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Abstract. Given a multiway data set, in several contexts it may be desirable to
obtain an overlapping clustering of one of the modes implied by the data. For this
purpose a one-mode additive clustering model has been proposed, which implies
a decomposition of the data into a binary membership matrix and a real-valued
centroid matrix. To fit this model to a data set, a least squares loss function can be
minimized. This can be achieved by means of a sequential fitting algorithm (SEFIT)
as developed by Mirkin. In this presentation we will propose a new algorithm for
the same model, based on an alternating least squares approach.
Keywords: Additive Clustering, Approximation Clustering, ALS algorithm.

1 Introduction

N -way N -mode data often show up in statistical practice. The simplest
instance is a two-way two-mode data set. In this paper we will focus on the
latter type of data, but everything can easily be extended to the N -way case.

For two-mode two-way data sets a one-mode additive clustering model
has been described by several authors, including [Mirkin, 1996]. The aim of
the associated data analysis is to fit this model to a data set under study (ei-
ther in a least squares or in a maximum likelihood classification sense). For
this purpose [Mirkin, 1990] proposed a sequential fitting (SEFIT) algorithm.
However, at this moment not much information is available about its per-
formance; moreover, as will be discussed below, this algorithm implies some
conceptual problems. As a possible way out, in this paper we will present a
new algorithm to estimate the same model.

The remainder of this paper is then structured as follows. In Section 2
we will describe the one-mode additive clustering model and in Section 3
we will explain the aim of the associated data analysis. In Section 4 the
SEFIT algorithm will be explained and in Section 5 we will present our new
algorithm. In Section 6 we present a few concluding remarks.
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2 Model

In one-mode additive clustering the data matrix X is approximated by a
model matrix. This model matrix M with entries mij (i = 1, . . . , I, j =
1, . . . , J) can be decomposed as

mij =

R
∑

r=1

airgrj, (1)

with R denoting total number of clusters, with air taking values 1 or 0 and
with grj real-valued. A is called the cluster membership matrix with entries
air indicating whether entity i belongs to cluster r (air = 1) or not (air = 0).
One may note that apart from the binary nature, no further restrictions are
imposed on the values air , implying that the resulting clustering may be an
overlapping one. The vector gr = (grj)

J
j=1 is called the centroid of cluster

r and the entire matrix G with entries grj is called the centroid matrix.
Equation (1) then means that the ith row of M is obtained by summing up
the centroids of the clusters to which row i belongs. Note that (1) can also
be written in matrix form as

M = AG. (2)

In the past, this model has been described in [Mirkin, 1990] and [Mirkin,
1996].

To illustrate the conceptual meaningfulness of the one-mode additive clus-
tering model we may refer to the following hypothetical medical example.
Consider a patients by symptom data matrix, the entries of which indicate
the extent to which each of a set of patients suffers from each of a set of symp-
toms. In such a context, symptom strength may be attributed to underlying
diseases or syndromes, that correspond to clusters of patients. Given that
patients might suffer from more than one syndrome (a phenomenon called
syndrome co-morbidity), in such a case an overlapping patient clustering is
justified. The measured values of symptom strength can be considered addi-
tive combinations of the underlying syndrome profiles formalized by the rows
of the centroid matrix G of the additive clustering model (1).

3 Aim of the data analysis

A two-way two-mode data matrix X resulting from a real experiment can
always be represented by the model in (1). However, in most cases, a large
number of clusters R will be needed for this. Therefore one usually looks for
a model with a small value for R that fits the data well in some way.

A first way to do this is a deterministic one. In that case one assumes that
X ≈ M and the goal of the data analysis is then to find the model M with
R clusters that optimally approximates the data X according to some loss
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function. In this paper, the quality of the approximation will be expressed
in terms of a least squares loss function:

L2 =
∑

ij

(xij −
R

∑

r=1

airgrj)
2, (3)

which needs to be minimized with respect to the unknown air and grj

(i = 1, . . . , I, r = 1, . . . , R, j = 1, . . . , J). Note that, if the matrix A is
given, then the optimal G according to (3) is the least squares multiple re-
gression estimator (A′A)−1A′X . Note that this implies, since we have only
2IR possible binary matrices A, that the solution space of (3) is finite and
that therefore in principle it is possible to find the global minimum enumer-
atively. However, as computation time is an exponential function of the size
of the data matrix, an enumerative search will quickly become infeasible.
Therefore, in practice suitable algorithms or heuristics need to be developed
to find the global optimum of (3).

A second approach to the data analysis is of a stochastic nature. We now
assume that:

xij =
R

∑

r=1

airgrj + eij , (4)

where eij is an error term with eij

iid

sim N(0, σ2). The goal of the data analysis
then is to estimate the air, grj and σ that maximize the log-likelihood:

log ` =
∑

ij

log f(xij |A, G, σ)

= −IJ log
√

2π − IJ log σ −
∑

ij(xij −
∑R

r=1
airgrj)

2

2σ2
(5)

This can be characterized as a classification likelihood problem. In the latter
type of problem, the binary entries of A are considered fixed parameters that
need to be estimated, rather than realisations of latent random variables
as in mixture-like models. For the estimation of air and grj we need to
minimize the sum in the numerator of the right most term in (5). This means
that the stochastic approach for estimating the memberships and centroids
is fully equivalent to the deterministic approach as explained above. For the
estimation of σ2 we have

σ̂2 =

∑

ij(xij −
∑R

r=1
âir ĝrj)

2

IJ
, (6)

where âir and ĝrj are the maximum likelihood estimators of air and grj

respectively.
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4 SEFIT

As explained in the previous section, the minimization of the loss function
(3) requires suitable algorithms. In this section we will explain a first such
algorithm that has been developed by [Mirkin, 1990] and that is a sequentially
fitting (SEFIT) algorithm. In this algorithm the membership matrix A is
estimated column-by-column meaning that one sequentially looks for new
clusters. Suppose m− 1 clusters have already been found, the mth cluster is
then estimated by making use of the residual data

xm
ij = xij −

∑

r<m

airgrj (7)

and by minimizing the function

∑

ij

(xm
ij − aimgmj)

2. (8)

Given the memberships aim (i = 1, . . . , I) the least squares estimates for the
centroid values gmj (j = 1, . . . , R) are given by

gmj =

∑I

i=1
aimxij

∑I

i=1
a2

im

, (9)

which is the simple mean of the elements in the cluster.

The estimation of the memberships aim (i = 1, . . . , I) proceeds as follows.
We start with a zero memberships column (i.e., an empty cluster) and se-
quentially add elements of the first mode to the cluster in a greedy way, that
is, add that row that yields the biggest decrease in the loss function (8), and
continue until no further decrease is obtained.

A full loop of the algorithm then goes as follows. First estimate the
memberships aim (i = 1, . . . , I) using the residuals xm

ij by means of the
greedy procedure explained above and next estimate the centroid values gjm

(j = 1, . . . , R) by means of equation (9). Denote am = (aim) and gm = (gmj),
calculate the outer product amgm and subtract it from xm

ij yielding the resid-

uals xm+1

ij = xm
ij − amgm. This loop is repeated on xm+1

ij and the algorithm
terminates if the prespecified number of clusters R is reached.

One may note that this algorithm may only yield a local minimum rather
than the global optimum of the loss function. Moreover, SEFIT might also
have problems in recovering a true underlying model. We now will illustrate
this latter problem with a hypothetical example. Suppose the following true
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structure underlies the data X :

M = AG =
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(10)
Suppose now that we estimate the first cluster and that the correct member-
ship vector a1 = (1, 1, 1, 1, 0, 0)′ has been recovered. Then according to (9)
the estimate of the corresponding centroid g1 reads

g1 = (g11 + g21/2, g12 + g22/2, g13 + g23/2), (11)

which is not equal to the true (g11, g12, g13). Clearly a bias has been intro-
duced due to the overlapping nature of the clusters and all further estimates
may be influenced by this wrong estimate since in the next step of the algo-
rithm the centroid will be subtracted from the data.

5 ALS algorithm

Our new approach to find the optimum of the loss function (3) is of the
alternating least squares (ALS) type: given a membership matrix A we will
look for an optimal G conditional upon the given A; given this G we will
subsequently look for a new and conditionally optimal A, and so on.

The easiest part is the search for G given the memberships A since this
comes down to an ordinary multivariate least squares regression problem,
with a closed form solution:

G = (A′A)−1A′X. (12)

For the estimation of A we can use a separability property of the loss
function (3), see also [Chaturvedi and Carroll, 1994]. This loss function
indeed can be rewritten as follows:

L2 =
∑

j

(x1j −
R

∑

r=1

a1rgrj)
2

+ . . .

+
∑

j

(xIj −
R

∑

r=1

aIrgrj)
2. (13)

The latter means that the contribution of the ith row of A has no influence
on the contributions of the other rows. As a consequence, A can be estimated



One-mode Additive Clustering 729

row-by-row, which reduces the work to evaluating I 2R possible memberships
(instead of the full 2IR).

The alternating process is repeated until there is no more decrease in the
loss function. Since in each step the optimal conditional solution is found,
we create a decreasing row of positive loss function values. As a consequence,
this row has a limit which moreover will be reached after a finite number of it-
erations since there are only a finite number of possible membership matrices
A. The iterative process is to be started with some initial membership ma-
trix A, which can for instance be user specified or randomly drawn. Since in
the ALS approach entire matrices are estimated rather than single columns,
a bias as implied by the SEFIT strategy is avoided. Nevertheless, the ALS
algorithm could yield a local optimum of the loss function (3). The only
solution for this inconvenience is to use a large number of starts and retain
the best solution.

6 Concluding remark

In this paper we proposed a new algorithm for finding overlapping clusters
of one mode of a multiway data set. It involves an alternating least squares
approach and might overcome some limitations of Mirkin’s original SEFIT
algorithm. To justify the latter claim, however, an extensive simulation study
in which the performance of both algorithms would be compared, would be
needed.
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