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Abstract. A new Lévy motion with both continuous (Brownian) and discontin-
uous (Laplace motion) components is introduced. The increments of the process
follow a generalized normal Laplace (GNL) distribution, which exhibits positive
kurtosis and can be either symmetrical or skewed. The degree of kurtosis in the
increments increases as the length of the increment decreases. This and other
properties of Brownian-Laplace motion refelect those of observed time series of log-
arithmic stock-price returns and thus render it a good model for fitting to financial
data and for the calculation of the theoretical value of financial derivatives. A for-
muala for the value of European call options based on Brownian-Laplace motion is
given.
Keywords: Laplace motion, generalized normal-Laplace (GNL) distribution,
Black-Scholes.

1 Introduction.

The Black-Scholes theory of option pricing was originally based on the as-
sumption that asset prices follow geometric Brownian motion (GBM). For
such a process the logarithmic returns (log(Pt+1/Pt) on the price Pt are in-
dependent identically distributed (iid) normal random variables. However it
has been recognized for some time now that the logarithmic returns do not
behave quite like this, particulary over short intervals. Empirical distribu-
tions of the logarithmic returns in high-frequency data usually exhibit excess
kurtosis with more probability mass near the origin and in the tails and less
in the flanks than would occur for normally distributed data. Furthermore
the degree of excess kurtosis is known to increase as the sampling interval
decreases (see e.g. [Rydberg, 2000]). In addition skewness can sometimes be
present. To accomodate for these facts new models for price movement based
on Lévy motion have been developed (see e.g. [Schoutens, 2003]). For any
infinitely divisible distribution a Lévy process can be contructed whose in-
crements follow the given distribution. Thus in modelling financial data one
needs to find an infinitely divisible distribution which fits well to observed
logarithmic returns. A number of such distributions have been suggested in-
cluding the gamma, inverse Gaussian, Laplace (or variance gamma), Meixner
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and generalized hyperbolic distributions (see [Schoutens, 2003] for details and
references).

In this paper a new infinitely divisible distribution – the generalized nor-

mal Laplace (or GNL) distribution – which exhibits the properties seen in
observed logarithmic returns, is introduced. This distribution arises as the
sum of independent normal and generalized Laplace [Kotz et al., 2001] ran-
dom variables11. A Lévy process based on the generalized Laplace (variance-
gamma) distribution alone has no Brownian component, only linear deter-
ministic and pure jump components i.e. its Lévy-Khintchine triplet is of the
form (γ, 0, ν(dx)) (see [Schoutens, 2003]). The new distribution of this paper
in effect adds a Brownian component to this motion, leading to what will be
called Brownian-Laplace motion22.

In the following section the generalized normal Laplace (GNL) distribu-
tion is defined and some properties given. Brownian-Laplace motion is then
defined as a Lévy process whose increments follow the GNL distribution. In
Sec. 3 a pricing formula is developed for European call options on a stock
whose logarithmic price follows Brownian-Laplace motion.

2 The generalized normal Laplace (GNL) distribution.

The generalized normal Laplace (GNL) distribution is defined as that of a
random variable Y with characteristic function

φ(s) =

[

αβ exp(µis − σ2s2/2)

(α − is)(β + is)

]ρ

(1)

where α, β, ρ and σ are positive parameters and −∞ < µ < ∞. We shall
write

Y simGNL(µ, σ2, α, β, ρ)

to indicate that the random variable Y follows such a distribution.
Since the characteristic function (1) can be written

exp(ρµis − ρσ2s2/2)

[

α

α − is

]ρ [

β

β + is

]ρ

it follows that Y can be represented as

Y
d
= ρµ + σ

√
ρZ +

1

α
G1 −

1

β
G2 (2)

1 1. The generalized asymmmetric Laplace distribution is better known as the
variance-gamma distribution in the finance literature. It is also known as the
Bessel K-function distribution (see [Kotz et al., 2001], for a discussion of the
terminology and history of this distribution).

2 2. An alternative name, which invokes two of the greatest names in the history
of mathematics, would be Gaussian-Laplace motion
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where Z, G1 and G2 are independent with Zsim N(0,1) and G1, G2 gamma
random variables with scale parameter 1 and shape parameter ρ, i.e. with
probability density function (pdf)

g(x) =
1

Γ (ρ)
xρ−1e−x.

This representation provides a straightforward way to generate pseudo-
random deviates following a GNL distribution. Note from (1) it is easily
established that the GNL is infinitely divisible. In fact the n-fold convolu-
tion of a GNL random variable also follows a GNL distribution.

The mean and variance of the GNL(µ, σ2, α, β, ρ) distribution are

E(Y ) = ρ

(

µ +
1

α
− 1

β

)

; var(Y ) = ρ

(

σ2 +
1

α2
+

1

β2

)

while the higher order cumulants are (for r > 2)

κr = ρ(r − 1)!

(

1

αr
+ (−1)r 1

βr

)

.

The parameters µ and σ2 influence the central location and spread of the
distribution, while α and β affect the lengths of the tails. Ceteris paribus

decreasing α (or β) puts more weight into the upper (or lower) tail. The
tail behaviour of the GNL distribution can be determined from the nature
of the poles of its characteristic (or moment generating) function (see e.g.

[Doetsch, 1970]). In the tails the generalized Laplace component of the GNL
dominates - precisely f(y)simc1y

ρ−1e−αy (y → ∞) and f(y)simc2(−y)ρ−1eβy

(y → −∞), (where c1 and c2 are constants). Thus for ρ < 1, both tails are
fatter than exponential; for ρ = 1 they are exactly exponential and for ρ > 1
they are less fat than exponential.

The parameter ρ affects all moments. However the coefficients of skewness

(γ1 = κ3/κ
3/2

2 ) and of kurtosis (γ2 = κ4/κ2
2) both decrease with increasing ρ

(and converge to zero as ρ → ∞) with the shape of the distribution becoming
more normal with increasing ρ, (exemplifying the central limit effect since the
sum of n iid GNL(µ, σ2, α, β, ρ) random variables has a GNL(µ, σ2, α, β, nρ)
distribution).

When α = β the distribution is symmetric. In the limiting case α = β =
∞ the GNL reduces to a normal distribution.

3 A Lévy process based on the GNL distribution -
Brownian-Lapace motion.

Consider now a Lévy process {Xt}t≥0, say for which the increments Xt+τ−Xτ

have characteristic function (φ(s))t where φ is the characteristic function (1)
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of the GNL(µ, σ2, α, β, ρ) distribution (such a construction is always possible
for an infinitely divisible distribution - see [Schoutens, 2003]. It is not diffi-
cult to show that the Lévy-Khintchine triplet for this process is (ρµ, ρσ2, Λ)
where Λ is the Lévy measure of asymmetric Laplace motion (see Kotz et al.,
2001, p.196). Laplace motion has an infinite number of jumps in any finite
time interval (a pure jump process). The extension considered here adds
a continuous Brownian component to Laplace motion leading to the name
Brownian-Laplace motion.

The increments Xt+τ−Xτ of this process will follow a GNL(µ, σ2, α, β, ρt)
distribution and will have fatter tails than the normal – indeed fatter than
exponential for ρt < 1. However as t increases the kurtosis of the distribution
drops, and approaches zero as t → ∞. Exactly this sort of behaviour has been
observed in various studies on high-frequency financial data (e.g. [Rydberg,
2000]) - very little kurtosis in the distribution of logarithmic returns over long
intervals but increasingly fat tails as the reporting interval is shortened. Thus
Brownian-Laplace motion seems to provide a good model for the movement
of logarithmic prices.

3.1 Option pricing for assets with logarithmic prices following

Brownian-Laplace motion.

We consider an asset whose price St is given by

St = S0 exp(Xt)

where {Xt}t≥0 is a Brownian-Laplace motion with X0 = 0 and parameters
µ, σ2, α, β, ρ. We wish to determine the risk-neutral valuation of a European
call option on the asset with strike price K at time T and risk-free interest
rate r.

It can be shown using the Esscher equivalent martingale measure (see e.g.

[Schoutens, 2003]) that the option value can be expressed in a form similar
to that of the Black-Scholes formula. Precisely

OV = S0

∫ ∞

γ

d∗T
GNL(x; θ + 1)dx − e−rT K

∫ ∞

γ

d∗T
GNL(x; θ)dx (3)

where γ = log(K/S0) and

d∗T
GNL(x; θ) =

eθxd∗T
GNL(x)

∫ ∞

−∞
eθyd∗T

GNL(y)dy
(4)

is the pdf of XT under the risk-neutral measure. Here d∗T
GNL is the pdf of

the T -fold convolution of the generalized normal-Laplace, GNL(µ, σ2, α, β, ρ),
distribution and θ is the unique solution to the following equation involving
the moment generating function (mgf) M(s) = φ(−is)

log M(θ + 1) − log M(θ) = r. (5)
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The T -fold convolution of GNL(µ, σ2, α, β, ρ) is GNL(µ, σ2, α, β, ρT ) and so
its moment generating function is (from (1))

M(s) =

[

αβ exp(µs + σ2s2/2)

(α − s)(β + s)

]ρT

.

This provides the denominator of the expression (4) for the risk-neutral pdf.
Now let

Iθ =

∫ ∞

γ

d∗T
GNL(x; θ)dx =

1

[M(θ)]
T

∫ ∞

γ

eθxd∗T
GNL(x) (6)

so that
OV = S0Iθ+1 − e−rT KIθ.

Thus to evaluate the option value we need only evaluate the integral in (6).
This can be done using the representation (2) of a GNL random variable as
the sum of normal and positive and negative gamma components. Precisely
the integral can be written

∫ ∞

0

g(u; α)

∫ ∞

0

g(v; β)

∫ ∞

γ

eθx 1

σ
√

ρT
φ

(

x − u + v − µρT

σ
√

ρT

)

dxdvdu (7)

where

g(x; a) =
aρT

Γ (ρT )
xρT−1e−ax

is the pdf of a gamma random variable with scale parameter a and shape
parameter ρT ; and φ is the pdf of a standard normal deviate. After com-
pleting the square in x and evaluating the x integral in terms of Φc, the
complementary cdf of a standard normal, (6) can be expressed

Iθ =

∫ ∞

0

g(u; α − θ)

∫ ∞

0

g(v; β + θ)Φc

(

γ − u + v − µρT − θσ2ρT

σ
√

ρT

)

dvdu.

(8)
For given parameter values the double integral (8) can be evaluated nu-

merically quite quickly and thence the option value computed. For an exam-
ple see [Reed, 2005].
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