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Abstract. We study the last exit time for the Glivenko-Cantelli statistics indexed
by some class of functions. Also we provide upper bounds for its tail distribution.
Our first example is the Glivenko-Cantelli statistics indexed by a subclass of a
Sobolev space; we next consider last exit times for adaptive semiparametric es-
timates in the spirit of Klaassen, for which we provide the distribution and tail
bounds uniformly upon the nuisance parameter.
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1 Introduction

Rates of convergence for statistical estimators usually focus of asymptotic
equivalents for the distance between the estimate and the parameter it intends
to approximate. When the estimate is strongly consistent, which is to say
that it converges almost surely, then the time which is necessary in order
that it stays in some neighborhood of the true value of the parameter from
then on is a well defined random variable, which bears a very intuitive sense
and which, sometimes, can be evaluated, at least for small neighborhoods
of the parameter. In this context, the situation is quite similar to the case
when we consider a deterministic sequence xn converging to x in a metric
space: given some (small) ε, which is the order of magnitude of the integer
N(ε) such that, for all n larger than N(ε) , the distance between xn and x
remains forever smaller than ε? This class of problems is usually referred to
as “last exit times” problems, considering that the terms of the sequence of
estimates may stay outside the ε-neighborhood of its limit only when when
n is smaller than N(ε). This notion has been presented for sequences of M-
estimates by [Stute, 1983], and has been extended to the last exit time for the
Glivenko-Cantelli statistics by [Hjort and Fenstad, 1992]; extensions for the
case when the sample is drawn from a Markov chain or from a strongly mixing
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sequence have been studied by [Barbe et al., 1999], and some extensions
for U-statistics have recently been proposed by [Bose and Chatterjee, 2001].
The present paper follows this chain of works and provides some insight
in the range of adaptive semi parametric estimates; it also provides some
information on the tail of the distribution of last exit times for those types
of estimates. The main tool to be imported for the obtention of the law of
N(ε) for such estimates is uniformity with respect to the nuisance parameter.
This is achieved through Gaussian approximations for the so-called sequential
empirical process, a device which has been proposed in the form which is to
be used here by [Sheehy and Wellner, 1992].

The structure of the paper is as follows: The first section is devoted to
the obtention of a general result on last exit times for the Glivenko-Cantelli
statistics indexed by a class of functions, following the line defined by [Stute,
1983]. The second section specializes this result for various situations, with
an emphasis towards semi parametric adaptive estimators in the spirit of
[Klaassen, 1987].

2 Last exit time for the functional Glivenko-Cantelli

Statistics

A sample (X1, ..., Xn) is given , with i.i.d. components following a common
distribution P on some space X . For f a real valued measurable function on
X we denote Pf the expectation of f with respect to P , i.e. Pf :=

∫

fdP.
Denote Pn the empirical measure pertaining to the sample, Pn := 1

n

∑n
i=1 δXi

where δx is the Dirac mass at point x. In the sequel F denotes a subclass of
functions in L2(P ) for which we assume that for all x in X , the condition

sup
f∈F

|f(x) − Pf | is finite (1)

holds. Define

Nε := sup

{

n ≥ 1 : sup
f∈F

|(Pn − P )(f)| ≥ ε

}

,

which denotes the last exit time for the Glivenko–Cantelli statistics indexed
by F . Since F is a Donsker class, it satisfies the Glivenko–Cantelli property,
namely

lim
n→∞

sup
f∈F

|(Pn − P )f | = 0 a.s.,

which implies that Nε is a.s. finite. We consider the limiting distribution of
ε2Nε when ε tends to 0.

Following [Stute, 1983], with Nε(f) := sup {n ≥ 1 : |Pnf − Pf | > ε}, we
have, for fixed f in F ,

Proposition 1 Let f belongs to L2(P ) . Then



Last exit times for a class of asymptotically linear estimators 865

(i) lim
ε→0

ε2Nε(f)
d
= W 2

max(f) := σ2(f) sup
0≤s≤1

W 2(s),

where σ2(f) = Pf2 − (PF )2, and W (s) is the standard Wiener process.

(ii) lim
λ→∞

lim
ε→0

P{ε2Nε(f) > λ}
ψ
( √

λ
σ(f)

) = 1, where ψ denotes the upper tail of the

standard normal distribution ψ(λ) := P [N(0, 1) > λ].

We obtain an information pertaining to the moments of the r.v. ε2Nε(f)
for small ε.

A sequence of r.v.’s Yn is r-quick convergent to 0 whenever, for all ε > 0,
E(N r

ε ) := E(sup{n ≥ 1 : |Xn| ≥ ε})r is finite.
This property has been used by [Lai, 1981] in order to assess optimality

properties of probability ratio tests in sequential analysis.
As a consequence of Proposition 1 we have

Corollary Let f belong to L2(P ). The sequence (Pn − P )(f) is r-quick
convergent to 0 for all r > 0.
Proof of Proposition 1

(i) for all f ∈ L2(P ), it holds Nε(f) =
sup

{

n ≥ 1 : 1
n |∑n

i=1(f(Xi) − Pf)| ≥ ε
}

= sup
{

n ≥ 1 : νn(f)√
n

≥ ε
}

.

Let y be a positive number. Then P
{

ε2Nε(f) ≥ y
}

= P
{

Nε(f) ≥ y
ε2

}

.

Define m :=< y/ε2 >, the smallest integer larger or equal y/ε2. Then

P{ε2
Nε(f) ≥ y} = P{Nε(f) ≥ m}

= P

(

sup

(

n ≥ 1 :
1

n

˛

˛

˛

˛

˛

n
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ ε

)

≥ m

)

= P

(

sup
n≥m

1

n

˛

˛

˛

˛

˛

n
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥
r

y0

m

)

,

where y0 := mε2. We thus have 0 ≤ y0 − y ≤ ε2, which entails that y0
tends to y as ε tends to 0.
For all f in L2(P ), we therefore have

P{ε2
Nε(f) ≥ y} ≤ P

(

√
m sup

n≥m

1

n

˛

˛

˛

˛

˛

n
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ √
y0

)

= P

(

√
m sup

t≥1

1

tm

˛

˛

˛

˛

˛

mt
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ √
y0

)

= P

(

σ(f) sup
t≥1

1

t

˛

˛

˛

˛

˛

1

σ(f)
√

m

mt
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ √
y0

)

=: P (Em).
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For all r > 1, set

Am(r) :=

(

σ(f) sup
1≤t≤r

1

t

˛

˛

˛

˛

˛

1

σ(f)
√

m

mt
X

i=1

f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ √
y0

)

and

Bm(r) :=

(

σ(f) sup
t>r

1

t

˛

˛

˛

˛

˛

1

σ(f)
√

m

mt
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ √
y0

)

.

For all r > 1,
P (Em) = P (Am(r) ∪Bm(r)),

and therefore

lim
ε→0

P
(

ε2Nε(f) ≥ y
)

= lim
m→∞

P (Em) = lim
r→∞

lim
m→∞

P (Am(r) ∪Bm(r))

= lim
r→∞

lim
m→∞

P (Am(r)) + P (Bm(r)) − P (Am(r) ∩Bm(r)).

If
lim

r→∞
lim

m→∞
P (Bm(r)) = 0, (2)

then
lim

m→∞
P (Em) = lim

r→∞
lim

m→∞
P (Am(r)).

The proof of (2) is easy.
Following Donsker Invariance Principle, the processes

(

1

σ(f)
√
m

mt
∑

i=1

(f(Xi) − Pf); t ∈ [1, r]

)

m≥1

converge in distribution in D[1, r] to the Brownian process W (t). By
continuity of the supremum it therefore holds

lim
m→∞

sup
1≤t≤r

1

tσ(f)
√
m

∣

∣

∣

∣

∣

mt
∑

i=1

(f(Xi) − Pf)

∣

∣

∣

∣

∣

d
= sup

1≤t≤r

∣

∣

∣

∣

W (t)

t

∣

∣

∣

∣

.

For all t ∈ [1, r], the process W ∗(1
t ) = W (t)

t is also a Brownian process.
Therefore

sup
1≤t≤r

∣

∣

∣

∣

W (t)

t

∣

∣

∣

∣

d
= sup

1

r
≤s≤1

|W ∗(s)|.

Hence whenever (2) holds, we have

lim
ε→0

P (ε2
Nε(f) ≥ y) = P

 

σ(f) lim
r→∞

sup
1

r
≤s≤1

|W (s)| ≥ √
y

!

= P



σ(f) sup
0≤s≤1

|W (s)| ≥ √
y

ff

= P
˘

W
2

max(f) ≥ y
¯

,

where W 2
max(f) = σ2(f) sup0≤s≤1W

2(s).
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(ii) The maximal variance of σ(f)W (s) equals σ2(f) and is obtained when
s = 1.

Let

Ih := {s ∈ [0, 1] : sσ2(f) ≥ σ2(f) − h2} =

[

1 − h2

σ2(f)
, 1

]

,

and note that E(σ2(f)W (1)) = σ2(f).

The uniform a.s. continuity of σ(f)W (s) on [0, 1] entails that

lim
h→0

1

h
E

{

sup
s∈Ih

σ(f)|W (s) −W (1)|
}

= 0,

which proves that the conditions in [Adler, 1990], Theorem 5.5 are ful-
filled, proving the claim.

Let us turn to the uniform case, that is, consider the limiting distribution
of ε2Nε, ε→ 0. We will assume

H1: F is a Donsker class

H2: For all x ∈ X , supf∈F |f(x) − P (f)| is finite

H3: F is a permissible class of function, implying that supf∈F |Pnf − Pf | is
measurable.

Define a Gaussian process ZP defined on [0, 1]×F , a version of which has
uniformly bounded sample paths which are uniformly continuous on [0, 1] ×
F when equipped with the ρ̃P pseudo-metric defined on [0, 1] × F defined
through ρ̃P ((s, f), (t, g)) := |s− t|+P (f−g)2. The existence of such process
is a consequence of hypothesis (H1) above (see [Sheehy and Wellner, 1992]).
The Kiefer-Müller process ZP is centered for any s and f , and its covariance
operator is given by

cov [ZP (s, f), ZP (t, g)] = (s ∧ t)(Pfg − PfPg).

We then have

Proposition 2 When F satisfies (H1), (H2) and (H3),

lim
ε→0

ε2Nε
d
= sup

(s,f)∈F ′

|ZP (s, f)|2,

where F ′ := [0, 1] ×F .

Proof
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Let y be some positive number, and m :=< y/ε2 >. It holds, setting y0 =
mε2,

P (ε2
Nε ≥ y) = P (Nε ≥ m)

= P

 

√
m sup

n≥m

sup
f∈F

1

n

˛

˛

˛

˛

˛

n
X

i=1

(f(Xi) − P (f)

˛

˛

˛

˛

˛

≥ √
y0

!

= P

 

sup
f∈F

sup
t≥1

1

t

˛

˛

˛

˛

˛

1√
m

mt
X

i=1

(f(Xi) − Pf)

˛

˛

˛

˛

˛

≥ √
y0

!

= P

„

sup
f∈F

sup
t≥1

1

t
|Zm(t, f)| ≥ √

y0

«

,

where Zm is the sequential empirical process, an element of `∞([0,∞)×F)
defined through Zm(t, f) := 1√

m

∑mt
i=1(f(Xi)−Pf). Note that for all fixed t,

by (1), Zm(t, .) belongs to l∞(F) , the set of all bounded sequences defined
from F onto R.

Following [Sheehy and Wellner, 1992], Theorem 11, for any r > 0, Zm

converges in distribution in `∞([0, r]×F) to ZP . For all r ≥ 1, it thus holds

lim
m→∞

sup
f∈F

sup
1≤t≤r

∣

∣

∣

∣

Zm(t, f)

t

∣

∣

∣

∣

d
= sup

f∈F
sup

1≤t≤r

∣

∣

∣

∣

ZP (t, f)

t

∣

∣

∣

∣

.

Define Z∗(1
t , f) := ZP (t,f)

t , for t ∈ [1, r] and f ∈ F . The centered Gaus-
sian process Z∗ is a Kiefer-Müller process indexed by [1, r] × L2(X ); its
covariance operator is defined, for f, g in L2(X ) and s, t in [1, r], by

E

(

Z∗
(

1

s
, f

)

Z∗
(

1

t
, g

))

=

(

1

s
∧ 1

t

)

(Pfg − (Pf)(Pg)),

whence

sup
1≤t≤r

∣

∣

∣

∣

ZP (t, f)

t

∣

∣

∣

∣

d
= sup

1≤t≤r

∣

∣

∣

∣

Z∗
(

1

t
, f

)∣

∣

∣

∣

d
= sup

1

r
≤s≤1

|Z∗(s, f)|.

It follows by continuity that for any r ≥ 1,

lim
m→∞

P

(

sup
f∈F

sup
1≤t≤r

1

t
Zm(t, f) ≥ √

y0

)

= P

(

sup
1

r
≤s≤1

|Z∗(s, f)| ≥ √
y0

)

,

which, since y tends to 0 as m→ ∞ equals P
(

sup 1

r
≤s≤1 |Z∗(s, f)|2 ≥ y

)

.

In order to prove Proposition 2, it remains to prove that

lim
r→∞

lim
m→∞

P

(

sup
f∈F

sup
t≥r

1

tm

∣

∣

∣

∣

∣

mt
∑

i=1

(f(Xi) − Pf)

∣

∣

∣

∣

∣

≥ √
y0

)

= 0.

This follows , as (2), selecting some f in F and noting that

supf∈F supt≥r
1

tm

∣

∣

∣

∑mt
i=1(f(Xi) − Pf)

∣

∣

∣
≥ 1

[rm]

∣

∣

∣

∑[rm]
i=1 (f(Xi) − Pf)

∣

∣

∣
.
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3 Last exit times for adaptive estimates

Let Xn
1 := (X1, . . . , Xn) be an i.i.d. sample with X1 distributed by Pθ,g on

R
k. The parameter of interest is θ, with θ ∈ Θ, an open set, an g ∈ G, the

set of nuisance parameters. A locally asymptotically linear estimator Tn of θ
satisfies

√
n

(

Tn − θn − 1

n

n
∑

i=1

J(Xi, θn, g)

)

= oθn,g(1). (3)

In (3) (θn) is any sequence such that
√
n(θn − θ) = O(1) (4)

and J satisfies
∫

J(x, θ, g)dPθ,g(x) = 0 (5)

together with
∫

|J(x, θ, g)|2dPθ,g(x) <∞, (6)

for all θ ∈ Θ and g ∈ G.
All the o and O notation are meant ”in probability” where random vari-

ables are involved.
The function J in (3) is the influence function for Tn. An estimate Sn

of θ is adaptive and efficient whenever there exists a function J(x, θ, g) such
that, for all sequence (θn) satisfying (4), it holds

lim
n→∞

√
n(Sn − θn)

d
= N

(

0, Σ−1
θ,g

)

(7)

where Σθ,g is the covariance matrix of J(X, θ, g) for fixed regular θ and

g. When the J function coincides with the usual score function ḟ(x,θ,g)
f(x,θ,g)

with f the density of Pθ,g, (7) is the classical normal limit behavior for ML
estimates under contiguity of the sequence of measures Pθn,g to Pθ,g for all
(θn) satisfying (7) and g ∈ G, which we will assume from now on. Regularity
of θ and g is defined in [Bickel, 1982].

Adaptive estimates are efficient for all g ∈ G, even though the knowledge
of g may not be used in the construction of the estimates. Under the above
setting, constructions of efficient adaptive estimates have been proposed in
[Beran, 1978], [Schick, 1986] and [Klaassen, 1987] among others. We will
follow Klaassen’s approach based on influence functions and provide some
insight on last exit times for his estimates, strenghtening his assumptions
when needed. We just need some kind of uniformity with respect to g as
stated now.

Assume that there exists a sequence of functions Jn(x, θn, X
n
1 ) defined on

(Rk, Θ,Rkn) and a function J(x, θ, g) defined on (Rk, Θ,G), such that

sup
g∈G

∫

Jn(x, θn, X
n
1 )dPθn,g(x) = oθn

(1) (8)
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and

sup
g∈G

√
n

∫

[Jn(x, θn, X
n
1 ) − J(x, θn, g)]

2dfθng(x) = oθn
(1). (9)

Assume further that we can construct a sequence of preliminary estimates
Sn of θ such that √

n(Sn − θ) = Oθ(1). (10)

Then we can construct a uniformly locally asymptotically linear adaptive
estimate Tn of θ, satisfying therefore

sup
g∈G

√
n

(

Tn − θn − 1

n

n
∑

i=1

J(Xi, θn, g)

)

= oθn
(1) (11)

for all sequence (θn) satisfying (4). Display (11) proves that the estimate
Jn of the Influence function J , together with an initial estimate of θ, pro-
vides explicit estimates of θ enjoying asymptotic normality and second order
efficiency in the sense of Rao.

We now state additional conditions which entail some knowledge n the
last exit time for the above adaptive estimate Tn. We assume that J(x, θ, g) is
regular on a bounded open subset S of the image of X1, say ImX1, uniformly
upon θ and g. Also J is assumed to be constant outside S. Such conditions
entail robustness for Tn. Precisely, assume

(H1) There exists q > k/2 such that supθ,g ‖J(·, θ, g)‖W q
2

< ∞, where ‖ · ‖W q
2

is the L2–Sobolev norm of order q on S.
(H2) There exists K > 0 such that for all a in Im X1 \ S, for all (θ, g),

J(a, θ, g) = K.
(H3) Im X1 is convex or is a countable union of convex sets with non inter-

secting closures.

Under (H1), (H2) and (H3) the class J of functions J(·, θ, g) is Donsker.
When ImX1 = [0, 1]k, Theorem 7.7.1 in [Dudley, 1982], entails that for some
K1 > 0, for any ε > 0, the entropy number of J satisfies

logN(ε,W q
2 ,J ) ≤ K1e

−k/q.

Denote Nε := sup{n ≥ 1 : |Tn − θ| > ε} where | · | is the Euclidian norm.
Applying Proposition 3 yields

Corollary Under all the above assumptions, plus (H1), (H2) and (H3),

(i) lim
ε→0

ε2Nε
d
= sup

θ,g
sup

0≤s≤1
|Z(s, J(·, θ, g))|2 where Z(s, f) is the functional

Kiefer-Müller Process as defined in Section 1.
(ii) When ImX1 = [0, 1]k, then there exists some positive constant K such

that for all λ > 0,

lim
ε→0

P (ε2Nε > λ) ≤ 2K(
√
λ)1+k/qψ(

√
λ/σy)

where σ2
y := supθ,g

∫

J2(x, θ, g)dPθ,g(x).
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