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Abstract. Standard empirical likelihood for U -statistics is too computationally
expensive. To overcome this computational difficulty, we reformulate the empirical
likelihood for non-degenerate U -statistics in terms of “pseudo” mean in this paper,
and show that the empirical log-likelihood ratio has an asymptotic chi-squared
distribution under second moment condition. The method is extremely simple to
use, and yet provide better coverage accuracy in general than other alternative
methods from our simulation studies.
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1 Introduction

The empirical likelihood method was first introduced by [Owen, 1988] for
constructing confidence intervals and [Owen, 1990] for confidence regions.
[Hall and LaScala, 1990] has summarized its advantages over the bootstrap:
the empirical likelihood regions are shaped “automatically” by the sample,
Bartlett correctable, range preserving and transformation respecting. For
these reasons, the empirical likelihood has found lots of applications such as
in smooth functions of means [DiCiccio et al., 1989], in nonparametric density
[Chen, 1996], in regression function estimation [Owen, 1991] [Chen and Qin,
2000] and so on. For a more thorough review of the empirical likelihood
method and its applications, the reader is referred to the recent monograph
by [Owen, 2001].

In this paper, we are interested in applying the empirical likelihood
method to U -statistics. Let X, X1, · · · , Xn, n ≥ 2, be independent and identi-
cally distributed (i.i.d) random variables with common distribution function
F (x). A U -statistic of degree m ≥ 2 with a symmetric kernel h is defined to
be

Un =

(
n

m

)−1 ∑

1≤i1<...<im≤n

h(Xi1 , ..., Xim
) (1)
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where θ = Eh(X1, ..., Xm) is a parameter of interest. Under very weak
conditions, Un is a Minimum Variance Unbiased Estimator of θ. On the
other hand, U -statistics have many applications in hypothesis testing. For
further details on U -statistic see [Lee, 1990]. Define

g(x) = Eh(x, X1, ..., Xm−1) − θ, σ2
g = var(g(X)). (2)

Throughout this paper, we shall assume that σ2
g > 0.

The straightforward application of Owen’s empirical likelihood in this con-
text can be described as follows. Denote Fq to be the empirical distribution
function which assigns probability qi to observation Xi. Then, the empirical
likelihood, evaluated at the true parameter value θ, can be defined by

L̃(θ) = max
eθ(Fq)=θ,

P
qi=1

n∏

i=1

qi, (3)

where

θ̃(Fq) =

(
n

m

)−1 ∑

1≤i1<...,<im≤n

nmqi1 ...qim
h(Xi1 , ..., Xim

).

Note that
∏n

i=1 qi, subject to
∑n

i=1 qi = 1, attains its maximum n−n at
qi = n−1. Then, the empirical likelihood ratio at θ is given by

R̃(θ) = L̃(θ)/n−n = max
eθ(Fq)=θ,

P
qi=1

n∏

i=1

(nqi). (4)

As mentioned in [Wood et al., 1996], Wilks’s theorem holds under mild con-

ditions in this case, i.e., −2 log R̃(θ)
d−→ χ2

1, where
d−→ means converges in

distribution as n → ∞, and χ2
1 denotes the chi square distribution with one

degree of freedom. This can be used to construct confidence intervals for the
parameter θ. We shall refer to this procedure as Owen’s direct or “exact”
empirical likelihood method to U -statistics.

The major drawback of Owen’s direct empirical likelihood method is its
computational difficulty due to the presence of nonlinear constraints in the
underlying optimization problem. [Wood et al., 1996] proposed a so-called
sequential linerization method for empirical likelihood methods with nonlin-
ear constraints, and applied it to U -statistics. They found in their simula-
tion studies that a single iteration of the linearization procedure may not be
enough to achieve reliable coverage probabilities, and suggested to employ
multiple (three to ten) iterations of the linearization procedure or bootstrap
calibration in practice in order to improve coverage probabilities.

In this paper, we propose a new empirical likelihood method to U -
statistics. The key idea of our method is to turn the U -statistic into a “sample
mean” based on some “pseudo” observations, and then simply apply Owen’s
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empirical likelihood to that “sample mean”. As will be seen from the next
section, those “pseudo” observations are in fact dependent random variables.
Wilks’s theorem will be established under mild conditions, which can then be
used to construct confidence intervals for the parameter θ. The most attrac-
tive feature of our approach is its simplicity. Furthermore, our simulations
results show that the coverage probabilities of our approach are in general
better than alternative methods.

The paper is organized as follows. In Section 2, we introduce a new
empirical likelihood method for U -statistics, and presents some theoretical
results. Some simulation studies are conducted in Section 3 to compare
the performances of the empirical likelihood and other methods. Proofs are
deferred to Section 4.

2 Methodology and main results

First we rewrite Un as

Un =
1

n

n∑

i=1

Vi,

where the “components” of Un, defined by [Sen, 1960]

Vi =

(
n − 1

m − 1

)−1 ∑

1≤j1<...<jm−1≤n

jr 6=i,1≤r≤m−1

h(Xi, Xj1 , ..., Xjm−1
) (5)

are treated as “pseudo” observations. Note that Vi’s are dependent.
To employ empirical likelihood, let p = (p1, · · · , pn) be a probability vec-

tor, i.e.,
∑n

i=1 pi = 1 and pi ≥ 0 for 1 ≤ i ≤ n. Let Gp be the distribution
function which assigns probability pi at the ith pseudo observation Vi, and
hence θ(Gp) =

∑n
i=1 piVi. Then, the empirical likelihood ratio, evaluated at

θ, is given by

L(θ) = max
θ(Gp)=θ,

P
pi=1

n∏

i=1

pi. (6)

Note that
∏n

i=1 pi, subject to
∑n

i=1 pi = 1, attains its maximum n−n at
pi = n−1. So we define the empirical likelihood ratio at θ by

R(θ) = L(θ)/n−n = max
θ(Gp)=θ,

P
pi=1

n∏

i=1

(npi). (7)

Using Lagrange multipliers, we have

pi =
1

n

1

1 + λ(Vi − θ)
, (8)
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where λ satisfies

g(λ) :=
1

n

n∑

i=1

Vi − θ

1 + λ(Vi − θ)
= 0. (9)

After plugging the pi’s back into (7) and taking the logarithm of R(θ), we
get the nonparametric log-likelihood ratio

log R(θ) = −
n∑

i=1

log{1 + λ(Vi − θ)}.

The next theorem shows that Wilks’s theorem holds here under a mild con-
dition.

Theorem 1 Assume that Eh2(X1, ..., Xm) < ∞ and σ2
g > 0, then

− 2

m2
log R(θ)

d−→ χ2
1.

The proof of Theorem 1 will be given in Section 4.

Remark 1 Wilks’s theorem, stated in Theorem 1, is slightly different from
the ones we normally encounter. For example, for the Owen’s direct empirical
likelihood method, one has

−2 log R̃(θ)
d−→ χ2

1.

However, in our case here, we have

− 2

m2
log R(θ)

d−→ χ2
1.

Remark 2 An approximate 1−α level confidence interval for θ can be defined
as

<c = {θ : − 2

m2
log R(θ) ≤ c},

where c is chosen to satisfy P (χ2
1 ≥ c) = α. From Theorem 1, we have

lim
n→∞

P{θ ∈ <c} = P (χ2
1 ≤ c) = 1 − α.

In other words, the interval <c gives asymptotic correct coverage probability.

3 Simulation results

In this section, we shall conduct some simulation studies to investigate the
coverage accuracy of the empirical likelihood method proposed in this pa-
per. Comparisons will be made with some alternative methods such as the
normal approximation method, Owen’s direct or “exact” empirical likelihood
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method, and the sequential linerization method proposed by [Wood et al.,
1996]. Three examples will be used for illustration: population variance,
probability weighted moments, and Gini’s mean difference as special cases of
U -statistics. All the simulation results are based on 1,000 repetitions.

Example 1: population variance σ2 = var(X). In this case, the
sample variance is a U -statistic with the kernel h(x, y) = (x−y)2/2. For this
example, it is also rather easy to apply Owen’s empirical likelihood method
directly by placing probability weight pi on Xi and maximizing the empirical
likelihood subject to

n∑

i=1

pi(Xi − µX)2 = σ2 with µX =
∑n

i=1 piXi.

Therefore, it would be interesting to compare this direct approach with the
one proposed in this paper. For illustrative purposes, we shall include the
normal approximation method as well for comparison. The underlying pop-
ulation is selected as standard Normal, then the actual value θ = 1. The
results are summarized in Table 1.

Table 1. Coverage accuracy for the variance

nominal level 0.80 0.90 0.95

n=15 Normal Appr. 0.655 0.751 0.816
Owen’s EL 0.668 0.782 0.847

Our EL 0.708 0.806 0.868

n=40 Normal Appr. 0.723 0.828 0.878
Owen’s EL 0.758 0.855 0.918

Our EL 0.748 0.845 0.898

n=100 Normal Appr. 0.772 0.872 0.917
Owen’s EL 0.804 0.906 0.949

Our EL 0.789 0.884 0.931

Example 2: probability weighted moment E [XF (X)]. In this case,
the sample probability weighted moment is a U -statistic with the kernel
h(x, y) = max{x, y}/2. Coverage probabilities of the “exact” empirical like-
lihood method, described in the Introduction, were given in table 4 of [Wood
et al., 1996], which will be used for comparison with our own approach in this
paper. Two underlying distributions are considered: the standard Normal
and the exponential with mean 1. For these distributions, the population
values are 0.282 and 0.75 respectively. Table 2 records the simulation results,
with those in parentheses for the latter distribution.

Example 3: Gini’s mean difference E|X1 − X2|. Gini’s mean dif-
ference is an attractive measure for describing the population concentration.
Its sample version is a U -statistics with the kernel h(x, y) = |x − y|. This
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Table 2. Coverage accuracy for the probability weighted moment

nominal level 0.80 0.90 0.95

n=15 “Exact” EL 0.745 (0.705) 0.844 (0.801) 0.896 (0.882)
Our EL 0.746 (0.740) 0.845 (0.830) 0.912 (0.888)

n=40 “Exact” EL 0.742 (0.741) 0.849 (0.844) 0.922 (0.899)
Our EL 0.768 (0.761) 0.866 (0.857) 0.923 (0.910)

n=100 “Exact” EL 0.787 (0.783) 0.895 (0.864) 0.944 (0.929)
Our EL 0.821 (0.771) 0.904 (0.873) 0.941 (0.924)

example was also studied by [Wood et al., 1996], who used their sequential
linearization approach in this case. The comparisons with our method is
presented in Table 3, where Wood et al.(r) denotes the sequential lineariza-
tion approach with r iterations. For the underlying distribution, we use a
standard Normal, so θ = 1.1284.

Table 3. Coverage accuracy for Gini’s mean difference

nominal level 0.80 0.90 0.95

n=15 Wood et al.(1) 0.693 0.799 0.859
Wood et al.(3) 0.737 0.864 0.932

Our EL 0.741 0.846 0.889

n=40 Wood et al.(1) 0.756 0.862 0.919
Wood et al.(3) 0.751 0.862 0.924

Our EL 0.772 0.864 0.917

n=100 Wood et al.(1) 0.782 0.884 0.935
Wood et al.(3) 0.780 0.887 0.939

Our EL 0.787 0.889 0.936

The following observations can be made from our simulation studies:

(1) As expected, all methods improve as the sample size n increases.
(2) From Table 1, we see that, our method outperforms Normal Ap-
proximation method. Comparing with Owen’s empirical likelihood
method, our’s looks better for small sample size.
(3) From Table 2, our method seems to perform slightly better than
the “exact” empirical likelihood, mentioned in the Introduction. But
our method is much simpler to use.
(4) From Table 3, we see that, overall, our method performs equally
well as Wood et al’s sequential linearization approach with 3 itera-
tions, and both are better than Wood et al’s approach with only 1
iteration. However, our method is the simplest amongst the three.

In summary, our empirical likelihood method for U -statistics in general
performs better or as well as all other alternative methods such as normal
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approximation, exact empirical likelihood and sequential linearization pro-
cedure. Furthermore, our approach is the simplest one to use. For these
reasons, our method should always be preferred.

4 Proof of main results

For notational simplicity, we shall prove our main results for U -statistics of
order m = 2 only. The case for the general order m ≥ 2 can be done similarly.
But first we shall list several simple lemmas for easy reference later in the
section.

Lemma 1 [Hoeffding, 1948] Suppose Eh2(X1, X2) < ∞, then

√
n(Un − θ)

2σg

d−→ N(0, 1).

Corollary 1 Assuming Eh2(X1, X2) < ∞, then Un − θ = Op(n
−1/2).

Proof. This is a direct consequence of Lemma 1.

Lemma 2 Let S = n−1
∑n

i=1(Vi − θ)2, if Eh2(X1, X2) < ∞, then

S = σ2
g + o(1) a.s.

Proof. Note that

S =
1

n

n∑

i=1

(Vi − θ)2 =
1

n

n∑

i=1

(Vi − Un)2 + (Un − θ)2.

Let σ2 = var{h(X1, X2)} < ∞, since Eh2(X1, X2) < ∞, thus

var(Un) =
4(n − 2)

n(n − 1)
σ2

g +
2

n(n − 1)
σ2.

Denote the jackknife estimate of var(Un) by v̂ar(JACK), Lee (1990) identi-
fied that (page 223-4)

1

n

n∑

i=1

(Vi − Un)2 =
(n − 2)2

4(n − 1)
v̂ar(JACK).

Since v̂ar(JACK) is a consistent estimator of var(Un) in the sense that

n{v̂ar(JACK) − var(Un)} → 0, a.s.
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then as n → ∞, we have

1

n

n∑

i=1

(Vi − Un)2 =
(n − 2)2

4(n − 1)

(
var(Un) + o(n−1)

)

=
(n − 2)2

4(n − 1)

(
4(n − 2)

n(n − 1)
σ2

g +
2

n(n − 1)
σ2 + o(n−1)

)

= σ2
g + o(1), a.s.

In addition, the strong law of large number for U -statistics results in Un =
θ + o(1) a.s. Therefore, S = σ2

g + o(1) a.s., which ends the proof.

Lemma 3 Let Yn = max
1≤i6=j≤n

|h(Xi, Xj)|, if Eh2(X1, X2) < ∞, then

Yn = o(n1/2) a.s.

Proof. Since Eh2(X1, X2) < ∞, we have

∞∑

n=1

P
(
h2(X1, X2) > n

)
< ∞,

which implies that

∞∑

n=1

P
(
h2(Xi, Xj) > n

)
< ∞, for any 1 ≤ i 6= j ≤ n.

And hence by the Borel-Cantelli Lemma, with probability 1,

|h(Xi, Xj)| > n1/2, for any 1 ≤ i 6= j ≤ n

finitely often. Thus with probability 1, Yn > n1/2 occurs finitely often. By
the same argument Yn > An1/2 finitely often with probability 1 for any
A > 0. Consequently,

lim sup
n→∞

Yn

n1/2
≤ A a.s. (10)

Inequality (10) holds simultaneously with probability 1 for any countable set
of values for A. Therefore Yn = o(n1/2) a.s.

Corollary 2 Let Zn = max1≤i≤n |Vi − θ|, if Eh2(X1, X2) < ∞, then

Zn = o(n1/2) a.s., (11)

and
1

n

n∑

i=1

|Vi − θ|3 = o(n1/2) a.s. (12)
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Proof. Note that

|Vi − θ| ≤ 1

n − 1

n∑

j=1

j 6=i

|h(Xi, Xj)| + |θ| ≤ Yn + |θ|

for any 1 ≤ i ≤ n. By Lemma 3, Zn = o(n1/2) a.s.
For the second assertion, by (11) and Lemma 2, with probability 1

1

n

n∑

i=1

|Vi − θ|3 ≤ Zn × 1

n

n∑

i=1

(Vi − θ)2 = o(n1/2)

as has to be shown.

Proof of Theorem 1. We first show that the root of (9) satisfies
|λ| = Op(n

−1/2). Note that

0 = |g(λ)| =
1

n

∣∣∣∣∣
n∑

i=1

(Vi − θ) − λ

n∑

i=1

(Vi − θ)2

1 + λ(Vi − θ)

∣∣∣∣∣

≥ |λ|
n

n∑

i=1

(Vi − θ)2

1 + λ(Vi − θ)
− 1

n

∣∣∣∣∣
n∑

i=1

(Vi − θ)

∣∣∣∣∣

≥ |λ|S
1 + |λ|Zn

−
∣∣∣∣∣
1

n

n∑

i=1

(Vi − θ)

∣∣∣∣∣ .

By Corollary 1, the second term is Op(n
−1/2). Recalling Lemma 2, S =

σ2
g + o(1) a.s., it follows that |λ|

1+|λ|Zn
= Op(n

−1/2), and hence by (11),

|λ| = Op(n
−1/2). (13)

For convenience, let γi = λ(Vi − θ) where λ is the root of (9). Then by
(11) and (13),

max
1≤i≤n

|γi| = Op(n
−1/2)o(n1/2) = op(1). (14)

Expanding (9),

0 = g(λ) =
1

n

n∑

i=1

(Vi − θ)
(
1 − γi + γ2

i /(1 + γi)
)

=
1

n

n∑

i=1

Vi − θ − Sλ +
1

n

n∑

i=1

(Vi − θ)γ2
i /(1 + γi), (15)

The final term in (15) is bounded by

1

n

n∑

i=1

|Vi − θ|3λ2|1 + γi|−1 = o(n1/2)Op(n
−1)Op(1) = op(n

−1/2) (16)
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using (12), (13) and (14). Therefore, we may write

λ = S−1

(
1

n

n∑

i=1

Vi − θ

)
+ β = S−1(Un − θ) + β, (17)

where |β| = op(n
−1/2). By Taylor’s expansion,

−1

2
log R(θ) =

1

2

n∑

i=1

γi −
1

4

n∑

i=1

γ2
i +

1

2

n∑

i=1

ηi

=
1

2
nλ(Un − θ) − 1

4
nSλ2 +

1

2

n∑

i=1

ηi

=
n(Un − θ)2

4S
− 1

4
nSβ2 +

1

2

n∑

i=1

ηi,

where ηi = O(|γi|3) a.s.. The first term has an asymptotic distribution χ2
1

by Lemma 1 and 2. By Lemma 2 and (17), the second term is bounded by

∣∣∣∣−
1

4
nSβ2

∣∣∣∣ = n(σ2
g + o(1))op(n

−1) = op(1).

From (12) and (13), the final term is bounded by op(1). Therefore applying
Slutsky theorem completes the proof.
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