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Abstract. Consider a process that jumps back and forth between two states, with
random times spent in between. Suppose the durations of subsequent on and off
states are i.i.d. and that the process has started far in the past, so it has achieved
stationarity. We estimate the sojourn distributions through maximum likelihood
when data consist of several realizations observed over windows of fixed length. For
discrete and continuous time Markov chains, we also examine if there is any loss of
efficiency when ignoring the stationarity structure in the estimation.
Keywords: Alternating renewal process, Asymptotic efficiency, Window censor-
ing.

1 Introduction

Consider a machine which periodically fails, undergoes technical service, and
is put to work again, so that the working and out-of-service times form an
alternating renewal process (ARP). Suppose further that the machine was
placed in service in the indefinite past, so that the process may be regarded
as stationary. Our interest here is to estimate the distribution of the on and
off times when several such processes are observed over a time interval, or
when the same process is observed over several “well separated” windows.

Such alternating renewal processes have been taken as models for diverse
phenomena such as system availability and reliability in engineering [Pham-
Gia and Turkkan, 1999], or the behavior of healthy-sick cycles in actuarial
and insurance mathematics [Ramsay, 1984]. They have also been of inter-
est as building blocks for other processes where the cumulative count from
many alternating renewal processes whose inter-arrival times have high or in-
finite variance can produce aggregate network traffic that exhibits long range
dependence [Murad S. Taqqu and Sherman, 1997].

The present study is concerned with estimating the distribution of the
time spent in each of the states with maximum likelihood methods, when the
data consist of “windows” from several stationary ARPs.
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2 Construction and stationarity of ARPs

Consider a set of pairs of positive random variables {(Z∗, Y∗), (Z1, Y1), . . .}
with the property that the first pair (Z∗, Y∗)simQ0 and it is independent

from the remaining (Zi; Yi)
iid

sim Q. That kind of arrangement constitutes an
alternating renewal sequence with inter-arrival times X∗ = Z∗ + Y∗, Xi :=
Zi + Yi, and renewal times S0 := X∗ and Sn := S0 +

∑n
1 Xi for n > 0.

Consider the counting process N(t) :=
∑∞

0 I{Sn ∈ [0; t]} and in order to
record the state of the process at each time, introduce W (t) := I{SN(t)−1 +
ZN(t) > t}, which is the alternating renewal process associated with the
renewal sequence. Thus the distribution of W := {W (t), t ≥ 0} is determined
by Q0 and Q; call the process pure if X∗ ≡ 0 or delayed otherwise. Think
of the Z’s and Y ’s denoting durations of on and off times respectively; and
for identifiability assume throughout that P (Zi = 0) = P (Yi = 0) = 0 for all
i ∈ ZZ+.

Note also that the initial random vector (Z∗, Y∗) can be thought of as
resulting from an ordinary pair (Z0, Y0)simQ through truncation, as

Z∗ = (X∗ − Y0)
+

and Y∗ = X∗ ∧ Y0. (1)

In particular, situations with Z∗ = 0 correspond to paths beginning in the
off-state.

In this study we are concerned not with pure but with delayed alternative
renewal processes, the importance of which is that with an appropriate choice
of Q0 the process W is stationary, in a sense to be defined shortly. Figure 1
shows a typical sample path observed over the “window” of time [0, T ].
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Fig. 1. A Sample Path from a Delayed ARP over [0, T ]

2.0.0.1 Stationarity Choose any t ∈ IR+ (deterministically or randomly but
independent of the process) and construct a new alternating renewal sequence
{(Zt

i , Y
t
i ), i ≥ 0} by censoring everything to the left of t. This is, the new
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sequence has an initial pair

Zt
∗ = (SN(t)−1 + ZN(t) − t)+,

Y t
∗ = YN(t) − (t − SN(t)−1 − ZN(t))

+;

and subsequently Zt
i = ZN(t)+i and Y t

i = YN(t)+i, for i ≥ 1. Notice that
because this construction implies that Zt

∗ = 0 on the event C := {SN(t)−1 +
ZN(t) ≤ t}, the distribution of the random variable Zt

∗ has a point mass at
zero whenever C has positive probability.

Definition 1 Call the ARP stationary if and only if the two sequences
{(Z∗, Y∗), (Zi, Yi), i ≥ 1} and {(Zt

∗, Y
t
∗ ), (Zt

i , Y
t
i ), i ≥ 1} are equal in dis-

tribution for every t ∈ [0,∞).

Assume that X := X1 has finite expectation µX and denote Z := Z1,
Y := Y1.

Theorem 21 If the distribution of the initial pair (Z∗, Y∗) is given by

Q0(z, y) =
1

µX

EQ {(z ∧ Z) 1 [Y ≤ y] + (y ∧ Y ) } , (2)

then process {W (t), t ≥ 0} is stationary in the sense of definition 1.

See [4]. In the special case when the on-time ZsimH is independent of the
off-time Y simG this gives

Q0 (z, y) =
µY

µX

∫ y

0

1 − G(u)

µY

du +
µZ

µX

G (y)

∫ z

0

1 − H(u)

µZ

du. (3)

3 A two-states Markov chain

The simplest example of a window censored alternating renewal process is a
pair of consecutive observations from a Markov chain on {0,1}. When the
transition probabilities are π0 := P (Wt+1 = 1|Wt = 0) and π1 := P (Wt+1 =
1|Wt = 1), the stationary distribution is given by

q := P{Wt = 0} = 1−π1

1−π1+π0
, p := P{Wt = 1} = π0

1−π1+π0
.

The joint density of a pair of consecutive observations is

P (Wt = xi; Wt+1 = yi) =
π0(1 − π1)

1 − π1 + π0

(
π1

1 − π1

)xiyi
(

1 − π0

π0

)(1−xi)(1−yi)

.

(4)
This is of exponential family form with complete sufficient statistic T , and
canonical parameter η given respectively by

T =

(
XiYi

(1 − Xi)(1 − Yi)

)
and η =

(
lnπ1 − ln(1 − π1)
ln(1 − π0) − lnπ0)

)
.
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By standard results in exponential families theory [11], the maximum
likelihood estimators are

π̂0 =
P

n

i=1
(Xi−Yi)

2

2n−
P

n

i=1
Xi−

P

n

i=1
Yi

and π̂1 =
2

P

n

i=1
XiYi

P

n

i=1
Xi+

P

n

i=1
Yi

;

and
√

n(π̂ − π) ⇒ N(0; Σ̂), where

Σ̂ =
1

2
(1 − π1 + π0)

(
π0 (1 − π0)

1+π0

1−π1
−π1 (1 − π0)

−π1 (1 − π0) π1
2−π1

π0
(1 − π1)

)
.

Alternatively, we could ignore stationarity in order to estimate π0 and π1

by the sample proportion of transitions into each state, i.e.

π̃0 =
P

n

i=1
(1−Xi)Yi

P

n

i=1
(1−Xi)

and π̃1 =
P

n

i=1
XiYi

P

n

i=1
Xi

.

By the multivariate central limit theorem and the delta method,
√

n(π̃−π) ⇒
N(0; Σ̃), with

Σ̃ = (1 − π1 + π0)

(
π0(1−π0)

1−π1
0

0 π1(1−π1)
π0

)
.

At this point, it is natural to ask what is lost in terms of efficiency by
ignoring stationarity in the estimation. To address this question, consider
the difference matrix Σ̂ − Σ̃ =: (1 − π1 + π0) ∆. It is easy to check that
the diagonal entries of ∆ are strictly negative and that the cross-products
are equal. Therefore, the matrix difference (Σ̂− Σ̃) has one eigenvalue which
is negative and the other is zero. This result is surprising, because it implies
that there exist functions of the transition probabilities for which ignoring
stationarity is of no consequence asymptotically. Essentially, any function of
(π0, π1) with gradient proportional to the eigenvector corresponding to the
null eigenvalue of ∆ will have that property. This will be explored further
for continuous time Markov chains in section 4.

4 A continuous time Markov chain

When the on and off times follow independent exponential distributions
Zi sim Qz = exp (λ1) and YisimQy = exp(λ2), the process {W (t), t ≥ 0}
is a continuous time Markov chain. At any given time, the excess life is
independent of the history of the process.

The stationary distribution is, according to equation (3):

Q0(z, y) =
λ2

λ1 + λ2
(1 − e−zλ1)

(
1 − e−λ2y

)
+

λ1

λ1 + λ2
(1 − e−yλ2), (5)

with marginal distributions

Q0(∞, y) = (1 − e−yλ2) and Q0(z,∞) = λ2

λ1+λ2
(1 − e−zλ1) + λ1

λ1+λ2
.
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Notice that Z0 is independent of Y0, since Q0(z, y) = Q0(∞, y)Q0(z,∞).
Reference [Alvarez, 2003] investigates how to obtain a likelihood for a

sample path of an ARP observed on a window [0, T ], as a Radon-Nykodym
derivative with respect to an appropriately chosen dominating measure and
restricted to a filtration that corresponds to the censoring mechanism. The
main result is that the window-censored likelihood ratio is a product of three
types of factors:

i ) In a typical sample path where at least one transition in observed, we
multiply
(a) the value of initial density
(b) the values of the densities at all non-censored on and off times
(c) the survival function for the duration of the last state in the window

ii ) Secondly, if the window [0, T ] contains no jumps, the likelihood equals
the survival function of the excess life in either state.

Using the above recipe, after some algebra we obtain the likelihood over
a window [0, T ] as

l(T ) =
λ1

τ+1{W (T )=0}λ2
τ+1{W (0)=1}

λ1 + λ2
exp [−λ1on(T ) − λ2off(T )] , (6)

where on(t) :=
∫ t

0
W (t)dt =: t−off(t). This additive property is characteristic

to the Markov chain and it is fairly intuitive. Because of the memoryless
property of the exponential distribution, the break up of the total on or off
times into subperiods does not provide any additional information on their
distribution. When we observe m windows independently up to a same time
T , the log-likelihood over the sample is the sum of the corresponding path
likelihoods.

4.1 Asymptotic normality

Following standard theorems in asymptotic statistics it is established that
the likelihood equation has a unique root with probability tending to 1 as

m → ∞ and that
√

n
(
λ̂n − λ0

)
⇒ N(0, Σ̂) with

Σ̂ =
(λ1 + λ2)

(λ1T + λ2T + 2)

(
λ1

λ1T+λ2T+1
λ2T

1/T

1/T λ2
λ1T+λ2T+1

λ1T

)
.

Notice that while the main diagonal entries are O(1/T ), the off-diagonal
entries are O(1/T 2) as T → ∞. This is intuitive, since the only reason why
the estimators of λ1 and λ2 are dependent is the presence in the data of the
initial (left censored) observations. As the observation window enlarges, the
information provided by the first two observations becomes negligible and
the estimators closer to being independent.
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4.2 Comparison with classic estimators

As in the discrete Markov chain example of Section 3, it is natural to ask if
there is any loss in efficiency by ignoring stationarity in the estimation.

Suppose that we “condition away” the initial states. That is, we seek a
log-likelihood function conditioned on σ {Z01(Z0 > 0), Y01(Z0 = 0)}. This is
given over a single window by

ln lc(T ) = [τ + r1 + d0 − 1] (lnλ1) + τ (lnλ2) − λ1on(T ) − λ2off(T ),

and its gradient is

∇ ln lc(T ) =

(
(τ + r1 + d0 − 1)/λ1 − on(T )

τ/λ2 − off(T )

)
.

The conditional maximum likelihood estimators can be easily found over m
windows to be

λ̃1 = τ+r1+d0−m
on(T ) and λ̃2 = τ

off(T ) .

It is easy to check that

E
[
−∇2 ln lc(T )

]−1
=

λ1 + λ2

T

(
λ1

λ2
0

0 λ2

λ1

)
.

Therefore,
√

m(λ̃ − λ) ⇒ N(0; Σ̃) with

Σ̃ =
λ1 + λ2

T

(
λ1

λ2
0

0 λ2

λ1

)
,

which coincides with the approximation for the unconditional m.l.e’s for large
T ’s. To compare the two methods asymptotically let

Σ̂ − Σ̃ =: λ1+λ2

T
1

λ1T+λ2T+2∆ with ∆ =

(
−λ1

λ2
1

1 −λ2

λ1

)
.

As in the discrete chain, ∆ is negative semidefinite since tr(∆) < 0 and
|∆| = 0. The m.l.e. is then better than its conditional version, with a gain
in efficiency that depends inversely on the truncation time and which is also
affected by the relative means of the on and off times.

On the other hand, ∆ has eigenpairs

[
0, (λ2, λ1)

′] and
[(

−λ1

λ2
− λ2

λ1

)
, (−λ1, λ2)

′
]
,

which can be used to decompose ∆ = PDP ′, with

P =
1√

λ2
1 + λ2

2

(
λ2 −λ1

λ1 λ2

)
and D =

(
0 0

0 −λ1

λ2
− λ2

λ1

)
.



818 Alvarez

This suggests the definition of a new parameter η = η (λ) by

(
η1 (λ1, λ2)
η2 (λ1, λ2)

)
:=

(
λ1λ2

1
2λ2

2 − 1
2λ2

1

)
.

This map is continuous and has the Jacobian matrix

Dη =

(
∂

∂λ1
η1 (λ1, λ2)

∂
∂λ2

η1 (λ1, λ2)
∂

∂λ1
η2 (λ1, λ2)

∂
∂λ2

η2 (λ1, λ2)

)
=

(
λ2 λ1

−λ1 λ2

)
.

By the delta method, the estimators η̂ = η
(
λ̂
)

and η̃ = η
(
λ̃
)

are asymp-

totically normal and the difference in covariance matrices is

Dη

(
Σ̂ − Σ̃

)
D′

η =
1

T

λ1 + λ2

λ2λ1

1

λ1T + λ2T + 2

(
0 0

0 −
(
λ2

1 + λ2
2

)2
)

.

The product of the hazard rates is estimated equally efficiently by the two
methods, asymptotically, but for estimation of the difference in the square
of the hazard rates the unconditional m.l.e. is better. As before, the gain in
efficiency depends inversely on the truncation time.

For the parameter η2(λ1, λ2) = 1
2λ2

2 − 1
2λ2

1 the asymptotic relative effi-
ciency (ARE) of η̃2 w.r.t. η̂2 is given by

A.R.E.(η̃2, η̂2) = 1 − (λ2
1 + λ2

2)
2

2(λ4
1 + λ4

2)

/[
1 +

1

2
(λ1 + λ2)T

]
.

The fraction in the numerator varies between 0 when λ1 → 0 and 1 when
λ1 = λ2. When T is small the gains in efficiency could be substantial. As an
example, Table 1 quantifies these gains for a few combination of parameters
values.

Case: i ii iii iv v

λ1 0.5 0.5 0.5 0.5 0.5

λ2 1 1 0.5 0.5 0.5

T 4 20 2 1 0.5

A.R.E.(η̃2, η̂2) 0.82 0.95 0.50 0.33 0.20

.

Table 1. A.R.E. of η̃2 w.r.t. η̂2
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