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Abstract. In the context of a practical case study regarding an environment appli-
cation, a methodology for river water quality assessment and prediction was devel-
oped. Such a methodology consists of calculating a quality index by correspondence
analysis and predicting its value at non-sampled locations by spatial statistics.
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1 Introduction

When a river is submitted to anthropic environmental stress, e.g., an indus-
trial discharge, a variety of physical-chemical-biological variables are to be
monitored in a series of downstream stations in order to guarantee the quality
of its water.
For the sake of control by Environment concerned agencies (both official and
NGOs), this disparate set of variables should be summarized in some kind of
a global straightforward quality index, easy to be appreciated by public opin-
ion and regulatory institutions. On the other hand, this summary measure
should also account for all the available information related to the influence of
the discharge onto the river water. Once calculated this index, an assessment
can be made on the river water quality. But, obviously, if no modelling pro-
cedure is applied in order to provide some sort of prediction, this assessment
refers only to the sampled points (the stations where the basic measurements
are made).
Since no dispersion deterministic model is prone to be applied to the qual-
ity index (no mechanism can be assigned to the dynamics of such a hybrid
combination of parameters), a stochastic forecasting methodology should be
devised in order to predict the index at any non-sampled point (or domain),



River Water Quality Assessment And Prediction 765

as required by the above mentioned Environment concerned agencies. Aim-
ing at approaching this issue from the standpoint of spatial statistics, the
standard estimation methodology should be adjusted in order to cope with
the specific characteristics of such a problem, where geometry and dynam-
ics play a determinant role. This entails the calculation of a non-Euclidean
distance along the river and the development of a non-stationary estimation
approach, adjusted to the river flow characteristics.

2 Methodology

The proposed methodology to address this two-fold problem consists of two
steps:
In the first step, the barycentric affectation procedure put forward by
Benzécri [Benzécri, 1980], and modified by Pereira [Pereira, 1988], was
applied in order to produce a comprehensive quality index, ranging from
-1 to +1, and accounting for the entire set of variables available at all
monitoring stations. For this end, it is required that a panel of experts
scrutinizes all measured parameters, split their range into p significant
classes, and create two vectors in the variable classes space, designated
by the ’GOOD’ and ’BAD’ poles. These poles represent, respectively, the
’ideal’ water quality in its two extremes: pure and polluted water (according
to the expert panel). These two ’ideal’ vectors are arranged in a 2 x p

matrix and submitted to Correspondence Analysis, providing an axis, onto
the empirical samples (coded in complete disjunctive form) are projected
as supplementary lines. The co-ordinate of each sample in this axis is the
required index.
In the second step, the kriging technique, developed in [Matheron, 1965] for
the case of space-stationary random functions, was adjusted to the specific
features of river water flow according to the guidelines provided in Pereira
et al. [Pereira et al., 2000]. In particular, the lag for calculation of spatial
auto-correlation function - Matheron’s variogram - was not measured as
an Euclidean distance, but as a ’meandric’ one, which is the analogue,
for the case of rivers, of the well known ’block distance’, used in urban
applications. Also, the variogram function and the resultant kriging system
were modified to account for the fact that the index at a given point of
space along the river depends only on the corresponding upstream values.
Hence, a new auto-correlation tool - the cumulative variogram, as proposed
by Sen [Sen, 1989] in a different context - was developed in order to avoid
any stationarity assumption. This tool - which stands for the Probability
Cumulative Function, as the ”usual” variogram stands for the Probability
Density Function, is defined by:
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a
wγ [d(i)] =

m
∑

i=1

(zw − zi)
2 (1)

where d(i) is the ”meandric” distance between w and the station
i (i = 1, ..., m) and zw is the index at the point w, to which the cu-
mulative variogram refers. This tool allows to respect the practical order
relationships between stations and points (or domains) to be predicted, as
given by the river flow. Based on its auto-correlation with upstream values,
the proposed index, viewed as a Regionalized Variable, can be estimated at
any downstream non-sampled domain by the modified kriging system given
below:
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where w is the central point of the domain to be estimated on the grounds
of i upstream stations (i = 1, ..., m), λ are the kriging weights to be assigned
to each sample value to predict the average index in the required domain, γ

is the usual variogram deduced from the cumulative one by differentiation,
and µ is the Lagrange parameter.
Details of the methodological framework where this step relies are given in
Ribeiro [Ribeiro, 1999].

3 Case Study

In order to illustrate the above proposed methodology, a case study referring
to the Oeiras River (south of Portugal, Fig. 1) is presented. The river
is submitted to an industrial discharge and the non-sampled domain of
concern on its water quality is located just before the junction with the main
Guadiana River (domain W in Fig. 1). Along Oeiras River, water quality
is monitored in a series of sampling stations (Fig. 1), for the variables given
in the first column of Table 1. The second column of Table 1 contains the
classes constructed by the panel of experts for each one of the variables, in
order to define the ’Good’ and ’Bad’ poles, on which the index calculation
relies. In the third and forth columns of Table 1, the weights assigned by
experts to each variable modality are given.
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Variables Classes Good Pole Bad Pole

1 0.00 0.80
Biotic diversity 2 0.01 0.14

based on 3 0.05 0.05
macro-invertebrate 4 0.14 0.01

taxa 5 0.80 0.00
[ 0 ; 50 ] 0.00 0.91

Dissolved Oxygen ] 50 ; 90 ] 0.09 0.09
(%) > 90 0.91 0.00

Temperature (oC) [ 0 ; 20 ] 0.50 0.02
] 20 ; 30 ] 0.50 0.98
[ 0 ; 6 ] 0.00 0.50

pH ] 6 ; 9 ] 1.00 0.00
] 9 ; 14 ] 0.00 0.50
[ 0 ; 400 ] 0.95 0.00

Conductivity ] 400 ; 1500 ] 0.05 0.05
(µS/cm) > 1500 0.00 0.95
Chemical [ 0 ; 10 ] 0.90 0.00

Oxygen Deficiency ] 10 ; 40 ] 0.10 0.10
(mg/l) > 40 0.00 0.90

Sulphates (mg/l) [ 0 ; 400 ] 0.99 0.01
] 400 ; 3200 ] 0.01 0.99

[ 0 ; 25 ] 0.97 0.01
Nitrates (mg/l) ] 25 ; 50 ] 0.02 0.02

> 50 0.01 0.97
[ 0 ; 0.54 ] 0.96 0.01

Phosphates (mg/l) ] 0.54 ; 0.94 ] 0.03 0.03
> 0.94 0.01 0.96

Cu (mg/l) [ 0 ; 0.005 ] 0.98 0.03
> 0.005 0.02 0.97

Fe (mg/l) [ 0 ; 0.3 ] 0.96 0.03
> 0.3 0.04 0.97

Table 1. Weights defining the ’GOOD’ and ’BAD’ poles for river water quality.
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Fig. 1. Location of Oeiras River, sampling stations and domain of concern.

The results of the index calculation for each station according to the first
step of the above described methodology are summarized in the histogram of
Fig. 2.

Fig. 2. Histogram summarizing the assignment of the index to the stations.

Since pluviometry can influence the dispersion of pollutants, the index
was arranged in each station for the ”wet” and ”dry” months. The evolution
of the average index along the river is shown in Fig. 3.
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Fig. 3. Schematic representation of the average index for each station (a)-Dry,
(b)-Wet months.

Regarding the second step of the methodology, the first point is to calcu-
late the cumulative variogram for each sampling station according to equation
1, as given in Fig. 4.

Fig. 4. Cumulative variogram for (a)-Dry and (b)-Wet months.
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Differentiating the functions fitted to the curves of Fig. 4, the usual
variogram is obtained per station and the system 2 is solved for obtaining
the set of λ that permit to predict the value of the index in the non-sampled
domain W of Fig. 1 by summing, for all stations, the product of for each λ

by the corresponding average index (for dry and wet months).
The results of this calculation are given in Table 2, where the average value
of the index in the domain W is compared with the corresponding values in
the upstream A-B domain (before the effluent discharge, see Fig. 1).

Average Index in the Domain W Average Index in the Domain A-B

Wet Months 0.641 0.788

Dry Months 0.535 0.601

Table 2. Prediction of the Index after and before the effluent discharge.

Table 2 shows that, even though a small decrease in the quality index
occurs from A-B to W, the contamination does not reach the Guadiana
River, especially in the wet months.

4 Conclusions and Further Work

The proposed methodology allows the estimation of a river water quality
index in a non-sampled spatial domain, using all upstream available infor-
mation.
The point to be developed at this regard is the automatic selection of
positive definite functions for the used variogram, obtained by differentiation
of the empirical cumulative variogram.
In what concerns the forecasting of the index in time, the length of the
available time series (7 years, two samples by year) does not allow any
deeper approach than the split into ”wet” and ”dry” months. Never-
theless, when the time series will have some statistical significance, the
parameters of their fitted models can be identified. Then, the same spatial
estimation methodology can be applied to these parameters, allowing to
predict their values in a non-sampled domain. Finally, the time series at this
domain is simulated for future values and a space-time estimation is provided.
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- Cas modèle. Dunod, Paris, 1980.
[Matheron, 1965]G. Matheron. Les variables regionalisées et leur estimation. Ed.

Masson, Paris, 1965.
[Pereira et al., 2000]H.G. Pereira, J. Ribeiro, A.J. Sousa, L. Ribeiro, A. Lopes,
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