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Abstract. The Kohonen self organizing maps (SOM) can be viewed as a visuali-
sation tool that performs a sort of compromise between a high-dimensional set of
clusters and the 2-dimensional plane generated by some principal axes techniques.
The paper proposes, through Contiguity Analysis, a set of linear projectors pro-
viding a representation as close as possible to a SOM map. In so doing, we can
assess the locations of points representing the elements via a partial bootstrap pro-
cedure.
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1 Introduction

For many users of visualisation tools, the Kohonen self organising maps
(SOM) outperform both usual clustering techniques and principal axes tech-
niques (principal components analysis, correspondence analysis, etc.). In-
deed, the displays of identifiers of words (or text units) within rectangular or
octagonal cells allow for clear and legible printings. The SOM grid, basically
non-linear, can then be viewed as a compromise between a high-dimensional
set of clusters and the planes generated by any pairs of principal axes. One
can regret however the absence of assessment procedures and of valid sta-
tistical inference as well. The paper proposes, through Contiguity Analysis
(briefly reminded in section 2), a set of linear projectors providing a repre-
sentation as close as possible to a SOM map (section 3 and 4). An example
of application is given in section 5. Via a partial bootstrap procedure, we
can now provide these representations with the projection of confidence areas
(e.g. ellipses) around the location of words (section 6).

2 Brief reminder about contiguity analysis

Let us consider a set of multivariate observations (n observations described by
p variables, leading to a (n, p) matrix X), having an a priori graph structure.
The n observations are also the n vertices of a symmetric graph G, whose
associated (n, n) matrix is M (mii′ = 1 if vertices i and i′ are joined by
an edge, mii′ = 0 otherwise). We denote by N the (n, n) diagonal matrix
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having the degree of each vertex i as diagonal element ni (ni stands here for
nii). y is the vector whose ith component is yi. Note that: ni =

∑
i′ mii′ .

U designates the square matrix such that uij = 1 for all i and j. y being a
random variable taking values on each vertex i of a symmetric graph G the
local variance of y, v∗(y), is defined as:

v∗(y) = (1/n)
∑

(yi − m∗

i )
2

where: m∗

i = (1/ni)
∑

i′ mii′yi′ . It is the average of the adjacent values of
vertex i. Note that if G is a complete graph (all pairs (i,i’) are joined by an
edge), v∗(y) is nothing but v(y), the classical empirical variance. When the
observations are distributed randomly on the graph, both v∗(y) and v(y) are
estimates of the variance of y. The contiguity ratio (analogue to the Geary
contiguity ratio [Geary, 1954]), is written: c∗(y) = v∗(y)/v(y). It can be
generalized : a) to different distances between vertices in the graph, b) to
multivariate observations (both generalizations are dealt with in: [Lebart,
1969]). This section is devoted to the second generalization: multivariate
observations having an a priori graph structure. The multivariate analogue
of the local variance is now the local covariance matrix V*, given by (using
the previously defined notation):

V∗ = (1/n)X′(I − N−1M)′(I − N−1M)X

The diagonalization of the corresponding local correlation matrix (Local Prin-
cipal Component Analysis) [Aluja Banet and Lebart, 1984] produces a de-
scription of the local correlations that can be compared to the results of a
PCA . Comparisons between correlation matrices (local and global) can be
done through Procustean Analysis (see: [Gower and Dijksterhuis, 2004]). If
the graph is made of k disjoined complete subgraphs, V* coincide with the
classical within covariance matrix used in linear discriminant analysis. If the
graph is complete (associated matrix = U defined above), then V* is the
classical global covariance matrix V.

Let u be a vector defining a linear combination u(i) of the p variables for
vertex i:

u(i) =
∑

j

ujyij = u′yi

The local variance of u(i) is: v∗(u) = u′V∗u. The contiguity coefficient of
u(i) can be written: c(u) = u′V∗u/u′Vu. Contiguity Analysis is the search
for u that minimizes c(u). It produces linear functions having the properties
of ”minimal contiguity”. Instead of assigning an observation to a specific
class, (case of discriminant analysis) these functions allows one to assign it
in a specific part of the graph. Therefore, Contiguity Analysis can be used
to discriminate between overlapping classes.
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3 SOM maps and associated graphs

The self organizing maps (SOM maps) [Kohonen, 1989] aim at clustering a
set of multivariate observations. The obtained clusters are displayed as the
vertices of a rectangular (chessboard like) or octagonal graph. The distances
between vertices on the graph are supposed to reflect, as much as possible,
the distances between clusters in the initial space. Let us summarize the
principles of the algorithm:

The size of the graph, and consequently, the number of clusters are chosen
a priori (for example: a square grid with 5 rows and 5 columns, leading to 25
clusters). The algorithm is similar to the MacQueen algorithm [MacQueen,
1967] in its on-line version, and to the k-means algorithm [Forgy, 1984] in its
batch version. Let us consider n points in a p-dimensional space (rows of the
(n, p) matrix X). At the outset, to each cluster k is assigned a provisional
centre Ck with p components (e.g.: chosen at random). For each step t, the
element i(t) is assigned to its nearest provisional centre Ck(t). Such centre,
together with its neighbours on the grid, is then modified according to the
formula: Ck(t+1) = Ck(t) + ε(t)(i(t) − Ck(t)). In this formula, ε(t) is an
adaptation parameter (0 ≤ ε ≤ 1) which is a (slowly) decreasing function
of t, as those usually involved in stochastic approximation algorithms. The
process is reiterated, and eventually stabilizes, but the partition obtained
may depend on the initial choice of the centres. In the batch version of the
algorithm, the centres are updated only after a complete pass of the data.
Figure 1 represent a stylised symmetric matrix (70, 70) M0 associated to a
partition of n=70 elements in k=8 classes (or clusters). Rows and columns
represent the same set of n elements (elements belonging to a same class of
the partition form a subset of consecutive rows and columns). The graph
consists of 8 cliques. All the cells of the black blocks contains the value 1.
All the cells outside these diagonal blocks contains the value 0 . The 8 classes
of the previous partition have been obtained through a SOM algorithm from
a square 3 x 3 grid (with an empty class).

The left hand side matrix of figure 1 does not take into account the
topology of the grid: links between elements do exist only within clusters. In
the right hand side of figure 1, two elements i and j are linked (mij = 1) in the
graph if they belong either to a same cluster, or to contiguous clusters. Owing
to the small size of the SOM grid (figure 2), the diagonal adjacency is not
taken into account. (e.g.: elements belonging to cluster 7 are considered as
contiguous to those of clusters 4 and 8, but not to the elements of cluster 5).
Similarly to matrices M0 and M1, a matrix M2 can be defined, that extends
the definition of the edges of the graph to diagonal links. In the simple
example of figure 3, the elements of cluster 7, for example, are considered as
contiguous to the elements of clusters 4, 8, and 5.
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Fig. 1. Stylised incidence matrices M0 of the graph associated with a simple parti-
tion (left), and M1, relating to a SOM map (right) (all the cells in the white areas
contain the value 0 whereas those in the black areas contain the value 1)

Fig. 2. The a priori SOM grid

4 Linear projectors onto the best SOM plane

The matrices M0, M1, and M2 can be easily obtained as a by-product of the
SOM algorithm. In the case of contiguity analysis involving the graph G0 the
associated matrix of which is M0, the local variance coincide with the ”within
variance”, and the result is a classical linear discriminant analysis of Fisher
(LDA). In the plane spanned by the two first principal axes, the clusters are
optimally located in the sense of the LDA criterion. In the cases of contiguity
analysis using the graphs G1 or G2 (associated matrices M1, or M2), the
principal planes strive to reconstitute the positions of the clusters in the SOM
map. In the initial p-dimensional space, the SOM map can be schematised by
the graph whose vertices are the centroids of the clusters. Those vertices are
joined by an edge if the corresponding clusters are contiguous in the grid used
in the algorithm. This graph in a high dimensional space will be partially or
totally unfolded by the contiguity analysis. The following example will show
the different phases of the procedure.

5 An example of application

An open-ended question has been included in a multinational survey con-
ducted in seven countries (Japan, France, Germany, Italy, Nederland, United
Kingdom, USA) in the late nineteen eighties [Hayashi et al., 1992]. The
respondents were asked : ”What is the single most important thing in life
for you?” . The illustrative example is limited to the British sample. The
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counts for the first phase of numeric coding are as follows: Out of 1043 re-
sponses, there are 13 669 occurrences (tokens), with 1 413 distinct words
(types). When the words appearing at least 25 times are selected, there
remain 9815 occurrences of these words, with 88 distinct words. In this ex-

Fig. 3. A (3 x 3) Kohonen map applied to the words used in the 1043 responses

ample we focus on a partitioning of the sample into 9 categories, obtained by
cross-tabulating age (3 categories) with educational level (3 categories). The
nine identifiers combine age categories (-30, 30-55, +55) with educational
levels (low, medium, high). Note that the SOM map (figure 3) provides a
simultaneous representation of words and of categories of respondents. This
is due to the fact that the input data are the coordinates provided by a
correspondence analysis of the lexical contingency table cross-tabulating the
words and the categories. Figure 4 represents the plane spanned by the two
first axes of the contiguity analysis using the matrix M1. We can check that
the graph describing the SOM map (the vertices of which C1, C2, ...C9 are
the centroids of the elements of the corresponding cells of figure 3), is, in this
particular case, a satisfactory representation of the initial map. The pat-
tern of the nine centroids is similar to the original grid exemplified by figure
3. The background of figure 5 is identical to that of figure 4. It contains
in addition the convex hulls of the nine clusters C1, C2, ..., C9.. Each of
those convex hulls correspond exactly (if we except some double or hidden
points) to a cell of figure 3. We note that these convex hulls are relatively
well separated. In fact, figure 5 contains much more information than figure
3, since we have now an idea of the shapes and sizes of the clusters, of the
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Fig. 4. Principal plane of the contiguity analysis using matrix M1. The points C1,
C2, ...C9 represent the centroids of the 9 clusters derived from the SOM map.

degree to which they overlap. We are now aware of their relative distances,
and, another piece of information missing in figure 3, we can observe the
configurations of elements within each cluster.

Fig. 5. Principal plane of the contiguity analysis using matrix M1, with both the
centroids of the 9 clusters and their convex hulls



Visualization of textual data 79

6 Assessing SOM maps through partial bootstrap

We are provided at this stage with a tool allowing us to explore a continuous
space. We can take advantage of having a projection onto a plane (and pos-
sibly onto a higher dimensional space, although the outputs are much more
complicated in that case) to project the bootstrap replicates of the original
data set. This can be done in the framework of a partial bootstrap proce-
dure. In the context of principal axes techniques (such as SVD, PCA, and
also contiguity analysis), Bootstrap resampling techniques [Efron and Tibshi-
rani, 1993] are used to produce confidence areas on two-dimensional displays.
The bootstrap replication scheme allows one to draw confidence ellipses for
both active elements (i.e.: elements participating in building principal axes)
and supplementary elements (projected a posteriori).

Fig. 6. Bootstrap ellipses of confidence of the 5 words: freedom, health, money,
peace, wife in the same principal contiguity plane as in figure 4 and 5

In the example of the previous section, the words are the rows of a contin-
gency table. The perturbation of such table under a bootstrap re-sampling
procedure leads to new coordinates for the replicated rows. Without re-
computing the whole contiguity analysis for each replicated sample (conser-
vative procedure of total bootstrap), one can project the replicated rows as
supplementary elements on a common reference space, exemplified above by
figures 4 and 5. Always on that same space, figure 6 shows a sample of the
replicates of five points (small stars visible around the words freedom, health,

money, peace, wife) and the confidence ellipses that contain approximately
90 % of these replicated points. Such procedures of partial bootstrap [Lebart,
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2004] give satisfactory estimates of the relative uncertainty about the loca-
tion of points. Although the background of figures 5 and 6 are the same, it
is preferable, to keep the results legible, to draw the confidence ellipses on
a distinct figure. It can be seen for instance that the words freedom and
money, both belonging to cluster C4, have different behaviours with respect
to the re-sampling variability. The location of freedom is much more fuzzy.
That word could belong to some neighbouring clusters as well.

7 Conclusion

We have intended to immerse the SOM maps, obtained through an algorithm
often viewed as a black box, into an analytical framework (the linear algebra
of contiguity analysis) and into an inferential setting as well (re-sampling
techniques of bootstrap). That does not question the undeniable qualities of
clarity and readability of the SOM maps. But it may perhaps help to assess
their scientific status: like most exploratory tools, they help to rapidly un-
cover some patterns. However, they should be complemented with statistical
procedures whenever deeper interpretation is needed.
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