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Abstract. Robust covariance estimates are required in many applications. Here,
a promising adaptive robust scale estimator is extended to this problem and com-
pared to other robust estimators. Often the performance analysis of covariance
estimators is performed from the perspective of the final application. However, dif-
ferent applications have different requirements, hence we make a comparison based
on some general metrics. Results show that the adaptive scheme shows good per-
formance under the nominal case and graceful degradation in performance with
increasing levels of contamination.
Keywords: robust estimation, covariance, M-estimators.

1 Introduction

Numerous problems in signal processing require estimates of covariance. This
occurs, e.g., in array processing where the objective is to either detect the
number of sources impinging on an array or their directions of arrival (DOA).
Unfortunately, the sample covariance estimator has poor performance when
there are model deviations or outliers in the observations [Williams and John-
son, 1993].

Robust estimators protect against this, usually for only a small decrease in
performance at the nominal model. Robustness is recognised as a favourable
property since, in practice, it is more the norm than the exception that such
disturbances exist.

Here we concentrate on robust covariance estimation for multi-
dimensional observations. In the context of robust estimation, the covari-
ance matrix is also referred to as the association or scatter matrix to allow
for nonexistence of the second order moments. Several approaches have been
suggested including:

i ) FLOM (Fractional Lower Order Moment) estimators based on covariation
[Shao and Nikias, 1993, Tsakalides and Nikias, 1996, Liu and Mendel,
2001].

ii ) Nonparametric estimators using signs or ranks [Visuri et al., 2001,
Kendall and Gibbons, 1990].
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iii ) Expectation maximisation (EM) applied to Gaussian mixture mod-
els [Kozick and Sadler, 2000].

iv ) Ellipsoidal trimming [Cook et al., 1993]
v ) Huber’s robust M-estimators [Huber, 1981, Williams and Johnson, 1993].

The first two methods are computationally inexpensive, however they
may sacrifice too much performance degradation under nominal conditions
in order to be robust. The ellipsoidal trimming procedure and the iterative
nature of the EM algorithm make their computational complexity an issue
when considering implementation. The last is arguably the method of choice
but is difficult to use in practice due to the multi-dimensional optimisation
it requires.

To avoid these issues, the simplest class of estimators applies a one-
dimensional scale estimator to robustly estimate each element of the covari-
ance matrix. The problem then reduces to one of finding robust estimators
of scale. To this end, we will investigate a number of robust scale estimators,
including an adaptive M-estimator1 which was shown to improve upon the
existing robust estimators of scale [Brcich et al., 2004].

This paper is organised as follows: in Section 2 we define the signal model
and describe the scale estimators to be used for element-wise covariance ma-
trix estimation. These methods will be compared with the covariance estima-
tors to be described in Section 3. The final application, e.g. DOA, for these
covariance estimates will determine the best metric to be used. However,
since we do not wish to restrict our study to one application, we must con-
sider general metrics. Hence, for the simulation results shown in Section 4,
comparisons are made using a number of metrics. Finally, conclusions are
drawn and directions for future work described.

2 Robust covariance estimation using scale estimators

One approach to the estimation of covariance matrices is to estimate individ-
ual matrix elements using robust estimators of scale. Consider the following
signal model

x(n) = Au(n) , n = 1, . . . , N (1)

where x(n) = [x1(n), x2(n), . . . , xM (n)]T is the observation vector, u(n) =
[u1(n), u2(n), . . . , uP (n)]T is a vector of independent and identically dis-
tributed (iid) standard (zero mean and unit variance) random variables and
A is the M×P mixing matrix. The true covariance matrix is C = E

[

xx
H

]

=
AAH and each matrix element is

C(i, k) = E [xix
∗
k] . (2)

1 In this paper, the term “adaptive” will be used to refer to techniques that are
data-dependent, i.e. parameters used in the procedure are set based on the values
of the observations
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However, rather than simply replacing the expectation operation in (2) with
the sample average to estimate matrix elements, a more robust operation is
to use [Huber, 1981]

Ĉ∗
σ(i, k) =

σ̂2(xi + xk) − σ̂2(xi − xk)

σ̂2(xi + xk) + σ̂2(xi − xk)
σ̂(xi)σ̂(xk) (3)

where σ̂(·) is a robust scale estimator. We will now investigate a number of
possible robust scale estimators for this procedure.

2.1 Sample estimator

The sample estimator of standard deviation is known [Huber, 1981] to have
poor resistance to outliers. Despite this, we will include it in this study to
provide a frame of reference.

2.2 Median absolute deviation

The median absolute deviation (MAD)

MAD(x) = median(|x − median(x)|) (4)

has been described as a ‘candidate for being the “most robust estimate of
scale” ’[Huber, 1981]. For symmetric distributions, this is approximately
half the interquartile range. Hence, to convert this measure to a true scale
estimate, it must be normalised. For nominally Gaussian distributions, a

MAD-scale estimator is given by σ̂MAD(x) = MAD(x)
Φ−1(0.75) where Φ−1(·) is the

inverse Gaussian cdf.

2.3 M-estimators of scale

The ML estimate of scale may be found by solving the log-likelihood equation,

N
∑

n=1

ψ

(

x(n)

σ

)

= 0 (5)

for σ where

ψ(x) = −1 − x
ḟX(x)

fX(x)
(6)

is the scale score function associated with the density fX(x) and ḟX(x) de-
notes the derivative of fX(x). By contrast, an M-estimator [Huber, 1981]
replaces the nominal score function ψ(x) with a similarly behaved function
ϕ(x) chosen to confer robustness on the estimator under deviations from the
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assumed density. With this in mind, Huber proposed that a clipped quadratic
score function

ϕH(x; k) = min(x2, k2) − δ =

{

x2 − δ, |x| ≤ k
k2 − δ, |x| > k,

(7)

be used in the M-estimator for scale as it minimises the maximum relative
asymptotic variance of the scale estimate in the case of a contaminated Gaus-
sian distribution. δ is determined such that the estimator is unbiased for the
nominal Gaussian distribution. The parameter k controls the sensitivity of
the estimator to the contamination and should decrease as the proportion of
outliers increases.

2.4 Adaptive M-estimators of scale

One of the drawbacks of the M-estimators described above is that the best
value of the cut-off parameter k is dependent on the degree of contamina-
tion [Brcich and Zoubir, 2002, Brown et al., 2003]. In [Brcich et al., 2004], an
adaptive scheme was presented that sought to relieve this restriction. There,
the score function is composed of a family of basis functions, the weights of
which are chosen adaptively from the data. By using bases that were ap-
propriate for a range of levels of contamination, the adaptive scheme was
able to maintain high performance for a wider range of scenarios than the
“static” M-estimators. Of course, as well as finite sample performance, the
asymptotic performance of the adaptive scheme will also be dependent on
selecting appropriate bases that can adequately represent the optimum score
function. For a full description of the adaptive algorithm, see [Brcich et al.,
2004].

3 Alternative Robust Covariance Estimators

Together with the element-wise scale estimation based approaches described
in the previous section, we will also consider FLOM and sign covariance
matrix (SCM) methods.

3.1 FLOM based estimator

The use of FLOMs has been shown to have strong motivation and impres-
sive performance when impulsive noise exists [Shao and Nikias, 1993]. They
estimate the covariation of α-stable random processes – analogous to the
covariance of Gaussian random variables. Recognising this, FLOM based
measures of association were proposed in [Tsakalides and Nikias, 1996] for
the purpose of determining DOA. The “covariation” matrices are found by

ĈFLOM(i, k; p) =

N
∑

n=1

xi(n)|xk(n)|p−2x∗k(n)

N
. (8)
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The parameter p is the order of the moments. Setting p = 2 reduces
(8) to a sample covariance – appropriate under the condition of Gaussianity.
However, as contamination occurs, to prevent estimator breakdown, p should
be set to a lower value. The lower the value, the greater the degree of
robustness, at the cost of less accuracy under the nominal case.

The form of (8) is very similar to that used in ROC-MUSIC [Liu and
Mendel, 2001] differing only by the normalisation factor of each column.
Further, for identically distributed observations, this normalisation factor
will be approximately equal for all columns. Here, only the FLOM-based
method will be considered. To ensure Hermitian matrices, the estimated
matrix is averaged with its Hermitian, as in [Tsakalides and Nikias, 1996].

3.2 Sign covariance matrix

The SCM was suggested as a robust estimate of covariance in [Visuri et
al., 2001]. The concept is to take the sample covariance of some function,
x̃ = S(x), of the multi-variate observations. In [Visuri et al., 2001] S(·) was
the spatial sign function which normalises each observation to a unit vector.
Hence, the spatial sign function can be viewed as the multi-dimensional ver-
sion of the sign function and from this interpretation the robust behaviour of
the SCM is clear. Due to the normalisation of the observations, scale infor-
mation is lost. However, it was also shown that the subspace estimates from
the sample SCM converge to the true subspace.

When more than just a good subspace estimate is required, results in
[Visuri et al., 2001] showed that for small samples it is better to whiten the
observations using the eigenvectors of the sample SCM and then estimate
the eigenvalues as the marginal variances of the transformed observations.
To estimate the marginal variances the MAD was used.

4 Results

Herein, and without loss of generality, we only consider real random variables.
In the results shown here, iid samples of u(t) for P = 4 and N = 100 were
drawn from the selected distribution. The first six distributions were Gaus-
sian mixtures where the nominal distribution was N (0, 1) distribution and
the contaminating distribution was N (0, 100). The probability of contami-
nation took values ε = 0, 0.01, 0.02, 0.05, 0.1, 0.2. The last two distributions
were the t3 and t4 distributions respectively.

A number of mixing matrices were considered, however, due to space
limitations, results are only shown for two representative cases

Ã1(i, k) = 0.4|i−k| and Ã2(i, k) =

{

1 i = k
1
4 i 6= k

.
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The mixing matrices are then standardised so that the true covariance ma-
trices have unit diagonals,

A(i, k) =
Ã(i, k)

√

∑P
j=1 Ã

2(i, j)
. (9)

Our objective here is to compare the static and adaptive M-estimators of
scale with existing methods for the purposes of covariance matrix estimation.
The comparison is not straightforward as it can either depend on the final
application, i.e., mean squared error (MSE) of DOA estimates, or on more
general metrics, such as the Frobenius norm. The former approach is popular
in signal processing, however, good performance in one application does not
necessarily imply similar performance in others. Hence, we now study the
performance of the estimators using three different metrics: the Frobenius
norm, relative MSE of the eigenvalues and the sphericity statistic. Average
values for the metrics over 500 Monte Carlo runs were calculated.

Frobenius norm: The element-wise sum of squared differences between
Ĉ and C

LF (Ĉ, C) = trace{(Ĉ − C)(Ĉ − C)H}. (10)

This measures the MSE. Results using the Frobenius norm are shown in
Table 1 and Table 2 for A1 and A2 mixing matrices respectively for the
following methods: sample scale estimator, adaptive scale M-estimator with
basis functions ϕH(x; k), k = 1.5, 2, 2.5, static scale M-estimator (Huber) with
basis functions ϕH(x; k), k = 1, 1.5, 2, 2.5, MAD, FLOM based estimator with
p = 1, 1.5, 1.8 and the SCM in its original (SCM1) and whitened (SCM2)
forms.

Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.45 3.4 5.8 15 29 55 6.2 3

Adaptive 0.47 0.6 0.82 1.6 3.8 15 2.5 1.9

Huber 1.0 0.64 0.71 0.8 1.3 2.7 8.8 1.9 1.5
Huber 1.5 0.53 0.64 0.74 1.5 3.9 15 2.3 1.5
Huber 2.0 0.48 0.59 0.79 2.1 6.2 24 2.8 1.8
Huber 2.5 0.46 0.66 1.1 3.4 10 35 3.2 2

MAD 0.72 0.78 0.85 1.2 2.7 7.9 2 1.4

FLOM 1.0 0.61 0.47 0.57 1.5 3.2 6.2 0.82 0.46
FLOM 1.5 0.5 1 1.8 4.5 9 18 2.2 1.2
FLOM 1.8 0.43 1.9 3.8 9.3 18 35 3.9 2

SCM1 2.2 2.2 2.2 2.2 2.2 2.1 2.2 2.2
SCM2 0.73 0.74 0.87 1.5 3.6 14 2.6 1.9

Table 1. Estimator performance using the Frobenius norm and the A1 mixing
matrix.
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Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.46 3.2 6.2 14 28 53 5.5 2.9

Adaptive 0.47 0.59 0.84 1.8 4.7 16 2.5 1.7

Huber 1.0 0.64 0.69 0.83 1.5 3.3 11 2 1.4
Huber 1.5 0.52 0.61 0.79 1.7 4.5 16 2.2 1.5
Huber 2.0 0.48 0.6 0.91 2.3 7.1 23 2.7 1.8
Huber 2.5 0.44 0.68 1.2 3.6 10 31 3.1 2

MAD 0.72 0.79 0.88 1.4 3.1 9.9 1.9 1.3

FLOM 1.0 0.61 0.48 0.61 1.6 3.4 6.6 0.85 0.49
FLOM 1.5 0.51 1 1.8 4.7 9.2 18 2.2 1.2
FLOM 1.8 0.43 2 3.7 9.4 18 34 3.9 2

SCM1 2.2 2.2 2.1 2.1 2.1 2.1 2.1 2.1
SCM2 0.67 0.75 0.85 1.5 3.6 14 2.6 1.8

Table 2. Estimator performance using the Frobenius norm and the A2 mixing
matrix.

Though not shown here, when considering the robust scale estimator
based techniques as described in Section 2, investigations showed that the
use of (3) did indeed improve robustness considerably. No change was ob-
served in the case of the sample estimator. Therefore, all results shown here
for these scale estimator based techniques utilised this procedure.

Inspecting the two tables, similar observations can be made,

• The performance when using the sample scale estimator quickly breaks
down with contamination.

• Comparing the adaptive and static M-estimators shows that the adaptive
scheme tends to follow the best performance of the static schemes – i.e. for
low contamination levels, the adaptive scheme shows similar performance
to the static case with high k and for high contamination levels it is similar
to the static estimator with low k.

• MAD is indeed showing very robust performance, with little deteriora-
tion in performance, however, the SCM techniques show themselves to be
insensitive to contamination, especially SCM1. In both cases, however,
poor performance relative to some of the other techniques is observed
in the nominal case (Gaussianity) – as expected of nonparametric tech-
niques.

• Both static M-estimator and FLOM techniques can be “tuned” through
parameters k and p respectively. For low contamination, high parameter
values are best, while for high contamination, low parameter settings are
best.

Note that incorporation of additional bases with smaller k can increase
the robustness of the adaptive scheme. This comes at the expense of a slightly
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higher computational burden and reduction in performance for the nominal
and lightly contaminated cases.

Relative MSE of eigenvalues: Let λi,Ĉ , λi,C , i = 1, . . . ,M be the

ordered eigenvalues of Ĉ and C. This metric measures the relative squared
difference between the eigenvalues λi,Ĉ and λi,C

LE(Ĉ, C) =

M
∑

i=1

(

λi,Ĉ − λi,C

λi,C

)2

. (11)

Results are shown in Table 3 and similar qualitative conclusions could be
drawn as those from Tables 1 and 2. This confirms that an estimator with
good performance in a Frobenius norm sense will also produce good eigen-
value estimates. In particular, relevant to this investigation, it confirms that
the adaptive M-estimator scheme exhibits good performance compared to
static schemes. However, for high contamination levels, again, the MAD and
SCM1 methods gain strong justification for their use.

Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.078 5.5 16 1e+02 4.1e+02 1.5e+03 33 5.2

Adaptive 0.089 0.15 0.33 1.3 7.4 1e+02 3.2 1.7

Huber 1.0 0.2 0.24 0.28 0.81 3.6 36 1.9 1.1
Huber 1.5 0.12 0.17 0.25 1.2 7.5 1e+02 2.6 1.2
Huber 2.0 0.096 0.17 0.34 2.4 20 2.8e+02 3.9 1.6
Huber 2.5 0.086 0.22 0.63 6.2 51 5.9e+02 5.4 2.2

MAD 0.31 0.34 0.37 0.83 3.3 27 1.8 0.99

FLOM 1.0 0.27 0.27 0.32 0.73 2.2 7.2 0.35 0.22
FLOM 1.5 0.16 0.31 0.85 5.1 21 92 1.5 0.47
FLOM 1.8 0.093 1.4 5.1 30 1.2e+02 4.9e+02 6.4 1.7

SCM1 1.8 1.8 1.8 1.8 1.9 1.9 1.8 1.8
SCM2 0.22 0.25 0.38 1.3 6.3 89 3.5 1.7

Table 3. Estimator performance using the relative MSE of the eigenvalues and the
A1 mixing matrix.

Sphericity statistic: The ratio of the geometric mean to the arithmetic
mean of the eigenvalues,

LSS(Ĉ) =

(

∏

i λi,Ĉ

)1/M

1
M

∑

i λi,Ĉ

. (12)

A normalised sphericity metric is then obtained as LS(Ĉ, C) =
LSS(Ĉ)/LSS(C). The sphericity statistic indicates the shape of the dis-
tribution. If C has equal eigenvalues the scale is equal in all directions. It
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also appears in the likelihood function of model selection criteria, such as the
MDL, for source detection with Gaussian observations. Hence an LS nears
1 would indicate good performance of model selection criteria when using
robust eigenvalue estimates. Results are shown in Table 4 for A2.

• The M-estimator based techniques, both static and adaptive, show steady
degeneration with increasing contamination.

• Encouraging results are found for SCM2 and for the higher order FLOMs.
• Results for the sample estimator are seen to be excellent.

Noise distribution
Estimator 1 2 3 4 5 6 7 8

Sample 0.98 0.89 0.87 0.89 0.93 0.96 0.95 0.97

Adaptive 0.99 0.96 0.95 0.9 0.79 0.67 0.94 0.96

Huber 1.0 0.97 0.95 0.93 0.89 0.82 0.68 0.92 0.93
Huber 1.5 0.97 0.96 0.94 0.89 0.79 0.68 0.94 0.95
Huber 2.0 0.98 0.96 0.94 0.87 0.76 0.81 0.95 0.96
Huber 2.5 0.99 0.96 0.92 0.83 0.79 0.9 0.95 0.97

MAD 0.94 0.93 0.91 0.88 0.81 0.67 0.9 0.92

FLOM 1.0 0.98 0.89 0.83 0.69 0.56 0.49 0.84 0.88
FLOM 1.5 0.99 0.89 0.84 0.78 0.76 0.79 0.9 0.93
FLOM 1.8 0.98 0.89 0.85 0.82 0.85 0.89 0.92 0.95

SCM1 1.2 1.2 1.2 1.2 1.2 1.1 1.2 1.2
SCM2 0.97 0.96 0.97 0.95 0.91 0.82 0.92 0.94

Table 4. Estimator performance using the sphericity ratio and the A2 mixing
matrix

This can be explained as follows. Both the nominal and contaminating
components have the same correlation matrix, differing only in their rel-
ative powers. Hence large amounts of contamination do not significantly
affect this statistic. However, with only small amounts of contamination the
sample subspace can be perturbed. If the nominal and contaminating com-
ponents possessed different correlation structures, we would expect a steady
deterioration in performance with respect to the amount of contamination.

5 Conclusions

The proposed adaptive scheme shows significant advantages over the static
M-estimator. In particular, when considering the possibility of an unknown
degree of contamination, performance follows the properties of the appro-
priate static estimator. When compared to other estimators, the adaptive
scheme shows good performance in the nominal case, while also showing
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graceful degradation as contamination increases. Other schemes were shown
to have either poor nominal performance (e.g. M-estimator with small k,
MAD, SCM, FLOM with small p) or more rapid breakdown (e.g. M-estimator
with large k and FLOM with large p).

It is observed that SCM2, i.e. the whitened SCM, shows considerable
improvement across all metrics for light contamination when compared to the
unmodified SCM1. This motivates future investigation into the application
of a similar transformation for other estimators.
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