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Abstract. This paper compares two techniques for robust parsing of extra-gram-
matical natural language that might be of interest in large scale Textual Data
Analysis applications. The first one returns a “correct” derivation for any extra-
grammatical sentence by generating the finest corresponding most probable optimal
maximum coverage. The second one extends the initial grammar by adding relaxed
grammar rules in a controlled manner. Both techniques use a stochastic parser that
selects a “best” solution among multiple analyses. The techniques were tested on
the ATIS and Susanne corpora and experimental results, as well as conclusions on
performance comparison, are provided.
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1 Introduction

Formal grammars are traditionally used in NLP applications to describe well-
formed sentences. But in large scale Textual Analysis applications it is not
practical to rely exclusively on a formal grammar because of the large frac-
tion of sentences that will receive no analysis. This undergeneration problem
has lead to a whole field of research called robust parsing, where the goal is
to find domain-independent, efficient parsing techniques that return a cor-
rect or usefully “close” analysis for almost all of the input sentences [Carroll
and Briscoe, 1996]. Such techniques need to handle not only the problems of
undergeneration but also the increased ambiguity which is usually a conse-
quence of the robustification of the parser.

In previous works, a variety of approaches have been proposed to robustly
handle natural language. Some techniques are based on modifying the input
sentence, for example by removing words that disturb the fluency [Bear et

al., 1992, Heeman and Allen, 1994]. More recent approaches are based on
selecting the right sequence of partial analyses [Worm and Rupp, 1998, van



82 Ailomaa et al.

Noord et al., 1999]. Minimum Distance Parsing is a third approach based
on relaxing the formal grammar, allowing rules to be modified by insertions,
deletions and substitutions [Hipp, 1992].

Most of these approaches make the distinction between ungrammatical-

ity and extra-grammaticality. Ungrammatical sentences might contain errors
such as wrong agreement in the case of casual written text like mails, or hesi-
tations and other types of disfluencies in the case of spoken language. On the
other hand, extra-grammatical sentences are linguistically correct sentences
that are not covered by the grammar.

This paper presents two new approaches that focus on extra-grammatical
sentences. The first approach described in section 2 is based on the selection
of a most optimal coverage with partial analyses, while the second, presented
in section 3, uses controlled grammar rule relaxation. Section 4 describes the
comparison of these two approaches and shows that they present differences
in behavior when given the same grammar and the same test data.

2 Selecting the most probable optimal maximum

coverage

2.1 Concepts

For a given sentence a coverage, with respect to an input grammar G, is
a sequence of non-overlapping, possibly partial, derivation trees, such that
the concatenation of the leaves of these trees corresponds to the whole input
sentence (see figure 1).

If there are no unknown words in the input sentence, then at least one
trivial coverage is obtained, consisting of the trees that all use only lexical
rules (i.e. one rule per tree).

Fig. 1. A coverage C = (T1, T2, T3) consisting of trees T1, T2 and T3. If there are
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A maximum coverage (m-coverage) is a coverage that is maximal with
respect to the partial order relation ≤, defined as reflexive transitive closure
of the subsumed relation ≺ (see figure 2). The relation ≺ is a relation over
coverages such that, for coverages C and C

′

:
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C
′

≺ C iff ∃i, j, k, 1 ≤ i ≤ k, 1 ≤ j and there exists rule r in the grammar G

such that C = (T1, ..., Ti, ..., Tk), C
′

= (T1, ...Ti−1, T
′

1, T
′

2, ..., T
′

j , Ti+1, ..., Tk)

and Ti = r ◦ T
′

1 ◦ T
′

2... ◦ T
′

j ,

i.e. if there exists a sub-sequence of trees in C
′

that can be connected by rule
r and the resulting tree is element of C, the other trees in C

′

being the same
as in C. Notice that the rule r can be an unary rule.

If there is a successful parse (a single derivation tree that covers the whole
input sentence) then there are as many m-coverages as full parse trees and
every m-coverage contains only one tree.

Fig. 2. An example to illustrate a maximum coverage. The coverage C1 = (T3) is
m-coverage. The coverage C2 = (T1, T2) is not maximum, because C2 ≤ C1. There
is also another m-coverage C3 = (T4). Notice that C1 and C3 are not comparable
with relation ≤.

In addition to maximality, we focus on optimal m-coverage, where opti-
mality could be defined with respect to different measures. In contrast to
maximality, the choice of a measure depends on the concrete application.
Several optimality measures could be defined. For instance, the optimality
measure can look at the intended structure of trees in a coverage, e.g. it can
count the number of nodes in trees. In the presented work, we used the follow-
ing optimality measure which relates to the average width (number of leaves)
of the derivation trees in the coverage. For an m-coverage C = (T1, T2, ...Tk)
of input sentence w1, w2, ..., wn, n > 1, we define

S1(C) = 1

n−1
(n

k
− 1).

Notice that 0 ≤ S1(C) ≤ 1 and n
k

is the average width of the derivation
trees in the coverage. With this measure, the value of a coverage made
exclusively of lexical rules is 0 and the value of a successful parse is 1.

For standard SCFG derivation, the probability of a coverage is defined as
the product of the probabilities of the trees it contains. The probability of
a coverage could also be viewed as another optimality measure. So the most
probable coverages can be found in the same way as optimal m-coverages.
But, usually we find all optimal m-coverages (OMC) first (optimal with re-
spect to some other measure than probability) and then the most probable
of these is chosen. Notice that both OMC and most probable OMC are not
unique.
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Fig. 3. An example to demonstrate the optimal m-coverage. C1 = (T1, T2, T3) and

C2 = (T4, T5) are m-coverages. The coverage C
′

1 = (T
′

1 , T2, T3) is not m-coverage.
The coverage C2 is optimal for the measure S1, S1(C1) < S1(C2). Notice that the
coverages C1 and C2 are not comparable with relation ≤.

2.2 Algorithm

We use a bottom-up chart parsing algorithm [Chappelier and Rajman, 1998]
that produces all possible incomplete parses1. The incomplete parses are
then combined to find the maximum coverage(s).

The described algorithm finds OMC with respect to the measure S1 (the
average width of the derivation trees in the coverage), but it can be easily
adapted to different optimality measures. All operations are applied to a set
of Earley’s items [Earley, 1970]. In particular, no changes are made during
the parsing phase (except some initialization of internal structures for better
efficiency of the algorithm).

The Dijkstra’s algorithm for shortest path problem in graphs is used to
find OMC. The input graph for the Dijkstra’s algorithm consists of weighted
edges and vertices. The edges are Earley’s items and the weight of each edge
is 1. The vertices are word positions, thus for n input words we have n + 1
vertices. Whenever the Dijkstra’s algorithm finds paths with equal length
(i.e. identical number of items), we use the probability to select the most
probable ones. Notice that, if all the words are known, there exists at least
one path from position 0 to n corresponding to the trivial coverage.

The output of the algorithm is a list of Earley’s items, which can represent
several derivation trees. To get OMC, the most probable tree from each item
is selected.

3 Deriving trees with holes

Our second approach to robust parsing is based on the idea that, in the case
of a rule-based parser, the parser fails to analyze a given extra-grammatical
sentence because one or several rules are missing in the grammar. If a rule-
relaxation mechanism is available2, it can be used to cope with such situ-

1 Whenever there exists a derivation tree that covers the part of the given input
sentence, the algorithm produces that tree

2 A mechanism that can derive additional rules from the ones present in the gram-
mar
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ations. In that case the goal of the robust parser is to derive a full tree
where the subtrees corresponding to the used relaxed rules are represented
as “holes” (see figure 4).

Fig. 4. A tree with a hole representing a missing NP rule
NP → NNA AT1 JJ NN1.

We use the principle called Minimum Distance Parsing which has been
introduced in earlier robust parsing applications [Hipp, 1992]. This approach
relaxes rules in the grammar by inserting, deleting or substituting elements
in their right hand side (RHS). Derivation trees are ranked by the number
of modifications that have been applied to the grammar rules to achieve a
complete analysis. One important drawback is that, in its unconstrained
form, the method produces many incorrect derivations and works well only
for small grammars [Rosé and Lavie, 2001].

To prevent such incorrect derivations, we make restrictions on how the
rules can be relaxed based on observations and linguistic motivations. One
such restriction is to only relax grammar rules for which the LHS is frequently
represented in the grammar, e.g. NP. Another restriction is to allow only
one type of relaxation, namely insertion. The inserted element is hereafter
referred to as a filler. A further refinement of the algorithm is to specify what
syntactic category a filler is allowed to have when being inserted into a given
position in the RHS. To illustrate the ideas, an example is now provided.

Assume that there is a grammar with two NP rules. (The head is indicated
with underlined syntactic categories):

R1 : NP → ADJ N

R2 : NP → POS N

According to this grammar “successful brothers” and “your brother” are
syntactically correct NPs while “your successful brother” is not. In order to
parse the last one, some NP rule needs to be relaxed. We select the second
one, R2 (though both are possible candidates). If the filler that needs to
be inserted is ADJ (in this case “successful”), then the relaxed NP rule is
expressed as:
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Fig. 5. An example of how a hole is derived by relaxing a rule and inserting a filler.

R3 : ∼NP → POS@ ADJfiller N@

We use the category ∼NP instead of NP to distinguish relaxed rules from
initial ones, the “filler” subscripts to identify the fillers in the RHS in the
relaxed rule, and the @ to label the original RHS elements. The decision
of allowing an insertion of an ADJ as filler is based on whether ADJ is a
possible element before the head or not. Since there is a rule in the grammar
where an ADJ exists before the head (R1), the insertion is appropriate.

4 Validation

The two robust parsing techniques presented in the previous sections were
tested on subsets of two treebanks, ATIS and Susanne. From these treebanks
two separate grammars were extracted having different characteristics. Con-
cretely each treebank was divided into a learning set that was used for pro-
ducing the probabilistic grammar and a test set that was then parsed with
the extracted grammar. Around 10% of the sentences in the test set were not
covered by the grammar. These sentences represented the real focus of our
experiments, as the goal of a robust parser is to process the sentences that
the initial grammar fails to describe.

The sentences were first parsed with technique 1 and technique 2 sepa-
rately and then with a combined approach where the rule-relaxation tech-
nique was tried first and only when it failed the most probable OMC was
selected. For each sentence the 1-best derivation tree was categorized as
good, acceptable or bad, depending on how closely it corresponded to the
reference tree in the corpus and how useful the syntactic analysis was for
extracting a correct semantic interpretation. The results are presented in
table 1. It may be argued that the definition of a “useful” analysis might not
be decidable only by observing the syntactic tree. Although we found this
to be a quite usable hypothesis during our experiments, some more objective
procedure should be defined. In a concrete application, the usefulness might
for example be determined by the actions that the system should perform
based on the produced syntactic analysis.
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Good Acceptable Bad No analysis
(%) (%) (%) (%)

ATIS corpus

Technique 1 10 60 30 0
Technique 2 24 36 9 31
Technique 1+2 27 58 16 0

Susanne corpus

Technique 1 16 29 55 0
Technique 2 40 17 33 10
Technique 1+2 41 22 37 0

Table 1. Experimental results. Percentage of good, acceptable and bad analyses
with technique 1 (optimal coverage), technique 2 (tree with holes) and with the
combined approach.

From the experimental results one can see that, for both grammars, tech-
nique 2 is more accurate than technique 1. However, if both good and accept-
able results are taken into account, technique 1 behaves better with the ATIS
grammar that has relatively few rules, and technique 2 better with Susanne,
which is a considerably larger grammar describing a rich variety of syntactic
structures.

Regardless of the technique used, the number of bad 1-best analyses that
are produced can be explained by the fact that the probabilistically best
analysis is not always the linguistically best one. This is a non-trivial problem
related to all types of natural language parsing, not only to robust parsers.

An interesting result is that when the sentences are processed sequentially
with both techniques, the advantage of each approach is taken into account
and the performance is better than when either technique is used alone.

5 Conclusions

In this report we presented and compared two approaches to robust stochas-
tic parsing. First we introduced the optimal maximum coverage framework
and associated measures for the optimality of the parser. Then we introduced
a rule-relaxation strategy based on the concept of holes, using several linguis-
tically motivated restrictions to control the relaxation of grammar rules.

Experimental results show that a combination of the techniques gives a
better performance than each technique alone, because the first one guaran-
tees full coverage while the second has a higher accuracy. The richness of
the syntactic structures defined in the initial grammar tends to have some
impact on the performance in the second approach but less in the first one.
This can be linked to the restrictions that were chosen for the relaxation
of the grammar rules. It is possible that different types of restrictions are
appropriate for different grammars.
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The evaluation of the robust parsing techniques was based on manually
checking the derivation trees. An important issue is to integrate the tech-
niques into some target application so that we have more realistic ways of
measuring the usefulness of the produced robust analyses.

As a final remark, we would like to point out that this paper has addressed
the problem of extra-grammaticality but did not address ungrammaticality,
which is also a very important phenomenon in robust parsing, though more
relevant in spoken language applications than in textual data analysis.
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