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Abstract. This paper is devoted to a short presentation of the use we did of
nonparametric estimation theory for the estimation, filtering and control of un-
certain dynamic systems. The fundamental advantage of this approach is its low
dependence from any a priori modeling assumptions about uncertain dynamic com-
ponents. It appears to be of great interest for the control of general discrete-time
processes, and in particular biotechnological processes, which are emblematic of
nonlinear uncertain and partially observed systems.
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1 Introduction

This paper is devoted to a survey of the use of nonparametric estimation
theory for the estimation, filtering and control of uncertain dynamic systems.
It relies on a set of works we have been developing for more than ten years
and which emphasizes the efficiency of these nonparametric tools in functional
estimation as well as in probability density estimation.

The frame of these developments is that of the control of general discrete-
time processes, and in particular biotechnological processes, which are em-
blematic of nonlinear uncertain and partially observed systems. The field of
bioprocess modeling and control offers typical examples of structural time-
variations problems which cannot be handled by classic control methods: the
dependence of the kinetic coefficients on biomass and substrate state vari-
ables is affected by functional fluctuations and not merely parametric ones.
In that case, a more appropriate approach would be robust control, in which
uncertainty is explicitly accounted for at the beginning of the control de-
sign through numerical or functional bounds. However, the performance of
the related controllers can be sensitive to settings that are too much con-
servative or too much optimistic. The nonparametric approach is free from
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these prior assumptions: through a stochastic learning process, uncertain
functional components are progressively and automatically estimated as de-
terministic or random functions of the measured quantities, in accordance
with their actual but unknown and possibly time-varying structures. The
use of this functional estimation procedure, compared with the usual and
more or less arbitrary choice of these model components, contributes to the
reduction of one source of model inadequacy. Moreover, the stochastic frame
in which these nonparametric models are designed allows some uncontrolled
disturbances such as measurement errors and parameter variations to be ac-
counted for.

In the following we shall present successively application of this nonpara-
metric approach to identification, filtering and control of dynamic systems.

2 Identification and estimation of nonlinear stochastic

processes

The uncertain processes under consideration belong to the general class of
controlled Markov chains.

They are represented by discrete-time autoregressive models of the fol-
lowing type:

Xt+1 = Ft(Xt, Ut, εt+1), (1)

where Xt ∈ R
s, Ut ∈ R

m and εt are the output, input and noise of the system,
respectively. Driving function Ft may be completely or partly unknown,
according to the degree of uncertainty in the analytical knowledge of the
process. This function may be deterministic or stochastic and is supposed to
obey some regularity conditions (see §2.1). Moreover, when the state variable
Xt is not observed, an observation model is supposed to be available, of the
general form

Yt = Gt(Xt, Ut, ηt) (2)

where Yt ∈ R
q and Gt is a known function and ηt an observation noise.

Estimating function Ft in model (1) may be intricate. The following
particular case with an additive noise is more frequently met in practice:

Xt+1 = ft(Xt, Ut) + εt+1, (3)

in which function ft, from R
s × R

m to R
s, may be completely or partly

unknown. We are specifically interested in a type of non-linear models where
the control variable Un acts in a known part of function ft. They are models
of the field of bioprocess modeling and control, and are of form:

Xt+1 = At(Xt)gt(Xt) + Bt(Xt, Ut) + εt+1, (4)
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where At and Bt are known functions and gt is unknown. Function gt is for
example the growth rate of some microorganism population whose concen-
tration is a component of the state variable Xt. The control variable Ut is
for example a dilution rate of a polluted water into a bioreactor.

Other examples of model (3) are for instance the evolution models of
bacteria populations in food under the influence of environment covariates
(Ut), or, in another field, models that describe the position of a space craft
under control.

The following subsection is dedicated to the identification of model (3)
when unknown (or partially unknown), with state Xt completely observed.
The well-known convolution kernel method is applied to estimate function ft

(or only a subpart of it).
In subsection 2.2 state variables Xt are not supposed to be observed any-

more and the issue considered is now that of their estimation, i.e. filtering,
from knowledge of the observed variables Yt and assuming knowledge of model
Ft.

2.1 Identification of the model with convolution kernel

estimators

Kernel smoothing methods are among the most reknown nonparametric es-
timation and prediction methods. They belong to the family of smoothing
methods (orthogonal polynomials, splines,. . . ) and are based on a local av-
eraging procedure. They are widely used to estimate probability density
functions and regression functions, see [Bosq, 1996].

When the whole function ft is unknown in model (3), we can consider the
following recursive kernel estimator, for all x ∈ R

s and u ∈ R
m:

f̂t(x, u) =

∑t−1

i=0
δ−s
1,i δ

−m
2,i K1(

x−Xi

δ1,i
)K2(

u−Ui

δ2,i
)Xi+1

∑t−1

i=0
δ−s
1,i δ

−m
2,i K1(

x−Xi

δ1,i
)K2(

u−Ui

δ2,i
)

, (5)

The functions K1 and K2 are two kernel functions. They are real positive
symmetric functions integrating to one.
The sequences (δ1,i) and (δ2,i), called the bandwidths, have to be positive
and decreasing. See [Georgiev, 1984] for the case of an i.i.d. sequence (Ut),
and [Wagner and Vila, 2001] for a more general situation.

In the case of biotechnological processes, the partially known model (4)
is the most frequently met. In that case, the kernel estimation of gt is given
by:

ĝt(x) =

∑t−1

i=0
δ−s
i K(x−Xi

δi
)A−

i (Xi)(Xi+1 − Bi(Xi, Ui))
∑t−1

i=0
δ−s
i K(x−Xi

δi
)

. (6)

for all x ∈ R
s. A−

i is a general inverse of matrix Ai and K is the kernel
function and (δi) the bandwidth.
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The statistical convergence properties of kernel estimators (5) or (6) have
been established under various assumptions about

• the probability distribution of the noise ε,
• the existence of admissible control strategies (Ut)t≥1

able to stabilize the
model (Xt)

• the behaviour of the unknown set of stochastic functions ft (respectively
gt), which must be quite “stable”, corresponding to a convergent sequence
ft (resp. gt) or an i.i.d. functional sequence ft (resp. gt).

As regard the bandwidth parameters, the form δi = γi−α is one for which
convergence results have been established [Duflo, 1997], [Portier and Oulidi,
2000], [Hilgert et al., 2000]. In some cases, an optimal choice of the bandwidth
parameters can be determined by cross validation procedures, see [Vieu, 1991]
for instance. From a theoretical point of view, we may distinguish between

• the a.s. uniform convergence on compact sets, which requires kernel
functions with compact support, as the Epanechnikov kernel for example.

• the stronger a.s. convergence on dilated compact sets, which requires
positive kernel functions, as the Gaussian kernel for example.

2.2 Estimation of state variables with convolution particle filters

Besides its efficiency in functional estimation of uncertain models as seen in
the previous section, the nonparametric approach as proved to be useful as
well in probability density estimation of unobserved state variables, i.e. in
filtering problems.

The objective is now to estimate the unobserved state variable Xt from
the analytical knowledge of state model Ft (1) and the observed variables
Y1:t = (Y1, · · · , Yt). When Ft and Gt correspond to linear functions of Xt

and Ut with additive noises, the well-known Kalman filter provides an optimal
estimate of the probability distribution of Xt conditionally to Y1:t, P (Xt|Y1:t).
In the other cases, only the so-called Monte Carlo filters or particle filters
(see [Doucet et al., 2001] or [Del Moral, 2004]) provide consistent estimates
of P (Xt|Y1:t). The main principle of these filters is to build an estimate
of P (Xt|Y1:t) through the simulation of a large number N of random state
particles {xi} which are then weighted according to their likelihoods with
respect to the observed variables up to time t.

However the usual particle filters require, in practice, the function Gt to
be additive in the observation noise ηt, and the analytic form of the density
of ηt to be known.

This last assumption really reduces the applicative potential of these par-
ticle filters. The convolution particle filters we proposed in [Rossi, 2004] and
[Rossi and Vila, 2004] drop this assumption thanks to the use of convolution
kernels to estimate the conditional density p(Xt|Y1:t) supposed to exist. The
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following algorithm shows the implementation of the Resampled-Convolution
Filter, one of the filters we developed [Rossi, 2004]:

Starting from a given initial probability density p0(X0) and N simulated
state values (X̃1

0 , . . . , X̃N
0 ))simp0(X0),

At time t:

(i) Sampling Step:
(X̃1

t , . . . , X̃N
t )simpN

t where pN
t is the last estimated state conditional den-

sity.
(ii) Evolving Step: for i = 1..N , (X̃ i

t ) −→ (X̃ i
t+1, Ỹ

i
t+1) by simulation of

model (1)-(2).
(iii) Approximation Step:

pN
t+1(Xt+1|Y1:t+1) =

∑N

i=1
K2,δN

(Yt+1 − Ỹ i
t+1)K1,δN

(Xt+1 − X̃ i
t+1)∑N

i=1
K2,δN

(Yt+1 − Ỹ i
t+1)

with K1,δN
(x) = δ−s

N K1

(
x

δN

)
, x ∈ R

s and KδN
(y) = δ

−q
N K2

(
y

δN

)
, y ∈

R
q.

This algorithm ensures to get an ”on line” L1-convergent estimate of the
density pt(Xt|Y1:t) when the particles number N tends to infinity ([Rossi,
2004] or [Rossi and Vila, 2004]).

3 Nonparametric adaptive and predictive control

The objective considered in this section is to find a control sequence (Ut)t≥1

which forces the state variables (Xt)t≥1, to follow as best as possible a given
bounded trajectory (X∗

t )t≥1. The state variable Xt is now again supposed to
be observed and to evolve according to model (3), with function ft completely
or partly unknown.

Two control strategies are considered in the following according to the
immediate or anticipative trajectory fitness considered, the second one being
furthermore a generalization of the first.

3.1 Adaptive tracking control

Consider the particular case of model (4) particularly convenient for the
biotechnological systems, in which gt is unknown. An adaptive control stra-
tegy has to be built from the nonparametric estimate (6), which ensures the
stochastic closed-loop stability. This last property is indeed necessary to
ensure the convergence properties of the kernel estimator ĝt. When Bt is
supposed to be invertible with respect to Ut, let us consider a solution Ut

such that

Bt(Xt, Ut) = X∗
t+1 − At(Xt)ĝt(Xt)1lEt

(Xt) − At(Xt)g
∗(Xt)1lEc

t
(Xt)
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where Et is a subset of the state space, depending on the kernel estimate ĝt

and on g∗, an a priori knowledge of gt.
It has been shown that this strategy is asymptotically optimal:

1

t

t∑

i=1

‖Xi − X∗
i ‖

2 a.s.
−→ trace(Γ ) as t → ∞,

where Γ denotes the covariance matrix of the noise εt.
See [Portier and Oulidi, 2000] and [Hilgert, 1997] for more details.

3.2 Optimal predictive control

Let us consider again state model (3) with unknown function ft and still the
assumption of observed Xt.

The principle of the so-called predictive control is now well-known among
control theorists (see for example [Camacho and Bordons, 1995]). The speci-
ficity of predictive control is to consider the future values to be followed by
the state system in a near forward horizon of given length H . More precisely
at each time step the future values of the state variables on the horizon are
predicted conditionally to intermediary control values. These control values
are then optimized in order to minimize some discrepancy function between
the predicted state values and that of the trajectory on the same horizon.
The first of these optimal values of the control variable is then applied to the
system which enters then the following time step and the predictive horizon
is translated. Such an anticipating strategy confers to predictive control a
significant advantage among on-line tracking control strategies, and is par-
ticularly adapted to the control of processes with slow dynamic such as the
biotechnological processes. The main question raised by the predictive con-
trol algorithms is that of the stability of the closed loop. For deterministic
systems several constraint conditions have been designed to ensure this sta-
bility (see [Mayne et al., 2000] for a recent survey). For stochastic system this
issue is still open for the general case. We consider it in the nonparametric
approach to follow and solve it in a simple case.

A nonparametric predictive control algorithm for uncertain system:

At step t,

• let

Jt =

j=H∑

j=1

‖X∗
t+j − f

j
t+j−1

(
u1, . . . , uj |Xi, i≤t ; Ui, i≤t−1

)
‖2

where

◦ H is the chosen length of the receding horizon
◦ X̂t+j = f

j
t+j−1

(
u1, . . . , uj | Xi, i≤t ; Ui, i≤t−1

)
is a consistent esti-

mate to be looked for E [Xt+j |Xi, i≤t ; Ui, i≤t−1 ; Ut =u1, . . . ,

Ut+j−1 = uj ] which is itself the minimum variance predictor of the
state value Xt+j .
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• Find
Ūt = (U1

t , . . . , UH
t )

= argmin‖u1‖≤M,...,‖uH‖≤M Jt

with M : upper bound constraint in the control values.
• take Ut = U1

t

• t = t + 1

A j-step-ahead nonparametric state predictor:

Let Z
j
t = (Xt, Ut, . . . , Ut+j−1)

t

Let us consider as estimate of E(Xt+j | Z
j
t = z)

X̂t+j = Ê(Xt+j | Z
j
t = z) =

∑t−j
t=1

|det(δ−1
t )|K

(
z−Z

j
t

ht

)
Xt+j

∑t−j

t=1
|det(δ−1

t )|K
(

z−Z
j
t

ht

)

where K is a kernel of dimension (s+ jm) and the matrix δt, of same dimen-
sion, is the bandwidth parameter of K.
For uncontrolled process, the asymptotic behaviour of X̂t+j has been charac-
terized under mixing conditions and stationarity assumptions [Bosq, 1996].
These results are not applicable for the controlled processes we consider in
this paper since the applied control values are state dependent. However for
the simplest case, H = 1, stability of the closed loop, almost sure uniform
dilated convergence of the kernel predictor and suboptimality of the con-
trol strategy has been established under regular conditions ([Wagner, 2001],
[Wagner and Vila, 2001]) in both cases of interest for the ft sequence (see
section 2.1).

Remark 1: the minimization of the criterion function Jt at step t with respect
to the constrained control variables (u1, · · · , uH), can be done by standard
descent algorithm. We developed also a more efficient neural network-based
minimization procedure and applied it online on a real biotechnological de-
pollution process [Vila and Wagner, 2003].

Remark 2: the choice of the length of the predictive horizon H must result
from a case by case compromise between long term optimality of the predic-
tive control (high values for H) and the quality of the kernel predictors (low
values).

4 Conclusion and perspectives: towards the

nonparametric supervision of uncertain systems

When dealing with process control, an unavoidable issue is that of supervi-
sion. Supervision consists in being able to detect any default in the process
(e.g. pump clogging in a bioprocess), locating the default and remedying it
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(by an appropriate sequence of actions). From a statistical point of view, the
problems of detection and isolation of a default are equivalent to detecting
abrupt changes in a stochastic process, and testing multiple hypotheses to
determine the faulty scenario among a number of possible scenarii of defaults
[Dubuisson, 2001].

There exist many statistical procedures to answer such questions, see
[Basseville and Nikiforov, 1993]. A well-known one is the CuSum test. It is
based on a comparison, at each time instant, of the difference between the
log-likelihood ratio value and its current minimal value, with respect to a
fixed threshold. Most of these techniques require knowledge of both state
and observation models.

When the state model is uncertain, the question is still open. However
combining nonparametric estimates as (5) or (6) with classical test proce-
dures gave us encouraging results on real experimental data issued from a
depollution process.

Moreover, introducing filtering methods such as the one proposed above,
will allow to generalize these nonparametric detection procedures to the most
frequent situation of indirectly observed systems described by models (1) and
(2).
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tion à un Procédé de Dépollution Biologique. PhD Thesis, ENSA Montpellier,
2004.

[Vieu, 1991]P. Vieu. Nonparametric regression: optimal local bandwidth choice. J.
R. Statist. Soc. B, pages 453–464, 1991.

[Vila and Wagner, 2003]J.-P. Vila and V. Wagner. Predictive neuro-control of un-
certain systems: design and use of a neuro-optimizer. Automatica, pages 767–
777, 2003.

[Wagner and Vila, 2001]V. Wagner and J.-P. Vila. Estimation non paramétrique et
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