi(t)Pi.
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Proof. Let us first assume that the system is stably controllable. Then, since:
N2 ∈ box(N1,N2) and P(t) = Pmax, for some t, there exists an input vector
po(t) and an R(t) such that:

N2Pmax +R(t)po(t) ∈ box(N1,N2),

i.e. N2Pmax + R(t)po(t) ≤ N2. Thus, N2Pmax ≤ N2. Consequently, the
structure N2 is (1−Pmax)− feasible.

It is now assumed that the structure N2 is (1 − Pmax)− feasible. From
Theorem 1 it follows that N(t+ 1) ∈ box(N1,N2). Therefore, the system is
strongly controllable.

Putting the above results together, we conclude that in a F-NHMS if the
structure N2 is (1−Pmax)− feasible, then the limiting population structure
given in [Symeonaki et al., 2000] and [Symeonaki et al., 2002] also lies between
the two desired structures N1 and N2, i.e.:

lim
t→∞

N(t) = N(∞) = Tei[I− (I−
s∑

i=1

viQi)(I−
s∑

i=1

viQi)
]] ∈ box(N1,N2),

where (·)] represents the generalized group inverse introduced in [Meyer,
1975], and Qi = Pj + p′

n+1j
pol

where j and l depend on i.

3 A numerical example

Let a NHMS with S = {1, 2, 3} and let that a number of transition proba-
bilities cannot be estimated due to lack of data. Suppose moreover that we
have two factors that influence the transition probabilities. Furthermore, it
is assumed that these population parameters depend upon two basic param-
eters. Combining the rules of the system with the generalized modus ponens
(GMP) rule of inference [Klir and Yuan, 1995], [Stamou and Tzafestas, 1999]
the multi-conditional approximate reasoning schema (system rules) is formu-
lated. The system rule for the population parameter pp1, for example, is
described as follows:

1st RULE: IF (x1, x2) IS (SMALL, LITTLE), THEN y1 IS LOW

2nd RULE: IF (x1, x2) IS (SMALL, AVER), THEN y1 IS LOW

3rd RULE: IF (x1, x2) IS (SMALL, PLENTY), THEN y1 IS LOW

5th RULE: IF (x1, x2) IS (MED, AVER), THEN y1 IS AVER

6th RULE: IF (x1, x2) IS (MED, PLENTY), THEN y1 IS HIGH

7th RULE: IF (x1, x2) IS (LARGE, LITTLE), THEN y1 IS AVER

8th RULE: IF (x1, x2) IS (LARGE, AVER), THEN y1 IS AVER

9th RULE: IF (x1, x2) IS (LARGE, PLENTY), THEN y1 IS HIGH
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Now let that: P =




0.6 0.1 0
0.1 0.5 0.1
0 0.1 0.5


 and Pmin =




0.7 0.15 0.1
0.2 0.5 0.2
0 0.1 0.7


 , and

Pmin ≤ P(t) ≤ Pmax, ∀t = 0, 1, 2, .... Assume that we want to maintain
the population structure of the system between the structures, N1 and N2,
where: N1 = (100 300 600) , and N2 = (100 350 650) . N1 and N2 are
(1−Pmin)−feasible and (1−Pmax)−feasible, respectively, since N1Pmin =(
90 220 330

)
≤ N1, N2Pmax =

(
280 285 555

)
≤ N2. At time t, let:

N(t)P(t) =
(
185 261 442.5

)
∈ box(N1Pmin,N2Pmax)

where N(t)P(t) =
∑8

i=1 αiZi, αi = 0.125, and Xi, Zi are the vertices of
box(N1,N2) and box(N1Pmin,N2Pmax), respectively, as numbered in (10).
Thus:

X1 =
(
100 300 600

)
, Z1 =

(
90 220 330

)

X2 =
(
100 300 650

)
, Z2 =

(
90 220 555

)

X3 =
(
100 350 600

)
, Z3 =

(
90 285 330

)

X4 =
(
100 350 650

)
, Z1 =

(
90 285 555

)

X5 =
(
300 300 600

)
, Z5 =

(
280 220 555

)

X6 =
(
100 300 650

)
, Z6 =

(
280 220 555

)

X7 =
(
300 350 600

)
, Z7 =

(
280 285 330

)

X8 =
(
300 350 650

)
, Z1 =

(
280 285 555

)

and matrix B
′

= [bi]
′

= [Xi − Zi]
′

is

B
′

=




10 10 10 10 20 20 20 20
80 80 65 65 80 80 65 65
270 95 270 95 270 95 270 95




According to Theorems 1 and 2, if R(t) = 291.875 and po(t) =(
0.052 0.284 0.7

)
, we have that: N(t + 1) = N(t)P(t) + R(t)po(t) =(

200 333.5 646.875
)
∈ box(N1,N2) where box(N1,N2) is shown in Figure

2.
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Abstract. This paper/presentation aims at introducing the reasons why switching
from the current flat-rate Internet pricing to another scheme is required, at briefly
classifying the existing propositions, and at highlighting the challenges that still
have to be tackled in the area. Pricing has indeed become a hot topic in the
networking literature in order to control congestion, differentiate services among
users and somehow fairly share the resource, but is still the subject of debate about
how, and even if, it should be implemented.
Keywords: Pricing, Game theory, Modelling, Optimisation.

1 Introduction: why changing?

The Internet has experienced a tremendous success during the last decade.
Starting from an academic (and somewhat free) communication network, it
has been expanded to commercial purposes. The way customers are currently
charged is based on a so-called flat-rate price: they pay a fixed subscription
fee to an Internet Service Provider (ISP) and have an unlimited access to the
network.

Due to the success of this expansion, the amount of Internet traffic has
soared in an exponential way, from the increase in the number of subscribers,
but also from the more and more demanding applications used by customers,
in terms of bandwidth, but also in terms of quality of service (QoS) require-
ments. Indeed, the proportion of telephony, video and multimedia traffic for
instance is increasing with respect to data file transfer and email.

This traffic growth and diversity has highlighted the following problems
of the flat-rate pricing scheme, which may therefore have become irrelevant:

i ) congestion is observed, resulting in erratic QoS: longer delay, larger jitter
and increase of losses. Some people argue that increasing capacity can
solve the problem and that, thanks to optical fiber especially, we are safe
for a while [Anania and Solomon, 1997]. This is actually the topic of the
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lasting debate around pricing in the networking community. We indeed
believe that this argument may be true for the backbone network, but
it seems unlikely to switch from copper lines to optical fiber in access
networks, due to a high cost, issue also known as the last mile problem
[Bernstein, 1997]. Moreover, in wireless networks, capacity (the radio
spectrum) is and will probably remain limited.

ii ) Next, a flat-rate pricing is an incentive to overuse the network: any selfish
user has interest in consuming as much as possible, whatever the loss of
QoS imposed on other users is. The charge is thus unfair since small
users pay as much as big ones.

iii ) Finally, a flat-rate pricing does not allow service differentation among
users (and applications), since everybody is served at the same level,
with therefore the same QoS.

As a consequence, designing a new pricing scheme is probably the most sim-
ple and natural way to cope with congestion, control demand, fairly share
resources and differentiate services among users and/or applications [Cour-
coubetis and Weber, 2003]. The following issues have to be addressed in
the design process: which families of new pricing schemes could be used
(Section 2)? What are the externalities imposed on other users that have
to be dealt with (Section 3)? What modelling tools and properties need to
be verified (Section 4)? How do users react to prices (Section 5)? What
is the trade-off between mathematical efficiency and engineering feasability
(Section 6)? Section 7 also briefly addresses a new challenge in the pricing
community: how do independent ISP will exchange traffic and how will they
charge each other?

2 Changing to what?

Changing the simple flat-rate pricing scheme to a usage-based or congestion-
based one appears thus preferable to us. Some may be worried about the
acceptance of such a move, due to the current strong public preference for
flat-rate, but it is likely that people will eventually get accustomed to it.
Note that sophisticated pricing schemes already exist in other areas such as
airfare rate [Odlyzko, 2000] or the new London city toll pricing for instance.

There is a broad range of new schemes proposed in the literature. We can
sort them into:

i ) pricing schemes for guaranteed services through resource reservation (us-
ing RSVP protocol for instance) and admission control (the reader may
see [Paschalidis and Tsitsiklis, 2000] or [Songhurst (ed.), 1999] for ins-
tance1).

1 Note that the references throughout the paper are not exhaustive but try to be
as representative as possible.
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ii ) A promising proposal, called Paris Metro Pricing [Odlyzko, 1999], con-
sists in partitioning the network into several logical subnetworks, each
subnetwork working as the current one, but with different access charges,
so that the most expensive ones would likely be less congested. Unfor-
tunately, this proposal has been shown to be inefficient in a competitive
context [Gibbens et al., 2000].

iii ) Another quite simple scheme is the so-called Cumulus pricing analysed
in [Reichl and Stiller, 2001, Hayel and Tuffin, 2005a] where positive or
negative points are awarded depending on the respect of the predefined
contract, and contract renegociation (with penalties) is periodically ap-
plied.

iv ) Priority pricing [Cocchi et al., 1991] among different classes (at the packet
level) is probably the scheme which fits the most directly the proposed
DiffServ architecture. This scheduling policy has nevertheless been com-
pared with other policies such as generalized or discriminatory processor
sharing [Hayel et al., 2004] [Hayel and Tuffin, 2005b] when corresponding
optimal prices are used. Also, priority for rejection at buffers implement-
ing active queue management has been studied in [Altman et al., 2004].

v ) Auctioning, either for priority [Marbach, 2001] or for a proportion of
bandwidth [Semret, 1999] [Maillé and Tuffin, 2004] has also recently re-
ceived a lot of attention.

vi ) Finally, a last main group is dealing with pricing based on transfer rates
and shadow prices, following. the tremendous work of Kelly et al [Kelly
et al., 1998].

3 Technologies and externalities: what to price for?

In communication networks, selfish behaviours lead to unsatisfactory out-
comes because of externalities : the value a user gets from the network de-
pends on the other users. As an example, in a problem of bandwidth sharing
on a communication link, a user that is allocated an amount of bandwidth
prevents the others from obtaining that resource, and some requests may be
rejected. The externality can thus be defined as the loss of valuation a user’s
presence imposes on the others.

In order to drive users to behave in a more efficient way, externalities
have to be taken into account when designing a pricing mechanism. Notice
that externalities are often negative, but can also be positive in some cases:
the most classical example in resource allocation problems is the case of
multicast communications, where several users interested in the same flow
have a common interest and therefore an incentive to cooperate. However
they still compete against users interested in other flows.

Externalities may take different forms depending on the technologies used
and the performance criteria users are sensitive to: a user willing to trans-
fer a file will be sensitive to the entire transfer duration (losses inducing
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retransmissions), whereas for some real-time applications delay is the most
important constraint, few losses being permitted. Considering wireless ad
hoc networks transmission rates and battery consumption [Crowcroft et al.,
2003] are additionally critical.

To analyse properly the externalities, the mechanism designer has first to
identify the limited resource, that can be bandwidth or computing capacity
for wired networks; spectrum, battery and/or transmission power for wireless
networks. Then the correlations between the relevant performance criteria
can be studied as a function of the limited resource usage. To that extent, the
technological specificities of the systems and protocols should be considered.
In wireless networks for instance, the way multiple access is provided (Code,
Time and/or Frequency Division Multiple Access) has an influence on the
externality impact, since it determines the form of the interference that affects
the performance criteria through the signal to noise ratio. For real-time
applications, the scheduling policies implemented in the different nodes of
the network are critical, since they highly influence the overall transmission
delay.

For each performance criterion the designer focuses on, and for each com-
munication system, externalities may have a different form, and modelling
and studying them raises different problems. One important stage of mech-
anism design is to carefully study those problems, in order to build the right
incentives (through prices) to drive the user behaviour to the desired direc-
tion.

4 Mathematical tools and properties involved

A pricing mechanism can be justified by its properties in terms of some eco-
nomical criteria, such as efficiency (maximization of social welfare), fairness
[Kelly et al., 1998], maximization of network revenue or of the number of
accepted clients... Such results need the outcome of the game to be foreseen,
which implies that the user behaviour has to be predicted.

Actually, the study of users reactions to a pricing mechanism usually relies
on selfishness: the users are expected to act so as to obtain the highest utility,
regardless of the consequences on the others. The theoretical framework
to study such problems is game theory [Fudenberg and Tirole, 1991], and
more precisely noncooperative game theory2. When the mechanism is well
designed, there exists a unique Nash equilibrium that predicts the outcome
of the pricing game.

Game theory often implies the use of optimization. Indeed, optimization
occurs at different levels:

2 Game theory also includes the study of cooperative games, however in the context
of communication networks it is not likely that users know each other and have
an interest in cooperating.
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• users try to maximize their utility at the outcome of the game. Depending
on the problem considered, that optimization may rely on queueing the-
ory (when delays and losses at the network nodes are the externalities),
signal processing (especially in wireless networks) or other mathematical
modelling tools adapted to the considered network. An important and
interesting property in many pricing schemes, called incentive compatibil-
ity, states that a user cannot do better than following the designer point
of view, that is revealing his real willingness-to-pay for quality of service
or choosing the proper class in multiclass systems for instance.
• At the mechanism designer level, since the optimization from the user

point of view can be predicted (from what is said in the previous item),
the Nash equilibrium can be oriented to a point optimizing some desired
criteria.

5 User behavior modelling

As introduced in the previous section, modelling the users’ valuation of ser-
vice is required and is one of the main issues of Internet pricing. Users’
preferences (or levels of satisfaction) are expressed by functions called utility
functions [Fudenberg and Tirole, 1991]. In most Internet pricing papers, the
inputs of these functions are the throughput or used bandwidth, the aver-
age delay or loss ratio, more generaly the considered externality, and may
depend on the type of application. In the literature, the utility functions are
selected to model the real user behaviour as closely as possible, but also to
verify interesting mathematical properties. Those properties are usually the
continuity, differentiability and concavity, to make sure that optimal points
exist and are unique [Kunniyur and Srikant, 2003].

Nevertheless, one main challenge is to determine a realistic expression
of the utility function (or its distribution over a population). For real-time
applications for instance, one would expect non-continuous functions, with
thresholds under which the utility of being served becomes null. Very few
attempts have been published to solve this question. The only cases we are
aware of are as follows. In [Beckert, 2000], the utility function is modelled by
a Cobb-Douglas function, which requires the determination of several param-
eters. These parameters have been estimated using a large-scale experiment
testing user behaviour which has been performed at UC Berkeley, called the
INDEX project [Edell and Varaiya, 1999]. Another worth-mentioning paper
is [Gupta et al., 1998], where a quasi-bayesian update algorithm is devel-
opped, aiming at estimating the users’ waiting cost per unit of time. This
approach can be used to estimate the demand elasticity with respect to prices.

To sum up the section, the choice of utility function has a major impact on
the pricing scheme analysis, and should be based not only on mathematical
interest, but on practical reality (a usual trade-off in modelling). We now
deal with another important trade-off between mathematical and engineering
efficiencies.
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6 Trade-off between mathematical and engineering
efficiencies

Indeed, to obtain a more efficient model, it is often required that prices
react dynamically and instantaneously to an externality evolution, so that
the system can be continuously kept at its optimal point. Nevertheless, this
requires an important signalling overhead, and is difficult to implement from
an engineering point of view (at this point, it is important to emphasize
that a main reason of the Internet success is its simplicity, which has to be
preserved). It is also important to note that, following the previous section,
even users are skeptical with respect to a dynamic pricing, as highlighted by
the INDEX project [Edell and Varaiya, 1999]. Again, those trade-offs are
important issues a designer has to cope with.

It is interesting to note that a good approximation to dynamic pricing is
time-of-day pricing. It has been shown in [Paschalidis and Tsitsiklis, 2000]
that it leads to an asymptotically efficient scheme, while being simple from an
engineering and user point of view. Time-of-day pricing is popular in many
areas such as telephony, airfare (where it is rather time-of-year)...

The efficiency problem can also be placed at other levels:

• from a mathematical point of view, the efficiency is more easy to reach
if charges are applied at each node of the network (or at least for the
whole path). This again induces a signalling overhead in terms of ac-
counting (for total charges have to be computed before being billed to
the users), but also requires to inform the user in order to make him
accept the transaction. A simpler trend is to charge users at the edges of
the network, even if it seems difficult to abstract the network status at
the edges in an efficient way (especially if the considered traffic does not
pass through the existing bottlenecks).
• Also, applying resource reservation (that is making sure that when your

session is accepted, you will get a given QoS for the whole duration of
your connection) is appealling mathematically and from the user side
point of view, but is intricate to apply to a large network of the Internet
size. Scalability is thus the reason why the IntServ architecture initially
proposed for Internet QoS has gradually taken place to the DiffServ pro-
posal, where no strict reservation is applied.

7 A new challenge: inter-providers pricing

A pricing game that even the opponents of Internet pricing admit to be
mandatory is pricing among ISPs in order to deliver their own traffic. Indeed,
concurrent ISPs are in competition in the Internet and have to meet traffic
forwarding agreements in order to convey their messages to destination if it
is not in their network.
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A natural way to apply this is to implement auctions between providers
and to use, and extend, the Border Gateway Protocol (BGP) usually applied
for routing [Feigenbaum et al., 2002]. The goal is then to find lowest-cost
routing for sending traffic from an ISP to another that is not directly attain-
able thanks to BGP. By using VCG auctions, incentive compatibillity can be
obtained.

Similarly, pricing for transiting traffic between ISPs and pricing for cus-
tomers has been jointly studied in [Shakkottai and Srikant, 2005]. Repeated
games are used, and, with threat strategies, optimality is shown in the sense
that deviating from the equilibrium makes you suffer the worst possible
penalty.
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Abstract. This paper is a contribution to the generic problem of having simple
and accurate models to dimension radio cells with data traffic on a GPRS or EDGE
network. It addresses the issue of capacity limitation in a given cell due to coupling
with other cells because of a central equipment or transmission link of limited ca-
pacity. A mobile can’t access the cell although it is alone, because the capacity limit
is reached due to traffic on other cells. Our purpose is to extend our previously
published Erlang-like law for data traffic to the constrained multiple-cell system
and to derive asymptotic developments for all the average performance parameters
that are necessary for the dimensioning of the multiple-cell system.
Keywords: GPRS, EDGE, modeling, performance evaluation, dimensionning, dis-
crete-time Markov chain, Erlang, group of cells.

1 Introduction

GPRS is an overlay on GSM networks that allows end-to-end IP-based packet
traffic from the terminal to e.g. the Internet. EDGE is an improvement over
GPRS whereby the modulation scheme on radio is modified to allow higher
throughputs thanks to advanced power amplifier and signal processing tech-
nologies. In a GPRS (or EDGE) cell, traffic is split between voice (on circuit)
and data (on packet). Data uses a few dedicated circuits which are decom-
posed into 20 ms ÒblocksÓ carrying elementary packet traffic. The packet-
based traffic is managed by the PCU (Packet Control Unit), a standardized
network element in charge of the MAC layer (multiplexing of mobiles) and
RLC layer (decomposition into elementary blocks and retransmission when
radio errors occur). The PCU is connected to the SGSN (Serving GPRS
Support Node) which manages the end-user mobility and hides it to the ex-
ternal world. It is linked to the edge router, called GGSN, by an IP tunnel
in which traffic is encapsulated. The GGSN is the fixed anchor point to the
Internet or service platforms, and a user may change SGSN while going from
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cell to cell. In this end-to-end chain, it is possible to have traffic limitation in
an element in charge of managing several cells (typically a PCU or a SGSN
module or a transmission link).

Several research works have investigated the analytical modeling of GPRS
systems. Most of the studies develop complex Markovian models that re-
quire a numerical resolution in order to evaluate the system performance
(see e.g. [Fang and Ghosal, 2003], [Lindemann and Thümmler, 2003], [Vorne-
feld, 2002], [Foh et al., 2001]). Some of them use approximations to derive
closed-form expressions (see e.g. [Ni and Häggman, 1999] and [Pedraza et al.,
2002]). However, these studies always focus on a single cell. In [Baynat and
Eisenmann, 2004] we have developed a discrete-time Markov chain model
for single-cell GPRS/EDGE network engineering. The model captures the
main features of the GPRS/EDGE radio resource allocation and assumes an
ON/OFF traffic (with infinite sessions) performed by a finite number of users
over the cell. The Markov chain is simplified by Taylor series expansion and a
simple and accurate Erlang-like law is obtained. Extensions to finite-length
sessions traffic has been developed in [Baynat et al., 2004]. In [Nogueira
et al., 2005] we study the impact of a capacity limitation imposed upon a
group of cells. We assume it can be expressed by a maximum number of
concurrent downlink transfers that are allowed in the group of cells. When
this limit is reached, any transfer request on any of the cells will be rejected.
However, even if the performance parameters can be obtained almost instan-
taneously with a very good accuracy, [Nogueira et al., 2005] does not provide
closed-form expressions. The goal of this paper is to further simplify the
performance evaluation of a multiple-cell system, by deriving very simple
asymptotic developments. Once again our objective is to obtain closed-form
ÒErlang-likeÓ expressions to efficiently help network engineering.

Section 2 addresses single-cell systems, the basic hypotheses and the main
results of the Erlang-like model developed in [Baynat and Eisenmann, 2004]
are recalled. Then asymptotic developments are given for both low and high
load cases. Section 3 deals with multiple-cell systems. In this section we
quickly recall the principal steps developed in [Nogueira et al., 2005] for
multiple-cell systems. Asymptotic developments are then made to obtain
closed-form expressions for the performance parameters. Section 4 presents
numerical results.

2 Single cell system

2.1 System description

Our study is focused on the analysis of the bottleneck i.e. the radio link,
studied in a particular cell. We are focused on the downlink, assumed to be
the critical resource because of traffic asymmetry. We assume that the allo-
cator fairly shares bandwidth between all active mobiles (no QoS is modeled
so far).
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We also make the following assumptions: there is a fixed number T of
time-slots in the cell that are dedicated to GPRS; these time-slots are using
a single TDMA. All mobiles have the same reception capability; they are
“(d + u)” where d is the number of time-slots that can simultaneously be
used for the downlink traffic and u is the number of time-slots that can
simultaneously be used for the uplink traffic. Note that, as we are only
interested in the modeling of the downlink traffic, only the parameter d is
relevant for the model. This assumption is presently realistic as most of the
time, less than four time-slots are reserved for GPRS (T ≤ 4). Extensions to
the case where T > d are currently under investigation. Note that with this
assumption, the parameter n0 = bTd c used in [Baynat and Eisenmann, 2004]
is such that n0 ≤ 1.

Our GPRS system is characterized by the following parameters:

• tB: the system elementary time interval equal to the radio block duration,
i.e. tB = 20 ms;
• xB : number of data bytes that are transferred during tB over one time-

slot. xB/tB is the throughput offered by the RLC/MAC layer to the LLC
layer. The value of xB depends on the radio coding scheme [Baynat and
Eisenmann, 2004]. As an example, for GPRS CS2, xB = 30 bytes;
• tbfmax: maximum number of mobiles that can simultaneously have an

active downlink TBF (Temporary Block Flow). This limitation is due to
the system hardware characteristics and ensures a minimum throughput
per mobile (a TDMA can’t be indefinitely shared).

2.2 Markovian analysis

Traffic is modeled as follows. There is a fixed number N of GPRS/EDGE
mobiles in the cell, each of them doing an ON/OFF traffic with an infinite
number of pages:

• ON periods correspond to the download of an element (a WAP, a WEB
page, an email, a file, etc.). Its size is characterized by a discrete random
variable Xon, with an average value of xon bytes;
• OFF periods correspond to the reading time, which is modeled as a con-

tinuous random variable Toff , with an average value of toff seconds.

Let us emphasize that there is a limitation nmax = min(tbfmax, N) on the
number of mobiles that can simultaneously be on active transfer. It involves
both the system constraint tbfmax and the total mobile population.

[Baynat and Eisenmann, 2004] develops an analytical model for the per-
formance evaluation of a single-cell GPRS system. The smallest time-scale of
the system, namely the radio block duration tB = 20 ms, has been accounted
for in the modeling process, by developing a discrete-time Markovian model
of equal elementary time interval. The model assumes that both the size of
ON periods and the duration of OFF periods have memoryless distributions.
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Fig. 1. Linear model

Several models with several levels of approximation have been developed.
The simpler one makes the assumption that more than one mobile switch-
ing from one state (ON or OFF) to the other one during tB is negligible,
which transforms the model into the discrete-time birth-death process given
in Fig. 1. As shown in [Baynat and Eisenmann, 2004], the stationary proba-
bilities of having n mobiles in active transfer in the cell can easily be derived
from this linear Markov chain. By further using Taylor series expansions,
these probabilities can be expressed as a function of a single dimensionless
parameter x as:

p(n) =
N !

Tn(N − n)!
xnp(0) 0 ≤ n ≤ nmax (1)

where x is given by

x =
tB xon

xB toff
(2)

and p(0) is obtained by normalization. Note that relation (1) is a simplifica-
tion of the expression given in [Baynat and Eisenmann, 2004] that takes into
account the fact that n0 ≤ 1.

The performance parameters of the cell can be derived from the stationary
probabilities as follows [Baynat and Eisenmann, 2004]. The Ònormalized

utilizationÓ Ũ of the cell, i.e. the mean number of time-slots used for GPRS,
is directly obtained as:

Ũ = T

nmaxX

n=1

p(n) = T (1− p(0)) (3)

The Ònormalized throughputÓ X̃ , i.e. the average number of time-slots
given to a mobile for its transfers is given by:

X̃ = T

nmaxX

n=1

p(n)

nmaxX

n=1

n p(n)

(4)

Finally, the ÒblockingÓ (or ÒrejectÓ) probability Pr, i.e. the probability
that a mobile that wants to start the download of a new page cannot do it
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because the limit of nmax mobiles in the cell is reached, is obtained as:

Pr = 1− T

x

nmaxX

n=1

p(n)

nmaxX

n=0

p(n)(N − n)

(5)

2.3 Asymptotic analysis

We first define the quantity v = x/T . We then rewrite the expression of the
steady-state probabilities and the performance parameters (relations (1) to
(5)) as a function of v:

p(n) =
vnN(N − 1)(N − n+ 1)

1 + vN + v2N(N − 1) + ...+ vnmaxN(N − 1)...(N − nmax + 1)
(6)

Ũ = T
vN + v2N(N − 1) + ...+ vnmaxN(N − 1)...(N − nmax + 1)

1 + vN + v2N(N − 1) + ...+ vnmaxN(N − 1)...(N − nmax + 1)
(7)

X̃ = T
1 + v(N − 1) + ...+ vnmax−1(N − 1)...(N − nmax + 1)

1 + 2v(N − 1) + ...+ nmaxvnmax−1(N − 1)...(N − nmax + 1)
(8)

Pr =
vnmax(N − 1)...(N − nmax)

1 + v(N − 1) + v2(N − 1)(N − 2) + ...+ vnmax (N − 1)...(N − nmax)
(9)

From these expressions, we can easily obtain the asymptotes for low and
high load. Note that the quantity vN characterizes in an aggregate way the
load of the system, as it increases when the size of the downloaded pages
or the number of mobiles increase, and decreases when the number of time-
slots dedicated to GPRS or the reading time of a page increase. It is in fact
the equivalent to the Erlang load factor for a finite number of users doing
ON/OFF sessions in data traffic.
When vN � 1 (low load), we directly obtain from the previous performance
expressions the following asymptotic developments:

Ũ ≈ TvN = xN ; X̃ ≈ T (1− v(N − 1)); Pr ≈ 0 (10)

When vN � 1 (high load), we get the following asymptotic developments:

Ũ ≈ T ; X̃ ≈ T

nmax
; Pr ≈ 1− 1

v(N − nmax)
(11)

3 Multiple cell system

3.1 System description

We now assume, as described in Section 1 and [Nogueira et al., 2005], that
traffic may be limited because of a capacity constraint in a network element
that controls traffic over a group of P cells. Let Mmax be the total number
of mobiles that can currently be in active transfer in the P cells. In order
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to simplify the derivation of the asymptotes, we assume that the P cells
are identical. In each cell, there is a fixed number N of GPRS mobiles
generating an ON/OFF traffic as described in Section 3.2 and having the
same characteristics (the average page size is xon and the average reading
time is toff for all mobiles in all cells). Note however that non identical
cells can be handled by the model [Nogueira et al., 2005]. Of course, if∑P

i=1 n
i
max ≤ Mmax, the limit does not generate any additional constraint

over the system, and each cell can thus be analyzed using the single-cell
model described in Section 2. As a consequence, we only consider here the
case where

∑P
i=1 n

i
max > Mmax. In such a system, a mobile in a given cell

i will not be able to start a new transfer, not only because the cell capacity
(nimax) is reached, but also because the global system capacity (Mmax) is
reached.

3.2 Model description

We consider a particular cell of the system. As all cells are identical, without
loss of generality we can focus on the last one, cell P . When needed, a
superscript i will be added to the notations to refer to the parameters of a cell
i. The first step of the analysis consists in developing the so-called Òaggregate
Markov chainÓ [Nogueira et al., 2005] associated with the considered cell (cell
P ). As shown in Fig. 2 This aggregate model has the same structure as the
single-cell linear Markov chain model (Fig. 1), but the transition between
any state n and state n+ 1 is now multiplied by a factor (1− r(n)). r(n) is
the probability that an inactive mobile in cell P that wants to start a new
transfer cannot do it because the system limit Mmax is reached, assuming
that there are n mobiles currently in active transfer in the cell.

pn n+1 (1–r(n))

pn+1 n

p’nn

pn–1 n (1–r(n–1))

pn n–1

p’n–1 n–1p’11

p01 (1–r(0))

p10

p’00 p’n+1 n+1

... ...n n+110 nmaxn–1

p’n       n     max max

Fig. 2. Aggregate model

As a consequence, r(n) is the probability that the system is full when
there are n mobiles in the considered cell, and can thus be estimated by the
probability that the P − 1 other cells (cells 1 to P − 1) contain Mmax − n
mobiles. It is shown in [Nogueira et al., 2005] that the probabilities r(n) can
be estimated by the following expression:

r(n) =
p
{1,...,P−1}
uc (Mmax − n)

Mmax−nX

k=0

p{1,...,P−1}
uc (k)

(12)
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where the probabilities p
{1,...,P−1}
uc (k) are obtained by convolution over the

steady-state probabilities of the P − 1 other “unconstrained” cells, where
unconstrained cell i is a virtual cell having the same characteristics as cell
i but that is not subjected to the overall constraint Mmax (see [Nogueira et
al., 2005] for derivations):

p{1,...,P−1}
uc (k) =

X

n1 + ... + nP−1 = k

nj ≤ nmax

∀j = 1, ..., P − 1

0
@

Y

j∈{1,...,P−1}
pj

uc(nj)

1
A (13)

We can then inject the r(n) parameters in the aggregate model and analyze
it. The resulting steady-state probabilities of the aggregate model are thus:

pagg(n) =
N !

Tn(N − n)!
xn

 
n−1Y

k=0

(1− r(k))

!
pagg(0) 0 ≤ n ≤ nmax (14)

where x is given by (2) and pagg(0) is obtained by normalization.

Finally, we can derive the normalized utilization Ũ of any cell as well
as the normalized throughput X̃ offered to a mobile for its transfers and
the blocking probability Pr, from relations (3), (4) and (5), by replacing
the probabilities p(n) by the aggregate probabilities pagg(n) obtained from
relation (14).

3.3 Asymptotic analysis

In this section we are only interested in the high load case (vN � 1 and
P � 1). Indeed, in the low load case (vN � 1), the system constraint does
not affect the behavior of the system, and the asymptotes are those of the
single-cell case developed in Section 2.3.

We first develop the expression of the probability p
{1,...,P−1}
uc (k):

p{1,...,P−1}
uc (k) = Ψ(k)

“
pi

uc(0)
”P−1

(15)

where Ψ(k) comes from relation (13):

Ψ(k) =
X

n1 + ...+ nP−1 = k

nj ≤ nmax

∀j = 1, ..., P − 1

“
vnj

N...(N − nj + 1)
”
...
“
vnP−1

N...(N − nP−1 + 1)
”

=
X

n1 + ...+ nP−1 = k
nj ≤ nmax

∀j = 1, ..., P − 1

vk
“
N...(N − nj + 1)

”
...
“
N...(N − nP−1 + 1)

”
(16)
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When vN � 1, we can give the following first order approximation for

p
{1,...,P−1}
uc (k):

p{1,...,P−1}
uc (k) ≈ Ck

k+P−2(vN)k
“
pi

uc(0)
”P−1

(17)

Even if it is not exact, we have empirically checked that when this expression
is replaced into the r(n) probabilities, it results in a very good approximation:

r(n) =
p
{1,...,P−1}
uc (Mmax − n)

Mmax−nX

j=0

p{1,...,P−1}
uc (j)

≈
CMmax−n

Mmax−n+P−2(vN)Mmax−n

Mmax−nX

j=0

Cj
j+P−2(vN)j

(18)

By replacing the development of the r(n) probabilities into the aggregate
model, we get the aggregate steady-state probabilities. Here we only give the
expression of pagg(1) and pagg(2):

pagg(1) ≈ Mmax

Mmax + P − 2
pagg(0); pagg(2) ≈ N − 1

N

(Mmax − 1)

(Mmax + P − 3)
pagg(1)

(19)

When P � 1, it appears that the probabilities pagg(n) decrease very fast
with n: pagg(0)� pagg(1)� pagg(2)� .... As a consequence we can obtain
the asymptotic developments for the performance parameters by only taking
into account the preponderant values of the aggregate probabilities in the
summation of expressions (3), (4) and (5). By doing that, we obtain the
following expressions for the performance parameters of any cell i:

Ũ i ≈ Tpagg(1) ≈ T Mmax

Mmax + P − 2
(20)

X̃i ≈ T
1 +

pagg(2)

pagg(1)

1 + 2
pagg(2)

pagg(1)

≈ T
„

1− N − 1

N

(Mmax − 1)

(Mmax + P − 3)

«
(21)

P i
r ≈ 1− pagg(1)

vNpagg(0)
≈ 1− Mmax

vN(Mmax + P − 2)
(22)

4 Numerical Results

In this section, we compare the asymptotic developments to the results
obtained with the analytical models developed in [Baynat and Eisenmann,
2004] and [Nogueira et al., 2005]. The constraint Mmax is set to 40. The
number T of time-slots reserved to GPRS traffic in each cell is chosen equal
to 2. We have tested different values for T (1 to 4) and Mmax (20 to 100),
and the results obtained were very similar to those shown here. All mobiles
are assumed to be able to use the T time-slots of the TDMA (d ≥ T ) and
generate the same traffic load.
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4.1 Influence of the mobile population per cell

First, we investigate the influence of the GPRS mobile population. We set
the number of cells to P = 30, the dimensionless parameter to x = 0.268
(corresponding e.g. to xon = 4000 bytes, toff = 10 s and xB = 30 bytes),
and vary the number N of GPRS mobiles in each cell. We compare the
normalized utilization Ũ of a cell, the normalized throughput X̃ offered to a
mobile and the blocking probability Pr obtained by the analytical model to
those derived from the asymptotic developments. As shown in Fig. 3, 4 and
5, the asymptotic curves are made of two parts. First, when N is low, the
system is almost empty, i.e. the bottleneck is not reached. Every cell has the
same behavior as if it were alone in the system. Thus, we use the asymptotic
expressions (10) developed for low traffic load in single cells. Second, when
N is high, the system is saturated because of the important traffic load.
Thus, we use the asymptotic expressions (20), (21) and (22) developed for
high traffic load in a multiple-cell system. Fig. 3, 4 and 5 show the very
good fit between the asymptotic and the analytical curves, for both low and
high traffic load. In both cases, the cells performance reach the asymptotic
limit quickly. These expressions given by two simple functions are very useful
to quickly analyze the qualitative behavior and quantitative bounds on the
system performance.
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4.2 Influence of the number of cells

We now focus on the influence of the number P of cells in the system. We
study the system performance evolution for different traffic load profiles
(vN = 0.13, 0.27, 0.54, 1.07). The asymptotic curves are obtained from
relations (20), (21) and (22). We notice a systematic behavior on analytical
utilization and throughput curves (Fig. 6 and 7). They nearly follow a
horizontal line until they reach the asymptotic curve. The horizontal line
corresponds to the performance parameter of the cell that is not subject to
the capacity constraint and that can thus be analyzed with the single-cell
model of Section 2. Performance remains unchanged when P increases until
the capacity constraint starts influencing the cell. We can thus cut out the
construction of the performance curves as follows:

i ) compute the reference performance parameter for a single-cell system;
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ii ) draw the asymptote for high traffic load in multiple-cell system;
iii ) bind the reference point to the asymptote with a horizontal line.
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5 Conclusion

We have first been able to provide a computationally simple model of the a
priori complex system made of a group of cells in a cellular network coupled
by capacity limitation in a centralized equipment handlink packet traffic.
This model has been further simplified by developing asymptotic expansions
for low and high load traffic. The resulting close-form Erlang-like expressions
that have been derived allow the construction of even simpler dimensioning
models. Indeed, in a dimensioning situation, the problem consists in finding
the optimal input system parameter that fulfill a given performance criterion.
Our proposal offers simple functions that can easily be inverted in order
to obtain directly the required solution without any iteration process. The
complexity of such problems is thus drastically reduced.
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Abstract. We present long memory processes related to some point processes, give
their main properties, asymptotic behaviour and discuss some statistical issues with
a view on Internet traffic measurements. The Infinite Source Poisson model is a
generalisation of the M/G/∞ queue. Arrivals are driven by a homogeneous Poisson
process, durations of active periods are independent and identically distributed
(iid) and independent of the arrivals. Each active periods (say dowload sessions)
is assumed to have a constant transmission rate and the available bandwidth to be
unlimited. Theses rates are iid, independent of the arrivals but possibly depending
on the durations. In a traffic modelling context, the obtained process X(t) can serve
for modelling the bandwith occupation, often called the workload. The stability of
the model depends on the tail behavior of the duration distribution. Both in the
stable and unstable cases, the tail behavior of the durations can be recovered from
the dependence structure of X(t). In particular, heavy-tails durations will result
in long range dependence (LRD) in X(t) and the corresponding tail and Hurst
indices α and H satisfy H = (3−α)/2 for all α ∈ (0, 2). In practical situations, the
process X(t) is observed through passive measurements, by counting packets going
trough a point of the network, and then by evaluating the instantaneous workload.
Such measurements are much simpler than collectiong complete characterizations
of flows. However, from a queuing point of view, as mentionned above about the
stability, the important parameter is α. The object of this paper is to rely on the
relationship between α and H for estimating α from measurements on X(t).
Keywords: Infinite Source Poisson Model, Heavy tails and long range dependence,
Traffic modelling.
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1 Modelling transmission rates

We consider the Infinite Source Poisson model with random transmission rate
defined by

X(t) =
∑

j∈N

Uj1{tj≤t<tj+ηj} . (1)

The transmissions are generated at birth times {tj} which are the points of
a unit rate homogeneous Poisson process on the positive half-line and have
rates given by {Uj} . The transmissions have positive durations {ηj}. We
assume that the vectors {(ηj , Uj)} are i.i.d. and independent of the arrivals
process. The workload at time t is the sum of rates of all surviving present
and past transmission. This model was considered by [Resnick and Rootzén,
2000], [Mikosch et al., 2002] among others.

In the following, we consider that the path of the process is observed
along continuous time. From a numerical point of view, since the path of X
is piece-wise constant, this means that one observes all the jump times and
the workload at these times. In practical situations, the transmission rate is
measured by counting the packets going through some point of the network
link. From the packet counts, one may compute the overall average rate of
transmission over equi-spaced time slots [kδ, (k + 1)δ] k ∈ Z. From now on,
we take δ = 1 without loss of generality. The process X is not aimed to
model the traffic at packets level since the transmission rate at the packets
level cannot be assumed to be constant. Nevertheless

Yk =

∫ k+1

k

X(s) ds

is a reasonable model for the overall transmission rate averaged on [k, k + 1]
because, by locally averaging the instantaneous rate, one eliminates local
variations of it. The estimator we will consider is computed from the wavelet
coefficients of X . In the case of Haar wavelet these coefficients can be com-
puted exactely from the discrete sequence {Yk, k ∈ Z}. Otherwise, some
adaptations are needed but we will not pursue in this direction here and thus
will assume either that the continuous time path of X is observed or that the
wavelet ψ used below is the Haar wavelet ψ = 1

2 (1[0,1) − 1[1,0)).
We now introduce the assumption on the joint distribution of the trans-

missions rates and durations.

Assumption 1 The random vectors {(η, U), (ηn, Un), n = 0,±1,±2, . . .}
are i.i.d. with distribution ν on R+×R and independent of the homogeneous
Poisson Point Process on the real line with points {tj}j∈Z; there exist a real
number α ∈ (0, 2) and a positive integer k∗ such that E[|U |k∗ ] < ∞ and for
each integer k = 0, 1, . . . , k∗

E
[
Uk1{η>t}

]
= Lk(t)t

−α . (2)

where Lk are slowly varying as t→ +∞.
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Defining, for each k ≤ k∗, the signed measure on R+

νk(dv) :=

∫
ukν(dv, du),

and the function

Hk(t) = νk(t,∞) = E
[
Uk1{η>t}

]
, t ≥ 0,

Condition (2) is equivalent to saying that Hk, k = 0, 1, . . . , k∗, are regularly
varying with index α.

Assumption 1 implies in particular that the tails of the distribution of η is
regularly varying with index α. This in turns implies Assumption 1 if U and
η are independent, in which case the functions Lk differ by a multiplicative
constant. A more realistic situation for network traffic modelling is the case
where the transmission rate U is independent of the amount of transmitted
data during the download session (which is equal to W := Uη), given that the
rate is above some threshold. Below this threshold, the accessible amount of
data is supposed to have light tails, and above this threshold, W is supposed
to have heavy tails. In practice this threshold separate high rate connections
(say, xDSL/LAN/Cable connection) from low rate connections (say, RTC
connection), which are not suitable for downlaoding large data. In this case,
it can be shown that the measure νk inherits the heavy tails of W for all k
such that E|U |k <∞.

2 Stationary version and asymptotic behavior

If E[η] <∞, a stationary version of this process is defined by

XS(t) =
∑

j∈Z

Uj1{tj≤t<tj+ηj} t ∈ R, (3)

where, in the sequel, {tj} are the points of a unit rate homogeneous Poisson
process on the line such that tk < tk+1 for all k and t−1 < 0 ≤ t0.

By Karamata’s Theorem, for all such k, we easily obtained the asymptotic
equivalences of standard tail behaviors of νk. For instance, if α > 1,

E
[
Uk{η − t}+

]
sim

1

α− 1
Lk(t)t

1−α . (4)

Proposition 1 Let Assumption 1 hold. The process XS is well defined and
strictly stationary if and only if E[η] < ∞. If moreover k∗ ≥ 2, then XS is
weakly stationary with expectation and autocovariance function given by

E[XS(t)] = E[Uη] ,

cov(XS(0), XS(t)) = E[U2(η − t)+]sim
1

1− αL2(t)t
1−α if α > 1 ,
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where the equivalence holds as t→ +∞.
The process X is nonstationary with expectation E[X(t)] = E[U(η ∧ t)] and
autocovariance function given, for s ≤ t by

cov(X(s), X(t)) = E[U2{s− (t− η)+}+] =

∫ t

t−s
H2(v)dv .

If α ∈ (0, 1) and if t and s tend to infinity at the same rate, the following
asymptotic equivalent of cov(X(s), X(t)) holds. For all t, s > 0, as T →∞,

cov(X(Ts), X(T t))sim
1

1− αL2(T )T 1−α{(s ∨ t)1−α − |t− s|1−α} . (5)

The proof of Proposition 1 is a straightforward application of well known
properties of Poisson point processes.

If E[η] <∞, the non-stationary processX converges to XS . By definition,
the difference between X and XS is given by

XS(t)−X(t) =
∑

k<0

Uk1{tk≤t<tk+ηk}, t ≥ 0 .

Since E[η] <∞ and since the ηk are i.i.d and independent of the birth times
tk, a Borel-Cantelli argument yields that this sum has almost surely a finite
number of terms, which is at most the number of indices k < 0 such that
tk+ηk ≥ 0. Hence, almost surely, limt→∞{XS(t)−X(t)} = 0. This limit also
holds in the mean E[|XS(t) −X(t)|] ≤ E[|U |(η − t)+] → 0. The asymptotic
behavior of the cumulative workload is now investigated.

If we are not in the stable case, that is, for E[η] = ∞, the process XS is
not defined (see Proposition 1). We may still consider the weak limit of the
cumulative workload but this limit will be very different in the two cases as
shown by the next proposition.

For α < 1 (implying E[η] =∞), the next proposition gives a straightfor-
ward extension of the results of [Resnick and Rootzén, 2000] to the case of
random transmission rate Uj . In the case α > 1 (implying E[η] <∞), it has
been proved under slightly different assumptions by [Mikosch et al., 2002],
[Maulik et al., 2002] or [Mikosch and Resnick, 2004].

Proposition 2 Denote H = (3 − α)/2. If 0 < α < 1, i.e. 1 < H < 3/2,
and if Assumption 1 holds with k∗ = ∞, then the sequence of processes

{L−1/2
2 (T )T−H ∫ Tt

0 (X(s)−E[X(s)]) ds, t ≥ 0} converges weakly to the Gaus-
sian process W with autocovariance function

cov(W (s),W (t)) =
1

1− α

∫ t

0

∫ s

0

{(u ∨ v)1−α − |u− v|1−α} du dv .

If 1 < α < 2, i.e. 1/2 < H < 1, then T−H ∫ Tt
0
X(s)ds converges in

probability to 0, and the sequence {T−1/α
∫ Tt
0

(X(s) − E[X(s)]) ds, t ≥ 0}
converges weakly to an α-stable Levy process.
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This proposition illustrates a change of behavior between the stationary
and non-stationary cases.

3 Estimation

3.1 Terminology

The most important parameter for this process is thus the parameter α. In
accordance with the notation in use in the context of long memory processes,
we define the Hurst index of the process X as H = (3 − α)/2, because the
variance of partial sums scales as T 2H . We can also define d = H − 1/2 =
1 − α/2, in relation to fractionally integrated processes, such as ARFIMA
processes, but this would be quite arbitrary in this context where no fractional
integration is involved.

3.2 Methods

The parameter α is a tail index, so traditional methods to estimate a tail
index could be used. But it is well known that these methods are not very
efficient in the case of dependent data (cf. [Resnick and Stărică, 1995] for
instance). Moreover, in the model under consideration here, α is not the tail
index of the marginal distribution of the observed process, which has finite
variance whereas α < 2. Thus it is not at all clear how to use these methods.

But as shown by Proposition 1, the coefficient α is related to the second
order properties of the process: the coefficient H = (3− α)/2 can be viewed
as its Hurst index, i.e. H governs the rate of decay of the autocovariance
function of the process. Therefore it seems natural to use an estimator of the
Hurst index.

3.3 The (wavelet) coefficients

Let ψ be a bounded R→ R function with compact support included in [0,M ]
and such that

∫
ψ(s) ds = 0 . (6)

For integers j ≥ 0 and k ∈ Z, define

ψj,k(s) = 2−j/2ψ(2−js− k). (7)

The wavelet coefficients of the path are defined as

dj,k =

∫
ψj,k(s)X(s) ds , dSj,k =

∫
ψj,k(s)XS(s) ds . (8)

Asume that a path is observed between time 0 and T . Since ψj,k has support
in [k2j , (k+M)2j ], the above coefficients can be computed for all (j, k) such
that T 2−j ≥ L and k = 0, 1, . . . , T2−j −M .



Estimation of the Memory index transmission rate measurements 1413

Lemma 1 Define

L(z) = zα
∫ ∞

0

[∫ ∞

−∞

{∫ t+zv

t

ψ(u) du

}2

dt

]
ν2(dv) . (9)

Then L is slowly varying at infinity and

E[dSj,k] = 0 , var(dSj,k) = L(2j) 2(2−α)j , (10)

E[dj,k] = O
(
L1(k2

j) 2(3/2−α)jk−α
)
, (11)

var(dj,k − dSj,k) = O
(
L2(k2

−j) 2(2−α)j k−α
)
. (12)

Remark 31 The coefficients dj,k are centered in the case where U and η are
independent and U is centered, even in the nonstationary case.

3.4 The estimator

Lemma 1 provides the rationale for the following minimum contrast estimator
of α which is related to the local Whittle estimator, cf. [Künsch, 1987],
[Robinson, 1995b]. The obtained estimator has been introduced by Moulines,
Roueff and Taqqu (2004) and is called the wavelet Whittle estimator. For
positive integers J0 < J , define

∆ = {(j, k) , J0 < j ≤ J , 0 ≤ k ≤ 2J−j − 1} and δ =
1

#∆

∑

(j,k)∈∆
j .

The scale index J is the maximal scale index available from the data while
J0 is a cut-off tuned by the user. The local Whittle estimator of α is then
defined as:

α̂ = arg min
α′∈(0,2)

log


 ∑

(j,k)∈∆

d2
j,k

2(2−α′)j


+ δ log(2)(2− α′) .

Equivalently, we could have defined Ĥ = (3 − α̂)/2 or d̂ = 1− α̂/2.

Theorem 31 Let α ∈ (1, 2) and let Assumption 1 hold. Suppose that
L(x) → 1 as x → ∞. If J0 → ∞, J → ∞ and J0 < J/α then α̂ is a
consistent estimator of α.

A corresponding results hold in the case where α ∈ (0, 1] but some adap-
tations are needed in the definition of the estimator and a second vanishing
moment is needed on ψ.
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4 Simulations

We have simulated M/G/∞ processes, which correspond to the process X
with Uk = 1 for all k’s, and estimated α via different classical estimators of
long range dependence. The obtain paths are represented in Figure 1 and
Figure 2, respectively in non-stable (α = 0.7 < 1) and stable (α = 1.5 > 1)
situation. Monte-carlo simulations provided the boxplots and MSE estimates
for the several estimators, also represented on these figures. In those graphs,
the X-coordinates V 1, V 2, ... V 10 correspond to the scale cut-off V J0.

Fig. 1. α = 0.7: the process do not converge to a stationary. Its cumulative load
is approximately gaussian.
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Abstract. Most of economic and financial time series have a nonstationary be-
havior. There are different types of nonstationary processes, such as those with
stochastic trend and those with deterministic trend. In practice, it can be quite
difficult to distinguish between the two processes. In this paper, we compare ran-
dom walk and determinist trend processes using sample autocorrelation, sample
partial autocorrelation and periodogram based metrics.
Keywords: autocorrelation, classification, determinist trend, Kullback-Leibler,
periodogram, stochastic trend, time series.

1 Introduction

There are different types of nonstationarity processes. One can consider a
deterministic linear trend process yt = a+bt+εt (with εt a white noise term),
that can be transformed into a stationary process by subtracting the trend
a + bt, and a stochastic linear trend process such as the so-called random
walk model (1−B)yt = εt or yt = yt−1 + εt. An interesting, but some times
difficult problem is to determine whether a linear process contains a trend,
and whether a linear process exhibits a deterministic or a stochastic trend.
In particular, it is useful to distinguish between a random walk plus drift
yt = µ+ yt−1 + εt and a deterministic trend in the form yt = a+ µt+ εt.

The problem of classifying and clustering time series has been studied by
Piccolo (1990), Tong and Dabas (1990), Shaw and King (1992), Kakizawa,
Shumway and Taniguchi (1998), Maharaj (2000, 2002), Caiado, Crato and
Peña (2005), Xiong and Yeung (2004), among others. In this paper, we
use sample autocorrelation, sample partial autocorrelation and periodogram
ordinate based metrics to compare deterministic trend and stochastic trend
processes.
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2 Classification Methods

A fundamental problem in clustering and classification analysis is the choice
of a relevant metric. We know that the Euclidean distance is not a good
metric for classifying time series since it is invariant to permutation of the
coordinates and so it does not take into account the information about the
autocorrelations.

Let X = (x1,t, . . . , xk,t)
′ be a vector time series and ρ̂i = (ρ̂i,1, . . . , ρ̂i,m)

be a vector of the sample autocorrelations of the time series i for some m
such that ρ̂k sim= 0 for k > m. A distance between two time series x and
y can be defined by d(x, y) =

√
(ρ̂x − ρ̂y)′Ω(ρ̂x − ρ̂y), where Ω is some ma-

trix of weights (see Galeano and Peña, 2000) . Caiado, Crato e Peña (2004)
proposed three possible ways of computing a distance by using the sample au-
tocorrelation function (ACF). The first uses the Euclidean distance between
the sample autocorrelations coefficient vectors with uniform weights (ACFU
metric),

dACFU (x, y) =

√√√√
L∑

j=1

(ρ̂j,x − ρ̂j,y)2, (1)

where L is the number of autocorrelations. The second uses the Euclidean
distance with geometric weights decaying with the lag (ACFG metric),

dACFG(x, y) =

√√√√
L∑

j=1

fj(ρ̂j,x − ρ̂j,y)2, (2)

where fj = pqj for i = 1, 2, ..., L, p = 1 − q and 0 < p < 1. The third uses
the Mahalanobis distance between the autocorrelations (ACFM metric),

dACFM (x, y) =
√

(ρ̂x − ρ̂y)′Ω−1(ρ̂x − ρ̂y), (3)

where Ω is the sample covariance matrix of the autocorrelation coefficients
given by Bartlett’s formula (see Brockwell and Davis, 1991, p. 221-222).
A metric based on the sample partial autocorrelation function (PACF) is
defined by

dPACF (x, y) =

√
(φ̂x − φ̂y)′Ω(φ̂x − φ̂y), (4)

where φ̂ii are the sample partial autocorrelations and Ω is also some matrix
of weights.

A measure based on the Kullback-Leibler (KL) information for time series
classification can be defined by

dKL(x, y) = tr(RxR
−1
y )− log

|Rx|
|Ry|

− n, (5)
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where Rx and Ry are the sample autocorrelation matrices of time series x
and y. Since dKL(x, y) 6= dKL(y, x), one can define a symmetric distance or
quase-distance (KLJ metric), known as the J divergence, as,

dKLJ(x, y) =
1

2
dKL(x, y) +

1

2
dKL(y, x), (6)

which satisfies all the usual properties of a metric except the triangle inequal-
ity.

Caiado, Crato and Peña (2004) introduced also a periodogram-based
metric. Let x and y be observed time series with periodograms, Px(wj) =
n−1|∑n

t=1 xte
−itwj |2 and Py(wj) = n−1|∑n

t=1 yte
−itwj |2 at frequencies wj =

2πj/n, j = 1, ...,m (with m = [(n − 1)/2]) in the range 0 to π, and let
NP (wj) = P (wj)/γ̂0 be the normalized periodogram (with γ̂0 the sample
variance). Since the variance of periodogram ordinates is proportional to the
spectrum value at the corresponding frequencies, Caiado, Crato and Peña
(2004) proposed a metric based on the logarithm of the normalized peri-
odograms (LNPER metric),

dLNPER(x, y) =

√√√√
m∑

j=1

[logNPx(wj)− logNPy(wj)]
2
. (7)

3 Monte Carlo Simulations

For the Monte Carlo simulations we chose the determinist trend and random
walk plus drift models studied by Enders (1995, p. 252),

yt = 1 + 0.02t+ εt

and

yt = 0.02 + yt−1 + εt/3,

with εt a zero mean and unit variance white noise. These processes were
discussed by Enders since it is quite difficult to distinguish between them, as
we can see in Figure 1. We performed 250 replicated simulations of five deter-
ministic trend models and five random walk models with those specifications,
with sample sizes of 50, 100, 200, 500 and 1000 observations. We used the
previously discussed metrics to compute the distance matrices among the 10
time series and to aggregate them into two clusters (determinist trend and
stochastic trend) using an hierarchical clustering algorithm (complete linkage
method).
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Fig. 1. Simulated stochastic trend and deterministic trend processes.

Table 1 presents the percentage of sucesses obtained in the comparison
between the two processes, where n is the sample size, L is the autocorre-
lation lenght, the sample autocorrelation and sample partial autocorrelation
metrics (ACFG and PACFG metrics) uses a geometric decay of p = 0.05, in
the LNPER metric F for low frequencies corresponds to periodogram ordi-
nates from 1 to

√
n and F for high frequencies corresponds to periodogram

ordinates from
√
n+ 1 to n/2.

The ACF based metrics can discriminate quite well between the deter-
ministic trend models and random walk models. This is particularly evident
for the first few autocorrelations, since the ACF of the random walk process
is close to unity and the ACF of the deterministic trend tends to approach
to zero. Because the PACF of the random walk has a very large first lag
and cuts off after lag 1, while the PACF of the deterministic trend exhibits
a pattern of a white noise process, the discrimination between the two mod-
els based on the first partial autocorrelations is striking. The KLJ metric
perform quite well for all data sample sizes and the LNPER metric seems
to perform better for periodogram ordinates dominated by high frequencies,
which concerns the short-term information of the processes.
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n L ACFU ACFG ACFM PACFG KLJ F LNPER

50 5 97.28 97.60 99.31 99.27 97.87 low 85.04

10 92.12 94.88 99.56 99.46 98.53 high 95.24

25 92.12 91.52 98.01 64.00 97.33 all 94.48

100 5 99.28 98.92 100.0 100.0 98.47

10 95.68 97.28 99.73 100.0 98.93 low 92.48

25 88.16 89.84 96.44 100.0 99.47 high 99.04

50 85.08 91.80 94.67 70.73 98.53 all 98.72

200 5 99.56 99.36 100.0 100.0 99.72

10 95.40 97.36 96.55 100.0 99.49 low 96.08

20 87.80 91.20 92.22 100.0 99.60 high 99.28

50 72.76 81.80 87.79 100.0 99.47 all 99.20

100 70.56 82.56 na 94.37 99.20

500 5 97.68 97.64 100.0 100.0 98.13

10 89.52 92.12 99.28 100.0 99.15 low 94.32

20 78.00 81.28 96.32 100.0 98.81 high 98.56

50 68.24 70.32 82.58 100.0 98.13 all 98.16

125 68.72 70.04 80.97 100.0 99.20

250 67.92 70.12 na na na

1000 5 94.48 94.60 100.0 100.0 98.31

10 83.04 83.56 95.26 100.0 98.81 low 90.40

20 72.52 73.92 94.21 100.0 99.32 high 96.72

50 67.36 68.65 72.97 100.0 97.12 all 93.92

100 67.52 67.86 70.18 100.0 96.27

500 65.12 67.36 na na na

Table 1. Percentage of sucess in the comparison between random walk plus drift
and deterministic trend processes.

4 Discussion

In this paper we use different dependence metrics for comparison of a par-
ticular type of nonstationary time series models. Simulation results show
that the metrics based on the sample autocorrelations, the sample partial
autocorrelations, the Kullback-Leibler information measure and the normal-
ized periodogram can distinguish quite well between deterministic trend and
stochastic trend processes. In particularly, we point out the performance of
the sample partial autocorrelation metric in this type of comparison. For
the autocorrelation-based metrics we note that short lags L provide better
results. This can be explained by the structure of these models, since the
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main differences arise for the first ACF and PACF values. Contrarily to
what could be expected, the performance of ACF methods decreases with
sample size. This does not happen with the PACF method. Kullback-Leibler
method shows a remarkable good performance and stability across sample
sizes and ACF orders considered. The periodogram-based metric compares
well to Kullback-Leibler and is computationally simpler.

Acknowledgment: We thank Daniel Peña of Universidad Carlos III
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paper. This research was supported by a grant from the Fundação para a
Ciência e Tecnologia (POCTI/FCT).
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Abstract. In this paper we consider the performance evaluation problem in
a queuing system GI/GI/1, a system with two units of reparable elements
and a queuing system with an unreliable server and service repetition, using
nonparametric distributions (consider IFR, NBU, DFR and NWU classes). We
considered the qualitative properties of the inter-arrival, the repair and the service
time, respectively. And presente bounds for the mean stationary waiting time,
the mean time of life system and the blocking time in the system, respectively.
These bounds are programmed and the characteristics are simulated in order to
supplement the work carried out in [Adjabi et al., 2004] and [Lagha and Adjabi,
2004].

Keywords: Nonparametric distribution, performance evaluation, queuing
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1 Introduction

In this paper we are interested to the use of the qualitative properties of dis-
tributions for the characterstics evaluation in three systems, it acts a queuing
system GI/GI/1, a renewal system and a queuing system with an unreliable
server. The distributions considered are those of the inter-arrival, the repa-
ration and the service time, respectively.
The aim of this paper is to calculate the characteristics by simulation in
order to verify there membership to the interval delimited by the bounds
established in [Adjabi et al., 2004] and [Lagha and Adjabi, 2004]. These
bounds are presented in the section 2, 3 and 4, respectively to the considered
systems. Whereas the characteristics are simulated in the section 5. The
results are interpreated in the section 6.
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2 Queuing system GI/GI/1

Consider two systems A1/B1/1 (known as original) and A2/B2/1 (known as
approximation system). We consider the following notations:

mWi : means of waiting time in Ai/Bi/1 system, i = 1, 2.
Ai, i = 1, 2 : inter-arrival time distribution.
Bi, i = 1, 2 : service time distribution.
mB,mA : means of service and inter-arrival times.
EB2 : second moment of service time.
σ2
B , σ

2
A : variances of service and inter-arrival times.

Ca = σA/mA : coefficient of variation of the inter-arrival times.
ρi = mB/mAi : intensity of the traffic in the system i, i = 1, 2.

Under the external monotonicity property (theorem 5.2.1 in [Stoyan, 1983]),

A2 ≤cv A1 and B1 ≤c B2 , (1)

we obtain the comparisonmW1 ≤ mW2 . Where ≤c (≤cv) indicates the convex
(concave) ordering.
Suppose that B1= B2 = B a general service distribution and A1 being a
nonparametric inter-arrival distribution (IFR or NBU), its lower bound is
given from the following table [Sengupta, 1994]:

Class upper Bound lower Bound

IFR F (x) ≤
{

1 if x < m
1/r
r

δx if x > m
1/r
r

F (x) ≥





inf
0≤β≤x

e−α if x < m
1/r
r

0 if x > m
1/r
r

where
∫ 1

0
ryr−1δyxdy = mr

xr where
∫∞
0

(β + x−β
α z)re−αdz = mr

NBU F (x) ≥
{

1 if x < m
1/r
r

δx if x ≥ m1/r
r

F (x) ≥
{
δx if x < m

1/r
r

0 if x ≥ m1/r
r

where
∫ 1

0
ryr−1δyxdy = mr

xr where
∑∞

j=0 δ
j
x[(j + 1)r − jr] = mr

xr

DFR F (x) ≤
{
e

−rx
x0 if x < m

1/r
r

(x0

x )re−r if x ≥ m1/r
r

F (x) ≥ 0

where x0 = r[ mr

Γ (r+1) ]
1/r

NWU F (x) ≤ δx F (x) ≥ 0
where

∑∞
j=1 δ

x
j [j

r − (j − 1)r] = mr

xr

Table 1: Bounds on F (x) (based on r moment mr) in various cases.

Using this property (for A1 being IFR or NBU distribution, see Table 1.)
and the relation (1), we presente the upper bounds for the mean stationary
waiting time in two cases.
• In the IFR case, the upper bound associated is given by the following
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relation :

σ2
A1

+ σ2
B

2mA1(1− ρ1)
− 1/2mA1(ρ1 + C2

a1) ≤ mW1 ≤
EB2

2
α (1− e−1 − ρ1)

here α =
[
Γ (r+1)
mr

]1/r
.

• In the NBU case, the upper bound is given by the following relation :

σ2
A1

+ σ2
B

2mA1(1− ρ1)
− 1/2mA1(ρ1 + 1) ≤ mW1 ≤

EB2

mA1 [1− e−1 − 2ρ1]

Remark 1
• The lower bounds in the IFR and NBU cases are proposed by Stoyan
[Stoyan, 1983].
• See [Adjabi et al., 2004] for demonstrations.

3 Renewal theory

Consider a system with two units of reparable elements ξ1 and ξ2. At the
moment t = 0 the element ξ1 function until there failure at the date t = X0

where repair starts with to be carried out on this element and takes a time
equalize with Y1 whereas ξ2 starts to work until its failure with the date
t = X1. If X1 ≤ Y1,the system stops with date X0 + X1. If not ξ1 still
function at the dateX0+X1 whereas the repair of ξ2 is started. The operating
time X0, X1, . . ., are supposed iid and independent of times of successive
repairs Y1, Y2, . . . , which are too iid and with the mean mr of order, r > 1.
We defined N = inf{n : Xn < Yn} life time for the system is there r.v.
T = X0 + X1 + · · · + XN . So now them Xi is exponentially distributed of
parameter λ and arbitrary repair time function R (cumulative distribution
function of Y ) is a nonparametric distribution (IFR, NBU, DFR or NWU).

Proposition 1 Consider two systems as described above having for function
of repair time distribution Ri, i = 1, 2 and λi, i = 1, 2, indicating parameters
of the operating time, respectively. Given the following condition [Stoyan,
1983] :

λ1 ≤ λ2 and R1 <L R2, (2)

the comparison between the mean time of life systems is as ET1 ≥ ET2, where
<L indicates the Laplacien order.

Using the lower bound of R1 (see the Table 1.) and the relation (2), the upper
bounds of the mean time of life system are given by the following relation
(see [Adjabi et al., 2004] for demonstrations):
• IFR case

1 + (1− e−β)−1 ≤ ET1 ≤
1

λ

[
1 +

1 + β−1

1− e−(1+β)(Γ (r+1))1/r

]
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with α =
[
Γ (r+1)
mr

]1/r
, β = λ

α and r > 0.

• NBU case

1 + (1− e−β)−1 ≤ λET1 ≤ 1 +
β

β + e−β − 1
, β = λm1

Using the upper bound for R1 (see the Table 1.)and the relation (2), the lower
bounds of the mean time of life system are given by the following relation
(see [Adjabi et al., 2004] for demonstrations):
• DFR case

1+
θ + r

θ(1 − e−(r+θ)) + (r + θ)e−rθr
∫∞
θ
x−re−xdx

≤ λET1 ≤ 1+(1−e−λm1)−1

where θ = λx0, x0 = r
[

mr

Γ (r+1)

]1/r
and r > 0.

• NWU case

1 +
1

1− θeθ
∫∞
θ
x−2e−xdx

≤ λET1 ≤ 1 + (1− e−λm1)−1, θ = λm1

Remark 2
• The lower bound presented in IFR and NBU cases is proposed by Stoyan
[Stoyan, 1983].
• This bound became the upper one in the NWU and DFR cases.

4 Unreliable queuing system

Consider a single-server queuing system with an unreliable server and service
repetition. The total time taken by a customer from the instant he enters
for service to the instant when he ends his service is called the blocking time
which can be represented by:

Zλ = X.1{X≤Y } + (Y + Z∗
λ).1{X>Y }, λ > 0. (3)

Where X , Y and Zλ are independent non-negative random variables, with
cumulative distribution functions (cdf) denoted by G(t), R(t) and F (t), re-
spectively. X is the service time with free interruption, Y is the server
failure time and is assumed to have exponential distribution with mean 1/λ.
So R(t) = 1−R(t) = e−λt, 0 ≤ t ≤ ∞.

Z∗
λ has the same distribution as Zλ (denoted by Z∗

λ
d
= Zλ), and 1{X≤Y } is

the indicator function of the event {X ≤ Y }.
Consider the cdf G of X being a nonparametric repair distribution (IFR,
NBU, DFR or NWU), its lower or upper bounds are given from the Table
1. To gather with the following Lemma, the bounds of the mean blocking
time in the system EZλ are established (see [Lagha and Adjabi, 2004] for
demonstrations). Let EXr denote the r th moment of the r.v. X .
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Lemma 1 Suppose that X is not degenerate at point zero and Z defined as
(3), so

EZ = E(min(X,Y ))/p ,

where p = P (X ≤ Y ) =
∫∞
0
G(t)dR(t) so E(min(X,Y )) =

∫
G(t)e−λt dt.

Using the corresponding lower bounds for G (see the Table 1.) and the above
Lemma the lower bounds of the mean blocking time in the system are given
in the following cases :
• IFR case

EZλ > x0

[ 1− e−1−λx0

1 + x0λe−1−λx0

]
, x0 = EX

• NBU case

EZλ >
β + e−β − 1

λ(1 − e−β) , β = λx0

The upper one are given in the remainder cases considered :
• DFR case

EZλ ≤
x0(e

r − e−λx0) + (r + λx0)x
r
0Ir

rer + λx0e−λX0 − λ(r + λx0)x
−r
0 Ir

where Ir =
∫ +∞
x0

t−re−λt dt, x0 = r
[
EXr

Γ (r+1)

]1/r
and r > 0.

• NWU case

EZλ ≤
x0e

βI1
1− βeβI1

, β = λx0 and I1 =

∫ +∞

x0

t−1e−λtdt

Remark 3
• The complex integral Ir is convergent and simulated (in the following sec-
tion) to calculate the bounds.

5 Bounds Computation

Consider in this section some parametric distributions to calculate the bounds
given above (for three systems) and simulate characteristics. The application
is worked in MATLAB environment.
The results are given in the following tables for three considered problems,
respectively.
• Queuing System GI/GI/1

System lower Bound upper Bound Simulation
E(4,2)/E(1,3)/1 0 0.11936 0.0097321
E(4,3)/E(2,5)/1 0 0.27099 0.021166
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E(2,3.5)/W(1,4)/1 0.083333 0.56199 0.11258
W(3,1.5)/W(1,4)/1 0 0.4948 0.051066
E(3,1)/Mµ =2/1 0 0.17904 0.018002
Mλ=0.5/E(1,2)/1 0.16667 0.32712 0.18617
Mλ=0.7/W(1,4)/1 0.05003 0.095708 0.050896
Mλ=1.5/Mµ =2/1 0.3 0.37359 0.3
IFR/Mµ =1.2/1 0.12987 2.5541 0.32971
IFR/IFR/1 0 0.3069 0

Table 2: Bounds and simulation of the waiting average time

• Renewal system
Consider for application, the rth moment of the r.v. Y (r = 1, 5 and 10).

exp(λ)/R(t) model r order lower bound upper bound simulation
1 1.469

λ = 2/E(2,3) 5 1.179 1.5305 1.2839
10 3.1114
1 2.7609

λ = 1.2/Exp(1.1) 5 2.0882 2.5091 2.4071
10 2.5002
1 4.2973

λ = 1.5/W(2,4) 5 1.9302 5.183 3.1272
10 6.355
1 0.83127

λ = 3/W(0.5,3) 5 0.70901 1.1805 1.0549
10 0.68856
1 1.1015

λ = 2/IFR 5 1.0034 1.2045 1.0088
10 1.3233
1 2.5339

λ = 1.2/W(0.8,1.5) 5 2.3289 2.5962 2.5132
10 2.2295

Table 3: Bounds and simulation of life average time
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• Unreliable system

Failure rate λ = 2 λ = 3 λ = 3.5 λ = 1.6
Service time E(2,4) Exp(4) W(2,3) IFR
Lower bound 0.3808 0.18274 0.63459 0.58863
Upper bound x x x x
Simulation 1.5040 0.8947 0.6611 2.4588

Table 4: Bounds and simulation of the blocking average time

6 Results interpretation

In the first system, we remark that the characteristic value obtained by
the simulation belongs to the interval delimited by the lower and upper
bounds presented in the section 2 and prooved in [Adjabi et al., 2004].
This let us think that these bounds are accepted. Moreover the charac-
teristic value seems to be much closer to the lower bound than the upper one.

Remark in the second system that the characteristic value obtained
by simulation belongs to the proposed interval délimited by the bounds
presented in the section 3. In the models where the repair time distribution
is IFR, the upper bound is an increased function of r but the lower one does
not depend on r. In the models where the repair time distribution is DFR,
the lower bound is an increased function of r but the upper one does not
depend on r.
We remark in addition that, the computed value by simulation turns around
1 when λ ≥ 2 whereas it largely exceeds 1 when λ turns around 1.

In the last system, we considered the IFR and UBU cases for applica-
tion. So we have only the lower bound to calculate and the values obtained
by simulation are finite and higher then those of lower bounds. The ”x”
means no upper bound is calculated.

7 Conclusion

In this work we considered the performance evaluation problem in the queu-
ing system GI/GI/1 (section 2), a renewal system (section 3) and an un-
reliable system (section 4), using nonparametric properties of distributions
(IFR, NBU, DFR or NWU class). By comparison between distributions with
stochastic orders (<c, <cv and <L), bounds are presented for considered sys-
tems. The characteristics bounds obtained are for: mean waiting time, the
mean life time and the mean blocking time, respectively.
These systems are simulated in order to supplement the works of [Adjabi et
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al., 2004] and [Lagha and Adjabi, 2004] to verify the acceptance of the pro-
posed bounds (section 5). This verification is established by the application
worked in MATLAB environment.
The bounds presented in this paper can be used for other distributions.
Example: using the following relations

IFR→ IFRA→ NBU and DFR→ DFRA→ NWU

for IFRA, DFRA,...
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Abstract. Adaboost and Arc-x(h) are two ensemble algorithms that belong to
Arcing family of algorithms. They use different weight updating rules and combine
classifiers using different voting scheme. For h = 4, Arc-x(h) performs equally
well as Adaboost but higher values of h were not tested. Previous methods used
to compare algorithms are based on the performance over test sets. A different
approach presented by [Nadeau and Bengio, 2003] takes into account variability
in training and test sets. Using this approach, an empirical study is conducted
to compare Adaboost and Arc-x(h) for different values of h. Results show that
increasing h does not affect the performance of Arc-x(h) whichis comparable to
Adaboost.
Keywords: Boosting, Arcing, Adaboost.

1 Introduction

Different classification algorithms have been proposed and used in fields like
medicine, business and finance. However, the accuracy of these algorithms
may be moderate when applied to complex classification tasks. Ensemble
learning is a technique for improving their performance: a collection of mod-
erately accurate and diverse classifiers are constructed then they are com-
bined in order to output highly accurate ones. Different ensemble learning
algorithms have been proposed: Adaboost [Freund and Schapire, 1997], Bag-
ging [Breiman, 1996], and Arcing [Breiman, 1998].
Ensemble learning method is developed within the framework of probably
approximately correct (P. A. C) model of learning where learning algorithm
and hypothesis are used to refer to, respectively, classification algorithm and
classifier. This model of learning is specified by a set of measurement space,
a label space, an error parameter ε, a confidence parameter δ and other pa-
rameters that specify the size of the measurement space and the label space.
After running for a polynomial time, the learning algorithm outputs a hy-
pothesis which error is less than ε with probability 1 − δ: this is a P.A.C.
hypothesis.
Two extensions to this learning model are strong and weak learning algo-
rithms. Both algorithms run in a polynomial time. The strong learning
algorithm outputs a hypothesis that is P.A.C while the weak one outputs a
hypothesis with accuracy better than 0.5. The question of whether these two
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notions are equivalent is referred to as the ”hypothesis boosting problem”
since in order to show this equivalence we must boost the accuracy of the
weak learning algorithm.
The proof that these notions are equivalent is provided by [Schapire, 1990],
who presents the first algorithm for converting a weak learning algorithm into
a strong one. Based on this idea, Boost-By-Majority, a simpler and more ef-
ficient boosting algorithm, is developed by [Freund, 1995]. This algorithm
suffers from practical problem for estimating parameters. Adaboost, the first
adaptive boosting algorithm, is developed by [Freund and Schapire, 1997].
This algorithm does not require parameter estimation.
Arcing family of algorithms denotes algorithms that Adaptively Resample
data and Combine classifiers [Breiman, 1998]. Adaboost belongs to this fam-
ily. Arc-x(h) is an ad-hoc algorithm developed by [Breiman, 1998] to better
understand the behaviour od Adaboost. This algorithm uses a simple weight
updating rule and a different method for combining hypotheses. For h = 4
Arc-x(h) performs better than h = 1 or 2.When compared to Adaboost, Arc-
x4 performs equally well. However Breiman argues that higher values for h
are not tested so further improvement is possible [Breiman, 1998].
In this paper, different values for the parameter h of Arc-x(h) algorithm are
tested and their performance are compared to Adaboost and Arc-x4 in the
reweighting framework using C4.5 [Quinlan, 1993] as classification algorithm.
In section two, Adaboost and Arc-x(h) are introduced then results of pre-
vious empirical study are reviewed. In section three, the general framework
of this empirical study is presented: classification and boosting algorithms,
datasets and performance measure. Results are presented in section four.
Finally, section five provides a conclusion to this work.

2 Arcing Algorithms

Adaboost and Arc-x(h) belongs to the Arcing family of algorithms. In this
section, these algorithms are presented then results of previous empirical
studies are reviewed.

2.1 Adaboost

Adaboost applies a classification algorithm to a dataset composed with
labelled instances for a fixed number of iterations T . In each iter-
ation t, t = 1, . . . , T , a weight, wt(Zi), is assigned to each instance
Zi = (xi, yi), i = 1, . . . , n in the dataset. It represents instance’s importance.
Based on this weight distribution, a classifier is outputted which predicts
the class of each instance. Adaboost requires that the weighted error is less
than 0.5. A parameter αt is used to update the weights and to measure
classifier’s performance. The weight of misclassified instances is increased in
order to force the algorithm to concentrate on them in the next iteration.
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At the end of the process, a final classifier is obtained by combining classifiers
from previous iterations using weighted majority vote. The parameter αt
represents the weight of classifier ht generated in iteration t. The pseudocode
of Adaboost for binary classification is presented in table 1.

Algorithm:Adaboost algorithm

Given: {Z1 = (x1, y1), . . . , Zn = (xn, yn)} where xi ∈ X, yi ∈ Y = {−1; +1}
1-Initialize w1(Zi) = 1/n for i = 1, . . . , n.
2-For t = 1 to T:

•Train the algorithm using wt and get a classifier
ht : X 7→ {−1; +1}
• Compute εt =

P
i:ht(xi) 6=yi

wt(Zi)

• If εt ≥ 0.5 stop.

• Choose: αt = 1
2

ln( 1−εt
εt

)

• Update: wt+1(Zi) = wt(Zi) exp(−αtyiht(xi))
Nt

where Nt is a normalization factor

3-output the final hypothesis: H(x) = sign(
PT

t=1 αtht(x))

Table 1. Adaboost algorithm for binary classification

2.2 Arc-x(j)

Arc-x(h) algorithm is developed by [Breiman, 1998] to study the behaviour
of Adaboost. It is different from Adaboost in the following:

• it uses a simpler weight updating rule:

wt+1(Zi) =
1 +m(Zi)

h

∑
(1 +m(Zi)h)

, (1)

where m(Zi) is the number of misclassifications of instance Zi by classi-
fiers generated in iterations 1, . . . , t and h is an integer.

• classifiers are combined using simple majority vote.
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2.3 Previous results

Empirical results show that Adaboost improves the performance of various
classification algorithms, often by dramatic amount. Adaboost decreases the
average error rate by 55.2% when applied to decision stump, a weak learning
algorithm [Freund and Schapire, 1996]. Boosted decision stump performs
equally well as C4.5 [Quinlan, 1993], a strong learning algorithm: Adaboost
converts a weak learning algorithm into a strong one.
The ability of Adaboost to improve strong learning algorithm is investigated
by [Freund and Schapire, 1996] and [Quinlan, 1996]. Experimental results
show that Adaboost improves the average error rate.
Arc-x4 is tested on moderate and large data sets by [Breiman, 1998]. Re-
sults show that it improves the performance of CART [Breiman et al., 1984]
learning algorithm for all data sets.
Two different frameworks are considered by [Bauer and Kohavi, 1999] to test
the performance Arc-x4: reweighting and subsampling. Subsampling uses
the weight of instances to generate a different training set in each iteration
while reweighting uses a fixed training set for all iterations. Arc-x4 produces
a higher error reduction in the subsampling framework than in the reweight-
ing framework.
Adaboost and Arc-x4 are compared in different framework and using differ-
ent collections of datasets. Arc-x4 has an accuracy comparable to Adaboost
without using the weighting scheme to construct the final classifier [Breiman,
1998] and [Bauer and Kohavi, 1999].
Arc-x(h) is tested for h = 1, 2, 4 by [Breiman, 1998]. However higher values
of h are not tested so improvement is possible. Based on the performance
measure used by [Bauer and Kohavi, 1999], increasing the factor h does not
improve the performance of Arc-x(h) [Khanchel and Limam, to appear].

3 Empirical Study

In this section, the general framework of our empirical study in presented:
classification algorithm, Arcing algorithms and data sets. The performance
measure criterion is presented. Then performance of the different algorithms
is compared.

3.1 General framework

C4.5 [Quinlan, 1993] is used as subroutine for the different boosting algo-
rithms. In order to compare different boosting algorithms, a collection of
data sets from UCI Machine learning Repository [Keogh and Merz, 1998] is
used. Details of these data sets are presented in table 2.

Different values of the parameter h, h ∈ {5, 6, 8, 12}, are tested for the
algorithm Arc-x(h). Results are compared to Adaboost and Arc-x4 in the
reweighting framework . Boosting algorithms are applied for 25 iterations.
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Data set number of instances number of attributes number of classes

Liver disorders 345 7 2
Heart 270 13 2
Australian 690 14 2
Pima 760 8 2

Table 2. Data sets used in the empirical study

3.2 Performance measure

The performance boosting algorithms is usually evaluated using test error.
This criteria takes into account only variability due to the choice of the test
set. Comparison is often made without using rigorous statistical framework
[Nadeau and Bengio, 2003]. Often it uses liberal estimators and leads to
incorrect claims. A new method which takes into account variability due to
the choice of training sets and test sets is presented by [Nadeau and Bengio,
2003]. The goal is to estimate the generalization error using the training
data.
Given a data set Zn of size n, a training set of size n1 is generated from
this data set. Using Zn1 a classifier is generated. The loss incurred by this
classifier on a new example Zn+1 can be expressed by L(Zn1 ;Zn+1). We are
interested in estimating n1µ = E[L(Zn1 , Zn+1].
To achieve this, we proceed as follows: suppose that the data set Zn is
composed with n labelled instances Zn = {Z1, . . . , Zn}. For m = 1, . . . ,M ,
Zn is randomly splitted into 2 distinct subsets Dm and Dc

m each of size n/2.
For each subset, we repeat the following process for j = 1, . . . , J :

• Let Sj be a set of random index of size n1, n1 = 4n/10, chosen from
{1, . . . , n/2} and let Scj of size n2 = n/10 denote its complement.
• Let Zj = {Zi/i ∈ Sj} be the training set and Zcj = {Zi/i ∈ Scj} be the

test set.
• For j = 1, . . . , J , use Zj to generate a classifier, and let L(j, i) be:

L(j, i) = QA(Zj , i)−QB(Zj , i) (2)

where QA (QB) is the loss observed on instance i when the algorithm A
(B) uses Zj to generate classifiers.
For classification problem, this loss can be expressed as:

QA(Zj , i) =

{
1 if instance i is incorrectly classified,
0 otherwise.

(3)

• First we average over the test set Zcj of size n2 to obtain:

µ̂j =
1

n2

∑

i∈Sc
j

L(j, i). (4)
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• Then we average over J to obtain:

n2
n1
µ̂J =

1

J

J∑

j=1

µ̂j (5)

This process is repeated for Dc
m and for m = 1, . . . ,M . Each of the M split

yields a pair (n2
n1
µ̂J ,

n2
n1
µ̂cJ ) which can be denote as (µ̂m, µ̂

c
m).

The generalization error n1µ is estimated using n2
n1
µ̂J and its variance is esti-

mated using:

n2
n1
σ̂2
J =

1

2M

M∑

m=1

(µ̂m − µ̂cm)2. (6)

Since n2
n1
µ̂J is the mean of Jn2 loss L(j, i), its distribution can be approxi-

mated by the normal distribution:

n2
n1
µ̂J −n1 µ√
n2
n1 σ̂

2
J

. (7)

Using this assumption we can perform inference about the performance of
boosting algorithms using confidence interval. A confidence interval for n1µ
at confidence level 1− α has the following form:

n1µ ∈ [n2
n1
µ̂J − c

√
n2
n1 σ̂

2
J , n2

n1
µ̂J + c

√
n2
n1 σ̂

2
J ] (8)

where c is a percentile from N(0,1) distribution.

4 Results

For each pair of algorithms and for each dataset we construct a confidence
interval at confidence level 95%. If this interval includes zero, we conclude
that both algorithms have comparable performance. Confidence interval are
presented in table 3. Algorithms producing the same error rate are omitted.
The important observations for this empirical comparison are:

• For 3 data sets: Pima, Heart and Australian, Arc-x(h) outputs the same
test error in all iterations and for different values of the parameter h.
When compared to Adaboost, the confidence interval is:

– [−0.1197, 0.0371] for the Australian data and [−0.0689, 0.1775] for
the heart data. For these 2 data sets, we conclude that all algorithms
have comparable performance.

– [−0.0365,−0.0073] for Pima data. Adaboost performs slightly better
that Arc-x(h) algorithms
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data sets algorithms compared confidence intervals

Australian Arc-x(h) - Adaboost,h ∈ {4, 5, 6, 8, 12} [-0.1197, 0.0371]

Heart Arc-x(h) - Adaboost, h ∈ {4, 5, 6, 8, 12} [-0.0688, 0.1775]

Pima (diabetes) Arc-x(h) - Adaboost, h ∈ {4, 5, 6, 8, 12} [-0.0365, -0.0073]

Puba (liver disorder) Arc-x(h)- Arc-x4, h ∈ {5, 6, 8, 12} [-0.0440, 0.0990]
Arc-x4 - Adaboost [-0.0976, 0.0214]

Arc-x(h) - Adaboost [-0.0227, 0.0014]

Table 3. Confidence intervals for difference of generalization error for different
Arcing Algorithms

• For Bupa data, Arc-x(h) outputs the same test error in all iterations for
h = 5, 6, 8 and12. Arc-x4 outputs a slightly lower test error. This differ-
ence is not significant because the confidence interval at 95% confidence
level is [−0.044, 0.099]. Adaboost has a comparable performance to the
different arc-x(h) algorithm: the confidence interval when compared to
Arc-x4 is [-0.0976, 0.0214] and [-0.0227, 0.0014] when compared to the
other Arc-x(h) algorithms.

5 conclusion

This empirical study is an extension to Breiman’s study [Breiman, 1998] of
the family of Arcing algorithms. Different values of the parameter h used by
Arc-x(h) algorithm in the weight updating rule are tested and compared to
Adaboost in the reweighting framework. The approach proposed by [Nadeau
and Bengio, 2003] is adopted: performance measures take into account vari-
ability due to the training sets and test sets and comparisons are made using
confidence intervals.
Based on this empirical study, increasing the factor h used by Arc-x(h) in
the weight updating rule does not improve performance. Arc-x(h) performs
equally as Adaboost for different values of h. Adaboost performs slightly
better for only one data set.
Comparable performance is obtained using two different methods for com-
bining classifiers. This agree with Breiman’s claim that the error reduction
is due to the weight updating rule.
The size of the data sets used in this empirical study is moderate. The frame-
work proposed by [Nadeau and Bengio, 2003] uses small fractions of these
data sets as training and test sets. Also the process generates many training
data then averages the performance. This can explain the comparable per-
formance of the different boosting algorithm considered. It will be interesting
to test these algorithms on large data sets where large training and test sets
can be generated.
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fonctions trapézöıdales croissantes

Florence Dupuis1,2 and Alain Hillion1

1 GET - ENST Bretagne
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Abstract. Nous présentons ici une méthode nouvelle de détermination des fonc-
tions d’appartenance floue appliquée au cas des fonctions trapézöıdales croissantes.
Pour l’estimation, nous considérons un modèle statistique reposant essentiellement
sur la notion de processus cohérent. Nous donnons par cette méthode des es-
timateurs, ponctuels et par région de confiance, des paramètres d’une fonction
d’appartenance trapézöıdale croissante. Les résultats obtenus sont illustrés par des
simulations.
Keywords: Fonction d’appartenance floue, Processus ”expert” cohérent, Estima-
tion ponctuelle, Estimation par région de confiance.

1 Introduction

En logique floue, la description d’un ensemble flou réel A passe par la
connaissance de sa fonction A(x). Notre but est d’estimer des fonctions
d’appartenance de type trapézöıdal croissant à partir d’informations concer-
nant des points de l’ensemble R, appelés points de contrôle. Dans le domaine
de la reconstruction de fonction d’appartenance flou à partir d’observations,
les méthodes principalement utilisées relèvent de l’analyse numérique ou de
méthodes probabilistes [Shen et al., 2000]; [Tamaki et al., 1998]; [Cheng and
Chen, 1997]; [Civanlar and Trussell, 1986]; [Devi and Sarma, 1985]. Nous
utilisons ici une méthode statistique nouvelle présentée dans [Dupuis and
Hillion, 2004].
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2 Processus cohérent

On considère A un sous ensemble flou de R. Pour l’étude nous interrogeons
des experts sur un ensemble fini ordonné de points X = {x1, . . . , xn/∀i, 1 ≤
i ≤ n, xi ∈ R, x1 < x2 < . . . xn}. Les xi représentent les points de contrôle
dont l’expert pense qu’ils appartiennent totalement ou pas du tout à A.
Pour tout x ∈ R, on note X(x) la réponse binaire à cette question.

Définition 1 On définit le processus cohérent {X(x)} associé à l’ensemble
flou A par (cf [Dupuis and Hillion, 2004]) un processus ”expert” {X(x)}x∈X

discret à valeurs dans {0, 1}, auquel on impose pour tout x,

• E[X(x)] = A(x).
• Si X(x) = 1, alors pour tout y tel que A(y) ≥ A(x), X(y) = 1.

• Si X(x) = 0, alors pour tout y tel que A(y) ≤ A(x), X(y) = 0.

Dans le cas où la fonction d’appartenance est croissante, le processus cohérent
associé sera nécessairement croissant. On peut alors calculer la loi de la
variable aléatoire X(x(n)) = (X(x1), X(x2), . . . , X(xn)) à valeurs dans Ω =

∪0≤k≤n
(
{0}k × {1}n−k

)
. On définit les éléments de Ω par une suite α(n) =

(α1, α2, . . . , αn) où pour tout i, 1 ≤ i ≤ n, αi = 0 ou 1, est la valeur réponse
à la question: ”xi appartient-il à l’ensemble flou A?” (par convention on pose
α0 = 0 et αn+1 = 1 avec x0 = −∞ et xn+1 = +∞, la fonction A(x) n’étant
pas constante). On constate que seul l’instant de saut (Fig.1) du processus
”expert” intervient dans l’expression de la probabilité.

-

6

x1 x2 x3 xZ−1

xZ xn

X(x)

x

1

0

Fig. 1. Exemple de trajectoire ”expert”. On visualise l’instant de saut ”Z”.

Théorème 1 Soit Z = inf1≤i≤n+1{i/X(xi) = 1}, ∀α(n) ∈ Ω, si r(α) =
inf1≤i≤n+1{i/αi = 1},

P[X(x(n)) = α(n)] = (A(xr(α))−A(xr(α)−1)) = P[Z = r(α)]. (1)

Démonstration.La suite {A(xi)}1≤i≤n est croissante et par définition du
processus cohérent la suite {X(xi)}1≤i≤n est également croissante. Soit Z =
inf1≤i≤n+1{i/X(xi) = 1}. Par définition de l’inf, pour tout ∀k, 1 ≤ k ≤ n+1,
{Z = k} = {0 = . . . = X(xk−1), X(xk) = . . . = 1}. Donc, ∀α(n) ∈ {0, 1}n,
si r(α) = inf1≤i≤n+1{i/αi = 1}, P[X(x(n)) = α(n)] = P[Z = r(α)]1lα(n)∈Ω.
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Puis d’après la définition du processus cohérent, et étant donné que X(x(n))
est une suite croissante, on a la relation suivante pour tout k, 1 ≤ k ≤ n+ 1,

P[X(x0) = 0, . . . , X(xk−1) = 0, X(xk) = 1, . . . , X(xn+1) = 1]

= P[X(xk−1) = 0, X(xk) = 1]

= A(xk)−A(xk−1).

3 Estimation des paramètres

Une fonction de type trapézöıdale croissante (Fig.2) est entièrement définie
par la donnée du paramètre θ = (θ1, θ2) ∈ R2 avec θ1 < θ2, tel que

-

6

θ1

θ2
A(x)

x

1

0

Fig. 2. Graphe d’une fonction trapézöıdale croissante.

Si x ≤ θ1 Aθ(x) = 0,

Si θ1 < x ≤ θ2 Aθ(x) =
x− θ1
θ2 − θ1

, (2)

Si θ2 < x Aθ(x) = 1.

On se propose d’estimer θ1 et θ2 à partir d’un m échantillon X1, X2, . . . , Xm

du processus ”expert”, m ≥ 2. Si pour tout i, 1 ≤ i ≤ m, Zi est le saut as-
socié au processusXi, on note Z ′

1, Z
′
2, . . . , Z

′
m ces instants de saut réordonnés,

i.e tels que min1≤j≤m(Zj) = Z ′
1 ≤ Z ′

2 ≤ . . . ≤ Z ′
m = sup1≤j≤m(Zj) ,

∀(αj(n))1≤j≤m ∈ Ωm, on déduit du théorème 1 l’expression de la vraisem-
blance Lθ(α1(n), α2(n), . . . , αm(n))

Pθ[Z
′
1 = r(α′

1)]Pθ[Z
′
m = r(α′

m)]

(θ2 − θ1)m−2

m−1∏

j=2

(xr(α′
j) − xr(α′

j)−1) (3)

pour θ1 < xr(α′
2) ≤ xr(α′

m−1)−1 < θ2, où les α′
1(n), α

′
2(n), . . . , α

′
m(n) sont les

α1(n), α2(n), . . . , αm(n) réordonnés tels que r(α′
1) ≤ r(α′

2) ≤ . . . ≤ r(α′
m).

Proposition 1 Le paramètre θ = (θ1, θ2) est identifiable si et seulement s’il
y a plus de deux points de contrôle compris entre θ1 et θ2.
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En effet, si on note FAθ
la loi du n uple X(x(n)) où X est un processus

cohérent de A paramétrée par θ. Soient θ = (θ1, θ2) et ϕ = (ϕ1, ϕ2) ∈ R2,
FAθ

= FAϕ ⇐⇒ ∀k, 1 ≤ k ≤ n, Aθ(xk) = Aϕ(xk).

i ) Si il y a moins d’un point de contrôle entre θ1 et θ2 alors on peut trouver
plusieurs fonctions trapézöıdales croissantes ayant les mêmes valeurs aux
points de contrôle.

ii ) Si il y a plus de deux points de contrôle compris entre θ1 et θ2 : ∃J tels
que xJ−1 ≤ θ1 < xJ < xJ+1 < θ2.

De plus,

{
Aθ(xJ ) = Aϕ(xJ )

Aθ(xJ+1) = Aϕ(xJ+1)
est un système de Cramer (θ2 6= θ1,

xJ+1 6= xJ ) de solution unique ϕ1 = θ1, ϕ2 = θ2.

Proposition 2 La statistique (min1≤j≤m(Zj), sup1≤j≤m(Zj)) est exhaus-
tive minimale complète.

D’après (3) et le théorème de factorisation, (Z ′
1, Z

′
m) est exhaustive. Soit

h une fonction définie sur H = {(x, y) ∈ N2, x < y} telle que, pour tout
θ = (θ1, θ2) ∈ R2, θ1 < θ2, Eθ[h(Z

′
1, Z

′
m)] = 0. On montre par récurrence

sur n que ∀n ∈ N∗, ∀k ∈ N, h(k, k + n) = 0. On en déduit que (Z ′
1, Z

′
m) est

exhaustive, complète donc minimale.

On définit les indices J et M des points de contrôle encadrant les
paramètres, par xJ−1 ≤ θ1 < xJ et xM−1 < θ2 ≤ xM .

Proposition 3 L’estimateur du maximum de vraisemblance(
θ̂
(m)
1 , θ̂

(m)
2

)
=
(

min
1≤j≤m (xZj−1),

max
1≤i≤m (xZj )) converge p.s vers (xJ−1, xM ) .

Pour maximiser la vraisemblance (3), on étudie la quantité
Pθ[Z′

1=r(α′
1)]Pθ[Z′

m=r(α′
m)]

(θ2−θ1)m−2 =
ϕ(θ1,θ2,xr(α′

1),xr(α′
m))

(θ2−θ1)m où ϕ(θ1, θ2, xr(α′
1)
, xr(α′

m))
vaut




(
xr(α′

1)
− xr(α′

1)−1

) (
xr(α′

m) − xr(α′
m)−1

)
si

{
θ1 < xr(α′

1)−1 < xr(α′
1)

xr(α′
m)−1 < xr(α′

m) < θ2

(
xr(α′

1)
− θ1

) (
xr(α′

m) − xr(α′
m)−1

)
si

{
xr(α′

1)−1 ≤ θ1 < xr(α′
1)

xr(α′
m)−1 < xr(α′

m) < θ2

(
xr(α′

1)
− xr(α′

1)−1

) (
θ2 − xr(α′

m)−1

)
si

{
θ1 < xr(α′

1)−1 < xr(α′
1)

xr(α′
m)−1 < θ2 ≤ xr(α′

m)

(
xr(α′

1)
− θ1

) (
θ2 − xr(α′

m)−1

)
si

{
xr(α′

1)−1 ≤ θ1 < xr(α′
1)

xr(α′
m)−1 < θ2 ≤ xr(α′

m)

.

Cette quantité est maximum sur le bord de l’ensemble de définition, i.e si et
seulement si θ1 = xr(α′

1)−1 et θ2 = xr(α′
m).
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La convergence presque sûre de
(
θ̂
(m)
1 , θ̂

(m)
2

)
vers les extrémités du support

de la fonction de répartition de Z est assurée par les théorèmes de conver-
gence des valeurs extrêmes [Embrechts et al., 1997].

Dans le cas où le pas varie avec la taille de l’échantillon, on peut
obtenir un résultat plus précis :

Théorème 1 Sous l’hypothèse pm = o( 1
m ), où pm est le pas entre deux points

de contrôle,

m

(
θ̂
(m)
1 − θ1
θ2 − θ1

,
θ2 − θ̂(m)

2

θ2 − θ1

)
converge en loi vers (T1, T2), (4)

où T1 et T2 sont deux variables aléatoires indépendantes de même loi expo-
nentielle de paramètre 1.

Démonstration.Comme dans la théorie asymptotique des variables

extrêmes connue dans [Galambos, 1978], les estimateurs θ̂
(m)
1 et θ̂

(m)
2 sont

asymptotiquement indépendants. D’autre part, si on note Ent la partie

entière, pour tout t, y ∈ R, FZ
(
t+ y

m

)
= Pθ

[
Z ≤ pmEnt

[
t
pm

+ y
mpm

]]
.

En conséquence, avec l’hypothèse pm = o( 1
m ), pour tout y1 ∈ R,

(
1− FZ

(
θ1 + y1

m

))m −→
m→+∞ 1 −

(
1− e−

y1
θ2−θ1

)
, d’où le résultat de conver-

gence.

Corollaire 1 On note, ∀α ∈ [0, 1], kα = − ln(1−
√

1− α). Sous l’hypothèse
du théoème 1, on en déduit l’intervalle de confiance asymptotiquement min-
imum en volume, de seuil de confiance 1− α, pour (θ1, θ2) :
[
θ̂
(m)
1 − 1

m
(θ̂

(m)
2 − θ̂(m)

1 )kα, θ̂
(m)
1

]
×
[
θ̂
(m)
2 , θ̂

(m)
2 +

1

m
(θ̂

(m)
2 − θ̂(m)

1 )kα

]
(5)

Démonstration.
Soit Ĉm =

[
θ̂
(m)
1 − 1

m (θ̂
(m)
2 − θ̂(m)

1 )k, θ̂
(m)
1

]
×
[
θ̂
(m)
2 , θ̂

(m)
2 + 1

m (θ̂
(m)
2 − θ̂(m)

1 )k′
]

tel que Pθ

[
(θ1, θ2) ∈ Ĉm

]
≥ 1 − α. On définit C par Pθ[(θ1, θ2) ∈ Ĉm] =

Pθ

[
m

(
θ̂
(m)
1 −θ1
θ2−θ1 ,

θ2−θ̂(m)
2

θ2−θ1

)
∈ C

]
. D’après le théorème 1, on obtient la con-

vergence Pθ[(θ1, θ2) ∈ Ĉm] −→
m→+∞ P [(T1, T2) ∈ C]. Le minimum du volume

de Ĉm, i.e kk′ n’est pas atteint dans le domaine (1− e−k)(1− e−k′) > 1−α.
Sur le bord du domaine, la méthode des multiplicateurs de Lagrange donne
comme condition k = k′ avec k tel que Pθ[(θ1, θ2) ∈ Ĉm] = 1 − α, d’où le
résultat.

Remarque 1 Si le contrôle était continu, on aurait T = inf{x ∈ R/X(x) 6=
X(0)} le saut ”continu”. Les variables Z et T sont liées par les relations suiv-
antes : xZ−1 < T ≤ xZ et ∀i, 1 ≤ i ≤ n+1, Pθ [Z = i] = Pθ [xi−1 < T ≤ xi] .
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De plus, pour x > 0, Pθ [T > x] = Pθ [X(x) = 0] = 1−A(x) et Pθ [T ≤ x] =
Pθ [X(x) = 1] = A(x).

Dans le cas particulier où A est trapézöıdale croissante, T est une vari-
able aléatoire de loi uniforme sur [θ1, θ2], T ∼ U ([θ1, θ2]). Dans le cadre
statistique d’un m échantillon, l’estimateur du maximum de vraisemblance(
θ̂
(m)
1 , θ̂

(m)
2

)
=
(

inf
1≤j≤m (Tj),

sup
1≤i≤m (Tj)) ( cf. [Johnson and Kotz, 1970])

correspond à la version asymptotique (quand le pas tend vers 0) du cas dis-
cret. De plus, d’après la théorie des variables extrêmes, on retrouve la con-

vergence presque sûre de
(
θ̂
(m)
1 , θ̂

(m)
2

)
vers (θ1, θ2) et on a la convergence (4)

du théorème 1 (cf. [Galambos, 1978]).

4 Simulations

Pour simuler le processus, il est nécessaire d’en connaitre certaines propriétés:

Proposition 4 Le processus cohérent associé à une fonction d’appartenance
croissante, est un processus de markov (en général non homogène).

En effet, d’aprés la définition 1 du processus cohérent, ∀i, 1 ≤ i ≤ n +
1, P[X(xi+1) = αi+1/X(xi) = αi, . . . , X(x0) = α0] = P[X(xi+1) =
αi+1/X(xi) = αi]. D’autre part, P[X(x1) = α1] = A(x1)1 lα1=1 + (1 −
A(x1))1lα1=0 et pour tout i, si P[X(xi) = αi] 6= 0, on a

P[X(xi+1) = αi+1/X(xi) = αi] =





1 si αi = αi+1 = 1
1−A(xi+1)
1−A(xi)

si αi = αi+1 = 0
A(xi+1)−A(xi)

1−A(xi)
si αi < αi+1

Toutes les simulations suivantes seront effectuées avec comme paramètre
θ = (4, 6). Les graphiques présentent pour chaque simulation l’histogramme
des sauts puis la fonction d’appartenance réelle, la fonction d’appartenance
estimée et sous l’hypothèse du pas petit (cf théorème 1), une région de con-
fiance à 95%, pour l’estimation de la fonction d’appartenance.
Dans le cas où le pas n’est pas négligeable devant l’inverse du nombre
d’observations, par exemple pour m=50 et n=10 (fig. 3), on obtient(
θ̂
(m)
1 , θ̂

(m)
2

)
= (3.6, 6.2).

Sous l’hypothèse du pas petit et pour un intervalle de points de contrôle
fixé, si m est le nombre d’”experts” interrogés, on suppose pour les simu-
lations suivantes que pm = 1

m2 . On présente les simulations pour un nom-
bre d’observations petit m = 5 (fig. 4, pm ' 0.04 et le nombre de points

de contrôle n ' 180), on a
(
θ̂
(m)
1 , θ̂

(m)
2

)
= (4.3, 5.6). Pour un nombre

d’observations plus élevé m = 20, (pm ' 0.0025 et n ' 2800), on obtient(
θ̂
(m)
1 , θ̂

(m)
2

)
= (4, 5.9).
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Fig. 3. Exemples de simulation pour n=10, m=50.
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Fig. 4. Simulation sous l’hypothèse du théorème 1, cas m=5.
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5 Conclusion

Dans cet article nous avons proposé une estimation des paramètres d’une
fonction d’appartenance trapézöıdale croissante. Cette estimation repose
sur la méthode du maximum de vraisemblance; la convergence des esti-
mateurs et la loi limite permettent de définir un intervalle de confiance.
Des généralisations sont en cours dans plusieurs directions : d’une part
nous étendons cette méthode aux fonctions d’appartenance trapézöıdales
quelconques, d’autre part nous comparons les résultats d’estimation des
paramètres à ceux obtenus par la méthode des moments, enfin nous procédons
à l’estimation directe de la fonction d’appartenance par minimisation d’une
fonction de coût fondée sur des distances entre ensembles flous.
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Abstract. Many academic and industrial platforms rely on a statistically sound
and robust qualitative (classification) and quantitative (regression) analysis of the
data of interest. Recently, Support Vector Machines (SVMs) have emerged as a
powerful multivariate modeling technique for classification as well as regression
purposes. However, due to the explicit flexibility of the SVM, some vital model pa-
rameters need to be selected, which affect the resulting model performance. There-
fore, those parameter settings need to be optimized to achieve a good generalization
performance. This research focuses on the development of a fast, robust and fully
automated method to obtain the optimal parameter settings (that is, kernel type,
kernel parameter, the so-called ε-insensitive margin and a penalty weight) in case of
SVM regression. The optimization of the parameters will be accomplished through
the use of Genetic Algorithms (global optimization) in combination with a Simplex
optimization (refined local optimization). Preliminary bench-marks on well-known
data sets indicate that the optimized SVM outperforms all other methods applied
to these data sets. For example, the SVM optimization approach has improved the
model performance by approximately 50% on a well-known data set by comparison
with the commonly used SVM grid search optimization.
Keywords: SVM.
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Abstract. Suppose we have a posterior density for a parameter given a sample and
we form a second posterior density for the same parameter, based on a different
model and a different data set. Then we can evaluate the relative entropy distance
between the two posteriors. Minimizing the relative entropy over the second sample
gives the virtual sample that would make the second posterior as close as possible
to the first in an inferential sense. For instance, if the first posterior is based on a
dependent dataset and the second posterior is based on an independence likelihood,
the optimization transfers the effective inferential power of the dependent sample
into the independent sample. We present further examples of this type of opti-
mization for models with nuisance parameters, finite mixture models and models
for correlated data. Finally, we use our approach to choose the effective parameter
size in a Bayesian hierarchical model.
Keywords: Bayesian hierarchical model.
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Abstract. In this paper, we address the problem of evaluating goodness-of-fit
indices in structural equation modeling when corrupted data are considered.
Starting from the introduction of a new method, called MC-SGR, we evaluate the
sensitivity of four different fit indices (two absolute fit-indices: GFI and AGFI,
and two incremental fit-indices: CFI and NNFI) to structured perturbations.

Keywords: Sample Generation by Replacements, Monte Carlo simulations,
Goodness-of-fit indices.

1 Introduction

The issue of perturbations in real or simulated data has been substantially
neglected in evaluating the adequacy of fit indices used to test covariance
structure modeling. Nevertheless, it is certainly legitimate to wonder whether
fit indices are reliably sensitive to data corruption. In particular, we would
expect that a good index should approach its maximum under correct model
specification and uncorrupted data, but also degrade substantially under mas-
sive data perturbation. In this paper we provide a possible methodological
solution to the problem of evaluating the sensitivity of fit indices in structural
equation modeling when perturbed data are considered. In particular, in our
study the sensitivity of four different fit indices (two absolute fit-indices: GFI
and AGFI, and two incremental fit-indices: CFI and NNFI) to perturbed data
is examined in three different factorial models. The sensitivity evaluation is
carried out by means of a new integrated approach which combines standard
Monte Carlo (MC) simulations and a recent data generating procedure called
Sample Generation by Replacements (SGR, [Lombardi et al., 2004]).

The paper is organized as follows. Section 2 outlines the integrated MC-
SGR approach. Section 3 describes the simulation study for evaluating the
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goodness-of-fit indices under perturbed data scenarios. In Section 4 we dis-
cuss results of the simulation study. Finally, Section 5 reports some conclud-
ing remarks.

2 Integrated approach: MC + SGR

In this section we describe how to integrate the SGR procedure with MC
simulations in order to evaluate the sensitivity of fit-indices in structured
scenarios of data perturbation.

2.1 Generating data replacements: the SGR method

We think of the full dataset as being represented by an n×m matrix D (that
is, n observations, each containing m elements), of which a certain portion
Dc is actually represented by corrupted-data (corruption due to possibly
fake data points in D). The corrupted-portion Dc of D together with the
uncorrupted portion Du of D, constitutes the full data set, that is to say D =
Dc∪Du. The general idea is the following: under the assumption of % ≤ n×m
corrupted data points in D, we replace some portions D1, . . . ,Ds of D, each of
which contains exactly % elements, with new components Xr

1, . . . ,X
r
s in such

a way that for all h = 1, . . . , s, all the corresponding elements in Xr
h and Dh

are different. The exact uncorrupted portion Du is assumed to be unknown
and only the value of % is supposed to be known. Moreover, all entries in D
are also assumed to be equally likely in the process of replacements. In the
SGR approach the final step consists in analyzing the complete new datasets
X1, . . . ,Xs (with Xh = Xr

h ∪Du
h; h = 1, . . . , s).

2.2 Extended MC simulations

Usually, in a Monte Carlo experiment, a hypothesized model is used to gen-
erate new data under various conditions. Therefore, the simulated data are
used to evaluate some characteristics of the model. This, of course, implies
that the distribution of the random component in the assumed model must
be known, and it must be possible to generate pseudorandom samples from
that distribution under the desired conditions planned by the researcher. In
order to evaluate the impact of perturbed data on fit-indices we ought to
generate for each MC simulated data Dk (k = 1, . . . , t) a family R(Dk, %)
of SGR perturbed data matrices with exactly % replacements. Therefore, we
may think of each new perturbed data X ∈ R(Dk, %) as an alternative “in-
formative scenario” which is directly derived from the original simulated MC
sample Dk. Next, the behavior of a target fit-index can be evaluated with
respect to the perturbed samples. In this case, of course, the distributional
properties of the fit-index are not those that simply hold under a particular
model hypothesis (like for standard Monte Carlo simulation studies); rather
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they are the properties under a model whose parameters corresponds to val-
ues fitted from both the MC generating process and the structured collection
of perturbed samples that are generated from the given MC data sets.

3 Simulation study

In this simulation study, four fit-indices were examined with respect to struc-
tured perturbation of data. Of the four indices, two were absolute fit-indices
(Goodness of Fit Index, GFI, and Adjusted Goodness of Fit Index, AGFI
[Jöreskog and Sörbom, 1994]), and two incremental fit-indices (Comparative
Fit Index, CFI [Bentler, 1990], and Nonnormed Fit Index, NNFI [Bentler and
Bonnett, 1980] or TLI [Tucker and Lewis, 1973]). In this evaluation, three
different types of target models were involved.

3.1 Target Models

We selected three target models that [Paxton et al., 2001] considered were
commonly encountered in applied research (see Figures 1, and 2). The first
model, Model 1, contained nine measured variables and three latent factors.
Each variable loaded on a single factor. Further, Factor 2 was regressed on
Factor 1, and Factor 3 was regressed on Factor 2. The second model, Model
2, had the same basic structure as Model 1 but contained 15 measured vari-
ables, with five indicators per factor. Finally, Model 3 contained 13 measured
variables with the same measurement structure as Model 1 (three indicators
per factor) but added four observed exogenous variables. Factor 1 depended
on all four correlated exogenous variables.

Parameter values were chosen on the basis of effect size (R2 values) and
statistical significance. For Model 1, the primary factor loadings were set
to a standardized value of .70 (with R2 = .49). The regression parameters
among the latent factors were set to a standardized value of .60 (R2 = .36).
For Model 2, all the values were exactly the same as those of Model 1 except
for the addition of two measured variables per factor. Finally, for Model
3, we included four exogenous variables. The primary factor loadings were
set to .87, .82 and .72 for the first, the second and the third latent factor,
respectively.

3.2 Simulation design

The following procedural steps were repeated for each target model Mj (j =
1, 2, 3).

i ) According to Mj , 1000 raw-data sets Dj
k with n = 50 observations were

generated. Next, each Dj
k (k = 1, . . . , 1000) was discretized on a 5-point

scale using the method described by [Jöreskog and Sörbom, 1996].
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Fig. 1. Model [1]: nine observed variables and three factors. Model [2]: 15 observed
variables and three factors.
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Fig. 2. Model [3]: 13 observed variables (four exogenous and nine endogenous) and
three factors.
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ii ) For each discretized matrix Dj
k we computed its polychoric correlation

matrix and, subsequently, used this correlation matrix as input for Mj .
iii ) Then the one hundred best fitting discretized matrix were selected by

applying the following criteria: Chi-square not significant, Standard-
ized Root-Mean-Square Residual (SRMR) < .09, Comparative Fit index
(CFI) > .96, Nonnormed Fit Index (NNFI) > .95 [Hu and Bentler, 1999].

iv ) For each best fitting data Bj
h (h = 1, . . . , 100) we generated a family

R(Bj
h, %) of 50 SGR perturbed data matrices with exactly % replacements.

The exact number % of replacements varied as a factor with 10 different
levels l = 1, 2, . . . , 10. Each level l denoted the proportion (l × 10)/100
of replacements with respect to the size of the data set.

v ) Each perturbed data matrix X ∈ R(Bj
h, %) was subjected to model Mj

and the four fit-indices were finally evaluated. The whole procedure gen-
erated a total of 50000 new perturbed data matrices X for each target
model.

4 Results

Table 1 reports the percentage of Converging Solutions (CS) and Acceptable
Solutions (AS) as a function of percentage of replacements for the three
considered models1. As expected, the percentage of CS decreased with larger
percentage of replaced elements. A similar pattern was also observed for AS.

Percentage of Replacements
model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 92.40 62.82 28.54 12.16 7.44 6.68 7.00 6.52 6.46 6.80
2 99.68 89.76 50.38 15.24 6.14 3.20 3.52 3.86 3.08 2.72 CS
3 79.44 52.42 24.94 7.58 2.50 1.92 1.68 1.62 1.56 1.76

1 85.50 47.46 15.04 4.02 1.76 1.40 1.38 1.26 1.14 1.50
2 99.36 83.18 39.20 9.88 3.06 1.58 1.60 1.98 1.38 1.34 AS
3 79.44 52.42 24.94 7.58 2.50 1.92 1.68 1.62 1.56 1.76

Table 1. Percentage of Converging Solutions (CS) (resp. Acceptable Solutions
(AS)) as a function of percentage of replacements.

Figure 3 shows the means of GFI and AGFI for the three models. Seg-
ments represent standard deviations2. Dashed lines represent the cutoff op-
timal value (.95). Although both indices were constantly less than .95, the
GFI (resp. AGFI) mean appeared not to be affected from increasing levels of
replacements. Furthermore, very surprisingly, the means of GFI and AGFI
increased with larger percentage of replaced elements.

1 All our analysis were based on the Maximum Likelihood estimation algorithm.
2 For the evaluation of the fit-indices we considered only AS.
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Fig. 3. Means of GFI and AGFI as a function of percentage of replacements. Seg-
ments represent standard deviations.
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Fig. 4. Means of Comparative Fit Index (CFI) as a function of percentage of re-
placements. Segments represent standard deviations.
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Figure 4 shows the means of CFI as a function of percentage of replace-
ments for the three models. The dashed line indicates the cutoff optimal value
(.96). By increasing the percentage of replacements, CFI means decreased
and, in general, variability increased. The pattern associated to Model 1
showed that this model was less sensitive to replacements than both Model
3 and Model 2, the latter being the most sensitive to percentage of replace-
ments. Notice that the same patterns were shown also by GFI and AGFI.
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Fig. 5. Distributions of Nonnormed Fit Index (NNFI) as a function of percentage
of replacement.

Finally, Figure 5 depicts the distributions of Nonnormed Fit Index (NNFI)
for the three models. Remember that a model is a good one, when NNFI
ranges between .95 and 1. Unlike both GFI and AGFI, NNFI was very
sensitive to increasing levels of replacements. This observation is supported
by the fact that a very large proportion of values fell outside the acceptable
range [.95-1].
Table 2 reports the proportion of NNFI values within the range [.95-1]. We
may notice a strong relationship between replacements and NNFI values. For
example, in Model 1, we observed less than 10% of acceptable NNFI values,
when 20% of replacements were considered.

5 Concluding remarks

A dominance relation can be read from Figures 3 and 4 as follows M2 �
M3 � M1, where X � Y denotes that X is more sensitive to perturbations
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Percentage of Replacements
model 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

1 14.85 8.72 3.72 2.99 3.41 0.00 0.00 1.59 7.02 4.00
2 6.96 1.64 0.71 0.61 0.65 0.00 1.25 0.00 0.00 0.00
3 4.41 2.56 1.20 0.53 0.80 1.04 1.19 1.23 0.00 0.00

Table 2. Percentage of NNFI in the range [.95-1] as a function of percentage of
replacements.

than Y . Overall our results suggested that the performance of the models
were sensitive to perturbed data sets. This effect was stronger in the second
model as it showed a clear replacement effect. In general, we recommend
to choose more sensitive criteria (like NNFI) in order to better evaluate the
effect in the model of eventual fake data.

Future applications of this methodology may be used in evaluating the
robustness of goodness-of-fit criteria in empirical data set. However, more
reasonable replacement scenarios based on external knowledge about pro-
cess corruption should limit the upper bound of replacements. For example,
in a personnel selection context the maximal number of fake answers in a
personality questionnaire could be limited to 30%.

References

[Bentler and Bonnett, 1980]P.M. Bentler and D.G. Bonnett. Significance tests and
goodness of fit in the analysis of covariance structures. Psychological Bulletin,
pages 588–606, 1980.

[Bentler, 1990]P.M. Bentler. Comparative fit indexes in structural models. Psycho-
logical Bulletin, pages 238–246, 1990.

[Hu and Bentler, 1999]L. Hu and P.M. Bentler. Cutoff criteria for fit indexes in
covariance structure analysis: Conventional criteria versus new alternatives.
Structural Equation Modeling, pages 1–55, 1999.
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Abstract. Possible application of a new procedure suitable of binary factorization
of signals of large dimension and complexity is discussed. The new procedure is
based on the search of attractors in Hoppfield-like associative memory. Starting
from random initial state, network activity stabilizes in a attractor which corre-
sponds to one of factors (a true attractor) or one of spurious attractors. Separation
of true and spurious attractors is based on calculation of their Lyapunov function.
Being applied to textual data the procedure conducted well and even more it showed
sensitivity to the context in which the words were used.
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1 Introduction

Factor analysis is one of the most efficient method to overcome informational
redundancy of high-dimensional data set. Factors extraction is a procedure
which maps objects from original space variables into the space of factors.
Original signals, factor scores and factor loadings are binary, i.e. possess the
values 0 or 1. To avoid computational problems with data large dimension-
ality we developed a procedure of binary nonlinear factorization based on
the search of attractors in Hoppfield-like associative memory. In this case
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a complex vector signal (pattern) has a form of the Boolean sum of weighted
binary factors:

X =
∨

Slf
l. (1)

It was a challenge for us [Frolov et al., 2004] to utilize for binary factoriza-
tion neural network with parallel dynamics because it has a lot of similarities
with the iterative procedure for linear factorization. But there were some
peculiarities that we have to solve. First, we have to mention that according
our paradigm, the network is learned by signals from original space. During
learning phase attractors are created in the energy landscape corresponding
to true factors or spurious ones. From this the second problem follows that
we have to solve - a procedure development that allows for effective revealing
all the learned factors and separation of spurious ones. At the end, we have
been successful and developed search procedure effective enough for attrac-
tors searching. Starting from random initial state, network activity stabilizes
in some attractor which corresponds to one of true factors or one of spurious
factors. To separate true and spurious attractors we found procedure based
on calculation of their Lyapunov function [Goles-Chacc and Fogelman-Soulie,
1985]. Unlearning of already found factors prevent against their repeated re-
trieval. Some background on this topic can be found in work [Frolov et al.,
2003].

2 Hopfield network

The neural network under consideration consists of N neurons of the McCul-
loch-Pitts type (integrate-and-fire binary neurons) with gradually ranged
synaptic connections between them. Only a fully connected case is considered
here.

Network is trained by a set of M patterns of the form Xm =
L∨
l=1

βml f l,

where f l∈ BNn 1 are L factors (N dimensional vectors) and for every m-th
pattern βml ∈ BLC it is a corresponding factor scores vector. As follows from
the definition every factor contains exactly n = Np ones. Every complex
pattern Xm contains in turn exactly the C factors, so it is quite natural to
call the complexity of the pattern as C. We assumed factors and factor scores
to be statistically independent. In a limit case C = 1 patterns become pure
factors and we obtain an ordinary Hopfield case.

2.1 Learning procedure

The connection matrix J of this network is a covariation matrix of input
signals obtained by using the correlational Hebbian learning rule:

1 BN
n = {X|Xi ∈ {0, 1},

NP
i=1

Xi = n}
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Jij =
M∑

m=1

(Xm
i − qm)(Xm

j − qm), i 6=j, Jii = 0, (2)

where M is the number of patterns in the learning set and qm =
N∑
i=1

Xm
i /N

is the total activity of the m-th pattern.
Its activity is determined by iterative procedure:

Xi(t+ 1) = Θ(hi(t)− T (t)), i = 1, · · ·, N (3)

where Θ - step function, and T (t) - activation threshold. And third, its
activity has following Lyapunov function

Λ(t+ 1) = XT (t+ 1)JX(t). (4)

Activity of Hopfield-like network with parallel dynamics converges not
only to point attractors [Goles-Chacc and Fogelman-Soulie, 1985] but also
to cyclic attractors of the length two.

Theoretical analysis and computer simulation performed by Frolov et
al. [Frolov et al., 2004] completely confirmed the validity of Hopfield-like
network for binary factorization. However, Hopfield-like network has one
principal peculiarity. The network dynamics converges to one of the factors
(true attractor) only when initial state falls inside its attraction basin. Other-
wise it converges to one of the spurious attractors. Thus binary factorization
requires special recall procedure to separate true and spurious attractors.

2.2 Recall procedure

To separate true and spurious attractors we developed two-run recall proce-
dure. Its initialization starts by presentation of random initial pattern Xin

with kin = rinN active neurons. On presentation of Xin, network activity X
evolves to some attractor. The evolution is determined by equation (3). On
each time step kin “winners” (neurons with the greatest synaptic excitation)
are chosen and only they are active on the next time step. When activity
stabilizes at the initial level of activity kin, kin + 1 neurons with maximal
synaptic excitation are chosen for the next iteration step, and network activ-
ity evolves to some attractor at the new level of activity kin + 1. Then level
of activity increases to kin + 2, and so on, until number of active neurons
reaches the final level rfN . Thus, the whole procedure (one trial) contains
(rf − rin)N iteration steps and several time steps inside each iteration step
to reach some attractor for fixed level of activity.

At the end of each iteration step a relative Lyapunov function was calcu-
lated by formula: λ = Λ/(rN) where Λ is given by (??). The relative Lya-
punov function gives a mean synaptic excitation of active neurons. The time
course of the relative Lyapunov function along the recall trajectory provides
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criterion for separation of true and spurious attractors (see later). Attractors
with the highest Lyapunov function would be obviously winners in the most
trials of the recall process. Thus, more and more trials are required to obtain
new attractor with relatively small value of Lyapunov function. To over-
come this problem attractors with high Lyapunov function should be deleted
from the network memory. The deletion was performed according to Heb-
bian unlearning rule by substraction ∆Jij , j 6= i from synaptic connections
Jij where

∆Jij =
η

2
J(X)[(Xi(t− 1)− r)(Xj(t)− r) + (Xj(t− 1)− r)(Xi(t)− r), (5)

J(X) is the average synaptic connection between active neurons of the at-
tractor, X(t− 1) and X(t) are patterns of network activity at last time steps
of iteration process, r is the level of activity, and η is an unlearning rate. For
point attractor X(t) = X(t − 1) and for cyclic attractor X(t − 1) and X(t)
are two states of attractor.

0,0 0,2 0,4 0,6

0,5

1,0

1,5

2,0

 

r

Fig. 1. Relative Lyapunov function λ in dependence on the relative network activity
r for 15 titles of medical articles. Circles are points of breaking which were identified
as indexes of factors.
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3 Computer simulation

We tested our procedure over different examples from literature and text
collections. First, we tested binary factorization over the list of titles of 15
medical articles presented in [Berry and Browne, 1999].

The titles were transformed to binary vectors with 18 component. The
obtained binary codes of the titles were stored in the network of 18 neurons
according to (??). Each trial was initiated by activation of one of 18 neurons.
Thus the total recall procedure includes only 18 trials. Only two factors
were revealed according to the used criterion see Fig.1. The first factor
contains words: blood, close, disease and pressure. The second: fast, rats,
rise and pressure. It is interesting that the words “culture”, “discharge” and
“patients” do not create a factor in spite of the fact that they are included
into two first titles and, hence, one can expect that they should be tightly
connected. However in these titles the word “culture” has different meaning
and its banding with words “discharge” and “patients” is not reasonable.
Thus we can conclude that our method could be sensitive to the context in
which the words are used.

Second we applied our method to the set of 21000 messages of agency
Reuters [Reuters, 2004, Rose et al., 2002] as well. The used vocabulary con-
tained 5000 the most often words in the set (consequently network contained

0,000 0,002 0,004

0

5000

 

r

Fig. 2. Relative Lyapunov function λ in dependence on the relative network activity
r for 21000 messages of agency Reuters. Circles are points of breaking which were
identified as indexes of factors.
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5000 neurons). Each message was transformed to binary code dependently on
presence or absence of words in the message. Each found factor was deleted
from the network memory according to (5) with η = 1. Fig. 2 demonstrates
the first 10 trials which were identified as true. Circles mark the points of
curve breaking. All found factors happened to be reasonable and mirror the
content of the corresponding messages.

Our method combines words in factors not only according to the fre-
quency of their appearance together at the messages but mainly according
to their appearance at the same context. We see that different factors reflect
different contexts of word utilization and different topics of news messages,
while messages with the same topics are connected with the same factors.

Two messages with highlighted words creating factors are shown below,
as an example of the point. These factors may appear in different news mes-
sages. But if in several messages the same factors are revealed, then these
messages should have the same topic. In particular, the topics of messages
from example are Japanese foreign commerce and activity of American ad-
ministration. Evidently, factors reflect mutual meaning of the messages quite
right.

” Message 1

U.S. ASKS JAPAN TO END AGRICULTURE IMPORT CONTROLS
TOKYO, March 3

The U.S. Wants Japan1 to eliminate import controls on agricultural
products within three years, visiting U.S. Under-Secretary of State for
Economic1 Affairs Allen Wallis told2 Eishiro Saito, Chairman of the
Federation of Economic1 Organisations (Keidanren), a spokesman for
Keidanren said. The spokesman quoted Wallis as saying drastic measures
would be needed to stave off protectionist legislation by Congress3

.Wallis, who is attending a sub-cabinet-level bilateral trade1 meeting,
made the remark yesterday in talks with Saito. Wallis was quoted as
saying the Reagan3 Administration3 wants Japanese1 cooperation so
the White House3 can ensure any U.S. Trade bill1 is a moderate one,
rather than containing retaliatory measures or antagonising any particular
country. He was also quoted as saying the U.S. Would be pleased were
Japan1 to halve restrictions on agricultural imports within five years if
the country cannot cope with abolition within three, the spokesman said.
Japan1 currently restricts imports of 22 agricultural products. A ban on rice
imports triggered recent U.S. Complaints about Japan’s1 agricultural policy.
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” Message 2

U.S. COMMERCE SECRETARY QUESTIONS FUJITSU DEAL WA-
SHINGTON, March 3

Commerce Secretary Malcolm Baldrige said he felt a proposed takeover
by Japan’s1 <Fujitsu Ltd> of U.S.-based Fairchild Semiconductor Corp,
a subsidiary of Schlumberger Ltd <SLB>, should be carefully reviewed.
He told2 the Semiconductor Industry Association the deal would soon be
discussed by representatives of several different government3 departments.
The Reagan administration3 has previously expressed concern that the
proposed takeover would make Fujitsu a powerful part of the U.S. market1

for so-called supercomputers at a time when Japan1 has not bought any
American-made supercomputers. In addition, U.S. defense officials3 have
said they were worried semiconductor technology could be transferred out
of the United States, eventually giving Japanese1-made products an edge
in American high-technology markets for defense and other goods. Treasury
Secretary James Baker recently told2 a Senate3 committee the proposed
takeover would be reviewed by the cabinet-level Economic1 Policy Council.

Here terms marked 1 are contained in the first factor, terms marked 2 are
common words - contained in both factors and terms marked 3 are words
contained in the second factor. One can see that factorizations is really
nonlinear as there is nonempty set of common words.

4 Conclusion

In this work we have shown next step in development of Hopfield based neu-
ral network capable of performing binary factorization of the signals of high
dimension and complexity. Advantage of our NN attempt should be possibil-
ity of incremental learning and capability to analyze large multidimensional
data sets. This method is suitable for text collections analysis as shown in ex-
ample. Being applied to textual messages of agency Reuters [Reuters, 2004],
[Rose et al., 2002], result showed not only full applicability of this method but
moreover sensitivity to the context in which the words were used. Therefore
we see big future potential for this application.

Acknowledgement: This work was supported by grant BARRANDE
No. 2005-06-060-1 awarded by the Ministry of Education of the Czech Re-
public, 1ET100300414 and GA CR No. 201/05/0079.
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Abstract. In this paper, we propose an algorithm based on Binary Decision Dia-
gram (BDD) for computing all-terminal reliability. It is defined as the probability
that the nodes in the network can communicate to each other, taking into ac-
count the possible failures of network links. The effectiveness of this approach is
demonstrated by performing experiments on several large networks represented by
stochastic graphs. 1

Keywords: Network reliability, Binary Decision Diagram (BDD), Stochastic
graph.

1 Introduction

A stochastic network is modeled by an undirected graph G = (V,E) where
V is the vertex set and E is the edge set. Sites correspond to vertices and
links to edges. The all-terminal reliability R(G) is the probability that G re-
mains connected assuming all edges can fail independently with known prob-
ability and nodes are perfect. Provan [Provan, 1986] showed that even for
planar graphs this problem is still NP-hard. In literature, two classes of algo-
rithms for computing the network reliability can be distinguished. The first
class deals with the enumeration of all the minimum paths. The inclusion-
exclusion or sum of disjoint products methods have to be applied since this
enumeration provides non-disjoint events. The algorithms in the second class
are factoring algorithms improved by reductions. It consists in reducing the
size of the network while preserving its reliability. When no reduction is
allowed, the factoring method is used. The idea is to choose a component
and decompose the problem into two sub-problems: the first assumes the
component has failed, the second assumes it is functioning. Satyanarayana
and Chang [Satyanarayana and Chang, 1983] and Wood [Wood, 1985] have
shown that the factoring algorithms with reductions are more efficient than
the classical path or cut enumeration method for solving this problem. This
was confirmed by the experimental works of Theologou and Carlier [Theolo-
gou and Carlier, 1991].

1 Acknowledgment: This research was supported by the Conseil Regional de Pi-
cardie.
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This paper is organized as follows. First, we give a brief introduction to BDD
in Section 2. Then, in Section 3 we proposed a description of our method for
computing network reliability. In Section 4, we introduce an other important
reliability measure (Birnbaum importance measure) and its fast computa-
tion via BDD. Next, we present experimental results in Section 5. Finally,
we draw some conclusions and outline the direction of futur works in Section
6.

2 Binary Decision Diagram (BDD)

Akers [Akers, 1978] first introduced BDD for representing boolean function.
Bryant popularized the use of BDD by introducing a set of algorithms for
efficient construction and manipulation of the BDD structure [Bryant, 1992].
Nowadays, BDD are used in a wide range of area, including hardware syn-
thesis and verification, model checking and protocol validation. Their use in
the reliability analysis framework has been introduced by Madre and Coud-
ert [Coudert and Madre, 1992b] [Coudert and Madre, 1992a] and developped
by Rauzy [Rauzy, 1993]. Sekine and Imai were the first to use the BDD
structure in network reliability [Sekine and Imai, 1998]. A BDD is a directed
acyclic graph (DAG) based on Shannon’s decomposition. The Shannon’s
decomposition is defined as follows:

f = xfx=1 + x̄fx=0

where x is one of decision variables and fx=i is the boolean function f eval-
uated at x = i.
The graph has two sink nodes labeled with 0 and 1 representing the two corre-
sponding constant expressions. Each internal node is labeled with a boolean
variable x and has two out-edges called 0-edge and 1-edge. The node linked
by 1-edge represents the boolean expression when x = 1 , i.e fx=1 while the
node linked by 0-edge represents the boolean expression when x = 0, i.e fx=0.
An ordered binary decision diagram (OBDD) is a BDD where variables are
ordered according to a known total ordering and every path visits variables in
an ascending order. Afterwards, BDDs will be considered as ordered. Leaves
of the BDD give the value of f for the assignment corresponding to a path
from the root to the leaf. The size of a BDD structure depends critically on
variable ordering. Finding an ordering that minimizes the size of BDD is also
a NP-complete problem [Friedman and Supowit, 1990].

3 Computing all-terminal reliability

Definitions and notations

A graph G is connected if there exists at least one path between any two
vertices. Our network model is an undirected stochastic graph G = (V,E).
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x1 x2 x3 f

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 0

1 1 1 1

(a)x1

x2

x3

1 0

(b)x3

x2

x1

1 0

Fig. 1. Function f(x1, x2, x3) = (x1 ∧ x3)∨ (x2 ∧ x3) represented by its truth table
and BDDs with order: (a) x1 < x2 < x3 and (b): x3 < x2 < x1. A dashed (solid)
line represents the value 0 (1).

Each edge ei of E (i ∈ {1, 2, . . . ,m} where m = |E|) can fail independently
with known probability qi (pi = 1 − qi is the functioning probability of ei)
and we consider that vertices of G are perfectly reliable. A state G of the
stochastic graph G is denoted by (x1, x2, . . . , xm) where xi stands for the
state of edge ei, i.e, xi = 0 when edge ei fails and xi = 1 when it functions.
The associated probability of G is defined as:

Pr(G) =

m∏

i=1

(xi.pi + (1− xi).qi)

At each state G is associated a partial graph G(G) = (V,E′) such that ei ∈ E′

if and only if ei ∈ E and xi = 1. The all-terminal reliability can be define as
follows:

R(G) =
∑

G(G) is connected

Pr(G)

We denote by G∗e the graph G with contracted edge e and by G−e the graph
G with deleted edge e.

Construction of the all-terminal reliability function

Our algorithm follows three steps:

1 The edges are ordered by using a heuristic.
2 The BDD is generated to encode the network reliability.
3 From this BDD, we obtain the all-terminal reliability.

We apply recursively the factoring algorithm in the order of e1, e2, . . . , em in
a top-down way. The computation process can be represented as a binary
tree such that the root corresponds to the original graph G and children
correspond to graphs obtained by deletion /contraction of edges. Nodes in
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the binary tree correspond to subgraphs of G. We use the method introduced
by Carlier [Carlier and Lucet, 1996] for represententing graph by partition.
It is an efficient way for representing graph and finding isomorphic graphs
during the computation process. By sharing the isomorphic subgraphs an
expansion tree is modified as a rooted acyclic graph (therefore a BDD).

Sharing isomorphic graphs

Consider that Ek = {e1, e1, . . . , ek} and Ēk = {ek+1, . . . , em}. The graphs in
the k-th level of the BDD are sub-graphs of G with the edge set Ēk. For each
level k, we define the boundary set Fk as a vertex set such that each vertex of
Fk is incident to at least one edge in Ek and one edge in Ēk. Then we gather
vertices in blocks according the following rule: two vertices s and t of Fk are
in the same block if and only if there exists a path made of functioning edges
linking s to t. For instance in figure 3(a), in the first level, the boundary
set is equal to {a, b}. G∗e1 can be represented by partition [ab] and G−e1
by partition [a][b]. Now, we order partitions in the same level k in order to
identify and stock them in an efficient way. We number the partition from 1
to Bell(|Fk|) where Bell(|Fk|) (known as the Bell number) is the theoretical
maximum number of partitions in level k. This number grows exponentially
with i, consequently the number of classes grows exponentially with the size
of the boundary set. From now on, we only manipulate partitions instead of
graphs during the all-terminal reliability computation.

a

b

c

d

e1

e2

e4

e5

e3

G = (V, E)

a

b

c

d

e1 e4

e5

e3

G1 =< 1, 0,−1,−1,−1 >

a

b

c

d
e2

e4

e5

e3

G2 =< 0, 1,−1,−1,−1 >

(a) (b)

Fig. 2. G(G1) and G(G2) represent sub-graphs in level 2 in the computation process
illustred in figure 3(a). G(G1) and G(G2) has the same partition: [a][d] during the
computation. ei = −1 means the state of ei is not yet fixed.

All-terminal reliability computation

In the previous section, BDD of the all-terminal reliability function was con-
structed. The BDD can be recognized as a graph-based set of disjoint prod-
ucts. Based on the disjoint property of this structure, we can now easily
compute the all-terminal reliability of G. Given the non-failure probabilty pk
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a

b

c

d

e1

e2

e4

e5

e3

G=(V,E)

F0 = ∅

F1 = {a, b}

F2 = {a, d}

F3 = {a, d}

F4 = {a, c}

[ ]

[ab] [a][b]

[a][d]

[ad] [a][d]

[a][c]

1 0

x1

x2 x2

x3

x4 x4

x5

1 0

(a) (b)

Fig. 3. Graph G and its BDD (b). A dashed (solid) line represents the value 0 (1).
(a) illustrates the computation process of the BDD.

(k ∈ {1, 2, . . . ,m}) of edge ek, the all-terminal reliability of a BDD-based
function f can be recursively obtain by:

R(G) = Pr(f = 1) = Pr(xk.fxk=1 = 1) + Pr(x̄k.fxk=0 = 1) (disjoint property)

R(G) = Pr(f = 1) = pk.P r(fxk=1 = 1) + qk.P r(fxk=0 = 1) (independent property)

The reliability is evaluated by traversing the BDD from the root to the leaves.

4 Importance measure

Finding the critical components is also an important issue for reliability anal-
ysis and the optimization design of network topology. The aim is to obtain
information concerning a component’s contribution to the system reliability.
The three most used importance measures are: Birnbaum, Critically and
Fussell-Vesely. We briefly explain here the Birnbaum importance measure.
The Birnbaum importance measure of a component ek is the probability that
a system is in a critical state with respect to ek and that the failure of com-
ponent ek will then cause the system to fail. Here, the Birnbaum importance
measure of edge ek, noted IBk , is defined as:

IBk = Pr(fxk=1 = 1)− Pr(fxk=0 = 1)

The figure 4 shows the importance measures for the reliability graph G.

5 Experimental results

Computations are done by using Pentium 4 with 512 MB memory. Our
program is written in C language. The experimental results are shown in
Tables 1 and 2. The unit of time is in second. The running time includes the
BDD generation and the all-terminal reliability computation. The heuristic
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Graph G = (V,E)

e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

qk IB
k

0.2849

0.2849

0.1611

0.2285

0.3534

0.1872

0.1497

0.1543

0.2625

0.2625

ek

e1 0.3

e2 0.3

e3 0.3

e4 0.4

e5 0.05

e6 0.4

e7 0.4

e8 0.2

e9 0.3

e10 0.3

ordering: e5,e1,e2,e9,e10,e4,e6 ,e3,e8,e7

Fig. 4. Sensibility analysis of graph G. According to the Birnbaum importance
measure, e5 has the highest degree of contribution to the graph reliability.

used for ordering edges (and so variables in BDD) in the experiments is
known as a breadth-first-search (BFS) ordering. We give two characteristics
of the generated BDD: its size (number of nodes) and its width (if |Wi| is the
number of nodes in the ith level then the bdd width is: maxi |Wi|). |Fmax|
corresponds to the maximal size of the boundary set during the computation
process. The computation speed heavily depends on |Fmax| and so the edge
ordering.

6 Conclusion

A method for evaluating the all-terminal reliability via BDD has been pro-
posed in this paper. Based on this approach, our futur works will focus on
computing other kinds of reliability and reusing the BDD structure in order
to optimize design of network topology.
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type n m time size width |Fmax|
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Abstract. In this note we consider the estimation of the multivariate distribution
function Fp of the p-dimensional marginal of a stationary associated sequence. We
show, under certain regularity conditions, the almost sure consistency and charac-
terize the asymptotic behavior of the MSE . We also characterize the asymptotic
optimal bandwidth. Under some stronger assumptions on the covariance this band-
width rate is shown to be the same as for the independent case.
Keywords: Association, Kernel estimator, Optimal bandwidth, Mean squared
error.

1 Introduction and assumptions

Estimation of distribution functions has been one of the main problems in
statistics. Given a stationary sequence of random variables we will consider
the estimator of it’s p- dimensional marginal distribution function assuming
some kind of positive dependence. The various types of positive dependence
have received some interest in the literature since the early 1990’s. We will
consider associated random variables as introduced in Esary et al (1967). For
the one-dimensional marginal, the estimator has been studied by Roussas
[Roussas, 1993], [Roussas, 2000] and Cai, Roussas [Cai and Roussas, 1998].
Motivated by the need to approximate covariance functions appearing in
the study of empirical processes Azevedo, Oliveira [Azevedo and Oliveira,
2000] and Henriques, Oliveira [Henriques and Oliveira, 2002] studied the two
dimensional case. This note extends results in [Azevedo and Oliveira, 2000]
for the p-dimensional case. We start by recalling the definition of association,
as stated in Esary et al (1967).

Definition 1 For a finite index set I, the random variables (r.v.’s) {Xi}i∈I
are said to be associated, if for any real-valued coordinatewise increasing
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functions G and H defined on RI , Cov {G(Xi, i ∈ I), H(Xj , j ∈ I)} ≥ 0,
provided IE

(
G2(Xi, i ∈ I)

)
<∞ and IE

(
H2(Xj , j ∈ I)

)
<∞. A sequence of

r.v’s is said to be associated if any finite subset of the r.v.’s is associated.

Definition 2 A smooth estimate of Fp , d.f. of the random vector X =

(X1, . . . , Xp), with p ≥ 2, F̂n,p is defined, for each x = (x1, . . . , xp) ∈ Rp, by

F̂n,p(x) =
1

n− p

n−p∑

i=1

U

(
x−Xi,p

hn

)
, (1)

where U is a p−variate known d.f., the kernel function and, for each fixed
p and i = 1, . . . , n − p, Xi,p = (Xi+1, . . . , Xi+p). The (bandwidths) hn are
positive numbers tending to 0, as n→∞.
Jin, Shao [Jin and Shao, 1999] have been shown that, under independence, the
optimal bandwidth of the p-dimensional kernel distribution estimator of Fp
has order n−1/3, for all dimensions. For associated samples, several properties
of the univariate estimate F̂n of the marginal d.f. F have been investigated by
Cai, Roussas [Cai and Roussas, 1998]. These authors proved that the optimal
bandwidth rate is of order n−1. The rate n−1/3 becomes optimal under
some stronger assumptions on the covariance structure. Azevedo, Oliveira
[Azevedo and Oliveira, 2000] studied properties of the bivariate estimate

F̂n,k of the d.f. of (X1, Xk+1) with fixed k = 1, . . . n − 1, characterizing
the optimal bandwidth rate. The results obtained on [Azevedo and Oliveira,
2000] extended the one-dimensional ones.

The set of conditions bellow are basically the same as in Cai, Roussas
[Cai and Roussas, 1998] together with the conditions used by Jin, Shao [Jin
and Shao, 1999] under independence.
Assumptions

(A1) {Xn}n∈N is a strictly stationary sequence of random variables with
bounded density function f and continuous marginal distribution func-
tion F ;

(A2) The derivative of f exists and is continuous and bounded;

(A3) The d.f., Fp, of the random vector X = (X1, . . . , Xp) has bounded and
continuous partial derivatives of first and second orders;

(A4) For each positive integer j, the d.f. of Xp,j =
(X1, . . . , Xp, Xj+1, . . . , Xj+p), Fp,j , has bounded and continuous
partial derivatives of first and second order;

(A5) The kernel function U is p−differentiable and u = ∂pU
∂x1...∂xp

is such that:

(i)

∫

Rp

u(x)dx = 1; (ii)

∫

Rp

xu(x)dx = 0; (iii)

∫

Rp

xxT u(x)dx <∞;

(A6) The sequence of bandwidths is such that nh2
n → 0;
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(A7)
∞∑

n=1

nCov1/3(X1, Xn) <∞; (A7)
′

∞∑

n=1

Cov1/3(X1, Xn) <∞;

(A8) V =
∂pU2

∂x1 . . . ∂xp
, is such that

∫

Rp

xxT V(x)dx <∞.

Remark 1 Note that

∫

Rp

V(x)dx = U2(+∞, . . . ,+∞) = 1.

The conditions (A1), (A2) and (A7) have already been used in Cai and Rous-
sas [Cai and Roussas, 1998] for the treatment of the univariate case. Note
further that (A7) implies (A7)

′ which implies the L2[0, 1] weak convergence
of empirical process, as proved in Oliveira and Suquet [Oliveira and Suquet,
1999].

Let us define the auxiliar functions V1,V2, V3 and V4 from Rp to R,
such that for each x = (x1, . . . , xp),

• V1(x) =

p∑

i=1

∂2Fp
∂x2

i

(x)

∫

Rp

a2
iu(a)da +

2

p−1∑

j=1

p∑

i=j+1

∂2Fp
∂xj ∂xi

(x)

∫

Rp

aiaju(a)da;

• V2(x) =

p∑

i=1

∂Fp
∂xi

(x)

∫

Rp

aiV(a)da;

• V3(x) =

p∑

i=1

∂2Fp
∂x2

i

(x)

∫

Rp

a2
iV(a)da +

2

p−1∑

i=1

p∑

j=i+1

∂2Fp
∂xj ∂xi

(x)

∫

Rp

aiajV(a)da;

• V4(x) =

2p∑

i=1

∂2Fp,j
∂x2

i

(x,x)

∫

R2p

a2
iu(a)da +

2

2p−1∑

i=1

2p∑

j=i+1

∂2Fp,j
∂xj ∂xi

(x,x)

∫

R2p

aiaju(a)da.

2 Consistency of the estimator.

In this section we present some results concerning to consistency of the es-
timator (1). We first show that F̂n,p is asymptotic unbiased, characterizing

also the convergence rate of IE
(
F̂n,p(x)

)
. To derive the asymptotic consis-

tency of F̂n,p, we apply a strong law of large numbers to the random variables

U
(

x−Xi,p

hn

)
, i = 1, . . . , n− p. To achieve this last step we shall need to char-

acterize the behavior of each entry of the covariance matrix of the random
vector whose entries are the preceding variables.
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Theorem 1 Suppose {Xn}n∈N satisfy (A1), (A3) and (A5). Then, for each
x ∈ Rp,

IE
(
F̂n,p(x)

)
= Fp(x) +

V1(x)

2
h2
n + o(h2

n).

Proof: First note that the kernel estimator (1) can be written as

F̂n,p(x) =

∫

Rp

U

(
x− s

hn

)
dφ̂n(s), (2)

where φ̂n(x) =
1

n− p

n−p∑

i=1

1I(−∞,x1]×···×(−∞,xp](Xi,p), with 1IA the char-

acteristic function of the set A.
As IE

(
φ̂n(x)

)
= Fp(x), it follows from (2) applying Fubini’s Theorem, that

IE
(
F̂n,p(x)

)
=

∫

Rp

U

(
x− s

hn

)
dFp(s) =

∫

Rp

u(t)Fp(x − thn)dt. Now, by

using a Taylor expansion of order 2 of Fp and taking account of (A3) and
(A5), and of the continuity of the second order partial derivatives of Fp,
(A3), the result follows. �
Note that (A3) and (A5) are only required in order to establish a convergence

rate. In fact, the convergence of IE
(
F̂n,p(x)

)
to Fp(x) follows from an

application of the Dominated Convergence Theorem.
In order to establish the almost sure convergence of (1) we need to control
some covariances. Define

• Inj(x) = Cov
(
U
(

x−X1,p

hn

)
,U
(

x−Xj,p

hn

))

• Ij(x) = Cov
(
1I(−∞,x](X1,p), 1I(−∞,x](Xj,p)

)
.

Lemma 1 Suppose that {Xn}n∈N satisfy (A1), (A3), (A4) and (A5). Then,
for each j > 1, and x ∈ Rp,

(i) Inj(x) = Ij(x) +O(h2
n) = Fp,j(x,x)− F2

p(x) +O(h2
n);

(ii) For j > p− 1, Ij(x) ≤
p∑

k=1

(p− k + 1)Cov 1/3(X1, Xj+k)+

+
∑p−1
k=1(p− k)Cov 1/3(X1, Xj−k+1).

Proof: Condition (i) follows from rewriting the covariance

Inj =

∫

R2p

U
(x− s

hn

)
U
(x− t

hn

)
dFp,j(s, t)−

(∫

Rp

U
(x− s

hn

)
dFp(s)

)2

. For the

first term, writing the function U as an integral and by using Fubini’s The-

orem, we have

∫

R2p

u(a)u(b)Fp,j(x − a)(x − b)dadb. So, expanding Fp,j

to the second order and using (A4) and (A5), this integral is equal to
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Fpj(x,x) + O(h2
n), which together with the behavior of IE

(
F̂n,p(x)

)
, com-

pletes the proof of (i). To prove condition (ii) we need use the inequality,

Cov
(
1I(−∞,s](Y1), 1I(−∞,t](Y2)

)
≤MCov 1/3(Y1, Y2), (3)

where Y1, Y2 are associated random variables with common distribution func-
tion with a bounded density and M > 0 is constant (see Sadikova [Sadikova,
1966]), and the following lemma (Lebowitz [Lebowitz, 1972]),

Lemma 2 Let A and B be subsets of {1, . . . , n} and xi real with i ∈ A ∪B.
Let HA,B = P (Xi > xi, i ∈ A ∪B)− P (Xj > xj , j ∈ A)P (Xk > xk, k ∈ B).

If (X1, . . . , Xn) is associated then, 0 ≤ HA,B ≤
∑
i∈A,j∈B H{i},{j}.

In fact, according lemma 2,

Cov
(
1I(−∞,x](X1,p), 1I(−∞,x](Xj,p)

)
≤

≤
p∑

k=1

p∑

i=1

Cov
(
1I(−∞,xk](Xk), 1I(−∞,xj+i](Xj+i)

)
.

Now applying innequality (3), we have

Cov
(
1I(−∞,xk](Xk), 1I(−∞,xj+i](Xj+i)

)
≤M Cov 1/3(Xk, Xj+i), so

Ij(x) ≤ M

p∑

k=1

p∑

i=1

Cov 1/3(Xk, Xj+i). The sequence {Xn}n∈N being station-

ary,
Ij(x) ≤ M

∑p
k=1(p − k + 1)Cov 1/3(X1, Xj+k) +

∑p−1
k=1(p −

k)Cov 1/3(X1, Xj−k+1). �

Remark 2 Note that if the covariance sequence

{Cov (X1, Xj+1)}j∈N
(4)

is decreasing, Ij(x) ≤ p2Cov 1/3(X1, Xj+1).

Theorem 2 Suppose the variables Xn, n ≥ 1, satisfy (A1), (A2), (A3), (A4),

(A5), (A7) and (A8). Then, for every x ∈ Rp, F̂n,p(x) → Fp(x) almost
surely.

Proof: As proved in Theorem 1, IE
(
F̂n,p(x)

)
→ Fp(x), so it’s enough to

prove that the variables U
(

x−Xm,p

hn

)
, m ≥ 1 satisfy a strong law of large

numbers. These variables are stationary and associated, as U is coordinate-
wise nondecreasing. Then, according to Newman [Newman, 1980] they satisfy
a strong law of large numbers if

lim
n→∞

1

n− p

n−p∑

j=1

In,j(x) = 0. (5)
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From conditions (i) and (ii) of the preceding lemma,

In,j(x) ≤ M

p∑

k=1

(p − k + 1)Cov 1/3(X1, Xj+k) +

p−1∑

k=1

(p −

k)Cov 1/3(X1, Xj−k+1) + O(h2
n). Now condition (5) is a consequence of

(A7) and association, so the theorem follows. �

3 The behavior of the mean square error.

In this section we study the asymptotics and convergence rate of the mean
square error (MSE). This characterization will then be used to derive the op-
timal bandwidth convergence rate. This convergence rate for the bandwidth
is, as will be explained later, of order n−1, thus a different convergence rate
than the one in the independent case. But if we consider a decreasing rate on
the sequence of the covariances (see Cai, Roussas [Cai and Roussas, 1998])
we obtain a convergence rate of order n−1/3, as in the independent case (see
Jin, Shao [Jin and Shao, 1999]), for all dimensions p.

As usual write MSE
(
F̂n,p(x)

)
= Var

(
F̂n,p(x)

)
+
(
IE
(
F̂n,p(x)

)
− Fp(x)

)2

.

The behavior of IE
(
F̂n,p(x)

)
being known (cf.Theorem 1), we need to de-

scribe the asymptotics and convergence rate for the variance term.

Lemma 3 Suppose the sequence {Xn}n∈N satisfy (A1), (A3), (A4), (A5) and
(A8). Then for all x in Rp,

(i) IE
(
U2
(x−Xi,p

hn

))
= Fp(x) − hnV2(x) +

h2
n

2
V3(x) + o(h2

n)

(ii)
∣∣∣Var

(
U
(

x−Xi,p

hn

))
− Fp(x)(1 − Fp(x)) + hnV2(x)

∣∣∣=
= h2

n(V3(x)− Fp(x)V1(x)) + o(h2
n).

Proof: In what concerns to (i), we have, by definition,

IE
(
U2
(

x−Xi,p

hn

))
=
∫

Rp U2
(

x−s
hn

)
dFp(s)

∫
Rp

(∫
(−∞,x]

V(a)da
)
dFp(s)

By using Fubini Theorem and changing variables,

IE
(
U2
(

x−Xi,p

hn

))
=
∫

Rp V(a)Fp(x − ahn)da. Using a Taylor expansion of

order 2 of Fp and taking account of (A5) and the definitions of V2 and V3,
we have (i). In order to obtain (ii), knowing that

Var
(
U
(

x−Xi,p

hn

))
= IE

(
U2
(

x−Xi,p

hn

))
−
(
IE
(
U
(

x−Xi,p

hn

)))2

, it is suffices

to apply (i) and Theorem 1. �

Definition 3 Let σ2(x) = Fp(x) − F2
p(x) + 2

∑∞
j=2

(
Fp,j(x,x)− F2

p(x)
)

and
cn(x) = 2

∑∞
j=n−p+1

(
Fp,j(x,x) − F2

p(x)
)

+ 2
n−p

∑n−p
j=2 (j −

1)
(
Fp,j(x,x)− F2

p(x)
)
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Theorem 3 Suppose that {Xn}n∈N satisfy (A1), (A3), (A4), (A5), (A6),
(A7) and (A8). Then

(n − p)Var
(
F̂n,p(x)

)
= σ2(x) − hnV2(x) + (n − p −

1)h2
n (V4(x) − Fp(x)V1(x)) +O(h2

n)− cn(x).

Proof: Var
(
F̂n,p(x)

)
=

1

(n− p)2
n−p∑

i,j=1

Cov

(
U

(
x−Xi,p

hn

)
,U

(
x−Xj,p

hn

))
.

By stationarity, Var
(
F̂n,p(x)

)
=

1

n− pVar

(
U

(
x−X1,p

hn

))
+

2

(n− p)2
n−p∑

j=2

(n− p− j + 1)In,p(x) By using the preceding lemma and lemma 1,

(n−p)Var
(
F̂n,p(x)

)
= Fp(x)−F2

p(x)−V2(x)hn+(V3(x)−Fp(x)V1(x))h2
n+

+
2

n− p

n−p∑

j=2

(n−p−j+1)×
(
Fp,j(x,x)− F2

p(x) +
h2
n

2
(V4(x)− Fp(x)V1(x))

)
.

We have now,

(n−p)Var
(
F̂n,p(x)

)
= Fp(x)−F2

p(x)−V2(x)hn+(V3(x)−Fp(x)V1(x))h2
n+

+

n−p∑

j=2

(
Fp,j(x,x) − F2

p(x)
)

+ (n− p− j + 1)h2
n (V4(x)− Fp(x)V1(x))−

2

n− p

n−p∑

j=2

(n− p− j + 1)×
(
Fp,j(x,x)− F2

p(x)
)

+O(h2
n).

Replacing

n−p∑

j=2

(
Fp,j(x,x) − F2

p(x)
)

by

∞∑

j=2

(
Fp,j(x,x) − F2

p(x)
)

and sub-

tracting to later result

∞∑

j=n−p+1

(
Fp,j(x,x)− F2

p(x)
)
, we obtain now the ex-

pression for the variance of F̂n,p(x). �
We may present now the behavior of the MSE.

Theorem 4 Suppose {Xn}n∈N, satisfy (A1), (A3), (A4), (A5), (A6), (A7)
and (A8). Then,

(n−p)MSE
(
F̂n,p(x)

)
= σ2(x)−hnV2(x)+O(nh2

n)+o(hn+nh2
n)−cn(x).

Note that cn → 0, according to the assumptions made, and that cn is inde-
pendent of the bandwidth choice. It is now evident that an optimization of
the convergence rate of the MSE is achieved by choosing hn = O(n−1) for all

dimensions p. In fact, hn(x) = V2(x)
2(n−p−1)(V4(x)−Fp(x)V1(x)) .

To obtain, as in the independent case, the asymptotic optimal bandwidth
of order n−1/3, we replace assumptions (A6) and (A7) by,

(A∗
6) nh4

n → 0 (A∗
7)

∑∞
j=1 (Cov (X1, Xj+1))

1−τ
3 <∞, 0 < τ < 1,
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as Cai and Roussas, 1998, did in the univariate case and providing that the
sequence of covariances (4) is decreasing.

Theorem 5 Suppose {Xn}n∈N, satisfy (A1), (A3), (A4), (A5), (A8), (A∗
6)

and (A∗
7). Then,

(n−p)MSE
(
F̂n,p(x)

)
= σ2(x)−hn V2(x)+O(nh4

n)+ o(hn+nh4
n)−cn(x).

Proof: To prove this result we use the identity Inj(x) = Ij(x) + O(h2
n) (cf.

Lema 1). As we noted in Remark 2, if we obtain an upper bound for Ij and,
consequently, for Inj we may use the following identity

|Inj(x)− Ij(x)| = |Inj(x)− Ij(x)|τ |Inj(x)− Ij(x)|1−τ ≤ cτ h2τ
n p2(1−τ)

·
∣∣(Cov 1/3(X1, Xj+1)

)1−τ ∣∣= c̃ h2τ
n

∣∣(Cov 1/3(X1, Xj+1)
)1−τ ∣∣,

where c̃ = cτ p2(1−τ) is constant.

If we consider the following expression for the variance,

(n− p)Var
(
F̂n,p(x)

)
= Var

(
U
(

x−X1,p

hn

))
+

+
2

n− p

n−p∑

j=2

(n− p− j + 1)
∣∣Inj(x)− Ij(x)

∣∣+
n−p∑

j=2

(n− p− j + 1)Ij(x), then,

1

n− p

n−p∑

j=2

(n− p− j + 1)
∣∣Inj(x)− Ij(x)

∣∣≤
n−p∑

j=2

∣∣Inj(x)− Ij(x)
∣∣≤

c̃h2τ
n

∑∞
j=2

(
Cov 1/3(X1, Xj+1)

)1−τ
= O(h2τ

n ), by using (A∗
7). The result now

follows readily. �
Once again, is now evident that an optimization of the convergence rate of
the MSE is achieved by choosing hn = O(n−1/3), for all dimensions p.

Corollary 1 Suppose {Xn}n∈N, satisfy (A1), (A3), (A4), (A5), (A∗
6), (A∗

7)
and (A8). Suppose further that the covariance sequence (4) is decreasing.
Then, the asymptotic optimal bandwidth {hn}n∈N of kernel estimator of Fp
is, for all dimensions p, in the MSE sense, of order O(n−1/3).

This work has been partially supported by CMAT and FCT under the

program POCI 2010.
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Institut de Mathématiques et de Modélisation de Montpellier,
UMR CNRS 5149,
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Abstract. In order to obtain reference curves for data sets when the covariate is
multidimensional, we propose a new methodology based on dimension-reduction
and nonparametric estimation of conditional quantiles. This semiparametric ap-
proach combines sliced inverse regression (SIR) and a kernel estimation of condi-
tional quantiles. The convergence of the derived estimator is shown. By a simula-
tion study, we compare this procedure to the classical kernel nonparametric one for
different dimensions of the covariate. The semiparametric estimator shows the best
performance. The usefulness of this estimation procedure is illustrated on a real
data set collected in order to establish reference curves for biophysical properties
of the skin of healthy French women.
Keywords: Conditional quantiles, Dimension reduction, Kernel estimation, Semi-
parametric method.

1 Introduction

The reference intervals are a tool of some importance in clinical medecine.
They provide a guideline to clinicians seeking to interpret a measurement
obtained from a new patient. Many experiments, in particular in biomedi-
cal studies, are conducted to establish the range of values that a variable of
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interest, say Y whose values are in <, may normally take in a target popu-
lation. Here “normally” refers to values that one can expect to see with a
given probability under normal conditions and for typical individuals. The
conventional definition of a reference interval is a pair of numbers that bind,
for example, the central 90% of a set of values obtained from a specified group
of subjects (the reference subjects).

The need for reference curves, rather than a simple reference interval,
arises when a covariate, say X whose values are in <, is simultaneously
recorded with Y . Norms are then constructed by estimating a set of con-
ditional quantile curves. Conditional quantiles are widely used for screen-
ing biometrical measurement (height, weight, circumferences and skinfold)
against an appropriate covariate (age, time). For details, the readers may
refer, for example, to the work of [Healy et al., 1998].

Let α ∈ (0, 1), the conditional quantile of Y given X = x, denoted by
qα(x), is naturally defined as the the root of the equation

F (y|x) = α, (1)

where F (y|x) = P (Y ≤ y | X = x) denotes the conditional distribution
function of Y given X = x. For α > 0.5, the (2α− 1)% reference curves are
defined, when x varies, by

Iα(x) = [q1−α(x), qα(x)].

So, estimating reference curves is reduced to estimating conditional quantiles.
In the last decade a nonparametric theory has been developed in order to

estimate the conditional quantiles. From (1), an estimator of the conditional
distribution induces an estimator of corresponding quantiles. For instance, a
Nadaraya-Watson estimator, F̂n(y|x), can be assigned to F (y|x):

F̂n(y|x) =

n∑

i=1

K{(x−Xi)/hn}I{Yi≤y}

/
n∑

i=1

K{(x−Xi)/hn} , (2)

where hn and K are respectively a bandwidth and a bounded (kernel) func-
tion. The estimator of qα(x) is then deduced from F̂n(y|x) as the root of the
equation

F̂n(y|x) = α. (3)

Many authors are interested in this estimator, see, for mathematical details,
[Samanta, 1989] or [Berlinet et al., 2001]. Note that various other nonpara-
metric methods are explored in order to estimate qα(x). Among them we can
cite the local polynomial, the double kernel, the weighted Nadaraya-Watson
methods.

Although, theoretically, the extension of conditional quantiles to higher
dimension p of X is obvious, its practical success, while depending on the
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number of observations, suffers from the so-called curse of dimensionality.
Further, because reference curves are, in this case, a pair of p-dimensional
hyper-surfaces, their visual display is rendered difficult making it less directly
useful for exploratory purposes (unlike the one-dimensional case). When
p > 2, viewing all the data in single (p+ 1)-dimensional plot may no longer
be possible.

Motivated by this, the key is then to reduce the dimension of the predic-
tor vector X without loss of information on the conditional distribution of
Y given X and without requiring a prespecified parametric model. Sufficient
dimension-reduction leads naturally to the idea of a sufficient summary plot
that contains all information on the regression available from the sample.
Moreover, it is a very helpful step in nonparametric estimation for circum-
vening the curse of dimensionality. Methods to reduce the dimension exist
in the literature. For instance, [Stone, 1985] or [Stone, 1986] used additive
regression models to cope with curse of dimensionality in nonparametric func-
tion estimation. [Chaudhuri, 1991] used this technique in order to estimate
conditional quantiles. In this paper, we focus on a linear projection method
of reducing the dimensionality of the covariates in order to construct a more
efficient estimator of conditional quantiles and consequently reference curves.
The specific dimension reduction method used is based on Li’s well known
Sliced inverse regression (SIR), see[Li, 1991] or [Chen and Li, 1998]. From a
computational point of view, SIR is very fast. Note that this method is used
as a pre-step of the main analysis of the data, in order to get an efficient
estimator of conditional quantiles from which we can then deduce reference
curves. It is fairly robust, especially against some outliers in the regressor
observations.

The rest of the paper is organized as follows. In Section 2, we present the
dimension-reduction context and we derive the corresponding semiparametric
estimator of conditional quantiles. We also give an asymptotic result. Simu-
lations are conducted in Section 3 to assess the performance of this estimator
in finite-sample situation. Numerical example involving real data application
is reported in Section 4.

2 Dimension-reduction context and estimation
procedure

2.1 Dimension-reduction context

Suppose that there exists a matrix β such that

Y ⊥ X | βTX, (4)

where the columns of the p × d matrix β (d ≤ p) are linearly independent.
Consequently, in the current study, statement (4) is equivalent to

F (y|x) = F (y|βTx),
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for all values of x in the sample space. Straightforwardly, it follows that

qα(x) = qα(βTx).

The SIR method can be used to estimated a basis of the subspace S(β)
spanned by the columns of β. More details and comments on the SIR esti-
mation procedure can be found in [Li, 1991] or [Chen and Li, 1998].

2.2 Estimation procedure

Let Yi denote the ith observation on the univariate response and letXi denote
the corresponding p× 1 vector of observed covariate values, i = 1, . . . , n.

• Step 1: SIR estimation step. With SIR method, we get {b̂k}dk=1, an
estimated basis of S(β). In practice, the dimension d is replaced with an

estimate d̂ equal to the number of singular values that are inferred to be
nonzero in the population, see for example, [Li, 1991] or [Ferré, 1998] for
testing procedure in order to identify d. Moreover, the eigenvalues scree plot
approach used here is a useful explonatory tool in determining the number
d̂ of EDR directions to keep. From a practical point of view, we look for a
visible jump in the scree plot and d̂ is then the number of the eigenvalues
located before this jump. Note that if no jump is detected, no dimension
reduction is possible with SIR approach.

• Step 2: Conditional quantile estimation step. For the sake of conve-
nience, we assume that d = 1 and we use the notation b̂ = b̂1. Using the SIR
estimates and following (2), a kernel estimator of F (y|x) is defined, from the

data {(Yi, b̂TXi)}ni=1, by

Fn

(
y
∣∣∣b̂Tx

)
=

∑n
i=1K{(b̂Tx− b̂TXi)/hn}I{Yi≤y}∑n

i=1K{(b̂Tx− b̂TXi)/hn}
. (5)

Then, as in (3), we derive from (5) an estimator of qα(x) by

qn,α

(
b̂Tx

)
= F−1

n (α | b̂Tx). (6)

As a consequence of the above result, for α > 0.5, the corresponding esti-
mated (2α− 1)% reference curves are given by the following

In,α(x) = [qn,1−α(b̂Tx), qn,α(b̂Tx)], as x varies.

2.2.0.2 Remark. The above definitions have been presented in the context
of single index. A natural extension is to consider the general multiple indices
(d > 1) and to work with {b̂k}dk=1 and {(Yi, b̂T1Xi, . . . , b̂

T
dXi)}ni=1. Then we

use the classical multi-kernel estimation to get qn,α(b̂T1 x, . . . , b̂
T
d x) as in (6).
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2.3 Asymptotic property.

Under usual assumptions, we obtain the consistency of qn,α(b̂Tx): for a fixed
x in <p,

qn,α(b̂Tx) −→ qα(x) in probability, as n→ +∞.

The proof is given in [Gannoun et al., 2004].

3 Simulation study

We study the numerical performances of the proposed method on simulated
data. In particular, we compare our method with the classical nonparametric
estimation method. Let us introduce the following estimators of qα(x):

(a) q
(a)
n,α(x) := qn,α(̂bTx) is the estimator defined in (6).

(b) q
(b)
n,α(x) := qn,α(βTx) has no practical interest, it is only introduced

for the sake of comparison. It is similar to (a) except the dimension-
reduction direction is not estimated but fixed to the theoretical one.

(c) q
(c)
n,α(x) := qn,α(x) is the classical conditional nonparametric quantile

estimator.

The kernels are the densities of the standard normal or multinormal distri-
bution, and the bandwidth is chosen by a cross-validation technique. The
estimated conditional quantiles are computed by numerically inversing the
corresponding conditional distribution function.

3.1 Simulated models

We consider the following regression model Y = f(βTX) + ε, where X fol-
lows the standard multinormal distribution Np(0, Ip) and where ε is normally
distributed εsimN (0, 1) and is independent from X . We examine three situ-
ations:

(M1) p = 3, f(t) = 1 + 2t/3 and βT = 2−1/2[1,−1, 0].

(M2) p = 10, f(t) = 1 + 2t/3 and βT = 3−1[1, 1, 1, 1, 1,−1,−1,−1,−1, 0].

(M3) p = 3, f(t) = 1 + exp(2t/3) and βT = 2−1/2[1,−1, 0].

Our motivation for considering the pair of models (M1,M2) is to investigate
the behavior of the estimation methods when the dimension increases. The
pair of models (M1,M3) is introduced to evaluate the influence of the link
function f on the accuracy of the estimation methods. Let us note that
qα(x) = f(βTx) + Nα, where Nα is the α-quantile of the standard normal
distribution.
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Fig. 1. Boxplots obtained on the three different models with the three different
estimates.

3.2 Evaluation of the results

Our goal is to compare successively the three estimators (a), (b) and (c)
to the true quantile in the situations (M1), (M2) and (M3). To this end,
the N = 100 data sets with size n = 200 are simulated in each of the above
situations. The conditional quantiles are estimated for α = 5% and α = 95%
on a p dimensional grid. This grid is composed of 125 points {z`, ` =
1, . . . , 125} randomly generated with a uniform distribution on [−3/2, 3/2]p.
Then, the performance of the estimators can be assessed on each of the N
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simulated data sets by a mean square error criterion:

E(Θ)
n,α =

1

125

125∑

`=1

(
q(Θ)
n,α(z`)− qα(z`)

)2

, where Θ ∈ {a, b, c}.

The boxplots of the mean square error E
(Θ)
n,α for Θ ∈ {a, b, c} and α ∈

{0.05, 0.95} on each model are represented on Figure 1. Figure 1.1 shows

no difference between the distribution of E
(a)
n,α and E

(b)
n,α. The estimation

of the direction β by b̂ has no significant consequence on the accuracy of
the estimation of the reference curves. On the contrary, results obtained by
the estimators (a) and (c) are very different. The proposed estimator (a)
gives better results than the estimator without dimension-reduction (c). Be-
sides, this difference of quality increases with the number p of covariates (see
Figure 1.3). In this case, the curse of dimensionality becomes an essential
limitation to the use of estimator (c), and thus estimator (a) is particularly
useful in such situations. Note that the quality of the estimation of β is not
severely affected by the covariates number. Finally, in view of Figure 1.2,
the nature of the link function f does not seem to have any influence on the
relative behaviors of the three estimators.

4 Application to real data

4.1 Data

When studying biophysical skin properties of healthy women, knowledge
about the reference “curves” of certain parameters is lacking. The aim is to
establish 90% reference “curves” for some of the biophysical properties of the
skin (here the conductance of the skin) of healthy Caucasian women, on two
facial areas and one forearm area, using the age and a set of covariates. The
data collection was conducted from November 1998 to March 1999 on n = 322
Caucasian women between 20 and 80 years old with apparently healthy skin,
and living in the Ile de France (in around Paris) area. The volunteers were
preselected by a subcontractor company. Each healthy volunteer was exam-
ined at CE.R.I.E.S (“CEntre de Recherches et d’Investigations Epidermiques
et Sensorielles” or Epidermal and Sensory Research and Investigation Centre)
in a controlled environment. This evaluation included self-administered ques-
tionnaires on skin-related habits, a medical examination and a biophysical
evaluation. The age of the volunteer, the temperature and relative humidity
of the controlled environment occur in each study as covariates. The other
available covariates included are some biophysical properties of the skin (as
the the skin temperature or the skin pH).

4.2 Results

We only give here the results for the forearm area. In step 1, the SIR method
gives d̂ = 1 and the corresponding vector b̂. Then in step 2, after a simplifi-
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Fig. 2. Estimated 90%-reference curves for the forearm area.

cation of the index b̂TX (see [Gannoun et al., 2001] or [Gannoun et al., 2004]
for details), we construct the 90% reference curves for the conductance of
the skin (variable named KBRAS) using this estimated index, see Figure 2.
The results of the analysis on the forearm index show that apart from age
five covariates enter in the model: two of these represent the environmental
conditions of the measurements, which is to be expected, the three other
covariates are directly clinically-related with skin hydration: skin pH, capac-
itance and transepidermal water loss. The studies of the two facial areas can
be found in [Gannoun et al., 2001].
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Abstract. In this paper we use tools of classical statistical estimation theory in
finding a suitable estimator of the population mean using auxiliary information
when some observations in the sample are missing. We study model and design
properties of the proposed estimator. We also report the results of a wide simulation
study on the efficience of the estimator which reveals very promising results.
Keywords: Auxiliary information, missing data, superpopulation model.

1 Introduction

Missing data is a common problem in virtually all surveys. Frequently, survey
sampling is conducted to gather complete information on all sampling units
but, due to a variety of reasons, for a fraction of the subjects, either no data
at all is available or information on one or more variables is missing. Missing
data can contribute to bias in the estimates and make the analyses harder to
conduct and results harder to present.

The most frequently used method to compensate for item non response
is imputation (see [Little and Rubin, 1987]). Some statistics specialists are
reluctant to apply this method because it manipulates the original infor-
mation. Many empirical studies do not follow this approach. They simply
discard all the sampling units with missing values and employ the usual infer-
ence procedures, which can produce that the actual sample size was less than
the planned one, biases in estimations and increases in sampling variance if
missing data follows any pattern.

Contending that the deleted observations may contain valuable informa-
tion, an alternative approach is to try to improve the precision of the esti-
mators by including all cases available for their calculation.
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In this paper we propose a prediction approach to deal with the presence
of missing data. Specifically, we address the case where only the value of the
variable of interest is missing for some subjects, and the value of the auxiliary
variable is missing for other distinct subjects. We propose a new estimator
for the mean of the variable of interest, using all known data for principal
and auxilary variables.

2 Estimation with auxiliary information and missing
data

Indirect estimation methods are easily comprehensible techniques for the esti-
mation of total population in survey sampling when an auxiliary characteris-
tic correlated with the study characteristic is available; see, e.g., [Singh, 2003],
[Sampath and Chandra, 1990], [Srivastava and Jhajj, 1981]. These methods
of estimation assume that the sample data contains no missing observations.
This specification may not be tenable in many practical applications; see;
e.g., [Rubin, 1977].

Some authors have defined indirect estimators when the sample is drawn
by a simple random sampling without replacement when some observations
are missing and the population mean of auxiliary characteristic is available
(see [Tracy and Osahan, 1994], [Toutenburg and Srivastava, 1998] and [Rueda
and González, 2004]).

There appears to be no effort reported in the literature when both the
asumptions are violated simultaneously (some observations are missing in
both variables and the population mean of the auxiliary variable is not
known). We will consider this situation under a general sampling design.

Let be a population,U , ofN units from which a random sample, s, of fixed
size, n is drawn according to a noninformative sample design d = (Sd, Pd),
with first order inclusion probabilities πi. For this sample we observe the
values of two variables, (yi, xi), i = 1, . . . , n, for the estimation of some
parameters of variable y.

We assume that only a set of (n−p−q) complete observations on selected
units in the sample are available. In addition to these, observations on the
x characteristic on p units in the sample are available but the corresponding
observations on the y characteristic are missing. Similarly, we have a set
of q observations on the y characteristic in the sample but the associated
values on the x characteristic are missing. Further, p and q are assumed to
be integer numbers verifying 0 < p, q < n/2.

For the sake of simplicity, we separate the unit of the sample s into three
disjoint sets:

s1 = {i ∈ s/xi, yi are available}
s2 = {i ∈ s/xi are available, but yi is not}
s3 = {i ∈ s/yi are available, but xi is not}
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Prediction theory for sampling surveys can be considered as a general
framework for statistical inference on the characteristics of finite populations.
The prediction approach is based on this idea: for any given s ∈ Sd of size n
we can write:

Y = fsys + (1− fs)ys̃ (1)

where fs = n/N is the sampling rate, ys =
∑
s Yk/n is the mean for units in

the sample, and ys̃ =
∑
s̃ Yk/(N − n) is the mean for the nonsample units.

In this representation of the mean, the sample mean ys is known, and
then we attempt a post survey prediction of the mean ys̃ of the nonsurveyed
units.

Now for any given s ∈ Sd we can write:

Y = fs1ys1 + fs2ys2 + fs3ys3 + (1− fs)ys̃ (2)

where fs1 =
n− p− q

N
, fs2 =

p

N
, fs3 =

q

N
and fs4 = 1− n

N
,

In this representation of the mean, the sample means ys1 and ys3 are
known, thus the problem of predicting Y is equivalent to the problem of
predicting the means ys2 and ys̃.

We denote by Eξ the expected value under the model ξ and Ed the ex-
pected value under the design d. The minimum EξMSEd criterium will be
considered. We only consider the linear and unbiased under model predictors.

Consider any predictor T of Y ; it can be represented, for any given sample
s as:

T = fs1ys1 + fs2U2 + fs3ys3 + (1− fs)U4 (3)

where U2 and U4 are considered as predictors of ys2 and ys̃ respectively. Tools
of classical statistical estimation theory will be useful in finding the suitable
predictors U2 and U4.

Firstly we study the problem of estimation of ys2. If the predictor T
is of the form 3 and it verify: Eξ(T ) = µ = 1

N

∑
i∈U Eξ(Yi), it is logical

to consider the class of linear estimators U2 with the condition: Eξ(U2) =
µs2 = 1

p

∑
i∈s2 Eξ(Yi). In the sample s2 we do not have the values of the

study characteristic but we have all the values of the auxiliary charasterictic,
x. We now consider the frequently used regression model, where ηi = βxi,
i = 1, ..., N , where β is a unknown quantity. By generalized least squares
theory, the minimum variance linear unbiased under the model estimator of
β is, for a given sample, given by β̂ the sample regression coefficient. Then
we consider the predictor U∗

2 = β̂xs2 that is linear and unbiased under the
model of ys2.

Regarding the estimation of ys̃, there is not any information available in
s4, neither from the study characteristic neither from the auxiliary charac-
teristic, so it is logical to consider the sample mean U∗

4 = ys1
S
s3.

We consider the predictor of Y :
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T ∗ = fs1ys1 + fs2U
∗
2 + fs3ys3 + (1− fs)U∗

4 (4)

As Ed(ys1) = Ed(ys3) = 0, T ∗ is a linear ξ-unbiased predictor of Y for
any design d, and therefore the random variable obtained from T ∗ if Yk is
fixed at yk is ξ-unbiased estimator of population mean y. The estimator T ∗

is also asymptotically normal. The proof use the asymptotical normality of
U∗

4 and U∗
2 (see, e.g., Valliant et al., 2000).

Writting

k1 =
n− p− q(N − p)

N(n− p) , k2 =
q(N − p)
N(n− p) and k3 =

p

N
the proposed estimator can be expressed as follows:

T ∗ = k1ys1 + k2ys3 + k3β̂xs2 (5)

2.1 Simple random sampling

Next, we are going to consider a simple random sampling without replace-
ment. We are interested in finding the statistical properties of the estimator
with respect to this sampling design.

First, the estimator is unbiased under this design the approximate vari-
ance of T ∗ is

AV (T ∗) = S2
y

[
k2
1a+ k2

2b+ 2k1k2c
]
+ β2k2

3S
2
xd+ 2k3βSxy [k1e+ k2f ] (6)

where

a = 1
n−p−q − 1

N , b =
1

q
− 1

N
, d =

1

p
− 1

N

c =





1

n− p− q −
1

N
if

n− p
2
≥ q

1

q
− 1

N
if

n− p
2

< q

e =





1

n− p− q −
1

N
if

n− q
2
≥ p

1

p
− 1

N
if

n− q
2

< p

f =





1

p
− 1

N
if p ≥ q

1

q
− 1

N
if p < q

A consistent estimator of AV (T ∗) can be simply obtained by substituting
S2
y , S

2
x and Syx with their sample values s2y, s

2
x and syx.
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Table 1. Relation between lines type and nonresponse rates

Type of line CASE 1 CASE 2 CASE 3

dotted p = 0.32n p = 0.32n p = 0.4n
q = 0.4n q = 0.48n q = 0.48n

dashed p = 0.4n p = 0.48n p = 0.48n
q = 0.32n q = 0.32n q = 0.4n

3 Simulation study

The next step in our study consists of carrying out a simulation study to re-
veal the behaviour of the proposed estimator. For this purpose, we examined
four populations: Cancer, Co60, Co70 and Hospital (see [Valliant et al.,
2000]).

In order to study the properties of the proposed estimator, the following
process was repeated 1000 times: a simple random sample was selected, for
which in a completely random way the selected proportion of cases for both
variables was removed. The values of the proposed estimator T ∗ and of
the estimator of the simple mean were then calculated. The results of this
simulation are shown in Figure 1, and Table 1 describes the correspondence
between the types of line and the nonresponse rates.

The above Figure represents the log-ratios of the mean squared errors
of both estimators. The simulation results shown that for all the popula-
tions, sampling sizes and nonresponse rates considerated, the behaviour of
the proposed estimator is better than that of the standard one (the sample
mean). Moreover, there is an absence of variation in the error of estimation,
produced by exchanging the proportion of nonresponders between the main
variable and the auxiliary variable. Another interesting feature is that the
precision improves in proportion to the increase in the sample size.

After comparing the T ∗ estimator and the standard estimator of the mean,
we considered it useful to study the relation between the efficiency of the pro-
posed estimator and that of the estimator defined by Toutenburg and Srivas-
tava (1988), under the same conditions. We conclude that the behaviour of
the T ∗ estimator is considerably better than that the Toutemburg estimator
ŷT4.
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Abstract. We considered the suitability of the methods for joint modelling of
mean and dispersion for prediction based on large data sets under the assumption
of normally distributed errors. Methods that seemed capable of handling a problem
with 25 explanatory variables and 100000 observations were compared in predicting
the strength of steel in a real data set collected from the production line of a
steel plate mill. A neural network model for mean and dispersion gave the best
prediction. The results indicate that neural networks are suitable for joint modelling
of mean and dispersion in large data sets.
Keywords: Joint modelling of mean and dispersion, Heteroscedasticy.

1 Introduction

Joint modelling of mean and dispersion is a common problem in statistics.
In many real problems, not only mean but also variance and even other mo-
ments of the conditional distribution of the response variable depend on the
explanatory variables. In these cases, dispersion modelling is needed to pre-
dict the conditional distribution realistically. The variance model has often
been employed to make mean model estimation more efficient. In many appli-
cations, including industrial quality improvement experiments, the variance
function itself has been the focus of the interest.

A single observation does not give any information about variance, and
many more observations are needed to estimate a model for variance than a
model for mean. Although joint modelling of mean and dispersion has been
applied in many fields, applications to large data sets seem to be lacking. The
different methods for joint modelling of mean and dispersion have not been
compared to each other, and their prediction abilities and suitability to large
data sets are rather unclear. This paper gives insight into the suitability of
different methods proposed for joint prediction of mean dispersion based on
large data sets. The models are compared for their accuracy in predicting
the mean and variance of the strength of steel plates using a real data set
with about 25 explanatory variables and 100000 observations.
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2 Joint modelling of mean and dispersion

We denote the observations of the response variable with Y =
(y1, y2, . . . , yN)T and let xi = (xi1, xi2, . . . , xip) denote the values of the p
explanatory variables of the ith observation. We assume that yi are nor-
mally, independently distributed yisimN(µi, σ

2
i ), with both the mean µi(xi)

and the variance σ2
i (xi) depending on the explanatory variables. Joint mod-

elling of mean and dispersion can be divided into two tasks: estimation of the
mean function and estimation of the variance function [Carroll and Ruppert,
1988]. In the iterative estimation method, the mean function is estimated
with weighted least squares by keeping the variance model fixed and by using
weights proportional to the inverses of the predicted variances. The variance
function is then estimated by keeping the mean model fixed [Carroll and
Ruppert, 1988]. There has been controversy as to the number of iterations
needed. Sometimes good results have been obtained using only one iteration
[Yu and Jones, 2004], and two iterations have often been considered best [Car-
roll and Ruppert, 1988]. Simple models can be estimated without iteration
using full maximum likelihood or restricted maximum likelihood (REML).

The selection of the response for dispersion model fitting is not obvious
because direct measurements of variance cannot be made without replication.
Natural measurement of the variance is provided by the squared residual
ε̂2i = (yi − µ̂(xi))

2. Fitting of the mean model biases the estimation of
the variance function because the fitted model always adapts itself to the
estimation data. This bias can be corrected by modifying the response: for
example, in a regression context the response ε2i /(1− hii), where hii are the
diagonal elements of the hat matrix, corresponds to the REML estimation
and leads to unbiased fitting [Smyth et al., 2001]. If the fit can be expressed

using a smoother matrix, Ŷ = SY , the expectation of a squared residual
in the estimation data is Eε̂2i = σ2

i − 2Siiσ
2
i +

∑N
j=1 S

2
ijσ

2
j + (µi − Eµ̂i)

2

[Ruppert et al., 1997]. Defining ∆ = diag(2S − SST) and assuming the fit
to be conditionally unbiased, the result motivates the ∆-corrected response
ri = ε̂2i /(1−∆i).

The learning method, i.e. model type and estimation method, is another
major selection problem in dispersion modelling. In principle, most of the
learning methods can be used for modelling dispersion. If the residuals are
normally distributed, εisimN(0, σ2

i ), then the squared residuals are gamma
distributed, ε2i simGamma(σ2

i , 2), and the fitting can be based on gamma log-
likelihood. For most other possible responses (e.g. |ei| or log |ei|) no such
helpful result is available, and the least squares method has been commonly
used.

3 Methods

Heteroscedastic regression (HetReg), mean and dispersion additive models
(MADAM), local linear regression for mean and dispersion (LLRMD) and
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neural network modelling of mean and dispersion (NNMMD) were compared
in a real data set. The estimation data were collected from an industrial
process of steel plate production and consisted of 90 000 observations. Two
response variables were measured from finished products; tensile strength
and yield strength, both being approximately normally distributed. In the
modelling, 27 explanatory variables related to the steel plate production pro-
cess and likely to have an effect on the responses were used. The explanatory
variables were related to the concentrations of alloying elements, the thermo-
mechanical treatments made during the process of production and the size
and shape of the plate and the test specimen. In the modelling of variance,
12 of the explanatory variables with a likely effect on the conditional variance
were used. [Myllykoski, 1998] has studied the reasons affecting the variance
in the strength of thin steel sheets.

The fitting of models was accomplished using the iterative approach.
First, the model for mean was fitted, and the variance model was then fitted
based on the corrected or uncorrected squared residuals from the mean model
fit. In the optional second iteration, the mean model was weighted with the
inverses of the predicted variances, and the variance model was fitted again.
The parameters of the mean model were estimated with the least squares,
and the parameters of the variance model were estimated with the gamma
log-likelihood or least squares. For the models MADAM and NNMMD the
likelihoods were penalised. A linear link was used for the mean and a square
root link or log link for the variance.

The test data set was collected from the production line after the training
data set and consisted of 25 000 observations. The prediction accuracies
of the models were compared using the negative log-likelihood of the test
data set under a gaussian assumption. Variance predictions smaller than
16 (including negative predictions) were transformed to 16; otherwise, single
bad predictions could have blurred the results.

Heteroscedastic linear regression is a simple method, which can be easily
applied to large data sets [Smyth et al., 2001]. We used a heteroscedastic
regression model of the form

f(µi) = z̃T

i β
g(σ2

i ) = zT

i τ (1)

where the link functions f and g define the relationship between the linear
predictors and the mean and variance, respectively. The input vectors z̃i
and zi include transformations and product terms of the original explanatory
variables to allow non-linear effects and interactions between the explanatory
variables. We made the model selection manually based on the prediction
accuracy in the validation data set. The selected mean models included about
110 terms and the dispersion models about 25 terms. The model estimation
was carried out using the iterative REML of [Smyth et al., 2001].

Generalised additive models are known to be able to handle large data
sets pretty well [Hastie et al., 2001]. [Rigby and Stasinopoulos, 1996] pro-
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posed mean and dispersion additive models for joint modelling of mean and
dispersion. We used an additive model resembling the model of [Yau and
Kohn, 2003] and allowing two-way interactions

f(µi) =

p∑

j=1

hj(xij) +

p∑

j=1

p∑

k=1

hjk(xik, xij)

g(σ2
i ) =

p∑

j=1

kj(xij) +

p∑

j=1

p∑

k=1

kjk(xik, xij). (2)

The functions hj(·) and kj(·) were linear functions or univariate penalised
regression splines with 10 knots. The functions hij(·) and kij(·) were zero
functions or two-dimensional penalised regression splines with 10 knots se-
lected out of 100 candidates. The estimation of the smoothing parameters of
the different terms was accomplished using generalised cross-validation cri-
teria. The non-zero terms of the models (about 50 in the mean models and
15 in the variance models) were selected using a simple algorithm, which
expands the model by adding terms that improve the model’s performance
significantly in a validation data set.

In local methods, the whole set of estimation data serves as the model,
and prediction is based on the nearest neighbours of the query point. Local
linear regression was proposed for joint modelling of mean and dispersion
by [Ruppert et al., 1997]. [Yu and Jones, 2004] improved the method by
proposing that the variance is estimated by minimising the local gamma
likelihood instead of the sum of squares. They also used a link function
g(t) = log (t) for variance in local estimation, leading to

µ̂i = â

(â, β̂) = arg mina,β

N∑

j=1

(yj − a− (xj − xi)Tβ)2K1

( ||xj − xi||
h1

)

σ̂2
i = g−1(ĉ)

(ĉ, τ̂) = arg minc,τ

N∑

j=1

[ ε2j
g−1(c+ (xj − xi)Tτ)

+ log g−1(c+ (xj − xi)Tτ)
]

·K2

( ||xj − xi||
h2

)
. (3)

Here, K1 and K2 are kernel functions and the bandwidths h1 and h2 are
chosen independently. The suitability of local methods to high-dimensional
problems has been questioned, because the distances between the neighbour-
ing points grow rapidly with the number of dimensions and the local neigh-
bourhood becomes too sparse [Hastie et al., 2001]. We used the local likeli-
hood method of [Yu and Jones, 2004] with the Epanechnikov quadratic kernel
Kλ(x0, x) = 3

4 (1−|x−x0|/λ)2I(|x−x0| < 1). A simple adaptive bandwidth,
which gives positive weights to a constant number (few thousands) of estima-
tion data instances, was used. The model selection task was simplified to the
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selection of a suitable number of neighbours to be used in prediction, which
was decided on the basis of performance in validation data.

Neural networks are known as a flexible modelling method with good
predictive performance in large data sets [Hastie et al., 2001]. We fitted
neural network models for mean and dispersion. The idea is not completely
new, see [Myllykoski, 1998]. We used single-layer perceptron model with
skip-layer connections of the form

f(µi) = xT

i β +

h∑

j=1

fj(x
T

i βj)

g(σ2
i ) = xT

i τ +
h∑

j=1

gj(x
T

i τj) (4)

where the activation functions fj(·) and gj(·) are logistic e−t/(1 + e−t). We
fitted the variance model by maximising the penalised gamma log-likelihood
related to squared residuals of the mean model. Model selection consisted
of selecting the number of hidden neurons h and selecting the smoothing
parameter. Different models were tested and the model that worked best
in the validation data was selected. We modelled variance using single-layer
perceptrons with 10 and 15 hidden neurons.

4 Results

We compared the prediction accuracy of joint modelling of mean and disper-
sion using the negative log-likelihood in the test data set T

-log-lik =
1

2

∑

i∈T
ln 2πσ̂2

i +
1

2

∑

i∈T

(yi − µ̂i)2
σ̂2
i

. (5)

It can be easily seen that the gamma log-likelihood of the dispersion model
is equivalent to the likelihood of the whole model when the mean model is
kept fixed. Thus, the comparison of dispersion models by keeping the mean
model fixed can be based on the full likelihood. For the comparison of mean
models, the root mean squared errors rMSE =

√
ave(ε̂2) are also presented.

Table 1 shows the achieved prediction accuracies of the different methods
for joint modelling of mean and dispersion in the test data set. To compare
especially the dispersion models, we fixed the mean models to the fitted
neural network models and fitted the dispersion models using the squared
residuals. The results are presented in Table 2.

The basic method for fitting the dispersion model was to use the response
ε2i /(1 − ∆i) and the square root link function and to fit the model using
gamma likelihood without iterating the mean model and variance model es-
timation. Some alternatives for the basic setting were tested: effects are
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model Tensile strength Yield strength

rMSE -log-lik rMSE -log-lik
HetReg 9.25 95125 14.39 108399
MADAM 9.67 95837 14.28 108172
LLRMD 9.23 95468 14.09 107800
NNMMD 8.95 94442 13.90 107482

Table 1. Prediction accuracy in the test data set.

model Tensile S. Yield S.

HetReg 94410 107646
MADAM 94726 107623
LLRMD 94593 107514
NNMMD 94442 107482

Table 2. The negative log-likelihoods (the smaller, the better) in the test data set
when the mean model was kept fixed.

model Tensile strength Yield strength

ε2 gaussian log-link weighted ε2 gaussian log-link weighted
HetReg 0 -56 -24 +61 0 -303 -6 +187
MADAM -36 -2050 -375 +117 +12 -643 +13 -665
LLRMD -80 -68 · · -27 -73 · ·
NNMMD · -350 +30 +251 · -230 -185 -211

Table 3. The differences in test data log-likelihood between the standard fitting
method and the alternatives. The plus sign means that the alternative gave better
likelihood in the reduced test data set.

presented in Table 3. Using the response e2 had only a small effect on the
results; prediction accuracy usually decreased. If the parameters were esti-
mated under gaussian likelihood instead of gamma likelihood, the likelihood
of the test data decreased significantly. The effect of a link function was
moderate, in most cases log-link for the variance function gave worse results.
The number of iterations in the joint modelling of mean and dispersion had a
major but fluctuating effect on the results. Usually, the weighted estimation
of the second iteration gave better results when measured using likelihood
but worse results when rMSE was used. The differences in rMSE were 0, -0.10
and -0.02 for tensile strength and +0.04, -0.57 and -0.10 for yield strength
(in the same order as in Table 3). The third iteration changed the results of
the second iteration only slightly, and the differences in log-likelihood were
about 10-20. The subsequent iterations had a very small effect on the results,
the change in log-likelihood being about 1-4.
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In neural network modelling, it was noticeable that a network with skip-
layer connections was much better than an ordinary single-layer perceptron
without skip-layer connections. For yield strength the difference in log-
likelihood was 800 and for tensile strength 1300. The use of log-link for
variance with local likelihood fitting caused convergence problems at several
prediction points, and log-link could thus not be used. Constant bandwidth
seemed to work poorly; the difference in log-likelihood with the adaptive
bandwidth was about 2000. We did not try the weighted version of local
linear modelling, because too large computations would have been needed.

The computational requirements of modelling methods are a focus of in-
terest when prediction is based on large data sets. We tested the computa-
tional needs using R software (http://www.r-project.org/) installed on a
SunOS unix machine with 15 Gb of memory. The CPU power used in the
computation was 900 MHz. R is known to be fast but to use memory ineffi-
ciently. The observed need for memory and computation time for fitting the
model for strength are shown in Table 4. The time needed to produce 25000
predictions for the test data set is also presented. We used a simple model
selection algorithm for each case; the approximate computation times used
by the model selection procedures are also presented in Table 4.

Fitting Prediction Model selection Memory need (Mb)
HetReg 1 min < 1 min 15 h 800 Mb
MADAM 70 min < 1 min 12 h 3500 Mb
LLRMD 70 h 20 h 240 h 400 Mb
NNMMD 120 min < 1 min 10 h 400 Mb

Table 4. The required computational resources for applying different methods to
the strength of steel data.

5 Discussion

The results on the predictive performance of the models in predicting the
distribution of the strength of steel plates are presented. This is the first
extensive comparison of the methods for joint modelling of mean dispersion
in a real prediction problem.

Modification of the response in dispersion model fitting with∆-corrections
to take into account the effect of estimating the mean model has a small effect
on prediction. In heteroscedastic regression with a large number of observa-
tions, ∆-corrections have practically no impact, but the effect increases with
the complexity of the model. We suggest that good results are obtained with
an uncorrected response, but if the ∆-corrections are easily available, the
corrected response should be used.

The traditional log-link ensures the positivity of predicted variance, but
it did not perform very well in our case study. Log-link implies that the
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explanatory variables have a multiplicative effect on variance, which is not
necessarily a rational assumption. We suggest that a linear model for variance
and a linear model for deviation should be also considered when selecting link
function.

Iteration of mean model estimation and variance model estimation in-
creases the computation time needed for model fitting. Our results agree
well with the earlier results claiming that two iterations are needed, and the
subsequent iterations have only a minor effect on the results. In our data
set, the first iteration also gave pretty good results. Our suggestion is to
use two iterations. We compared two loss functions in variance function esti-
mation; least squares and gamma log-likelihood. Least squares yielded poor
results, which was expected, as the distribution of squared residuals is far
from normal.

A wide variety of learning methods can be used for modelling dispersion,
and the choice of the model type has a great influence on the accuracy of
the prediction. The results suggest that neural networks are included among
the methods that provide a suitable model framework for joint prediction
of mean and dispersion based on large data sets. The fitting of additive
spline models to large data sets requires a huge amount of memory, which
makes them difficult to use. Local linear modelling is time-consuming, and it
may not be applicable to real-time applications. Heteroscedastic regression
models are appropriate when simplicity and interpretability are required.
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Garćıa, B., 1006
Garcia Pereira, H., 764
Garreta, H., 432

Gettler Summa, M., 678
Gfeller, D., 106
Gibrat, J.F., 180
Giovanis, A. N., 1351
Girard, P., 828
Girard, S., 526, 1484
Girardin, V., 1109
Giron, A., 230, 441
Glaz, J., 838
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