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via del Castro Laurenziano, 9, 00161 Roma, Italy.
(e-mail: guglielmo.damico@uniroma1.it, giovanna.demedici@uniroma1.it)

2 CESIAF, EURIA
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Abstract. In this paper we use a discrete time non-homogeneous semi-Markov
model for the rating evolution of the credit quality of a firm C and we determine
the credit default swap spread for a contract between two parties, A and B that,
respectively, sell and buy a protection about the failure of the firm C. We work in
both the case of deterministic and stochastic recovery rate. We highlight the link
between credit risk and reliability theory too.
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1 Introduction

The credit default swap (CDS) is a derivative that can be seen as default
insurance on loans and bonds. These contracts are instruments that pro-
vide insurance against a particular company (that we will call company ”C”)
defaulting on its debt. In this paper we present an evaluation procedure of
credit default swap in a rating based model. We assume that the rating credit
quality evolution of the company ”C” that issue the bond follows a discrete
time non-homogeneous semi-Markov process, so to consider the reference de-
fault risk we use the non-homogeneous semi-Markov reliability credit risk
model [D’Amico et al., 2004a]. In this way, how it is showed in [D’Amico et

al., 2004a], we solve all the non-markovianity problems highlighted by some
empirical works in this area such [Carty and Fons, 1994] and [Nickell et al.,
2002].

We fix the credit default swap spread U∗(s) imposing a fair game con-
dition on the wealth balance equation for the swap contract. We compute
U∗(s) first considering a fixed recovery rate ρ and successively extending the
computation to the case of a random recovery rate. Considering the non-
homogeneity of the process we give the same definition of stochastic recovery
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rate as in [D’Amico et al., 2004b] linking the random recovery rate in general
on the last n states visited by the process first of the random default time τs.

In both the cases of deterministic and stochastic recovery rate, we express
the price and the value of the swap as a function of the C’s reliability.

2 The discrete time non-homogeneous semi-Markov

reliability credit risk model

First of all we give some basic results on the theory of discrete time non-
homogeneous semi-Markov processes. Let (Ω, F, P ) be a probability space
and let E be a finite state space. On our probability space we define two
stochastic processes: Xn : Ω −→ E, Tn : Ω −→ IN.

Xn represents the state occupied at the n-th transition and Tn is the time
of the n-th transition. The process (X, T ) is a non-homogeneous Markov
Renewal Process if ∀i, j ∈ E and ∀t ∈ IN the following condition holds:

P [Xn+1 =j, Tn+1≤ t|σ(Xh, Th), Xn = i, Tn =s, 0≤h≤n]=

P [Xn+1 =j, Tn+1≤ t|Xn = i, Tn =s]≡Qij(s, t). (1)

The transition matrix P (s) of the non-homogeneous embedded Markov
chain Xn is obtained as pij(s) = limt→∞ Qij(s, t) ∀i, j ∈ E.

We introduce also the following probabilities:

qij(s, t) = P [Xn+1 = j, Tn+1 = t|Xn = i, Tn = s], (2)

Hi(t) = P [Tn+1 ≤ t|Xn = i, Tn = s], (3)

Let N(t) = sup{n : Tn ≤ t} ∀t ∈ IN; we define the non-homogeneous
discrete time semi-Markov process Z = (Z(t),t ∈ IN) as Z(t)= XN(t), that
represents, for each waiting time, the state occupied by the process.

We define, ∀i, j ∈ E, and (s, t) ∈ IN × IN, the semi-Markov’s transition
probabilities as φij(s, t) = P [Z(t) = j|Z(s) = i] satisfying the following
system of equations:

φij(s, t) = δij(1 − Hi(s, t)) +
∑

k∈E

t
∑

τ=1

qik(s, τ)φkj(τ, t). (4)

At this time we explain briefly the non-homogeneous semi-Markov relia-
bility credit risk model, see [D’Amico et al., 2004a] to study in depth.

Let the state space E indicate the different rating classes that give a
reliability degree of a firm bond. We partition this state space in two sub-
set: D = {N + 1} and Up = {1, 2, ..., N}, that we call respectively ”Down”
(default) and ”Up” states. We assume that the set D is absorbing. The
most important variable to compute is the reliability R(s, ·) of the firm that
is defined ∀t ≥ s as R(s, t) = P [Z(u) ∈ Up, ∀u ∈ {s, s + 1, ..., t}]. The
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reliability function Ri(s, t) conditional on the starting state i at time s, is
given by Ri(s, t) =

∑

j∈Up φij(s, t), then solving the system of equations (4)
(see [Blasi et al., 2003]) and summing on the ”Up” states we obtain the
conditional reliability. Obviously R(s, t) =

∑

i∈Up

∑

j∈Upβi(s)φij(s, t) where
β(s)=(βi(s))i∈E denotes the random starting distribution at time s. In our
model the reliability is equal to the availability, that give us the probability
that the system is ”Up” at the generic time t, because the only one defaulting
state is absorbing.

3 The price and the value of the swap: the fixed

recovery rate case

In this section we consider a CDS contract starting at time s with maturity
T . We denote with τs = inf{t > s : Z(t) ∈ D} and with v the deterministic
discount factor. We write the wealth balance equation (w.b.e.) for the seller
B of the protection about a failure of C that is given by:

∆W |Ts =

T∧τs
∑

i=s+1

U(s) · vi−s − (100 − Y (T ∧ τs)) · v
(T∧τs)−s. (5)

The term (
∑T∧τs

i=s+1 U(s)·vi−s) is the random discounted amount of money

that B will obtain writing the CDS contract and (100−Y (T ∧τs)) ·v
(T∧τs)−s

is the potential loss in case of a C’s default.
We assume that Y (T∧τs) = 100·ρ·1{s<τs≤T}+100·1{τs>T} where ρ ∈ [0, 1]

is the deterministic recovery rate. This choice implies that the potential loss
will be zero if there is no default up to time T whereas if a default occurs
first of T the potential loss becomes a real loss equal to 100(1−ρ) discounted
from default time to starting time s. Then the w.b.e. becomes:

∆W |Ts =

T∧τs
∑

i=1

U(s) · vi−s − (100[1 − ρ]) · v(T∧τs)−s1{s<τs≤T}.

Fixing the credit default swap spread U(s) imposing a fair game condition
so that the expectation of the w.b.e. is zero, we get in:

U∗(s) =
(1 − v)[100 × (1 − ρ)]E[v(T∧τs)−s1{s<τ≤T}]

(v) × [1 − E[v(T∧τs)−s]]
. (6)

Now having

E[v(T∧τs)−s] =

T
∑

h=s+1

vh−s{R(s, h−1)−R(s, h)}+vT−sR(s, T ) (7)

E[v(T∧τs)−s1{τs≤T}] =
T

∑

h=s+1

vh−s{R(s, h − 1) − R(s, h)} (8)
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substituting in equation (6) we obtain:

U∗(s) =
(1 − v)[100 × (1 − ρ)][

∑T

h=s+1 vh−s{R(s, h− 1) − R(s, h)}]

(v) × [1 −
∑T

h=s+1 vh−s{R(s, h− 1) − R(s, h)} − vT−sR(s, T )]
.

(9)
Now we turn our attention to the valuation procedure. The value of

the swap at time t (conditional on no default first of time t) is given by
the difference between the expected present value (at time t) of the future
inflows minus the expected present value (at time t) of the future outflows.

Let V (s, t) the value of the swap and let I(s, t) =
∑T∧τs

h=t+1 U∗(s)vh−t and

O(s, t) = 100(1 − ρ)v(T∧τs)−t1{s<τs≤T} be, respectively, the future inflows
and the future outflows then by definition we have

V (s, t) = E[I(s, t) − O(s, t)|τs > t] = E[I(s, t)|τs > t] − E[O(s, t)|τs > t].
(10)

We obtain:

E[I(s, t)|τ >t]=U∗(s)
{

T
∑

m=t+1

R(s, m−1)−R(s, m)

R(s, t)
(

m
∑

h=t+1

vh−t)+
T

∑

h=t+1

vh−t R(s, T )

R(s, t)

}

.

(11)

E[O(s, t)|τs > t]=100(1 − ρ)
{

T
∑

h=t+1

vh−t R(s, h − 1) − R(s, h)

R(s, t)

}

. (12)

substituting in formula (10) we get the value of the swap at time t as a
function of the reliability of the firm.

4 The price and the value of the swap: the random

recovery rate case

In this section we extend our model considering a stochastic recovery rate
ρ. [Berthault et al., 2001] noted that the higher is the rating the lower is
the loss in case of default. From this empirical evidence [Millossovich, 2002]
linked the recovery rate to the last credit rating evaluation of the company
first of the default time τs in a markovian time homogeneous environment.
That extension was carried out enlarging the state space, considering multiple
default classes, one for each possible recovery rate. [D’Amico et al., 2004b]
proposed a new way to allows for stochastic recovery rate that depends on
the last (possibly n-last) rating evaluation, obtained first of the default time,
without enlarging the state space E.

In this paper we use the same definition given in [D’Amico et al., 2004b]
being careful on the non-homogeneity of the rating process, so we define the
one period stochastic recovery rate at time τs, ”ρ1(τs)” in the following way:

ρ1(τs) =

{

rj if s < τs ≤ T and Z(τs − 1) = j, ∀j 6= D

1 if τs > T > s
(13)
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We proceed to compute the credit default swap spread U∗(s) starting from
equation (6) and imposing a fair game condition such that the expectation
of the wealth balance equation is zero. In this case we get:

U∗
1 (s) =

(100[E[v(T∧τs)−s1{s<τs≤T}] − E[ρ1(τs)v
(T∧τs)−s1{s<τs≤T}]]) × (1 − v)

v × (1 − E[v(T∧τs)−s])
.

(14)
The unique new component to evaluate is E[ρ1(τs)v

(T∧τs)−s1{s<τs≤T}].

But E[ρ1(τs)v
T∧τs1{s<τs≤T}] = E[E[ρ1(τs)v

(T∧τs)−s1{s<τs≤T}|τs]] where

E[ρ1(τs)v
(T∧τs)−s1{s<τs≤T}|τs] =

∞
∑

h=s+1

v(T∧h)−sρ1(h)P [τs = h]1{h≤T} =

T
∑

h=s+1

vh−sρ1(h)P [τs = h] =

T
∑

h=s+1

vh−sρ1(h){R(s, h − 1) − R(s, h)} (15)

consequently E[ρ1(τs)v
T∧τs−s1{s<τs≤T}] =

T
∑

h=s+1

vh−s
∑

j∈Up

rjP [Z(h − 1) = j|Z(h) = D]{R(s, h− 1) − R(s, h)} (16)

To compute P [Z(h − 1) = j|Z(h) = D] we have to introduce the
non-homogeneous discrete backward recurrence time process B(t) defined
as:

B(t) =

{

t + T0 if t < T1

t − TN(t) if t ≥ T1
(17)

We know that the stochastic process (Z(t), B(t)) with values in E × IN
is a markovian process and ∀h ∈ {1, 2, ...T} and j ∈ E conditioning on all
possible values for B(h − 1) and from Bayes formula we have that

P [Z(h − 1) = j|Z(h) = D] =

∑h−1−s

l=0 P [Z(h)=D|Z(h−1)=j, B(h−1)= l]P [Z(h−1)=j, B(h−1)= l]
∑

k∈Up

∑h−1−s

l=0 P [Z(h)=D|Z(h−1)=k, B(h−1)= l]P [Z(h−1)=k, B(h−1)= l]
=

∑

i∈E βi(s)
∑h−1−s

l=0 Lij(s, h − 1, l)∆jD(h − 1, l, h)
∑

i∈E βi(s)
∑

k∈Up

∑h−1−s

l=0 Lik(s, h − 1, l)∆kD(h − 1, l, h)
(18)

where ∆ij(h, l, t) = P [Z(t) = j|Z(h) = i, B(h) = l] and

Lij(s, h, l)=P [Z(h)=j, B(h)= l|Z(s)= i, B(s)=0]=P(i,s)[Z(h)=j, B(h)= l].
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These probabilities can be computed from the knowledge of the semi-
Markov kernel Q in fact we have, see [D’Amico et al., 2004c], that

∆ij(h, l, t)=
δij(1−Hi(h−l, t))

(1−Hi(h−l, h))
+

1

(1−Hi(h−l, h))

∑

k∈E

t
∑

m=h+1

qik(h−l, m)φkj(m, t),

(19)
and Lij(s, h, l) satisfies the following system of equations:

Lij(s, h, l) = 1{l=h−s}δij [1−Hi(s, h)]+
∑

k∈E

h−l
∑

m=s+1

qik(s, m)Lkj(m, h, l), (20)

Applying these results we get:

E[ρ1(τs)v
T∧τs−s1{s<τs≤T}] =

T
∑

h=s+1

vh−s{R(s, h− 1) − R(s, h)}×

×
∑

j∈Up

rj

∑

i∈E βi(s)
∑h−1−s

l=0 Lij(s, h − 1, l)
qjD(h−1−l,h)

(1−Hj(h−1−l,h−1))
∑

i∈E βi(s)
∑

k∈Up

∑h−1−s

l=0 Lik(s, h − 1, l) qkD(h−1−l,h)
(1−Hk(h−1−l,h−1))

(21)

finally putting (21) in equation (14) we obtain the credit default swap spread:

U∗
1 (s) =

100(1 − v)
{

∑T

h=s+1 vh−s{R(s, h − 1) − R(s, h)}×

v[1 −
∑T

h=s+1 vh−s{R(s, h − 1) − R(s, h)} − vT−sR(s, T )]
×

[1 −
∑

j∈Up

rj

∑

i∈E βi(s)
∑h−1−s

l=0 Lij(s, h − 1, l)
qjD(h−1−l,h)

(1−Hj(h−1−l,h−1))
∑

i∈E βi(s)
∑

k∈Up

∑h−1−s

l=0 Lik(s, h − 1, l) qkD(h−1−l,h)
(1−Hk(h−1−l,h−1))

]
}

(22)
Note that we can assume a dependence of the recovery rate on the last n

states visited by the process first of default time τs. We define the n-period
stochastic recovery rate as

ρn(τs) =







1 if s < T < τs
∑n

i=1 ατs

inρ1(τs − i + 1) if n + s ≤ τs ≤ T

ρτs
(τs) if τs < n + s

(23)

where ρ1(τs − i + 1) = rj if Z(τs − i) = j and Z(τs) = D, whereas ατs

in

denote the proportion of the n period recovery rate with default time τs that
depends on the one period recovery rate at time τs − i + 1.

In such case to obtain the credit default swap spread we substitute the
one period recovery rate in the equation (14) with the n-period one obtaining:

U∗
n(s) =

(100[E[vT∧τs−s1{s<τs≤T}] − E[ρn(τs)v
T∧τs−s1{s<τs≤T}]]) × (1 − v)

v × (1 − E[vT∧τs−s])
.

(24)



948 D’Amico et al.

If we choose α such that ατs

1n=1, ατs

in=0 ∀i 6= 1 we obtain U∗
n(s)=U∗

1 (s).
All we need is to compute the unique new component
E[ρn(τs)v

T∧τs−s1{s<τs≤T}].

E[ρn(τs)v
T∧τs−s1{s<τs≤T}] = E[E[ρn(τs)v

T∧τs−s1{s<τs≤T}|τs]] (25)

so we start computing the conditional expectation.

E[ρn(τs)v
(T∧τs)−s1{s<τs≤T}|τs] =

∞
∑

h=s+1

ρn(h)v(T∧h)−sP [τs = h]1{h≤T} =

n+s−1
∑

h=s+1

ρn(h)vh−sP [τs = h] +

T
∑

h=n+s

ρn(h)vh−sP [τs = h] (26)

now we apply the definition (23) and we get in

=

n+s−1
∑

h=s+1

ρh(h)vh−sP [τs = h] +

T
∑

h=n+s

n
∑

i=1

αh
inρ1(h − i + 1)vh−sP [τs = h]

consequently E[ρn(τs)v
(T∧τs)−s1{s<τs≤T}] =

n+s−1
∑

h=s+1

E[ρh(h)]vh−sP [τs = h] +

T
∑

h=n+s

n
∑

i=1

αh
inE[ρ1(h − i + 1)]vh−sP [τs = h]

(27)
Now E[ρ1(h − i + 1)] =

∑

j∈Up rjP [Z(h − i) = j|Z(h) = D] and

E[ρh(h)] =
h

∑

i=1

αh
ihE[ρ1(h− i+1)] =

h
∑

i=1

αh
ih

∑

j∈Up

rjP [Z(h− i) = j|Z(h) = D]

(28)
finally we obtain E[ρn(τs)v

(T∧τs)−s1{s<τs≤T}] =

n+s−1
∑

h=s+1

h
∑

i=1

αh
ih

∑

j∈Up

rjP [Z(h − i) = j|Z(h) = D]vh−sP [τs = h]+

+

T
∑

h=s+n

n
∑

i=1

αh
in

∑

j∈Up

rjP [Z(h − i) = j|Z(h) = D]vh−sP [τs = h] (29)

The probabilities P [Z(h − i) = j|Z(h) = D] can be evaluated by the
Bayes formula, in fact ∀h, i ∈ IN such that h − i ≥ s

P [Z(h − i) = j|Z(h) = D] =

∑h−i−s

l=0 P [Z(h)=D|Z(h−i)=j, B(h−i)= l]P [Z(h−i)=j, B(h−i)= l]
∑

k∈Up

∑h−i−s

l=0 P [Z(h)=D|Z(h−i)=k, B(h−i)= l]P [Z(h−i)=k, B(h−i)= l]
=
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∑

i∈E βi(s)
∑h−i−s

l=0 Lij(s, h − i, l)∆jD(h − i, l, h)
∑

i∈E βi(s)
∑

k∈Up

∑h−i−s

l=0 Lik(s, h − i, l)∆kD(h − i, l, h)
. (30)

At this point we substitute (30) in (29) and the obtained (29) in (27).
Finally we insert (27) together with (7) in (24) and we obtain U∗

n(s).
We conclude noting that the evaluation procedure in case of random re-

covery rate doesn’t present problems, in fact we have only to change the
outflow’s definition that in this case is

O(s, t) = 100(1− ρn(τs))v
(T∧τs)−t1{t<τs≤T}

which expectation can be evaluated using computations similar as those used
to determine the credit default swap spread corresponding to a random re-
covery rate.
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