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Abstract. Distributions of the first-exit times from a region with non-linear upper
boundary are discussed for ordinary and compound Poisson processes. Explicit for-
mulae are developed for the case of ordinary Poisson processes. Recursive formulae
are given for the compound Poisson case, where the jumps are positive, having con-
tinuous distributions with finite means. Applications to sequential point estimation
are illustrated.
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1 Introduction

The distributions of stopping times for ordinary or compound Poisson pro-
cesses when the boundaries are linear were studied in a series of papers by
[Perry et al., 1999a] [Perry et al., 1999b] [Perry et al., 2002a], [Perry et al.,
2002b], [Stadje and Zacks, 2003], [Zacks, 1991], [Zacks, 1997] and [Zacks
et al., 1999]. In particular, see the survey paper of [Zacks, 2005]. In the
present paper we discuss the problem when the boundaries are non-linear.
[Picard and Lefevre, 1996] studied crossing times of counting processes with
non-linear lower boundaries, using pseudo-polynomials. We are developing
a different approach for ordinary or compound Poisson processes with up-
per non-linear boundaries. In a recent paper by [Zacks and Mukhopadhyay,
2005], the theory presented here was applied to find the exact risk of se-
quential point estimators of the mean of an exponential distribution. Five
different stopping rules with corresponding estimators were considered. By
converting the problems to stopping times of an ordinary Poisson process, the
boundaries were of two types: concave B(t) = γtα, 0 < α < 1, and convex
B(t) = γtα, α > 1. Explicit solutions were given there for the distributions
of the estimators and their moments. When the distributions of the observed
random variables are not exponential the situation is much more difficult.
We assume that the observed random variables X1, X2, ... are i.i.d. positive
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and that, for each n ≥ 1, the sequence (n, Sn), where Sn =
n

∑

i=1

Xi, is tran-

sitively sufficient. We apply the Poissonization method (see [Cesaroli, 1983],
[Zacks, 1994]) to approximate the distribution of the stopping variable M in
the sequential estimation by the distribution of a stopping time T . Here T is
the first time that the compound Poisson Process X(t) = SN(t) crosses above
an increasing boundary B(t), where lim

t→∞

B(t) = ∞ and lim
t→∞

B(t)/t = 0.

While the derivation of the distributions of stopping times in the ordinary
Poisson case is immediate, that for the compound Poisson process is compli-
cated. We outline a solution by solving a sequence of related problems. In
Section 2 we derive the distribution of a stopping time T , where an ordinary
Poisson process {N(t), t ≥ 0} crosses an upper boundary B(t). In Section
3 we discuss the problem when a compound Poisson process X(t) crosses
B(t). In Section 4 we present an application to sequential estimation and
some numerical results from [Zacks and Mukhopadhyay, 2005]. All lemmas
and theorems are presented without formal proofs.

2 The Distribution of The First Crossing Time Of An

Ordinary Poisson Process

Consider an ordinary Poisson process (OPP) {N(t), t ≥ 0} with N(0) = 0.
This is a homogeneous process with intensity λ, 0 < λ < ∞. For the proper-
ties of an OPP see [Kao, 1977].

Let B(t) be strictly increasing, non-linear function of t, with B(0) = 0,
B(t) ↗ ∞ and B(t)/t → 0 as t → ∞. We are interested in the distribution
of the stopping time

T = inf{t ≥ tk : N(t) ≥ B(t)}, (1)

where for l ≥ k tl = B−1(l). Since B(t) is strictly increasing, tk < tk+1 <
tk+2 < .... Notice that the distribution of N(tk) is Poisson(λtk). Accordingly,

P (T = tk) = 1 − P (k − 1; λtk), (2)

where P (·; µ) is the cdf of Poisson(µ). We denote by p(·; µ) the pdf of
Poisson(µ).

Lemma 1 For each λ, 0 < λ < ∞,

Pλ{T < ∞} = 1.

�

Define the defective probability function

gλ(j; t) = P{N(t) = j, T > t}, j = 0, 1, ... (3)
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for t ≥ tk. Since T ≥ tk with probability one,

gλ(j; tk) = p(j; λtk), j = 0, ..., k − 1
= 0, j ≥ k.

(4)

Furthermore we have, for tl−1 < t ≤ tl, l ≥ k, and j = 0, ..., l − 1

gλ(j; t) =

j∧(l−2)
∑

i=0

gλ(i; tl−1)p(j − i; λ(t − tl−1)), (5)

where j ∧ (l − 2) = min(j, l − 2). Thus, according to (5),

Pλ{T > t} =

∞
∑

l=k+1

I(tl−1 < t ≤ tl)

l−1
∑

j=0

gλ(j; t)

=

∞
∑

l=k+1

I(tl−1 < t ≤ tl)

l−2
∑

j=0

gλ(j; tl−1)P (l − 1 − j; λ(t − tl−1)).

(6)

Theorem 1 The distribution function of T is absolutely continuous on

(tk,∞) with density

ΨT (t; λ) = λ

∞
∑

l=k+1

I(tl−1 < t < tl)·

l−2
∑

j=0

gλ(j; tl−1)·p(l−1−j; λ(t−tl−1)). (7)

�

Theorem 2 The r-th moment of T , (r ≥ 1), is

Eλ{T
r} = trk(1 − P (k − 1; λtk))

+r!

∞
∑

l=k+1

trl−1

l−2
∑

j=0

gλ(j; tl−1)

r
∑

i=0

1

(r − i)!

(

l − 1 − j + i
i

)

·

· 1
(λtl−1)i (1 − P (l − 1 − j + i; λ∆l)),

(8)

where ∆l = tl − tl−1. �

3 The Distribution of The First Crossing Time of a

Compound Poisson Process

We consider here a compound Poisson process (CPP) with positive jumps.
Accordingly, let X0 ≡ 0, X1, X2, ... be i.i.d. positive random variables having
a common absolutely continuous distribution F , with density f . We assume
that F (0) = 0.
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Let {N(t), t ≥ 0} be an OPP, with intensity λ. We assume that
{N(t), t ≥ 0} and {Xn, n ≥ 1} are independent. The CPP is {X(t), t ≥ 0},
where

X(t) =

N(t)
∑

n=0

Xn. (9)

The distribution function of X(t), at time t, is

H(x; t) =

∞
∑

n=0

p(n; λt)F (n)(x), (10)

where F (0)(x) ≡ 1 and F (n)(x) for n ≥ 1 is the n-fold convolution

F (n)(x) =

∫ x

0

f(y)F (n−1)(x − y)dy. (11)

The density of H(x; t) for x > 0 is

h(x; t) =

∞
∑

n=1

p(n; λt)f (n)(x), (12)

where f (n) is the n-fold convolution of f . For some t > 0 we are interested
in the distribution of the stopping time

Tc = inf{t ≥ t∗ : X(t) ≥ B(t)}, (13)

where B(t) is the non-linear increasing boundary, as in Section 2. The dis-
tribution of Tc has an atom at t = tk, given by

P{Tc = t∗} = 1 − H(B(t∗); t∗), (14)

and
P{Tc > t∗} = H(B(t∗); t∗). (15)

Moreover, see [Gut, 1988],

lim
t→∞

X(t)

t
= µt,

where µ = E{X1}. Hence since
B(t)

t
→ 0 as t → ∞ we obtain

Lemma 2 For a CPP {X(t), t ≥ 0}

P{Tc < ∞} = 1. (16)

�
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Define the defective distribution

G(x; t) = P{X(t) ≤ x, Tc > t}. (17)

Clearly,
P{Tc > t} = G(B(t); t). (18)

Let g(x; t) denote the defective density of G(x; t). An explicit formula of
g(x; t) was derived by [Stadje and Zacks, 2003] for the case of a linear bound-
ary B(T ) = β+t. In the case of a non-linear boundary we follow the following
steps.

First, define a sequence {B(m)(t), m ≥ 1} of step-functions, such that
B(m)(t) ≤ B(m+1)(t) for all m ≥ 1, all 0 ≤ t < ∞, and such that lim

m→∞

B(m)(t)

= B(t).
Second, define the stopping time

T (m)
c = inf{t ≥ t∗ : X(t) ≥ B(m)(t)}, (19)

and correspondingly

G(m)(x; t) = P{X(t) ≤ x, T (m)
c > t}. (20)

Notice that {T
(m)
c > t} ⊂ {T

(m+1)
c > t}, for all m ≥ 1. Hence, by monotone

convergence

lim
m→∞

G(m)(x; t) = G(x; t). (21)

Thus, we approximate G(B(t); t) by G(m)(B(m)(t); t) for m sufficiently large.

For m ≥ 1, let {t
(m)
l , l ≥ 0} be the end points of partition intervals of [t∗,∞),

where

t
(m)
l = B−1

(

B(t∗) +
l

m

)

, l ≥ 0. (22)

The corresponding boundary B(m)(t) is given by the step-function

B(m)(t) =

∞
∑

l=1

I{t
(m)
l−1 ≤ t < t

(m)
l }

(

B(t∗) +
l − 1

m

)

. (23)

We develop now recursive formula for G(m)(x; t), t ≥ t∗. Notice that t
(m)
0 = t∗

for all m ≥ 1.
Since T

(m)
c ≥ t∗ for all m ≥ 1,

G(m)(x; t
(m)
0 ) = I{x < B(t∗))H(x; t∗) + I(x ≥ B(t∗))H(B(t∗), t∗). (24)

Furthermore, since B(m)(t) ≥ B(t∗) for all t ≥ t∗ and m ≥ 1,

G(m)(x; t) = H(x; t), x ≤ B(t∗), (25)
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for all t > t∗. In addition, for all l ≥ 1,

G(m)(x; t
(m)
l ) = G(m)(B(m)(t

(m)
l−1); t

(m)
l ), all x ≥ B(m)(t

(m−1)
l−1 ). (26)

Finally, for every l ≥ 1, t
(m)
l−1 < t ≤ t

(m)
l and x ≤ B(m)(t

(m)
l−1),

G(m)(x; t) =

∫ x

0

G(m)(y; t
(m)
l−1)h(x − y; t − t

(m)
l−1)dy. (27)

Thus, for each m ≥ 1,

P{T (m)
c > t} =

∞
∑

l=1

I{t
(m)
l−1 ≤ t < t

(m)
l } · G(m)(B(m)(t

(m)
l−1); t). (28)

Functionals of the distribution of T
(m)
c can be derived from (28).

4 Application In Sequential Estimation: The

Exponential Case.

Let X1, X2, ... be i.i.d. random variables having an exponential distribution
with mean β, 0 < β < ∞. For estimating β consider the sequential stopping
variable

M = min{m ≥ k : m ≥ (A/c)1/2X̄m}, (29)

where A, c are positive constants and X̄m =
1

m

m
∑

i=1

Xi. For background infor-

mation on this stopping rule and references see [Zacks and Mukhopadhyay,
2005]. At stopping we estimate β with the estimator X̄M . The corresponding
risk is

R(X̄M , β) = A · E{(X̄M − β)2} + cE{M}. (30)

[Zacks and Mukhopadhyay, 2005] applied the theory of Section 2 to evaluate
exactly the functionals E{X̄M} and R(X̄M , β). This was done by considering
the OPP {N(t), t ≥ 0} with intensity λ = 1/β. If we replace m and mX̄m,
respectively, with N(t) and t we obtain from (29) the related stopping time

T = inf{t ≥ tk : N(t) ≥ γt1/2}, (31)

where γ = (A/c)1/4 and tk = (k/γ)2. Here we have M = N(T ) and X̄M =
T/N(T ). By slight modification of equation (8) we get the moments of X̄M .
In Table 1 we present some exact values of E{M}, E{X̄M} and R(X̄M , β).



The Distributions of Stopping Times 861

β = 1 β = 1.25

c E{M} E{X̄M} R(X̄M , β) E{M} E{X̄M} R(X̄M , β)

0.5 4.712 0.8663 4.1318 5.584 1.0739 5.4454
0.1 9.482 0.8757 2.2889 11.867 1.1145 2.9793
0.05 13.472 0.0915 1.7079 16.987 1.1500 2.1487
0.01 31.892 0.9597 0.7207 39.076 1.2124 0.8687
0.005 44.305 0.9742 0.4834 55.515 1.2249 0.5931

Table 1. Exact Values of E{M}, E{X̄M} and R(X̄m, β) for A = 10, k = 3.
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