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(e-mail: Besnik.Pumo@inh.fr)

Abstract. Let X be a discrete time contact process (CP) on Z2 as defined by
Durrett and Levin (1994). We study the estimation of the model based on space-
time evolution of X, that is, T+1 successive observations of X on a finite subset S of
sites. We consider the maximum marginal pseudo-likelihood (MPL) estimator and
show that, when T → ∞, this estimator is consistent and asymptotically normal
for a non vanishing supercritical CP. Numerical studies confirm the theoretical
results and compare the MPL estimators with coding method estimators. Finally
we present some results on CP of order d.
Keywords: Contact process, supercritical process, marginal pseudo-likelihood,
identifiability of a model, consistency, asymptotic normality.

1 Introduction and description of the model

Consider a simple model of spread of a single species population evolving in
Z2. Depending on some biological parameters, the dynamics is determined
by specifying, for each site s ∈ Z2, the conditional probability that site s will
be in state Xt+1(s) = y ∈ {0, 1} at time t + 1 given Xt, the configuration
at time t. State 1 (respectively 0) means that there is a (respectively no)
plant in s. In this paper we propose an estimator for the parameters of the
model, based on observations of X at instants t = 0, . . . , T on a finite and
fixed subset S of Z2 and study the asymptotic properties of the estimator
when the process is non vanishing on S. Fiocco and Zwet considered the
estimation problem based on one observation at time t, when t is sufficiently
large ([Fiocco and Zwet, 2003]).

We consider the discrete time version of the Contact Process (CP) as
defined by Durrett & Levin [Durrett and Levin, 1994]. Suppose that the
transition probability at a site s and at time t is stationary in space and time
and depends locally on xt−1(N1(s)), the first order neighbourhood of the site
s at time t − 1, where Nd(s) = {u ∈ Z2 : ‖s − u‖1 ≤ d}.

The system evolves as follows:

a. Each plant alive at time t dies with a probability γ at time t + 1,
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b. If the plant in s survives, then it produces an offspring that is dispersed
to u ∈ ∂s, where ∂s = N1(s) \ {s}, with probability λ; the reproduction
events for different values of s and different u ∈ ∂s are independent,

c. If one or more plants are dispersed to s, or if there is a plant at s that
survives between t and t + 1, then Xt+1(s) = 1; otherwise Xt+1(s) = 0.

Furthermore, events defined on (a) and (b) are independent in time.
This model depends on the parameter θ = (γ, λ) and we suppose that

θ ∈ (0, 1)2. Other models are possible by defining different rules of evolution
(cf. [Mollison, 1977] for example). Finally, some of the methods developed
in our paper can be generalized for non stationary processes in space and/or
in time.

The ‘all 0’ in Z2 state is an absorbing state. So, to make sense, for the
asymptotic study, we need a condition (I), verified with probability 1 con-
ditionally to the non-extinction of X on S, the fixed domain of observation.
Note that a CP survives with positive probability for a supercritical process
that is CP such that P (τ = +∞) > 0 where τ gives the extinction time of
the process ([Durrett and Levin, 1994]).

The paper is organized as follows. In section 2 we define the marginal
pseudo-likelihood (MPL) estimator of θ. The identifiability of MPL is pre-
sented in section 3 and asymptotic results of MPL estimator in section 4.
In section 5 we consider some simulations studies and compare numerically
MLP estimators with coding method estimators proposed by Besag ([Besag,
1972]). A brief discussion on CP of order d is given in section 6.

Proofs of results are to be found in [Guyon and Pumo, 2004].

2 Marginal pseudo-likelihood (MPL)

Let x(T) = (x0, x1, · · · , xT) be (T + 1) successive configurations of X , S a
finite subset of Z2 and S1 = {u ∈ Z2 : ∃v ∈ S such that ‖u − v‖1 ≤ 1}.
The estimator of θ we choose is a value which maximize a MPL of x(T )
observed on S1. The idea of pseudo-likelihood is classic in statistic: gaussian
pseudo-likelihood for stationary field on Zd ([Whittle, 1963]), conditional
pseudo-likelihood for a Markov field on a lattice ([Besag, 1974]).

For a subset A ⊂ S, let denote PA(xt, xt+1; θ) the transition-probability
P (Xt+1(A) = xt+1(A) | Xt(S1) = xt(S1)). As the transition-probability for
A = S is analytically intractable, as #(S), the number of sites of S, is
important, we will use the following marginal pseudo-transition probability
MS(xt, xt+1; θ) on S, in order to estimate θ. MS(xt, xt+1; θ) is the product
of P{s}(xt, xt+1; θ) for s ∈ I(xt), where:

I(xt, S) = {s ∈ S : ∃xt+1 s.t. P{s}(xt, xt+1; θ) > 0}

The product of these marginal pseudo-transitions at consecutive instants de-
fine the MPL. For s ∈ S and A a finite subset of Z2, denote m(xt, A) =
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∑

s∈A xt(s), the number of sites of A occupied by xt. As the model is isotropic
in space, the law of Xt+1(s) given xt depends only on c(xt, s):

c(xt, s) = (xt(s), m(xt, ∂s)) ∈ C1 = {0, 1} × {0, 1, 2, 3, 4}. (1)

More precisely, Xt+1(s) conditionally on xt is a Bernoulli random variable:

P{s}(xt, xt+1; θ) = p(xt, s; θ)
1−xt+1(s)(1 − p(xt, s; θ))

xt+1(s),

where p(xt, s; θ) = γxt(s)δm(xt,∂s) and δ = γ + (1 − γ)(1 − λ) controls non-
proliferation at time (t + 1) in a site s′ ∈ ∂s of a plant present in s at time
t. Since Xt+1(s) = 0 if c(xt, s) = (0, 0), only sites s ∈ I(xt) are informative
in the transition t 7→ t + 1. So:

MS(xt, xt+1; θ) =
∏

s∈I(xt)

p(xt, s; θ)
1−xt+1(s)(1 − p(xt, s; θ))

xt+1(s) (2)

with convention M(0, 0; θ) = 1 if I(xt) = ∅. Denote η = γ + (1 − γ)(1 − λ)2:
η controls non-proliferation at time (t+1) in the set {s, s′} of a plant present
in u ∈ ∂s ∩ ∂s′ at time t.

By a direct calculation it follows that:

Cov(Xt+1(s), Xt+1(s
′) | xt) = p(xt, s; θ) p(xt, s

′; θ) [b(xt, s, s
′; θ) − 1]

where

b(xt, s, s
′; θ) =







δ−m(xt,{s,s′}) if s′ ∈ N1(s) \ {s}
δ−2m(xt,∂s∩∂s′)ηm(xt,∂s∩∂s′) if s′ ∈ N2(s) \ N1(s)
1 if s′ 6∈ N2(s).

(3)

In particular if s′ 6∈ N2(s), (Xt+1(s) | xt) and (Xt+1(s
′) | xt) are independent.

Using (2) for t = 0, · · · , T − 1, let us give the explicit expression of MPL
based on observation of x(T) on S1. Denote n(xt) (respectively n(xt, c)) the
number of informative sites of the configuration xt on S (respectively with
configuration c ∈ C1) and:

n(T ) =
∑T−1

t=0
n(xt), n(T, c) =

∑T−1

t=0
n(xt, c).

Clearly n(T ) =
∑

c 6=(0,0) n(T, c). The normalized log-marginal pseudo-

likelihood of x(T) observed on S1 is:

lT (θ) =
1

n(T )

T−1
∑

t=0

∑

s∈I(xt)

{log[p(xt, s; θ)]
x̄t+1(s) + log[p̄(xt, s; θ)]

xt+1(s)} (4)

where x̄t+1(s) = 1− xt+1(s), p̄(xt, s; θ) = 1− p(xt, s; θ). The maximum MPL
estimator of θ (or MPLE) is a value which maximize the MPL,

θ̂T = argθ max lT (θ).
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3 MPL allows identification of θ

In order to prove that MPL allows identification of θ, we need to show that
πc is strictly positive for two linearly independent configurations, where:

πc = limT→∞

n(T, c)

n(T )
.

The positivity of πc > 0 for c ∈ C∗
1 , the set of configurations on N1(0) such

that x(0) = 1, is obtained by the following Lemma under the condition (I)
of non-extinction of X on S :

(I) : I∞ = {x = (xt, t ≥ 0) such n(x(T)) → ∞ as T → ∞}.

Lemma 1 Let C∗
1 be the set of configurations on N1(0) such that x(0) = 1.

Then there exists α > 0 such that, ∀c ∈ C∗
1 , and ∀x ∈ I∞, we have πc ≥ α.

From the positivity of πc, it follows that under (I) and for large T , θ →
lT (θ) allows identification of θ. Indeed:

• if x(T ) realizes two linearly independent configurations ca = (ua, va) and
cb = (ub, vb), then θ 7→ lT (θ) is an injective function;

• under (I), the probability that each configuration c of C∗
1 appears on S

converges to 1 when T → ∞.

In conclusion let as make two important remarks:

i ) As X∞ is spatially translation-invariant and ergodic, [Durrett, 1995], it

follows that limT→∞
n(T,c)
n(T ) exists and is strictly positive for c ∈ C1.

ii ) Space and/or time invariance of the model is not crucial on the proof of
the subergodicity result: a similar result can be proved for non transla-
tion invariant models under the supplementary condition that transition
probabilities are uniformly positive.

4 Consistency and normality of the MPL estimator

Let f : U → R be a real function twice continuously differentiable on an open
subset U of Rd and f (1)(θ) the vector of first derivatives. The following result

sets up the consistency and asymptotic normality of the maximum MPLE θ̂T

associated to (4). The proofs are based on Theorem 3.4.3 and 3.4.5 of Guyon
([Guyon, 1995]). In order to prove the positivity of JT (θo) we used an idea of
Jensen and Künsch ([Jensen and Künsch, 1994]) and a subergodicity result
which generalize Lemma 1.
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Let I2 be the 2 × 2 identity matrix, AT (θo), BT (θo) the 2 × 2 matrices:

AT (θo) =
1

n(T )

T−1
∑

t=0

∑

s∈I(xt)

p(1)t[p(1)]

p(1 − p)
(xt, s; θo) (5)

BT (θo) =
1

n(T )

T−1
∑

t=0

∑

s,s′∈I(xt)

[b(xt, s, s
′; θo)−1]

p(1)(xt, s; θo)
t[p(1)(xt, s

′; θo)]

[p̄(xt, s; θo)] [p̄(xt, s′; θo)]
(6)

with b(xt, s, s
′; θo) given by (3).

Theorem 1 Let us suppose that θo = (γo, λo), the true unknown value of
the parameter, is an interior point of a compact Θ ⊂]0, 1[2. Then, under
condition (I) the maximum MPL estimator is consistent:

lim
T→∞

θ̂T
a.s.
= θo.

and asymptotically normal:

√

n(T ) [AT (θo) + BT (θo)]
−1/2

AT (θo)(θ̂T − θo)
d→ G2(0, I2).

5 Numerical studies

In this section we give some empirical results with S the 64×64 square lattice
and initial configuration ‘all sites occupied’. To avoid boundary effects we
have used periodic boundary conditions. In Fig. 1 we present the evolution
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Fig. 1. Evolution of the bias (solid lines) and standard deviation (multiplied by
100, dotted lines) for the estimators of γo (left) and λo (right) for the supercritical
CP with parameters γo = 0.35, λo = 0.25.

of the bias and the standard deviation of γ̂T and λ̂T for T = 1, . . . , 99 for the
supercritical CP with parameters γo = 0.35, λo = 0.25.
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Fig. 2. Histograms of 100 estimations of γo (left) and λo (right) for the supercritical
CP with parameters γo = 0.35, λo = 0.25.

Empirical study of asymptotic normality of estimators for a supercritical
CP is based in 100 simulations with T = 99. Histograms are presented in Fig.
2. Asymptotic normality is checked by using a chi-squared test at level 5%
and defining 9 equiprobable classes. Normality is accepted for γ̂ (respectively

λ̂) since χ2 = 1.7 (respectively χ2 = 4.4) and χ2
0.95(6) = 12.59.

We also compared the estimated standard errors σ̂γ̂ , σ̂λ̂ and empirical
standard errors sγ̂ , sλ̂ for the supercritical CP with parameter γo = 0.35,
λo = 0.25. The values σ̂γ̂4

, σ̂λ̂4
are obtained from a single simulation with

T = 4 by applying Theorem 1 where A4(θo) (respectively B4(θo)) are ap-

proximated by A4(θ̂4) (respectively B4(θ̂4)). The empirical standard errors
sγ̂4

, sλ̂4
are obtained from 100 estimations for the 100 simulations. The re-

sults are presented in Table 1. As expected, there are few differences be-
tween estimated standard errors and empirical standard errors. Finally, Ta-

σ̂γ̂4
sγ̂4

σ̂λ̂4
sλ̂4

MPL estimations 0.0074 0.0074 0.0063 0.0058

Table 1. Comparison of estimated and empirical standard deviation

ble 2 gives the estimations of γo and λo for six CP with parameters (γo, λo)
∈ (0.2, 0.4, 0.6) × (0.1, 0.2). In these simulations, T = 4 and 40% of sites,
randomly chosen, were occupied at time t = 0. We compare MPL estimators
with coding method of estimation introduced by Besag ([Besag, 1972]). Let
K = 3 × Z2 ∩ S, a strong-coding subset that is ∂s ∩ ∂s′ = ∅ for s 6= s′ of K.
As variables {(Xt+1(s) | Xt = x), s ∈ K} are independent, the normalized
log-conditional likelihood of the CP restricted on sites s of K is given by:

lT,K(θ) =
1

nK(T )

T−1
∑

t=0

∑

s∈IK(xt)

{log[p(xt, s; θ)]
x̄t+1(s) + log[p̄(xt, s; θ)]

xt+1(s)}
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λ = 0.1 λ = 0.2

γ γ̂4 σ̂γ̂4
λ̂4 σ̂λ̂4

n(4) γ̂4 σ̂γ̂4
λ̂4 σ̂λ̂4

n(4)

0.2 0.210 0.006 0.104 0.003 14600 0.189 0.006 0.193 0.004 15285
0.4 0.391 0.008 0.106 0.004 12406 0.399 0.008 0.188 0.005 13573
0.6 0.597 0.009 0.100 0.005 9223 0.607 0.009 0.206 0.008 10457

Table 2. Estimation of the parameters and their standard deviation.

where IK(xt) gives the set of informative sites of K, nK(xt) = ](IK(xt))

and nK(T ) =
∑T−1

t=0 nK(xt). The K-coding estimator of θ is a value which
maximize lT,K(θ). By applying this method of estimation for six CP we
obtained the results presented in Table 3.

λ = 0.1 λ = 0.2

γ γ̂4 σ̂γ̂4
λ̂4 σ̂λ̂4

n(4) γ̂4 σ̂γ̂4
λ̂4 σ̂λ̂4

n(4)

0.2 0.217 0.014 0.100 0.008 2442 0.183 0.013 0.170 0.010 2568
0.4 0.400 0.019 0.113 0.011 2106 0.400 0.019 0.184 0.014 2256
0.6 0.590 0.022 0.084 0.013 1542 0.602 0.022 0.198 0.023 1766

Table 3. Estimation of the parameters and their standard deviation obtained by
K-coding method

6 Estimation of parameters of CP of order d

In this section we briefly present results for the CP of order d presented also
in [Pumo and Le Corff, 2001] and which generalize the standard CP defined
in the introduction. Denote ∂s a general neighbourhood of s. In order to
define the CP of order d we only substitute b in the definition of the standard
CP with b’:

b’. If the plant in s survives, then it produces an offspring that is dispersed
to u = z + s ∈ ∂s with probability g(z); the reproduction events for
different values of s and different u ∈ ∂s are independent,

Denote λ = (λ1, . . . , λd)
′ the vector of different values of g(z), z ∈ ∂0\{0}.

Then we call d the order of the CP. The unknown parameter θ is defined now
by θ = (γ, λ′). It can be shown that similar results remains valid for the CP
of order d. Furthermore, by applying Theorem 3.4.6 in [Guyon, 1995] we can
do tests on parameters λ in order to determine the optimal neighbourhood for
the definition of the model. In Table 4 we give estimations of six CP of order 2
with parameters θo = (γo, λ1o, λ2o) where (γo, λ1o) ∈ (0.2, 0.4, 0.6)×(0.1, 0.2)
and λ2o = λ1o/

√
2 . In these simulations we considered a 100 × 100 lattice

and at time t = 0 all sites were occupied.
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λ1 = 0.1, λ2 = 0.0707 λ1 = 0.2, λ2 = 0.1414

γ γ̂ λ̂1 λ̂2 γ̂ λ̂1 λ̂2

0.2 0.199 0.098 0.072 0.200 0.197 0.144
0.4 0.399 0.101 0.072 0.399 0.200 0.141
0.6 0.597 0.102 0.065 0.598 0.199 0.135

Table 4. Estimation of parameters of CP of order 2.
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