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Rue Christian Pauc, 44306 Nantes, France
Email : ivan.kojadinovic@polytech.univ-nantes.fr

Abstract. An overview of the use of mutual information in data analysis is pre-
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recalled, new approximations of it are proposed, its estimation in a discrete and in
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1 Introduction

Mutual information satisfies properties that make it an ideal measure of
stochastic dependence [Cover and Thomas, 1991, Darbellay, 1999, Joe, 1989b]
[Rényi, 1959]. Unlike Pearson’s linear correlation coefficient which accounts
only for linear relationships, or other well-known rank correlation coefficients
that can detect monotonic dependencies, the mutual information takes into
account all types of dependence.

In the first section, after introducing the notion of mutual information,
we present its best-known normalized versions and we show how less compu-
tationally expensive approximations of it can be obtained by means of the
concept of k-additive truncation. In the second section, its estimation is dis-
cussed both in a discrete and in a continuous context. The last section is
devoted to a brief overview of some applications of mutual information in
data analysis.

2 Mutual information

In the rest of the paper, random variables shall be denoted by uppercase
letters, e.g. X , and random vectors by uppercase black-board letters, e.g.
−→
X . In order to unify the presentation of the mutual information in the
discrete and in the continuous case, we shall classically further assume that
the probability measures of the manipulated random vectors are absolutely
continuous (a.c) with respect to (w.r.t) a σ-finite measure µ being either
the counting measure in a discrete setting or the Lebesgue measure in a
continuous framework.
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2.1 Definition and properties

Let us consider a random vector (
−→
X ,

−→
Y ). The mutual information between

−→
X and

−→
Y is defined as the distance from independence between

−→
X and

−→
Y

measured by the Kullback and Leibler divergence [Cover and Thomas, 1991]
[Kullback and Leibler, 1951, Kus, 1999, Ullah, 1996].
For two densities p and q w.r.t µ with same support, the Kullback and Leibler
divergence is defined by

KL(p, q) :=

∫

p log

(

p

q

)

dµ (1)

with the convention that 0 log 0
0 := 0.

Let us denote by p
(
−→
X ,

−→
Y )

, p−→
X

and p−→
Y

the joint and marginal densities of the

random vectors. The mutual information between
−→
X and

−→
Y is then defined

by

I(
−→
X ;

−→
Y ) := KL(p

(
−→
X ,

−→
Y )

, p−→
X
⊗ p−→

Y
), (2)

where p−→
X
⊗ p−→

Y
denotes the tensor product of p−→

X
and p−→

Y
. From the above

definition, we see that the mutual information is symmetric and, by applying
the Jensen inequality to the Kullback and Leibler divergence, we obtain that

the mutual information is always non negative and zero if and only if
−→
X and

−→
Y are stochastically independent.
The mutual information can also be interpreted as the H-information ob-
tained from the Shannon entropy [DeGroot, 1962, Morales et al., 1996]. The
Shannon entropy of a density p w.r.t µ, when it exists, is defined by

H(p) := −

∫

p log(p) dµ

with the convention that 0 log 0 := 0. In the discrete case, H(p) always
exists, is positive and can be interpreted as an uncertainty or an information

measure [Rényi, 1965], whereas in the continuous case, when it exists, it can
be negative and should be only interpreted as a measure of the structure

contained in the density p.

With respect to the Shannon entropy, the mutual information between
−→
X

and
−→
Y can be easily rewritten as

I(
−→
X ;

−→
Y ) = H(p−→

X
) − Ep−→

Y

[H(p−→
X |

−→
Y =y

)] = H(p−→
Y

) − Ep−→

X

[H(p−→
Y |

−→
X =x

)]. (3)

Hence, the mutual information can be interpreted as the reduction in the

uncertainty of
−→
X (resp.

−→
Y ) due to the knowledge of

−→
Y (resp.

−→
X ) [Ullah,

1996]. Rewriting the expectation in Eq. (3), we obtain Ep−→

Y

[H(p−→
X |

−→
Y =y

)] =

H(p
(
−→
X ,

−→
Y )

) − H(p−→
Y

), and therefore

I(
−→
X ;

−→
Y ) = H(p−→

X
) + H(p−→

Y
) − H(p

(
−→
X ,

−→
Y )

). (4)
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2.2 Normalized versions of the mutual information in the

discrete case

Consider two discrete random vectors
−→
X and

−→
Y . Since the mutual infor-

mation can be interpreted as the H-information obtained from the Shannon
entropy, which is always non negative in the discrete case, a first normalized

version of I(
−→
X ;

−→
Y ) is given by

U(
−→
X ;

−→
Y ) =

H(p−→
X

) − Ep−→

Y

[H(p−→
X |

−→
Y =y

)]

H(p−→
X

)
=

I(
−→
X ;

−→
Y )

H(p−→
X

)
.

The quantity U(
−→
X ;

−→
Y ), known as the asymmetric uncertainty coefficient,

can be interpreted as the relative reduction of the uncertainty contained in
−→
X given

−→
Y [Särndal, 1974]. The above quantity is clearly not symmetric. A

symmetric version of U(
−→
X ;

−→
Y ), known as the symmetric uncertainty coeffi-

cient [Särndal, 1974], is defined by

S(
−→
X ;

−→
Y ) :=

I(
−→
X ;

−→
Y )

1
2

[

H(p−→
X

) + H(p−→
Y

)
] .

Although the values of the latter quantity are in [0, 1], it does not necessarily

take the value 1 when there is a perfect functional dependence between
−→
X

and
−→
Y . This last observation led Joe [Joe, 1989b] to define a normalized

version of the mutual information as

I∗d (
−→
X ;

−→
Y ) :=

I(
−→
X ;

−→
Y )

min
[

H(p−→
X

), H(p−→
Y

)
] . (5)

The quantity I∗d (
−→
X ;

−→
Y ) clearly takes its values in [0, 1]. Furthermore,

I∗d (
−→
X ;

−→
Y ) = 1 if and only if

−→
X and

−→
Y are functionally dependent [Joe,

1989b, Theorem 2.3].

2.3 Normalized versions of the mutual information in the

continuous case

Let (X, Y ) be a normally distributed random vector with correlation co-
efficient ρ. The mutual information between X and Y is then given by
I(X ; Y ) = −1/2 log(1 − ρ2) [Cover and Thomas, 1991]. Starting from this
observation and by analogy with the way Pearson’s contingency coefficient
was obtained, Joe [Joe, 1989b] defined a normalized version of the mutual
information as

I∗c (X ; Y ) :=
√

1 − exp[−2I(X ; Y )]. (6)

The quantity I∗c (X, Y ) clearly takes its values in [0, 1] and is equal to |ρ| if
(X, Y ) is normally distributed with correlation coefficient ρ.
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Let us now consider the case where X and Y are “approximately dependent”.
As in the case of the contingency coefficient, Joe [Joe, 1989b] conjectured that
the “more X and Y are functionally dependent”, the closer I∗c (X, Y ) to 1 ;
see also [Granger and Lin, 1994].
Note that the above quantity can immediately be generalized to random
vectors.

2.4 Generalizations of the mutual information

Starting from Eq. (4), Abramson proposed a natural extension of the mutual
information between more than two random vectors [Abramson, 1963]. The

mutual information among three random vectors
−→
X ,

−→
Y and

−→
Z having a joint

density w.r.t µ is defined by

I(
−→
X ;

−→
Y ;

−→
Z ) := H(p−→

X
) + H(p−→

Y
) + H(p−→

Z
)

− H(p
(
−→
X ,

−→
Y )

) − H(p
(
−→
X ,

−→
Z )

) − H(p
(
−→
Y ,

−→
Z )

) + H(p
(
−→
X ,

−→
Y ,

−→
Z )

).

More generally, for r ≥ 2 random vectors
−→
X 1,. . . ,

−→
X r having a joint density

w.r.t µ, the following definition was adopted by Abramson :

I(
−→
X 1; . . . ,

−→
X r) :=

r
∑

k=1

∑

{i1,...,ik}⊆{1,...,r}

(−1)k+1H(p
(
−→
X i1

,...,
−→
X ik

)
). (7)

The mutual information among r ≥ 2 random vectors
−→
X 1,. . . ,

−→
X r can be in-

terpreted as a measure of their simultaneous interaction [Kojadinovic, 2004b]
[Wienholt and Sendhoff, 1996]. It can equivalently be regarded as a sort of
multiway similarity measure among variables. Should it be zero, the r random
vectors do not simultaneously interact. Note that the mutual information be-
tween more than two random vectors is not necessarily non negative [Cover
and Thomas, 1991].
Another straightforward generalization of the mutual information is fre-
quently encountered in the literature under the name of redundancy. The
redundancy [Wienholt and Sendhoff, 1996] among r ≥ 2 random vectors
−→
X 1,. . . ,

−→
X r having a joint density w.r.t µ is defined by

R(
−→
X 1; . . . ;

−→
X r) := KL(p

(
−→
X 1,...,

−→
X r)

, p−→
X 1

⊗ · · · ⊗ p−→
X r

),

which, in terms of the Shannon entropy, can be easily rewritten as

R(
−→
X 1; . . . ;

−→
X r) =

r
∑

i=1

H(p−→
X i

) − H(p
(
−→
X 1,...,

−→
X r)

).

As previously, it is easy to verify that the redundancy is always positive and

equal to zero if and only
−→
X 1,. . . ,

−→
X r are stochastically mutually independent.

As for the mutual information, the higher the redundancy among the random
vectors, the “stronger” their functional dependency [Joe, 1989b].
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2.5 Approximations of the mutual information based on

k-additive truncation

Consider a finite set ℵ := {X1, . . . , Xm} of random variables. The subsets of
ℵ will be denoted by uppercase black-board letters, e.g. X. Given a subset

X ⊆ ℵ composed of r variables,
−→
X will denote an r-dimensional random

vector whose coordinates are distinct elements from X. We shall also assume
that the variables in ℵ have a joint density w.r.t µ.

Let h : 2ℵ → R and i : 2ℵ → R be set functions defined respectively by

h(X) :=

{

0, if X = ∅,
H(p−→

X
), if X 6= ∅,

and

i(X) :=

{

0, if X = ∅,
I(Xi1 ; . . . ; Xir

), if X = {Xi1 , . . . , Xir
}.

Using concepts well-known in discrete mathematics such as the Möbius trans-
form [Rota, 1964], it is easy to verify that i is an equivalent representation of
h [Grabisch et al., 2000, Kojadinovic, 2002]. Practically, this means that the
numbers {h(X)}X⊆ℵ can be recovered from the coefficients {i(X)}X⊆ℵ, and
vice versa. More precisely, from Eq. (7) and using the zeta transform [Gra-
bisch et al., 2000], we have

i(X) =
∑

T⊆X

(−1)|T|+1h(T) and h(X) =
∑

T⊆X

(−1)|T|+1i(T), ∀X ⊆ ℵ.

From the latter equation, it follows that the entropy of random vector
−→
X

whose coordinates are denoted Xi1 , . . . , Xir
can be rewritten as

H(p−→
X

) =
∑

Xj∈X

H(pXj
) −

∑

{Xj ,Xk}⊆X

I(Xj ; Xk)

+
∑

{Xj ,Xk,Xl}⊆X

I(Xj ; Xk; Xl) − · · · + (−1)r+1I(Xi1 ; . . . ; Xir
).

The entropy of p−→
X

is therefore calculated, first by summing the entropies
of the singletons contained in X, then by subtracting the sum of mutual
informations among pairs of variables contained in X, after by adding the
sum of mutual informations among variables of 3-element subsets contained
in X, etc. The sums of mutual informations that are added or subtracted can
be seen as corrective terms or higher order terms. In certain situations such as
variable selection [Kojadinovic, 2004b], it may interesting, for computational
reasons, to perform a k-additive truncation of H for a given k ∈ {1, . . . , m},
that is to neglect corrective terms of order greater than k in the expression
of the entropy, which leads to an approximation of the mutual information
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between two random vectors. For instance, as shown in [Kojadinovic, 2002],
for k = 2 and k = 3, we have respectively

I(2)(
−→
X ;

−→
Y ) =

∑

X∈X

∑

Y ∈Y

I(X ; Y ) and

I(3)(
−→
X ;

−→
Y ) = I(2)(

−→
X ;

−→
Y ) −

∑

X∈X

∑

{Y1,Y2}⊆Y

I(X ; Y1; Y2)

−
∑

{X1,X2}⊆X

∑

Y ∈Y

I(X1; X2; Y ).

Note that the lower the amount of interaction among random variables in a
set X, the closer the truncated entropy H(k)(p−→

X
) to H(p−→

X
), with equality if

there are no simultaneous interactions among more then k variables.

3 Estimation

3.1 In a discrete setting

Consider two discrete random vectors
−→
X and

−→
Y respectively taking their val-

ues in the sets {x1, . . . , xr} and {y1, . . . , ys}. From Eq. (2), we see that their
mutual information is clearly a function of their joint distribution p

(
−→
X ,

−→
Y )

,

which is classically estimated by its maximum likelihood estimator (sample
proportions). Using the well-know delta method [Agresti, 2002, Saporta,
1990], it can be shown that KL(p̂

(
−→
X ,

−→
Y )

, p̂−→
X
⊗ p̂−→

Y
) is asymptotically normally

distributed [Basharin, 1959, Menéndez et al., 1995] with expectation I(
−→
X ;

−→
Y )

and variance σ2
KL(p

(
−→
X ,

−→
Y )

)/n, where σ2
KL(p

(
−→
X ,

−→
Y )

) is

r
∑

i=1

s
∑

j=1

p
(
−→
X ,

−→
Y )

(xi, yj)

(

log
p
(
−→
X ,

−→
Y )

(xi, yj)

p−→
X

(xi)p−→
Y

(yj)

)2

− KL(p
(
−→
X ,

−→
Y )

, p−→
X
⊗ p−→

Y
)2.

This result can be used to obtain approximate confidence intervals for the

mutual information. When
−→
X and

−→
Y are stochastically independent, a clas-

sical calculation shows that the mutual information is asymptotically χ2 dis-
tributed with (r−1)(s−1) degrees of freedom [Menéndez et al., 1995]. More
details and further results can be found in [Fagen, 1978, Hutter and Zaffalon,
2005] [Roulston, 1999].

3.2 In a continuous setting

From Eqs. (4) and (7), we see that estimating mutual information amounts
to estimating Shannon entropies.

Consider a random vector
−→
X having a Lebesgue density. A point-wise es-

timation of the entropy of its density can be obtained in two steps : first,
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by substituting the density of
−→
X in the expression of the Shannon entropy

by an estimate computed from available independent realizations; then, by
computing the remaining integral by numerical quadrature [Granger and Lin,
1994] [Harvill and Ray, 2001, Joe, 1989b, Silverman, 1986].
The difficulties linked to numerical integration can however be avoided. Let

F−→
X

be the cumulative distribution function of
−→
X and let

−→
X 1, . . . ,

−→
Xn be a

random sample drawn from p−→
X

. The Shannon entropy of p−→
X

can then be
rewritten as

H(p−→
X

) = −

∫

log p−→
X

dF−→
X

.

Substituting F−→
X

by the empirical cumulative distribution function and p−→
X

by an estimate, we obtain a natural estimator of the Shannon entropy given
by

Ĥ(p−→
X

) = −
1

n

n
∑

i=1

log p̂−→
X

(
−→
X i).

The above estimator was studied in [Hall and Morton, 1993, Joe, 1989a]

in the case where p−→
X

(
−→
X i) is estimated by kernel density estimation [Scott,

1992] [Silverman, 1986]. In that context, Hall and Morton showed that the

estimator Ĥ(p−→
X

) is consistent if the dimension of
−→
X is strictly inferior to 4

and if the density of
−→
X satisfies certain regularity conditions. A synthesis on

the estimation of the Shannon entropy in the continuous case can be found
in [Beirlant et al., 1997].
From a practical perspective, the use of two nonparametric density estimation
technique is encountered in the literature : kernel density estimation [Granger
and Lin, 1994, Harvill and Ray, 2001, Kojadinovic, 2004a] and projection

pursuit density estimation [Friedman et al., 1984, Kojadinovic, 2002].
Another approach to mutual information estimation is based on a prior

discretization of the random vectors by means of recursive partitioning algo-
rithms [Darbellay, 1999, Fraser, 1989]. The best studied and most promising
approach is probably that proposed by Darbellay.

4 Some applications of mutual information in data

analysis

In a discrete setting, unnormalized mutual information was used for discrete
variable clustering [Benzécri, 1976, Chap. 5] (although the symmetric uncer-
tainty coefficient or I∗d seem more appropriate). Note that the approximation
proposed in section 2.5 could be used to define new aggregation criteria. The
asymptotic results presented in section 3.1 make it even possible to use the
analysis of the link likelihood method [Lerman, 1981] in that context. The
symmetric uncertainty coefficient was used for feature selection (see e.g. [Yei
and Liu, 2003]), the use of the asymmetric version being even more natural
in that context.
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In a continuous setting, unnormalized mutual information was used for
lag identification in nonlinear time series [Fraser, 1989, Granger and Lin,
1994] [Harvill and Ray, 2001, Kantz and Schreiber, 1997] and k-additive ap-
proximations of it for variable selection in regression problems [Kojadinovic,
2004a]. The coefficient I∗c and redundancy was employed for continuous vari-
able clustering [Kojadinovic, 2004b]. Redundancy minimization is at the root
of some approaches to independent component analysis ; see e.g [Hyvärinen,
1999].
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