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Abstract. The State of Connecticut bought 10, 000 computers/servers from a con-
tracted supplier. These were supposed to include some special internal hardware.
The technology department inspected 4, 000 pieces from the delivered batch and
found only 58 “good” ones! It is shown that the inspection protocol that allowed
checking 4, 000 computers was at best outrageously wasteful. An appropriately de-
signed strategy with fewer than 10% inspections could conclude with near certainty
that the batch was far below expectation.
Keywords: Inspection protocol, Inspection sampling, Percentage saving, Sampling
strategy.

1 Introduction

On Tuesday, June 8, 2004, the Hartford Courant’s Connecticut section’s
headline read “Woman Accused of Bilking State” which drew my immediate
attention. I became intrigued as I read the story, “... In March 2001, the
Computer Plus Center won a $17.2 million state contract, making it the ex-
clusive vendor of Dell computers and servers for all state agencies, the arrest
affidavit states. In January 2003, the state Department of Information Tech-
nology filed a complaint about the company, ... announcing the arrest. The
servers would not work, according to the affidavit.” The article quoted Chief
State’s Attorney Christopher Morano saying, “The servers that were deliv-
ered did not have the amount of memory, or the quality memory, in them,
that was required.” The article then went on to report, “... The state’s
technology department took apart 4, 000 of the 10, 000 (computers/servers)
delivered by the said company. Of those, Morano said, only 58 contained the
required network interface cards, ... . ”

This note is not about allegations or legal posturing. I was struck by the
fact that Connecticut’s technology department took apart 4, 000 from 10, 000
computers/servers delivered by the said company whereas only 58 good items
were found! Given this batch, a moot question is this: Was it possible to
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come to the conclusion of alleged fraud by inspecting a small fraction of
10, 000 items? The answer is, ‘of course, yes’. I will substantiate this with
appropriately designed random sampling strategies to gather just the right
amount of information much sooner.

Now, suppose that the State’s technology department could come to the
same conclusion of alleged fraud by inspecting n items (computers) where n
was decisively “small” compared with 4, 000. Also, suppose that the inspec-
tion per computer takes x minutes and a skilled technologist charges $a per x
minutes of inspection. When an item is checked out, it is out of commission
so that the State loses $b per piece per inspection. A technologist will prob-
ably be paid $c for the mileage and per diem on an average per inspection
assuming that these 10,000 computers are scattered in different locations.
Then, we have:

Savings: SV = $(a + b + c)(4000 − n),

Percentage Savings: PSV =
(
1 − n

4000

)
× 100.

%tag1 (1)

Let us throw in some realistic numbers. For example, suppose that a =
150, b = 50, c = 10 and the savings would amount to $735, 000 or $420, 000
if one could arrive at the conclusion of alleged fraud by inspecting only 500
or 2, 000 computers respectively. These savings could be in cash or kind, for
example, in the form of savings from cost-share or overtime payments.

There are other expenses too when a computer is inspected. For example,
there is cost for electricity and for storage of non-functioning computers.
Also, the supplier was already paid and the State “lost” interest income
from that fund! Then, waiting for a year or more to bring lawsuits against
supplier(s) drains the State’s resources even further. The term SV in (1)
may not take into account all kinds of costs borne by the State. Yet, one
cannot deny that the term PSV from (1) portrays a realistic quantification
of percentage savings regardless of the magnitudes of a, b, c and other costs
involved.

2 A statistical formulation

We face a large population of 10, 000(= R) items where each item is either
‘good’ or ‘bad’. When an item is randomly selected, suppose that the prob-
ability that it is good (or bad) is p (or q = 1− p), 0 < p < 1. The percentage
of good items (= 100p%) is assumed unknown.

Clearly, I can set the following lower and upper bounds for p:

0.0058 ≈ 58
10000 ≤ p ≤ 6058

10000 ≈ 0.6058 (2)

The lower (upper) bound for p in (2) is obtained by assuming that there were
no (all) good items among 6, 000 remaining uninspected items. On the other
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hand, it appears that p should be closer to 58
4000 ≈ 0.0145 rather than the

most pessimistic value 0.0058 or the overly optimistic value 0.6058.
To estimate p, one would inspect n items selected randomly from the batch

to check how many items (= X) out of n items are indeed good. Having a
large population on hand, I treat X as an approximately binomial random
variable with n and p. An estimator of p is

p̂n =
# good items in the random sample

n . (3)

This p̂n has the following variance and estimated variance:

V ar (p̂n) = p(1 − p)/n, ̂V ar (p̂n) = p̂n (1 − p̂n) /n, (4)

by disregarding the finite population correction factor 1 − nR−1. See
Sukhatme et al. (1984, p. 43).

Now, how many items (that is, n) should one inspect so that the standard
confidence interval p̂n ± E for p would have 100(1 − α)% confidence? By
appealing to the central limit theorem, the required sample size n is then
approximately given by

n ≡ n(p) =
(
zα/2/E

)2
p(1 − p). (5)

Since p is unknown, one may opt for the maximum possible value of n(p)
that would work for all possible values of p, 0 < p < 1. This maximum occurs
when p = 1

2 which motivates the following expression for n:

n ≡ nmax = 1
4

(
zα/2/E

)2
. (6)

α
zα/2

E

0.10 0.08 0.05 0.02 0.016 0.012 0.01
nmax values:

0.10
1.645

68 108 271 1692 3007 4699 6766

n(p) values:

p = 0.2 43.3 67.7 173.2 1082.4 1691.3 3006.7 4329.6
p = 0.1 24.4 38.1 97.4 608.9 951.3 1691.3 2435.4

p = 0.0145 3. 87 6.04 15.5 96.7 151.1 268.5 386.7
nmax values:

0.05
1.96

97 151 385 2401 4269 6670 9604

n(p) values:

p = 0.2 61.5 96.0 245.9 1536.6 24010 4268.4 6146.6
p = 0.1 34.6 54.0 138.3 864.4 1350.6 2401.0 3457.4

p = 0.0145 5.49 8.58 22.0 137.2 214.4 381.2 549.0

Table 1. Sample size n(p) from (5) and nmax from (6).
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The recommended expression nmax is used in many practical problems.
For example, one may refer to Chase and Bown (2000, p. 330). But, nmax

is rather conservative because it works for all p values across the board. In
fact, nmax may be viewed as a minimax choice for the required sample size.

In table 1, the first (second) block corresponds to 90% (95%) confidence
intervals with a particular E value. First, nmax values are provided and then
for each fixed E, I provide n(p) values for p = 0.2, 0.1, 0.0145. Note that
p = 0.0145 corresponds to 58

4000 . From this table, I immediately summarize
some features, namely:

(1) n(p) goes up for fixed p if E ↓;

(2) n(p) goes down for fixed E if p ↓;

(3) n(p) goes down significantly compared with nmax for fixed E if p ↓.

3 Two-stage sampling to determine sample size

Recall that p̂n ± E would have approximately 100(1− α)% confidence when
the required sample size n ≡ n(p) is approximated by the expression from
(5). But, this expression involves unknown p to begin with! Hence, one
must inspect items at least in two steps. This is called two-stage or dou-
ble sampling strategy. See Stein (1945,1949), Ghosh et al. ( 1997, Chapter
6), and Mukhopadhyay and Solanky (1994, Chapter 2). Robbins and Sieg-
mund (1974) and Mukhopadhyay and Cicconetti (2004) respectively proposed
purely sequential and two-stage estimation strategies for p under various
kinds of loss functions. One may also take a look at Corneliussen and Ladd
(1970), Ghosh (1970), Wald (1947), and other sources.

I propose to inspect m(≥ 2) pilot items and obtain only a preliminary
estimate p̂m in the first stage. Here, < u > stands for the largest integer
< u. Now, I let

N = max

{
m,

{(
tm−1,α/2

E

)2 (
p̂m + m−1

) (
1 − p̂m − m−1

)}
+ 1

}
(7)

where tm−1,α/2 is the upper 50α% point of the Student’s t distribution
with m − 1 degrees of freedom. If one believes that p is rather small, then
p̂m may be zero and hence p̂m is replaced by p̂m + m−1 in (7).

If N = m, there will be no need for more inspections beyond the pilot
stage. But, if N > m, then I propose to inspect N −m additional items and
record the number of good items in the second stage. The final confidence
interval estimator for p is going to be p̂N ± E where

p̂N =
# good items in the combined random sample from both stages

N .
(8)
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p
58r
4000

Observed sample sizes
in ten replications

% Savings PSV

100
(
1 − Ave N

4000

)
%

r = 1

378, 620, 620, 254, 378,
128, 500, 254, 254, 128

N = 351.4, SN = 181.4, Ñ = 316

91.22%

r = 2

620, 966, 853, 620, 254,
620, 378, 378, 254, 620

N = 556.3, SN = 240.0, Ñ = 620

86.1%

r = 3

737, 966, 500, 500, 128,
853, 378, 853, 853, 620

N = 638.8, SN = 262.9,Ñ = 678.5

84. 0%

r = 10

2165, 1986, 2251, 2251, 1893,
1893, 2498, 2251, 2417, 2165

N = 2177.0, SN = 204.2, Ñ = 2208.0

45. 6%

r = 41.779

3896, 3896, 3850, 3974, 3541,
3663, 3824, 3796, 3734, 3963

N = 3813.7, SN = 136.1, Ñ = 3837

4. 7%

Table 2. Values of N using (7) from ten replications with 2% over-sampling

on an average compared with n(p) from (5) and α = 0.05, m = 124.

By the way, Mukhopadhyay (2004) gave a practical way to determine the
pilot sample size m as follows:

m = smallest positive integer such that t2m−1,α/2/z2
α/2 ≤ 1 + ε, (9)

assuming that one can comfortably entertain 100ε% over-sampling on an
average compared with n(p) from (5). Then, one arrives at the following
choice for the pilot sample size m depending upon ε:

m =

〈
1
2ε

(
1
2 (z2

α/2 + 1) +
{

2
[

1
3z4

α/2 + 23
12z2

α/2 + 5
4

]
ε
}1/2

)〉
+ 1. (10)

Now, in order to have a feel for what one may face in practice, I decided
to generate a Bernoulli population where p = 58r

4000 with r = 1, 2, 3, 10, and
41.779. The case “r = 1” simulates the situation on hand where we are
told that 58 good items have been observed among 4000 inspected items and
no more. The cases “r = 2, 3, 10” respectively simulate situations where we
may expect to see good items at the rate (p) of two, three or ten times the
rate of what we have been told to have happened. The case “r = 41.779”
simulated a situation where one may expect to see good items at the most
optimistic rate given what has happened in the situation on hand, that is
with p = 0.6058(≡ 6058

10000 ). We fixed α = 0.05, ε = 0.02 and hence (10)
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suggested a pilot sample size m = 124. I determined N ten separate times
from independent replications in each situation. Table 2 provides all ten
observed N values along with their average N , standard deviation S N ,
and the median Ñ , in each case. The last column provides the estimated
average percentage savings compared with n = 4000. One sees unbelievable
percentage savings in sample size on an average when r = 1, 2, 3 and 10.
Even in the most optimistic situation (r = 41.779) described in the last
block of table 2, we note 4.7% average savings in sample size compared with
n = 4000. This saving may appear insignificant, but then one should consider
this: After observing only 58 good items among 4000 inspected items, what
is the likelihood that all remaining 6000 uninspected items would be judged
good if inspected? The point is that even under such rarest of rare occurrence,
the present sampling strategy could have saved us by inspecting nearly 3800
items on an average instead of 4000 items!

4 Sequential testing to determine a sample size

I continue with random sampling from a Bernoulli(p) population where p is
the fraction of good items in a very large population having R(= 10, 000)
items. The inspection team must have certain high value p0, 0 < p0 < 1, in
mind that it expects the vendor to comply with in good faith. The State
may hope that p0 ≈ 1.0. Obviously, a small percentage of items may turn
out bad, but those bad items would be expected to be properly ‘corrected’
by the supplier. So, the inspection team could set up a sampling strategy for
the following testing problem:

H0: p ≥ p0 versus H1: p < p0 (11)

Suppose that one fixes p0 = 0.95 or 0.99 and it means that the State
considers 9500 or 9900 good items found among 10, 000 items is within reason.
But, if p < p0 where p0 is a set number, then the inspection team will ‘raise a
flag’ in favor of possible suspicion of receiving lesser than expected quality. I
would like to clear one important point. The number p0 ought to be specified
by the State. Such specification may take into consideration the inspection
team’s mindset that is consistent with the State’s budgetary constraints plus
other protocols as required.

One may feel tempted to use customary normal approximation to a bi-
nomial distribution and hence having n(≥ 30) observations, one would reject
the null hypothesis H0 if and only if

p̂n < p0 − zα

√
p0(1−p0)

n , (12)

with the level of significance, α = P { RejectingH0 | H0 is true}.
But, what should be the appropriate sample size, n? Now, suppose that

one asks that the power of the test (12) when p = p1(< p0) be at least 1− β
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where 0 < β < 1 is a small and fixed number. In many investigations, one
fixes power 80% (that is, β = 0.20 to detect a certain “effect size” (that is,
p1 − p0). Let me denote σi =

√
pi(1 − pi), i = 0, 1. For large n, the power of

the test (12) when p = p1(< p0) can be expressed as

P {Rejecting H0 | p = p1} ≈ P
{
Z <

√
n(p0−p1)

σ1

− zα
σ0

σ1

}
. (13)

Now, it ought to be clear that the power given in (13) would be at least 1−β
provided that the sample size n is chosen as follows:

n ≥
(zασ0 + zβσ1)

2

(p1 − p0)2
= n∗(p0, p1).

I define

n ≡ n(p0, p1) = max {30, 〈n∗(p0, p1)〉 + 1} , (14)

so that customary normal approximation to a binomial distribution will be
expected to work (since n ≥ 30).

In table 3, I provide values of 〈n∗(p0, p1)〉 + 1 for p0 = 0.95, 0.99 with
α = 0.05 and β = 0.05, 0.10, 0.20. When the null hypothesis tests a large p0

value, naturally the required sample size becomes rather too small in order
to detect p1 far away from p0 whether the power is set at 80%, 90% or 95%.
It is clear that one needs to inspect nearly 30 or so items while testing a
null hypothesis with large p0(= 0.95, 0.99) when the true fraction of good
items is indeed only 0.0145(≈ 58

4000 ) or close to the most optimistic value
0.6058(≈ 6058

10000 ).

p0 β p1

0.90 0.80 0.60 0.50 0.25 0.0145
0.99 0.20 22 7 3 2 1 1

0.10 38 13 5 3 1 1
0.05 54 19 7 5 2 1

p1

0.90 0.80 0.60 0.50 0.25 0.0145
0.95 0.20 150 22 5 3 2 1

0.10 221 34 8 5 2 1
0.05 291 46 12 7 3 1

Table 3. Values of 〈n∗(p0, p1)〉 + 1 from (14) with 5%
level and power 1 − β with β = 0.05, 0.10, and 0.20.

Sample size n is max{table entry,30}.

It is obvious that the best fixed-sample-size test (12) could arrive at a
decision with very few inspections if p was indeed as small as it was in the
supplied batch. It is also well known, however, that the test (12) is not re-
ally ‘optimal’ in a larger class of sequential tests. Wald’s (1947) sequential
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probability ratio test (SPRT) which is optimal [Wald, 1947; Wald and Wol-
fowitz, 1948] would have required the least number of inspections N on an
average with comparable error rates α and β for testing H0: p = p0 versus
H1: p = p1(< p0).

In table 4, I summarize some findings obtained from 1000 indepen-
dently run simulations in each case. I generated Bernoulli populations with
p = 0.1045 and 0.6058, the most pessimistic and optimistic values of p respec-
tively, that are possible for the supplied batch of computers. In no situation,
I ended up accepting H0 which postulated a higher p than that under H1

as indicated by the entry ‘#H0 = 0’. The entries N, SN, Nmin, Nmax re-
spectively stand for the average, standard deviation, the minimum and the
maximum obtained from 1000 iterations. Even Nmax ranged from merely 9
to 385! The rest of the numbers speak for themselves.

p0 = 0.90, p1 = 0.80 p0 = 0.75, p1 = 0.70

p = 0.0145 #H0 = 0, N = 7.11, SN = 0.34 #H0 = 0, N = 26.37, SN = 0.64
Nmin = 7, Nmax = 9 Nmin = 26, Nmax = 30

p = 0.6058 #H0 = 0, N = 23.39, SN = 9.49 #H0 = 0, N = 152.95, SN = 49.09
Nmin = 7, Nmax = 66 Nmin = 57, Nmax = 385

Table 4. Summary from 1000 simulations in each case

for Wald’s SPRT with α = β = 0.01.

5 Concluding thoughts

It is clear that the protocol that allowed inspecting 4, 000 computers to de-
tect only 58 good ones was at best outrageously wasteful. This is a stunning
example of the fleecing of taxpayer’s money! An appropriately designed sam-
pling strategy could conclude with near certainty (that is, α = β = 0.01) that
the supplied batch was far below any expected standard with fewer than 10%
inspections. Hiring a qualified statistical consultant at the right time would
have saved the State of Connecticut much wasted resources amounting to
hundreds of thousands of dollars in this one project alone.
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