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Abstract. We consider semiparametric regression problems for which the response
function is known up to some vector of parameters θ and the errors have an un-
known density f , treated as an infinite-dimensional nuisance parameter for the
estimation of θ. The maximum likelihood (ML) estimator is clearly unapplicable
in this context, and classical approaches like least squares or M-estimation may
perform poorly. Since the results of Stein in 1956, a large amount of work was ded-
icated to the construction of adaptive estimators that have the same asymptotic
behavior as the ML estimator (asymptotic efficiency). The focus has been mainly
set on the asymptotic theory and the practical results seem to be restricted to the
case of scalar observations.

We presented in [Pronzato et al., 2004] an estimator that minimizes the entropy
of the symmetrized sample of the residuals. In [Wolsztynski et al., 2005] we show
the link between this Minimum Entropy (ME) estimator, the ML estimator, and
the two-stage adaptive estimator of [Bickel, 1982]. Also, we show that the shift-
invariance property of entropy confers some robustness to ME estimation.

Adaptive estimation has important applications in Signal and Image Process-
ing. The present paper summarizes the theoretical aspects of the ME approach
and focuses on such applications. Although asymptotic properties are commonly
the main concern, we illustrate the performances of estimators for finite samples
through simulations, including multidimensional situations. The examples we con-
sider also illustrate the robustness of ME estimation.
Keywords: Adaptivity, efficiency, entropy estimation, multivariate regression,
semiparametric estimation.

1 Introduction

We consider nonlinear regression models that we assume to be known up
to some vector of parameters θ ∈ Θ ⊂ R

p. We denote η(θ̄, x) the model
response, where θ̄ ∈ int(Θ) is the true unknown value of θ and x ∈ X ⊂ R

q

are the design variables. In what follows the design can be randomized or
fixed. The observations Yi ∈ R

d, d ≥ 1, are given by

Yi = η(θ̄, Xi) + εi , i = 1, . . . , n , (1)

with (εi) a sequence of independent and identically distributed (i.i.d.) ran-
dom variables with probability density function (p.d.f.) f with respect to the
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Lebesgue measure. For a given measure µ on the design variable x we suppose
that the identifiability condition

[∫

X
[η(θ, x) − η(θ̄, x)]2µ(dx) = 0 ⇒ θ = θ̄

]

is satisfied. The only assumptions that we make on f , along with some
usual regularity conditions, are that it is (centrally) symmetric about 0
and has unbounded support. The density of the noise then corresponds
to an infinite-dimensional nuisance parameter for the estimation of θ,
and an estimator that remains asymptotically efficient in this context is
termed adaptive (whenever it exists). [Bickel, 1982] and then [Manski, 1984]
established that adaptivity was possible for nonlinear regression models.

Consider the residuals ei(θ) obtained from the observations (1),

ei(θ) = Yi − η(θ,Xi) = εi + η(θ̄, Xi) − η(θ,Xi), i = 1, . . . , n. (2)

We suggest in [Pronzato et al., 2004] an estimator of θ that minimizes an
estimate of the entropy of the residuals in the univariate case. Since entropy
is shift-invariant, we use the 2n symmetrized residuals ±ei(θ) with density
given Xi

fs
e, Xi

(u) =
1

2

[

f(u− η(θ̄, Xi) + η(θ,Xi)) + f(u+ η(θ̄, Xi) − η(θ,Xi))
]

. (3)

Using classical results of Information Theory, we show in [Wolsztynski et al.,
2005] that the (Shannon) entropy H(fs

e ) = −
∫

fs
e (e) log fs

e (e)µ(de) of the
marginal distribution of the symmetrized residuals, fs

e (u) =
∫

X
fs

e, x(u)µ(dx),

is minimum for θ = θ̄ when the identifiability condition given above is satis-
fied. When f is unknown, an estimator of H(fs

e ) thus provides a criterion
for the estimation of θ. Moreover, we shall see that the shift-invariance
property of the entropy makes minimum entropy (ME) estimation robust
with respect to the presence of outlying data.

In [Wolsztynski et al., 2005] we show the link between a two-step ME
estimation procedure and the adaptive Stone-Bickel approach for univari-
ate observations. The construction involves data splitting, which allows for
the estimate of the density to be independent of that of the entropy, and
the application of a single Newton step onto a preliminary locally sufficient
estimator then provides an asymptotically efficient estimator of θ.

In the next section we consider two direct ME estimation procedures
(without data splitting) for multidimensional data samples. Two examples
illustrate the performance of our technique in Section 3.

2 Direct Minimum Entropy estimation procedures

The direct ME estimator that we proposed for univariate data is constructed
by plugging a kernel density estimate f̂θ

n of fs
e based on the 2n symmetrized
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residuals ±ei(θ) in an empirical expression of the entropy. The density esti-
mate we use is given by

f̂θ
n(u) =

1

2nhn

n
∑

i=1

[

K

(

u− ei(θ)

hn

)

+K

(

u+ ei(θ)

hn

)]

,

with hn a smoothing parameter, and is used to construct the Ahmad-type
plug-in entropy estimator

Ĥn(θ) = − 1

n

n
∑

i=1

log f̂θ
n(ei(θ)) . (4)

This provides a fully non parametric estimate that can be used for the
estimation of θ without data splitting. An alternative entropy estimator
can also be constructed by using a truncated integral of f̂ log f̂ instead
of the sum in (4), but in practice the two estimators turn out to be
quite close in performance (although the results might vary in function
of the selected bandwidth and of the nature of the problem). For the
simple case of the location model we give in [Pronzato et al., 2004] a
justification for this method and in [Wolsztynski et al., 2004] we show that

Ĥn(θ)
p→H(fs

e ) ≥ H(f) uniformly in θ, n → ∞, with H(fs
e ) = H(f) for

θ = θ̄, provided that the kernel bandwidth hn decreases slowly enough
and f and K satisfy some regularity conditions. Under slightly stronger

conditions, we also prove that ∇2Ĥn(θ)
p→∇2H(fs

e ) uniformly in θ, n → ∞,
with ∇2H(fs

e ) = ∇2H(f) = I(f) for θ = θ̄. However, proving adaptivity of
this direct approach remains an open challenge.

Consider now multidimensional observations. In the case of independent
components, the entropy of the residuals is the sum of the entropies of each
component (i.e. H(fs

e ) =
∑d

j=1H(fs
ej )). The construction used in (4) is

therefore suitable to obtain the entropy of the residuals as the sum of the
entropies of each marginal distribution.

In the general situation where independence of components does not nec-
essarily hold, we can extend the procedure above by simply using techniques
of multivariate density estimation. For small dimensions (2 or 3), techniques
based on products of univariate kernels are computationally efficient, see for
instance [Scott, 1992]. Given K(.) a univariate density that is symmetric
about zero, we thus propose to use

f̂θ
n(u) =

1

2n





n
∑

i=1

d
∏

j=1

1

hj
K

(

uj − ej
i (θ)

hj

)

+
n
∑

i=1

d
∏

j=1

1

hj
K

(

uj + ej
i (θ)

hj

)



 ,

(5)
where hj = hj(±ej

1(θ), . . . ,±ej
n(θ),K) is the bandwidth of the univariate

kernel K based on the j-th component of the symmetrized sample of
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residuals, with K satisfying common regularity conditions. One can choose,
e.g., K as the standard normal, in which case the optimal bandwidth (in
the sense of the asymptotic mean integrated squared error) is given by

h? = (4/(d+ 2))
1/(d+4)

σin
−1/(d+4), see [Scott, 1992]. Plugging (5) into an

Ahmad-type estimate of the entropy similar to (4), we obtain a criterion
for estimating θ from multidimensional data. In practice, one can define a
data-driven selection of h by substituting the estimated standard deviation
of the residuals on each component for its exact value into the expression
of h?. Notice that Ĥn(θ) is two times continuously differentiable w.r.t.
θ ∈ int(Θ) when η(θ, x) is smooth enough.

In higher dimensions, however, kernel estimation techniques rapidly
become inefficient. The major limitation comes from the choice of the
bandwidth h(±e1(θ), . . . ,±en(θ),K): due to the curse of dimensionality,
the bandwidth for each kernel must be large enough to take a sufficient
number of data points into account, which causes oversmoothing. The main
alternatives involve kernels that are not positive everywhere [Härdle and
Linton, 1994], which is not suitable for computing entropy, non-differentiable
density estimates, see for instance [Türlach, 1994], and kernel methods with
variable bandwidth [Scott, 1992, Devroye and Lugosi, 2000]. We consider
now a special case of the latter.

We suggest here a simple alternative that uses the k-nearest neighbor
(kNN) entropy estimator as introduced by [Kozachenko and Leonenko, 1987]
for k = 1 and extended to k > 1 in [Goria et al., 2005], where its consistency
is proved for general dimension d under very weak conditions on f .

Consider the open ball v(x, r) centered on x ∈ R
d with radius r > 0;

its volume is given by |v(x, r)| = rdc1(d), where c1(d) = 2πd/2/(dΓ (d/2)).
Denote the Euclidean distance from ei(θ) to its k-th nearest neighbor by
ρi, k(θ). For the symmetrized residuals ±ej(θ), the kNN-ME estimator of θ
then minimizes

Hk, n(θ) = d log ρ̄k(θ) + T (n, k) , (6)

where ρ̄k(θ) =
(

Π2n
i=1ρi, k(θ)

)1/2n
is the geometric mean of the kNN distances

and T (n, k) = log (n− 1) − ψ(k) + log c1(d) does not depend on θ, with
ψ(k) = Γ ′(k)/Γ (k), the digamma function.

The parameter k can be chosen so that k/n → 0, k → ∞ when n → ∞;
a typical choice is k =

√
n. We shall take k > p where p = dim(θ) to avoid

singularities. Notice that (6) is not differentiable in θ.

Although asymptotic results are not yet available for this procedure, we
present it here as a simple computational alternative. In the next section we
present two examples in image processing for 3-dimensional data.
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Note that one could consider the estimate (6) of the entropy as another
plug-in entropy estimate, that is, as a generalization of the method of kernels
(but avoiding the tricky problem of bandwidth selection). Indeed, consider
the ball v(x, ρk) mentioned above, where ρk = ρk(x) is the distance from
x ∈ R

d to its k-th closest point; [Devroye and Wagner, 1977] proved the

strong consistency of the kNN p.d.f. estimate f̂n(x) = k
[

n (ρk(x))d c1(d)
]−1

.
The ME estimator based on (6) can thus be written as a multivariate plug-in
estimator (with a different bias correction term).

3 Examples

We present some simulation results obtained on images, where the estimator
of θ is obtained through an exhaustive search on a finite grid. In this context,
entropy is a very natural criterion given its key role in coding theory for
the definition of maximum compression rates (or equivalently of minimum
description lengthes). Minimizing the entropy of the errors between two
signals or two images is equivalent to choosing the parameters for which we
achieve the maximum compression rate.

We take a 176×144 png picture for the first example (scalar residuals),
and a 352×288 jpg one for the second example, which gives 3-dimensional
residuals. Here the observations correspond to a bloc A of an image that is
contaminated with additive noise. The problem is to locate the corresponding
bloc in a copy X of the original image, also contaminated with noise. We
suppose that this copy has not suffered from any nonlinear transformation.
The coordinates θ̄ of A are measured from the top-left corner of the original
image, and θ is therefore a two-dimensional vector. The dimension of the
observations corresponds to the number of channels that make each pixel: 1
channel describes the gray level in the black and white png file, whereas 3
channels (RGB) contain the levels of coloring in the color jpg file. Figure 1
shows, clockwise from top left, (a) the 15×15 bloc A, within the small square,
to be identified in (b), the working image, that contains 2× 6 outliers (white
patch); (c) the 30×30 bloc A to be located in the color image (d). (a) and
(b) are black and white pictures contaminated by gaussian noise of variance
6; (c) and (d) are in color and are contaminated by salt and pepper noise,
where 6% of pixel values are replaced by the maximum or minimum possible
values and contaminated pixels are randomly distributed on the image.

In the first example, images (a) and (b), we compare the LS estimator,
the Least Absolute Values (LAV) estimator (which minimizes the sum of
the absolute values of the residuals), the plug-in ME (piME) estimator
given by (4) and the kNN-ME estimator given by (6). The bandwidth h for
piME is set to .2345 σ (2n)−1/5 (which is optimal in the sense of minimal
mean integrated squared error for gaussian kernels, see e.g. [Berlinet and
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Fig. 1. Images a, b (black and white, top), c, d (color, bottom).

Devroye, 1994]) and the value k for the kNN estimator is set to 5. The
true value of the parameters of interest is (80, 70). Table 1 contains the
means of the estimates obtained for 100 runs of the experiment described
above. The two ME estimators estimate θ̄ without error in 100% of the
runs and thus appear insensitive to the presence of outliers (the white patch).

In the second example, images (c) and (d), we compare the kNN-ME
estimator (6) with a piME-o estimator using the optimal bandwidth h?, a

second piME-e estimator using the estimated bandwidth ĥ defined by ĥj =
σ̂j(2n)−1/(d+4) for each component of the observations (with σ̂j = σ̂j(θ) the

estimated value of the standard deviation of the ej
i (θ), i = 1, . . . , n), see

[Scott, 1992], and the standard LS estimator. Figure 2 shows (clockwise
from top left) a typical plot of the respective criteria as functions of θ; here
θ̄ = (140, 170). Note the good behavior of the kNN and piME-o estimators,
and the loss of accuracy due to the estimation of the smoothing parameter
h for piME-e. The LS criterion gives θ̂LS = (136, 173) and its shape suggests
that it is not suitable for such problems. The value of the entropy of the
symmetrized residuals estimated by (6) is 9.99 for θ̂LS, as opposed to -0.23

for θ̂kNN = θ̄.
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Table 1. Mean values of the estimates for 100 runs on a black and white picture;
θ̄ = (80, 70).

LS LAV kNN piME
(94.25, 67.51) (94.17, 68.26) (80.00, 70.00) (80.00, 70.00)
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Fig. 2. criteria vs θ in Example 2, clockwise from top-left : kNN, piME-o, piME-e,
LS. θ̄ = (140, 170).
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