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Abstract. Semi-Markov reward processes are a very important tool for the solu-
tion of insurance problems. In disability problems can assume great relevance the
date of the disability accident. In fact the mortality probability of a disabled person
of a given age is higher respect the one of a person of the same age that is healthy.
But the difference decreases with the running of the time after the instant of the
disability. By means of backward semi-Markov processes it is possible to take in
account the duration of the disability for an insured person. In this paper is shown
for the first time, at authors’ knowing, how to apply backward semi-Markov reward
processes in insurance environment. An application will be shown.
Keywords: backward semi-Markov processes, reward processes, disability insur-
ance.

1 Introduction

Semi-Markov processes was first defined by [Levy, 1954] in the fifties. At
the beginning their application was in engineering, mainly where the appli-
cation were linked to ageing. The use of so called multiple state models have
long been used in the actuarial world for dealing with disability and illness
among other things, see for example the book by [Haberman and Pitacco,
1999]. These models can be described by the use of semi-Markov processes
and semi-Markov reward processes. An insurance contract ensures the holder
benefits in the future from some random event(s) occurring at some random
moment(s). The holder of the insurance contract pays a premium for the
contract. Denote the discounted cash flow that occurs between the counter
parties as the discounted accumulated reward where both the premiums and
benefits are considered to be rewards. When developing an insurance con-
tract between the writer and receiver the following questions must be asked.
How shall the reward structure of the contract be determined? The fee can
depend on the individuals exposure to becoming disabled in different states,
and the benefits can be of two types, either instant rewards associated with
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transition between states or permanence rewards associated with maintain-
ing in a state. In time evolution of insurance problems it is necessary to
consider two different kind of randomness. One is originated by the accu-
mulation during the time of the premiums and benefits paid or received (the
financial evolution); the other is given by the time of the state change of the
insured person, usually in insurance problem the transition among the states
are effected at a random time. A semi-Markov environment can naturally
take into account of both the two random aspects. This property was out-
lined for example in [Janssen and Manca, 2003] and [Janssen and Manca,
2004]. Another problem in insurance mainly in disability is the fact that
the probability to change state is function of the distance from the moment
of the disability. For example the probability to die in a disabled person of
a given age is higher respect the one of a person of the same age that is
healthy. But the difference decreases with the running of the time. In this
paper the authors will consider also this duration effect using a bacward ho-
mogeneous semi-Markov reward process. By means of semi-Markov reward
both financial and transition time randomness will be considered. By means
of the backward environment also the duration phenomenon can be taken
into account. It is to remark that, at authors’ knowing, it is the first time
that this last problem is faced by means of SMP in insurance field.

2 Homogenous Model.

Given the probability space (Ω,F, P ) consider a homogenous Markov renewal
process (Xn, Tn), T0 ≤ T1 ≤ T2 ≤ ... . Let the stochastic process Xn, n ∈ N

have state space E = {1, 2, ...,m} representing the state at the n-th tran-
sition. Let Tn represent the random time of the n-th transition with state
space N. For the combined process (Xn, Tn) define Qij(t), bij(t), Si(t) as,

Qij(t) = P (Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i) (1)

bij(t) = P (Xn+1 = j, Tn+1 − Tn = t|Xn = i) (2)

Si(t) = P (Tn+1 − Tn ≤ t|Xn = i). (3)

We allow for Qii(t) 6= 0, t = 1, 2, ..., i.e., artificial jumps from state i to
itself, this is due to that sometimes this possibility makes sense in insurance
applications. Impose Qij(0) = 0 for all i, j ∈ E, i.e., no instantaneously
jumps in our process. Obviously,

Si(t) =
∑

j

Qij(t) (4)

and

bij(t) = Qij(t) −Qij(t− 1). (5)
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It is well known that,

pij = lim
t→∞

Qij(t) i, j ∈ E

where P = [pij ] is the transition probability of the embedded Markov chain.
The conditional distribution functions for waiting time in each state i is given
the state subsequently is j is given by,

Gij(t) = P (Tn+1 − Tn ≤ t|Xn = i,Xn+1 = j) =

{

Qij(t)
pij

, if pij 6= 0,

1, if pij = 0.

Define κ(t) in the following way,

κ(t) = t− max
Tn≤t

{Tn} . (6)

κ(t) describes the time already spent in the current state at time t.

3 Homogenous Rewards

The notation of rewards is given by;
ψi, ψi(κ(t)), ψi(κ(t), t) denotes the rewards that are given for the perma-

nence in the i-th state. The first reward doesn’t change with the time and
the future transition. The second changes with the time spent in the state.
The third changes with the time spent in the state and is function of κ(t)
and t. They represent the flows of annuity that is paid during the presence
in state i.

γij , γij(κ(t)), γij(κ(t), t) denote the rewards that are given for the tran-
sition from the i-th state to the j-th one. The distinctions among the three
impulse rewards is the same given previuosly for the permanence rewards.

We will in this paper focus on constant rewards but our result can be
extended into the other cases on the expense of more notation and indexes.

Let e−tδ denote the discount factor for t periods with common fixed inten-
sity of interest rate δ. Let ξi,u(s, t), s ≤ t denote the accumulated discounted
reward from s excluding s up to and including t given that the at time s the
process is at state i ∈ E and the previous jump accursed u moments ago.
Here we apply the convention that ξi,u(t, t) = 0 for all t.

Theorem 1 The reward process ξi,u(s, t) is homogenous

ξi,u(s, t)
d
= ξi,u(0, t− s) ∀i, u, s, t. (7)

if the underlying process is a homogenous semi-Markov process and if the

rewards only depends on κ(t).
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Introduce Ti,u with the following distribution,

P (Ti,u > t) =
1 − Si(t+ u)

1 − Si(u)
(8)

and

P (Ti,u = s,Xi,u = j) =
bij(u+ s)

1 − Si(u)
. (9)

Then Ti,u describes the time to the next jump given that the process
already have visited the state i for u units of time and let Xi,u denote the
corresponding state we end up in after the jump.

Let us assume u = 0, and first find a recursive relation for ξi,0(0, t). We
will have to consider two cases, if no jump occurs before moment t, or if at
least one jump occurs between moment 0 up to moment t. If we introduce
the indicator variables for these events we fill find the following relationship
for ξi,0(0, t),

ξi,0(0, t)
d
= χ(Ti,0 > t)

t
∑

s=1

ψie
−δs

+
∑

j

t
∑

s=1

(χ(Ti,0 = s,Xi,0 = j)(e−δsγij(s) +

s
∑

u=1

ψi(s)e
−δu)) (10)

+
∑

j

t
∑

s=1

(χ(Ti,0 = s,Xi,0 = j)e−δsξj,0(0, t− s)) i ∈ E, t = 1, 2, ...

where ξj,0(0, t − s) are independent of indicators χ(Ti,0 = s,Xi,0 = j) and
χ(Ti,0 > t). The first term represents the discounted reward we receive at
moment u to jump from state i to state j, the second term is due to the fact
that the process restarts and is Markov at the moment of jump together with
the assumption of homogeneities. The last term consists of the rewards we
receive for the presence in state i between the moment 0 and u. This defines
a closed system of equations which recursively can be solved.

To simplify the expression we can introduce some notation,

ai(t) =
t

∑

s=1

ψi(s)e
−δs (11)

ãij(t) = ai(t) + e−δtγij(t). (12)

Here ai(t) corresponds to the discounted accumulated reward for persistence
in state i for t moments of time and ãij(t) the discounted accumulated reward



Backward Semi-Markov Reward 963

for the persistence in state i for t moments of time plus the discounted instant
reward for transition from state i to j at time t.

Then,

ξi,0(0, t)
d
= χ(Ti,0 > t)ai(t) +

∑

j

t
∑

s=1

χ(Ti,0 = s,Xi,0 = j)ãij(s)

+
∑

j

t
∑

s=1

(χ(Ti,0 = s,Xi,0 = j)e−δsξj,0(0, t− s) i ∈ E, t = 1, 2, ...

In the case u 6= 0, i.e., if we are interested in finding the accumulated reward
toward a moment in time not associated with a jump;

ξi,u(0, t)
d
= χ(Ti,u > t)ai(t) +

∑

j

t
∑

s=1

χ(Ti,u = s,Xi,u = j)ãij(s)

+
∑

j

t
∑

s=1

χ(Ti,u = s,Xi,u = j)e−δsξj,0(0, t− s) i ∈ E, t = 1, 2, ...

The only difference from the previous expressions is that we have to remember
that our first jump-time depends on u, i.e., our surjeon time in the initial
state is at least u+ 1.

The first moment can now be calculated using these relationships, first
consider the case u = 0,

E[ξi,0(0, t)] = E[χ(Ti,0 > t)]ai(t) +
∑

j

t
∑

s=1

E[χ(Ti,0 = s,Xi,0 = j)]ãij(s)

+
∑

j

t
∑

s=1

E[χ(Ti,0 = s,Xi,u = j)]E[ξj,0(0, t− s)]e−δs

= (1 − Si(t))ai(t) +
∑

j

t
∑

s=1

bij(s)ãij(s) (13)

+
∑

j

t
∑

s=1

bij(s)E[ξj,0(0, t− s)]e−δs i ∈ E, t = 1, 2, ...
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which follows from independence mentioned earlier. This set of equations
can recursively be solved. Let Vi(t) = E[ξi,0(0, t)], i ∈ E, t = 1, 2, ... then

Vi(0) = 0 ∀i ∈ E

Vi(1) = (1 − Si(1))ai(1) +
∑

j

bij(1)ãij(1) ∀i ∈ E

Vi(2) = (1 − Si(2))ai(2) +
∑

j

bij(1)ãij(1) +
∑

j

bij(2)ãij(2)

+
∑

j

e−δbij(1)Vj(1) i ∈ E. (14)

And in general,

Vi(t) = (1 − Si(t))ai(t) +
∑

j

t
∑

s=1

bij(s)ãij(s) +
∑

j

t
∑

s=1

e−δsbij(s)Vj(t− s)

∀i ∈ E

The values of Si(t), ai(t), ãij(t) are known and the only unknown pa-
rameters are Vi(t). Above we see how we can recursively determine Vi(t) by
recursively solving Vj(1), Vj(2), ..., Vj(t− 1) for all j ∈ E.

And in the general case with u 6= 0,

E[ξi,u(0, t)] = E[χ(Ti,u > t)]ai(t) +
∑

j

t
∑

s=1

E[χ(Ti,u = s,Xi,u = j)]ãij(s)

+
∑

j

t
∑

s=1

E[χ(Ti,u = s,Xi,u = j)]E[ξj,0(0, t− s)]e−δs

=
1 − Si(t+ u)

1 − Si(u)
ai(t) +

∑

j

t
∑

s=1

bij(u+ s)

1 − Si(u)
ãij(s) (15)

+
∑

j

t
∑

s=1

bij(u + s)

1 − Si(u)
E[ξj,0(0, t− s)]e−δs i ∈ E, t = 1, 2, ...

Note here that its enough to determine all E[ξj,0(0, s)] for all j ∈ E, s =
0, 1, ..., t− 1 to determine E[ξi,u(0, t)]. We are thereby back to our basic case
u = 0.

4 Disability

In the papers by [Janssen and Manca, 2003]and [Janssen et al., 2004] it
is shown how to apply continuous time semi-Markov reward processes in
multiple life insurance. In the paper by Blasi et al (2004), a real case study
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using real disability data is given. We will extend the example given in this
paper using the backward homogeneous semi-Markov reward process that
can take into account the duration of disability.

The model is a 5-state model. The considered states are the following:

states disability degree reward
1 [0, .1) 1000
2 [.1, .3) 1500
3 [.3, .5) 2000
4 [.5, .7) 2500
5 [.7, 1] 3000

The data gives the disability history of 840 persons that had silicosis
problems and that live in Campania, a region in Italy. The reward is given
to construct the example, it represents the money amount that is paid for each
time period to the disable in function of its degree of illness. The transition
occurs after a doctor visit that can be seen as the check to decide in which
state the disable person is in. This gives naturally an example where virtual
transitions are possible.

To be able to apply the technique developed in this paper for homogenous
semi-Markov processes, we must first construct the embedded Markov-chain.
The transition matrix is constructed from real data and is reported in the
following table.

0-10 10-30 30-50 50-70 70-100
0-10 0 1 0 0 0
10-30 0 0.811 0.180 0.005 0.004
30-50 0 0.017 0.75 0.21 0.02
50-70 0 0.023 0.03 0.72 0.22
70-100 0 0 0 0 1

Next step is to construct the matrix valued waiting time distribution G(t).

To show the difference due to the introduction of the backward process
the results with u = 0 (that means that the person entered in the state i
when we begin the study of the system) and with u = 2 are reported.
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s 0-10 10-30 30-50 50-70 70-100
1 970,87 1456,31 1941,74 2427,18 2912,62
2 1913,47 2876,75 3831,08 4780,34 5740,40
3 2993,34 4278,51 5684,64 7081,26 8485,83
4 4283,87 5657,51 7510,09 9330,86 11151,29
5 5547,74 7015,79 9310,84 11536,94 13739,12
6 6792,15 8352,65 11078,77 13684,65 16251,57
7 8015,84 9667,20 12817,61 15778,89 18690,84
8 9219,65 10959,30 14522,48 17822,21 21059,07
9 10403,01 12229,95 16193,96 19816,49 23358,32
10 11565,50 13479,60 17830,89 21759,34 25590,60

mean total reward with u = 0

s 0-10 10-30 30-50 50-70 70-100
1 970,87 1456,31 1941,74 2427,18 2912,62
2 2346,91 2904,34 3880,52 4827,55 5740,40
3 3688,40 4340,42 5812,47 7207,04 8485,83
4 5009,97 5759,51 7714,30 9527,12 11151,29
5 6308,27 7159,74 9590,50 11792,99 13739,12
6 6792,15 8352,65 11078,77 13684,65 16251,57
7 8840,21 9892,87 13237,77 16171,26 18690,84
8 10072,70 11227,54 15006,35 18279,73 21059,07

mean total reward with u = 2
Few words to describe the results. We present an example only to show

that taking into account the permanence into the state before the beginning
of the study of the system changes the results. We did not change the tran-
sition probabilities changing the backward variable u. The different dead
probability means different transition probability. But also without changing
the probabilities the results were different. It is only to observe that the last
state is absorbing and from (15) it follows that the results do not change.
Furthermore the payments of the first year are always the same because they
are equal to the corresponding first discounted rewards as it was proved in
[Janssen and Manca, 2005].

5 Conclusions

In this paper a first step for the application of the backward semi-Markov
reward in insurance field was done. In future works the authors would gen-
eralize this approach in non homogeneous environment. Reward processes
represent the first moment of the total revenues that are given in a stochastic
financial operation. The author would also find models and algorithms useful
to compute the higher moments.
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