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Abstract. The problem of estimating the distribution of a lifetime when data
may be left or right censored is considered. Two models are introduced and the
corresponding product-limit estimators are derived. Strong uniform convergence
and asymptotic normality are proved for the product-limit estimators on the whole
range of the observations. A bootstrap procedure that can be applied to confidence
intervals construction is proposed.
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1 Introduction

A great deal of recent attention in survival analysis has focused on estimating
the survivor distributions in the presence of various and complex censoring
mechanisms. The goal of this paper is to analyze simple models for lifetime
data that may be left or right censored. Typically, a lifetime 7" is left or right
censored if, instead of observing 7" we observe a finite nonnegative random
variable Y, and a discrete random variable with values 0, 1 or 2. By definition,
when A=0,Y =T, when A=1,Y <T and, when A =2, Y > T. Models
for left or right censored data were proposed by [Turnbull, 1974], [Sampath
and Chandra, 1990] and [Huang, 1999]. See also [Gu and Zhang, 1993], [Kim,
1994].

Assume that the sample consists of n independent copies of (Y, A) and
let Fr be the distribution of the lifetime of interest 7. Using the plug-in
(or substitution) principle, the nonparametric estimation of Fr is straight
as soon as Fp can be expressed as an explicit function of the distribution
of (Y, A). The existence of such a function requires a precise description of
the censoring mechanism that is generally achieved by introducing ‘latent’
variables and by making assumptions on their distributions. In this paper,
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two latent models allowing for explicit inversion formula, that is closed-form
function relating Fr to the distribution of (Y, A), are proposed.

In some sense, our first latent model lies between the classical right-
censorship model and the current-status data model. It may be applied to the
following framework. Consider a study where T" the age at onset for a disease
is analyzed. The individuals are examined only one time and they belong
to one of the following categories: (i) evidence of the disease is present and
the age at onset is known (from medical records, interviews with the patient
or family members, ...); (ii) the disease is diagnosed but the age at onset is
unknown or the accuracy of the information about this is questionable; and
(iii) the disease is not diagnosed at the examination time. Let C' denote the
age of the individual at the examination time. In the first case the exact
failure time T' (age at onset) is observed, that is Y = T'. In case (ii) the fail-
ure time T is left-censored by C and thus Y = C, A = 2. Finally, the onset
time T is right-censored by C' for the individuals who have not yet developed
the disease; in this case Y = C', A = 1. If no observation as in (ii) occurs,
we are in the classical right-censorship framework, while if no uncensored
observation is recorded we have current-status data. Our first latent model
can be applied, for instance, with the data sets analyzed by [Turnbull and
Weiss, 1978].

The second latent model proposed is closely related to the first one. It
lies between the left-censorship model and the current-status data model.
Consider the example of a reliability experiment where the failure time of a
type of device is analyzed. A sample of devices is considered and a single in-
spection for each device in the sample is undertaken. Some of them already
failed without knowing when (left censored observations). To increase the
precision of the estimates, a proportion of the devices still working is selected
randomly and followed until failure (uncensored observations). For the re-
maining working devices the failure time is right censored by the inspection
time.

Let us point out that, without any model assumption, given a distribu-
tion for the observed variables (Y, A) with Y > 0 and A € {0,1,2}, we can
always apply our two inversion formulae. In this way we build two pseudo-
true distribution functions of the lifetime of interest which are functionals
of the observed distribution. If the experiment under observation is com-
patible with the hypothesis of one of our latent models, the true Fr can be
exactly recovered from the observed distribution. Otherwise, we can only
approximate the true lifetime distribution.

The paper is organized as follows. Section 2 introduces our two latent
models through the equations relating the distribution of the observations
to those of the latent variables. Solving these equations for Fr we deduce
the inversion formulae. The product-limit estimators are obtained by apply-
ing the inversion formulae to the empirical distribution. Section 2 is ended
with some remarks and comments on related models. Section 3 contains the
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asymptotic results for the first latent model (similar arguments apply for the
second model). We prove strong uniform convergence for the product-limit
estimator on the whole range of the observations. Our proof extends and
simplifies the results of [Stute and Wang, 1994] and [Gill, 1994] provided in
the case of the Kaplan-Meier estimator. Next, the asymptotic normality of
our product-limit estimator is obtained. The variance of the limit Gaussian
process being complicated, a bootstrap procedure for which the asymptotic
validity is a direct consequence of the delta-method is proposed.

2 The latent models

2.1 Model 1

The survival time of interest is T' (e.g., the age at onset). Let C be a censoring
time (e.g., the age of the individual at the examination time) and A be a
Bernoulli random variable. Assume that the latent variables T, C' and A
are independent. The observations are independent copies of the variables
(Y,A), with Y > 0 and A € {0,1,2}. These variables are defined as

Y =min(7,C) + (1 — A)max(C — T,0) = C + Amin(T — C,0)

and A = 2(1 - A)lyr<cy + 1{c<r}, where 14 denotes the indicator function
of the set A. With this censoring mechanism the lifetime T is observed, right
censored or left censored. In view of the definitions of Y and A, note that if
A is constant and equal to one (resp. zero), we obtain right censored (resp.
current status ) data.

Let Fr and F¢ denote the distributions of 1" and C, respectively. Let
p= P (A =1). Define the observed subdistributions of Y as

H,(B)=P(Ye€B,A=k), k=012, (1)

for any B Borel subset of [0, oc]. As usually in survival analysis, the censoring
mechanism defines a map @ between the distributions of the latent variables
and the observed distributions. For the censoring mechanism we consider, the
relationship (Hoy, H1, Hz) = @ (Fr, Fo,p) between the subdistributions of Y
and the distributions of the latent variables 7', C' and A is the following:

Ho(dt) = p Fe ([t, o0]) Fr(dt)
Hy(dt) = Fr ((t, oc]) Fo(dt) - (2)
Ha(dt) = (1 —p) Fr([0,]) Fc(dt)

Remark that when p = 1 (resp. p = 0) the equations (2) boil down to the
equations of the classical independent right-censoring (resp. current status)
model.

By plug-in applied with the empirical distribution, the nonparametric
estimation of the distribution of 7" is straight as soon as the map @ is invertible
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and Fp can be written as an explicit function of the observed subdistributions
Hy, k=0,1,2. The model considered allows us an explicit inversion formula
for Fr. In order to derive this inversion formula, integrate the first and the
second equation in (2) on [t, c0] and deduce

Ho([t, o0]) + pH1([t, 00]) = pFr ([t, o0]) Fe ([t,00]) - (3)
For t = 0, it follows that

_ Hy ([0, o0]) _ Ho([0, o0])
1—H1([O,OO]) HO([OaOO])""HQ([OaOO]).

(4)

Recall that the hazard measure associated to a distribution F is A(dt) =
F(dt)/F([t,o0]). In our case, use (2)-(3) to deduce that the hazard function
corresponding to F'r can be written as

Ho(dt)

(5)

Finally, the distribution Fp can be expressed as

Pr((t,00)) = [J(1 = Ar(ds)), (6)

[0,¢]

where []jo ,; is the product-integral on [0,¢]. Note that there is no explicit
formula for Fr if p = 0 in equations (2), that is with current status data.

Given the explicit relationship between the distribution of 7' and the
observed subdistributions, to obtain the product-limit estimator of Fr, we
simply replace Hy, k = 0, 1, 2 by their empirical counterparts. Let Fr denote
the product-limit estimator of Frp.

2.2 Model 2

As in Model 1, assume that T, C' and A are independent. The observations
are independent copies of the variables (Y, A), with Y > 0 and A € {0, 1,2}
where

Y=T A=0if 0<C<T and A=1;

Y=C, A=11if 0<C<T and A=0; (7)

V=0, A=2if 0<T<C.

The equations of this model are

Ho(dt) = p Fo ([0,t]) Fr(dt)
Hy(dt) = (1 — p) Fr ([t, o0]) Fo(dt) . (8)
Ha(dt) = Fr ([0,1)) Fo(dt)

Remark that when p = 1 (resp. p = 0) the equations (8) boil down to the
equations of the classical independent left-censoring (resp. current status)
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model. This model also allows for an explicit inversion formula for Fp. By
integration in the first and the third equation in (8), Ho([0,t]) +pH2([0,t]) =
pFr([0,t])Fe([0,t]). Deduce

_ Hy([0,))
1 — Hs([0,00])"
Recall that given a distribution F|, the associated reverse hazard measure is
M(dt) = F(dt)/F([0,t]). By equations (8) deduce that the reverse hazard
function M7 associated to Fr can be written as
Hy(dt)
Ho([0,¢]) + pH2([0,1])

Mr(dt) =

Finally, the distribution Fr can be expressed as

Fr(0,) = [T (0 = Mr(ds)).

(t,00]

Applying the inversion formula with the empirical subdistributions, we get
the product-limit_estimator of Fr in Model 2.

Note that if T = h(T) and C = h(C), with h > 0 a decreasing transfor-
mation, then T, C and A are the variables of Model 1 applied to the left or
right censored lifetime h(Y"). In other words, Model 2 is equivalent to Model
1, up to a time reversal transformation.

2.3 Related models

[Huang, 1999] introduced a model for the so-called partly interval-censored
data, Case 1; see also [Kim, 1994]. In such data, for some subjects, the
exact failure time of interest T is observed. For the remaining subjects, only
the information on their current status at the examination time is available.
[Huang, 1999] considered the nonparametric maximum likelihood estimator
(NPMLE) of Fr. Unfortunately, NPMLE does not have an explicit form
and therefore Huang needs strong assumptions for deriving its asymptotic
properties and a numerical algorithm for the applications. Let us point out
that, on contrary to our Model 1 (resp. Model 2), in Huang’s model one
may observe exact failure times even if failure occurs after (resp. before)
the examination time. Moreover, in Huang’s model one may still obtain a
\/n—consistent estimator of the distribution Fr if one simply considers the
empirical distribution of the uncensored lifetimes. This is no longer true in
our models.

Perhaps, the most popular model for left or right-censored data is the
one introduced by [Turnbull, 1974]; see also [Gu and Zhang, 1993]. In Turn-
bull’s model there are three latent lifetimes L (left-censoring), T' (lifetime
of interest) and R (right-censoring) with L < R. The observed variables
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are Y = max(L, min(T, R)) = min(max(L,T), R) and A defines as follows:
A=0if L<T<R;A=1if R<T;and A=2if T < L. The equations of
this model are

Ho(dt) = {Fg([t,o0]) = FL([t, 00])} Fr(dt)
Hl(dt) = FT((t, OO]) FR(dt) y
Hy(dt) = Fr([0,t]) Fr(dt)

where Hy, k = 0,1,2 are defined as in (1) and Fr, F and Fg are the
distributions of T', L and R, respectively. The NPMLE of the distribution
of the failure time T is not explicit but it can be computed, for instance,
by iterations based on the so-called self-consistency equation. Note that
imposing Fe(dt) = (1 — p) " Fr(dt) = Fgr(dt), one recovers the equations of
Model 1. However, for the applications we have in mind, there is no natural
interpretation for such a constraint in Turnbull’s model. Moreover, we derive
a product-limit estimator for our Model 1. Finally, the asymptotic results
below are much simpler and they are obtained under weaker conditions than
in Turnbull’s model.

3 Asymptotic results

In this section the strong uniform convergence and the asymptotic normality
for the estimator of the distribution Fr in Model 1 are derived. Moreover, we
propose a bootstrap procedure that can be used to build confidence intervals
for Fr. As in the previous sections, the distributions Fr and F¢ need not
be continuous. For simpler notation, hereafter, the subscript 7' is suppressed
when there is no possible confusion. We write F' (resp. F, A and A) instead
of ﬁT (resp. Fr, /TT and Ar).

3.1 Strong uniform convergence

Let H, be the empirical counterparts of the subdistributions Hy, k = 0,1, 2,,
that is

Hyi.([0,1]) :Zl{mgt, A=k} k=0,1,2.
i=1

Clearly, sup;>q |[Hnk([0,t]) — Hx([0,])| — 0, almost surely. We want to prove

the strong uniform convergence of the distribution ﬁ, that is

sup | F([0,]) — F([O,t])’ — 0, asn— oo, almost surely,
tel

where I = {t : Hy([t,o0]) +pHi([t,o0]) > 0}. For this purpose, first we prove
the almost sure convergence of the hazard function.
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Theorem 1 Assume that p € (0,1] and let t, =supI. For any o € I,

sup [A([0,4]) — A(]0,8])| — 0, as n — oo, almost surely.
0<t<o

Moreover, if t, ¢ I and A([0,t.)) < oo, then A ([0,t,)) — A([0,t.)), almost
surely.

The strong uniform convergence of the distribution F follows without any
additional assumption.

Theorem 2 Assume that p € (0,1]. Then

sup | F([0,2)) — F([0,t])| — 0, as n — oo, almost surely.
tel
With p = 1 one recovers the strong uniform convergence result for the
Kaplan-Meier estimator obtained by [Stute and Wang, 1994], [Gill, 1994].
Our alternative proof is simpler.

3.2 Asymptotic normality

Here we study the weak convergence of the process \/ﬁ(ﬁ — F) where Fis
the product-limit estimator of Model 1. In this case, A does no longer have
a martingale structure (in ¢) as in the case of the Nelson-Aalen estimator,
that is when p = 1. However, a continuous time submartingale property for
A can be obtained. This suffices us to extend the techniques of Gill (1983)
and to use them in combination with the functional delta-method in order to
establish the weak convergence of /n(F — F) to a Gaussian process. Here,
the weak convergence is denoted by =-. The space D[a, b] of cadlag functions
defined on [a, b] is endowed with the supremum norm and the ball o—field.

~

Theorem 3 Assume that p € (0,1] and define U(t) = /n(F([0,t]) —
F([0,t]), t > 0. Let t. =sup .

a) Let T be a point in I. Then, U = G in D|0, 7], where G is a Gaussian
process.

b) Ift, €I, but

/ Hy(dt)
f0,t.) {Ho([t,00]) + pHy([t, o0]) }2

then G can be extended to a Gaussian process on [0,t.] and U = G in
DI0,t.].

< 00, (1)

The proof of the weak convergence is postponed to the appendix. Note
that when t. & I, condition (1) is equivalent to

Fr([ts,0]) >0 and /[ Fr(dt) (2)

0,t.) FC([ta OO])
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3.3 Bootstrapping the product-limit estimator

Theorem 3 may be used to obtain confidence intervals and confidence bands
for F. However, the law of the process G(t) = G(¢)/F ((t,o0]) being com-
plicated, one may prefer a bootstrap method in order to avoid handling
this process in practical applications. Here, a bootstrap sample is obtained
by simple random sample with replacement from the set of observations
{(Yi,Ai) : 1 < i < n}. Let {(Y*,Af) : 1 < i < n} denote a bootstrap
sample and let H} be the corresponding subdistributions. Apply equations
(4) to (6) to obtain the bootstrap estimator F**. The following theorem state
that the bootstrap works almost surely for our product-limit estimator on
any interval [0, 7] such that Ho([7,o0]) + pHi([r,00]) > 0. This result is a
simple corollary of Theorem 3.9.13 of [Van der Vaart and Wellner, 1996] and
it is based on the uniform Hadamard differentiability of the maps involved
in the inversion formula of Model 1.

Theorem 4 Let 7 € I and let G(t) be the limit of U(t)/F ((t,0]) in D[0, 7],
as obtained from Theorem 3. Then, the process

Vi ([0,1]) = F([0.])}/F ((t,00])

converges to G in D[0, 7], almost surely.
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