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Abstract. We place ourselves in a so-called meet-closed description context; that
is a context consisting of a finite nonempty entity set E whose elements are de-
scribed in a complete meet-semilattice D, by means of a descriptor δ. Then we
consider multiway quasi-ultrametric dissimilarities on E, a class of multiway dis-
similarities that, with their relative k-balls, extend the fundamental in classification
bijection between ultrametric dissimilarities and indexed hierarchies. We also con-
sider multiway dissimilarities agreeing with entity descriptions in a quite natural
sense called δ-meet compatibility. It turns out that there exists an integer k such
that any strictly δ-meet compatible k-way dissimilarity is quasi-ultrametric. On
the other hand, the descriptor δ induces a Galois connection between the powerset
P(E) and D, which, in turn, induces a closure operator, say φδ, on P(E). then
it is proved that nonempty φδ-closed subsets of E coincide with k-balls relative to
some strictly δ-meet compatible multiway dissimilarities on E.
Keywords: Galois connection, Multiway dissimilarity, Closure operator, Descrip-
tion-meet compatibility, Quasi-ultrametric.

1 Introduction

Multiway dissimilarities are natural extensions of classical pairwise dissimi-
larities, that allow global comparison of more than two entities. In the last
decade, they have been investigated or considered from different approaches
in many works among which we just mention [Bandelt and Dress, 1994],
[Joly and Le Calvé, 1995], [Daws, 1996] and [Bennani and Heiser, 1997].
In this paper, these approaches are extended onto the so-called meet-closed
data description context. A meet-closed description context represents a fi-
nite entity set E using a complete meet-semilattice D. Then we consider
multiway quasi-ultrametric dissimilarities on E [Bandelt and Dress, 1994],
[Diatta, 1997], a class of multiway dissimilarities that, with their relative k-
balls, extend the fundamental in classification bijection between ultrametric
dissimilarities and indexed hierarchies [Johnson, 1967]. We also consider mul-
tiway dissimilarities agreeing with entity descriptions in a quite natural sense
called δ-meet compatibility. It turns out that there exists an integer k such
that any strictly δ-meet compatible k-way dissimilarity is quasi-ultrametric.
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On the other hand, any descriptor δ induces a Galois connection between the
powerset P(E) and D, which, in turn, induces a closure operator, say φδ, on
P(E) [Birkhoff, 1967]. It is proved that nonempty φδ-closed subsets of E are
the k-balls of some strictly δ-meet compatible multiway dissimilarities on E.

2 Multiway dissimilarities

Before introducing multiway dissimilarities, let us first recall the classical
pairwise ones. Let E be a finite nonempty set.

A (pairwise) dissimilarity on E is a map d : E × E → R satisfying re-
flexivity ((R2) d(x, x) = 0), non-negativity ((N2) d(x, y) ≥ 0) and symmetry
((S2) d(x, y) = d(y, x)).

Considering maps on E3, E4, . . . , Ek, with similar properties, naturally
leads to the notion of 3-way, 4-way,. . . , k-way dissimilarity. For instance,
a 3-way dissimilarity on E will be any map d : E3 → R satisfying:
(R3) d(x, x, x) = 0, (N3) d(x, y, z) ≥ 0 and (S3) d(x, y, z) = d(x, z, y) =
d(y, x, z) = d(y, z, x) = d(z, x, y) = d(z, y, x). The term multiway dissimilar-
ity will be used to mean a k-way dissimilarity, for some k ≥ 2.

Of course, due to the tuple-based definition above, the complexity of
expressions related to k-way dissimilarities increases when k grows. Then,
for the sake of simplicity, we adopt in the present paper a set-based def-
inition based on the following observation: according to (R2) and (N2),
d(x, x) ≤ d(x, y) for all x, y. Thus, a dissimilarity on E can be defined
as being a nonnegative real valued map d on the set of singletons and pairs
of E, satisfying d({x}) = 0 and d({x}) ≤ d({x, y}). This set-based definition
makes the symmetry condition implicit. Moreover, for k ≥ 2, its generaliza-
tion to k-way dissimilarities involves shortest expressions.

For reasons explained in Remark 3 below, we will drop out the reflexivity
condition and thus be rather concerned with so-called (multiway) pseudo-
dissimilarities. However, we will still use the term dissimilarity, keeping in
mind that the condition d({x}) = 0 is not required.

For any set S and any integer k ≥ 1, S∗
≤k will denote the set of all

nonempty subsets of S with at most k elements. Then we formally define
multiway dissimilarities as follows.

Definition 1 A k-way dissimilarity on E will be any nonnegative real valued
and isotone map defined on the set of all nonempty subsets of E with at most
k elements, i.e., any map d : E∗

≤k → R+ such that d(X) ≤ d(Y ) when
X ⊆ Y .

Example 1 Table 2 presents a dataset, say D, about seven market baskets
and five items: bread (brd), butter (btr), cheese (chs), eggs (egg), milk (mlk);
for instance, the market basket labeled 1 contains bread and cheese. For any
k such that 2 ≤ k ≤ 5, a k-way dissimilarity on the set of items, can be
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defined by letting disk(X) be seven minus the number of baskets that con-
tain each of the items in X. Then, for instance, dis3({brd, chs}) = 4 and
dis3({brd, btr, chs}) = 7.

brd btr chs egg mlk

1 x x
2 x x x
3 x x x
4 x x x
5 x x x
6 x x x
7 x x x

Table 1. Example dataset

Remark 1 For {x, y, z} ⊆ E, we will simply write d(x) or d(x, y) or
d(x, y, z) instead of d({x}) or d({x, y}) or d({x, y, z}), respectively. More-
over, as in the tuple-based setting, the notation d(x, y) or d(x, y, z) will not
require x, y and z be distinct.

3 Quasi-ultrametric multiway dissimilarities

Key notions in the definition of quasi-ultrametrics given below are those of a
d-ball, (d, k)-ball and d-diameter, where d is a k-way dissimilarity. To catch
their meaning, let us first cast them in the case of a pairwise dissimilarity,
say d2.

The d2-diameter of a nonempty subset Z of E is the maximum d2-
dissimilarity between elements of Z, i.e.: diamd2

(Z) = max{d2(x, y) : x, y ∈
Z}.

Let now x and y be two distinct elements of E and r a nonnegative
real number. The d2-ball of center x and radius r is the set Bd2(x, r) of
elements of E whose d2-dissimilarity degree from x is at most r, i.e., formally,
Bd2(x, r) = {z ∈ E : d2(x, z) ≤ r}; the (d2, 2)-ball generated by {x} is the
set Bd2

x = Bd2(x, d2(x)), and the (d2, 2)-ball generated by {x, y} is the set
Bd2

xy = Bd2(x, d2(x, y)) ∩ Bd2(y, d2(x, y)). If x = y, Bd2

xy = Bd2

x .
All these notions have been naturally generalized to multiway dissimilar-

ities in [Diatta, 1997]. For k ≥ 2, let dk denote a k-way dissimilarity on
E.

The dk-diameter (or, simply, diameter) of a nonempty subset Z of E is the
maximum dk-dissimilarity degree between elements of Z, i.e.: diamdk

(Z) =
max{dk(T ) : T ∈ Z∗

≤k}.
Let X ∈ E∗

≤k−1. The dk-ball (or, simply, ball) of center X and radius r

is the set Bdk(X, r) defined by Bdk(X, r) = {y ∈ E : dk(X ∪ {y}) ≤ r}. If
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X ∈ E∗
≤k, then the (dk, k)-ball (or, simply, k-ball relative to dk) generated

by X is the set Bdk

X defined by Bdk

X = Bdk(X, dk(X)) when |X | ≤ k − 1,

and Bdk

X = ∩
x∈X

Bdk(X \ {x}, dk(X)) otherwise. The superscript dk may be

omitted if there is no risk of confusion.
Before defining quasi-ultrametrics, let us recall a well-known particular

case of them, namely ultrametrics. A (2-way) dissimilarity d2 is said to be
ultrametric if for all x, y, z:

d2(x, y) ≤ max{d2(x, z), d2(y, z)}.

Next are some characterizations of ultrametric 2-way dissimilarities, which
may help in understanding the definition of quasi-ultrametrics given below.

Proposition 1 [Diatta and Fichet, 1998] For a 2-way dissimilarity d2 on
E, the following assertions are equivalent.

(i) d2 is ultrametric.
(ii) for all x, y, z: the greatest two values among d2(x, y), d2(x, z) and d2(y, z)

are equal.
(iii) for all x, y: diamd2

(B(x, d2(x, y))) = d2(x, y) (diameter condition).
(iv) for all x, y, u, v: u, v ∈ B(x, d2(x, y)) implies B(u, d2(u, v)) ⊆

B(x, d2(x, y)) (inclusion condition).

Example 2 Figure 1 presents three dissimilarities d1, d′1 and d′′1 on the set
{i, j, k, l}. It is easily checked that d1 satisfies the diameter condition; but
d1 does not satisfy the inclusion condition because j, k ∈ Bd1

jl whereas i ∈

Bd1

jk and i /∈ Bd1

jl . It is also easily checked that d′1 satisfies the inclusion;

but d′1 does not satisfy the diameter condition because i, j ∈ B
d′
1

kl so that

diamd′
1
(B

d′
1

kl ) > d′1(k, l). The dissimilarity d′′1 is clearly quasi-ultrametric since

B
d′′
1

i = B
d′′
1

j = B
d′′
1

ij = {i, j}, for x 6= i, j, B
d′′
1

x = {x}, and for {x, y} 6= {i, j},

B
d′′
1

xy = {i, j, k, l}.

i 0
j 1 0
k 1 1 0
l 3 2 1 0

i j k l

i 0
j 3 0
k 1 1 0
l 1 1 2 0

i j k l

i 0
j 0 0
k 1 1 0
l 1 1 1 0

i j k l
d1 d′

1 d′′

1

Fig. 1. Three pairwise dissimilarities on the set {i, j, k, l}: d1 satisfies the diameter
but not the inclusion condition; d′

1 satisfies the inclusion but not the diameter
condition; d′′

1 is quasi-ultrametric.
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Conditions (iii) and (iv) of Proposition 1 above can be extended to the case
of multiway dissimilarities by replacing balls with k-balls. The two extended
conditions define what we call the quasi-ultrametric multiway dissimilarities
[Diatta, 1997]:

Definition 2 A k-way dissimilarity dk on E is said to

(i) satisfy the inclusion condition if for all X, Y ∈ E∗
≤k, Y ⊆ Bdk

X implies

Bdk

Y ⊆ Bdk

X ;

(ii) satisfy the diameter condition if for all X ∈ E∗
≤k, diamdk

(Bdk

X ) = dk(X);

(iii) be quasi-ultrametric if it satisfies both of the inclusion and the diameter
conditions.

Example 3 The reader may check that the 3-way dissimilarity dis3 defined
in Example 1 is quasi-ultrametric. This can also be derived from Theorem 1
below (see Remark 4).

4 Description-meet compatibility

In this section, we place ourselves in a so-called meet-closed description con-
text. That is a context consisting of a finite nonempty entity set E whose
elements are described in a complete meet-semilattice D, by means of a de-
scriptor δ. We will denote such a context as a triple K = (E, D, δ) where E
stands for the entity set, D := (D,≤) the entity description space, and δ the
descriptor that associates to each entity x ∈ E its description δ(x) in D.

In all what follows, E will denote a finite nonempty entity set, D a com-
plete meet-semilattice, δ a descriptor that maps E into D, and K the meet-
closed description context (E, D, δ).

Example 4 Consider Table 4 presenting five visitors of a given Web site,
described by three attributes: LiLo, NoLi, ReSu, where LiLo(x) is the login-
logout time interval of visitor x within the interval [0, 24], NoLi(x) is the
number of times visitor x logs in at LiLo(x) interval during a given fixed pe-
riod, and ReSu(x) is the subjects requested by x during a session; requested
subjects are sets of subjects from: Arts & Humanities (AH), Business &
Economy (BE), Computers & Internet (CI), News & Media (NM), Recre-
ation & Sports (RS), Science & Health (SH), Society & Culture (SC).
Then Table 4 can be seen as representing a meet-closed description context
K2 := (E2, D2, δ2) where E2 is the set {1, 2, 3, 4, 5}, D2 the direct product of
three partially ordered sets (posets): the set (FUCI([0, 24]),⊆) of finite unions
of closed intervals of [0, 24] endowed with the set inclusion order, the set
(|[30; 40]|,≤) of integers from 30 to 40, endowed with the integer usual order,
and the powerset (P(S),⊆) of the set S = {AH, BE, CI, NM, RS, SC}, en-
dowed with the set inclusion order, and δ2(x) = (LiLo(x), NoLi(x), ReSu(x)).
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LiLo NoLi ReSu

1 0-2 30 CI,RS
2 21-24 35 AH,NM,SC
3 0-3 40 AH,BE,CI,RS
4 22-24 35 AH,SC
5 12-14 30 BE,NM

Table 2. Example meet-closed description context

The description-meet compatibility defined below has been introduced in
[Diatta and Ralambondrainy, 2002] in the case of pairwise dissimilarities. It
uses the notion of valuation on a poset.

A valuation on a poset (P,≤) is a map h : P → R+ such that h(x) ≤ h(y)
when x ≤ y. A strict valuation will then be a valuation h such that x < y
implies h(x) < h(y).

Before defining the description-meet compatibility, let us introduce a fur-
ther notation: for any X ⊆ E, δ(X) will denote the set of descriptions of
entities belonging to X .

A multiway dissimilarity d on E will be said to be δ-meet compatible if
there exists a valuation h on D with which it is δ-meet compatible, i.e., such
that

d(X) ≤ d(Y ) ⇐⇒ h(inf δ(X)) ≥ h(inf δ(Y )),

for X, Y ⊆ E. If h is a strict valuation, d will be said to be strictly δ-meet
compatible.

Remark 2 The reader may observe that when D is a complete join-
semilattice, a dual compatibility condition, say δ-join compatibility, can be
defined by reversing the right-hand side inequality in the above equivalence
and replacing meets by joins.

Description-meet compatibility is a kind of natural agreement expressing
the following fact: the lower the meet of descriptions of entities in X , the
larger the dissimilarity degree of X .

Remark 3 If d is a strictly δ-meet compatible (multiway) dissimilarity, then
δ(x) < δ(y) implies d(y) < d(x). This is why we drop out the condition
d(x) = 0, since it is very likely to happen that two entities x and y satisfy
δ(x) < δ(y).

Example 5 Consider the meet-closed description context K2 defined in Ex-
ample 4. Define a multiway dissimilarity on E2 by

dis′(X) = 47 − (λ(∩x∈XLiLo(x)) + min
x∈X

NoLi(x) + | ∩x∈X ReSu(x)|),

where λ([α, β]) = β −α. For instance, dis′(1, 2, 3) = 47− (λ([0, 2]∩ [21, 24]∩
[0, 3])+min{30, 35, 40}+|{CI, RS}∩{AH, NM, SC}∩{AH, BE, CI, RS}|) =
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47 − (λ(∅) + 30 + |∅|) = 47 − (0 + 30 + 0) = 17. Then dis′ is strictly δ2-
meet compatible. Indeed, λ, x 7→ x and Y 7→ |Y | are strict valuations on
(FUCI([0, 24]),⊆), (|[30; 40]|,≤) and (P ,⊆), respectively. Thus h2 defined by

h2(u, v, w) = λ(u) + v + |w|

is a strict valuation on D2, and the fact that dis′ is δ2-meet compatible with
h2 follows from the fact that dis′(X) is decreasing w.r.t. h2(inf δ2(X)).

Before outlining the relationship between quasi-ultrametricity and
description-meet compatibility, let us recall the following technical notion:
the breadth of a meet-semilattice (P,≤) is the least positive integer k such
that the meet of any (k + 1) elements of P is always the meet of k elements
among these k + 1 [Birkhoff, 1967]. Having noticed this, we agree to say
that a subset Q of a meet-semilattice is of breadth k if k is the least positive
integer such that for any (k +1)-element subset W of Q there is w ∈ W such
that inf(W \ {w}) ≤ w.

Example 6 Consider the dataset D given in Table 2 as presenting a meet-
closed description context K1 := (E1, D1, δ1), where E1 is the set of five items
and D1 the boolean lattice {0, 1}7; for instance δ1(brd) = (1, 0, 1, 0, 1, 1, 1).
Then δ1(E1) is of breadth at least 3 since

inf δ1({brd, chs, mlk}) = (0, 0, 0, 0, 0, 0, 1),

which is different from either of δ1(brd)∧δ1(chs) = (1, 0, 1, 0, 0, 0, 1), δ1(brd)∧
δ1(mlk) = (0, 0, 0, 0, 1, 0, 1) and δ1(chs) ∧ δ1(mlk) = (0, 1, 0, 0, 0, 0, 1). More-
over,

inf δ1({brd, btr, chs, egg}) = inf δ1({brd, btr, chs, mlk})

= inf δ1({brd, btr, chs}),

inf δ1({brd, btr, egg, mlk}) = inf δ1({brd, chs, egg, mlk})

= inf δ1({brd, egg, mlk}),

and inf δ1({btr, chs, egg, mlk}) = inf δ1({btr, chs, egg}), so that δ1(E1) is of
breadth 3.

We now go on stating the result showing the existence of an integer k ≥ 2
such that any strictly δ-meet compatible k-way dissimilarity on E is quasi-
ultrametric.

Theorem 1 (i) If δ(E) is of breadth one, then every strictly δ-meet com-
patible 2-way dissimilarity on E is ultrametric.

(ii) If δ(E) is of breadth k ≥ 2, then every strictly δ-meet compatible k-way
dissimilarity on E is quasi-ultrametric.
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The converse of Theorem 1 does clearly not hold since, for k ≥ 2, every
constant k-way dissimilarity on E is quasi-ultrametric but never strictly δ-
meet compatible, regardless of the descriptor δ. Indeed, otherwise, we would
have, for all x, y ∈ E, δ(x) = δ(y) so that δ(E) would be a singleton, hence
of breadth one.

Remark 4 As claimed in Example 3, it follows from Theorem 1 that the
3-way dissimilarity dis3 defined in Example 1 is quasi-ultrametric. Indeed,
on the one hand, as observed in Example 6, δ1(E1) is of breadth 3. On the
other hand, for each k such that 2 ≤ k ≤ 5, disk is strictly δ1-meet compatible
with the valuation h1 defined on D1 by letting h1(x) be the number of ones
occurring in x.

The entity set E being finite, there is an integer k ≥ 1 such that k is
the breadth of δ(E). Moreover, as any pairwise ultrametric dissimilarity is
quasi-ultrametric, we derive the following from Theorem 1.

Corollary 1 There is an integer k ≥ 2 such that any strictly δ-meet com-
patible k-way dissimilarity on E is quasi-ultrametric.

Following [Diatta, 1997], a k-way dissimilarity d will be said to be ultra-
metric if for all X ∈ E∗

≤k and x ∈ E:

d(X) ≤ max
Y ∈X∗

≤k−1

d(Y + x).

When δ(E) is of breadth one, Theorem 1 (i) extends to ultrametric mul-
tiway dissimilarities:

Theorem 2 If δ(E) is of breadth one, then for k ≥ 2, every strictly δ-meet
compatible k-way dissimilarity on E is ultrametric.

5 Characterization of Galois closed entity sets

Given the meet-closed description context K = (E, D, δ), the descriptor δ
induces a Galois connection between (P(E),⊆) and D by means of the maps

f : X 7→ inf {δ(x) : x ∈ X}

and
g : I 7→ {x ∈ E : I ≤ δ(x)},

for X ⊆ E and I ∈ D. Then it is well known that, in these conditions,
the map φδ := g ◦ f is a closure operator on P(E) [Birkhoff, 1967]. That
is φδ is extensive (X ⊆ φδ(X)), isotone (X ⊆ Y implies φδ(X) ⊆ φδ(Y ))
and idempotent (φδ(φδ(X)) = φδ(X)). A subset X of E is said to be φδ-
closed (or a Galois closed entity set of K, relative to φδ) when φδ(X) = X .
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Galois closed entity sets play an important role in classification because they
provide easy-to-interpret clusters [Domenach and Leclerc, 2002]. Indeed, if
X is a Galois closed entity set, then f(X) is the description of X .

When D is a complete join-semilattice, the descriptor δ induces a Galois
connection between (P(E),⊆) and the order-dual of D by means of the maps

f∂ : X 7→ sup {δ(x) : x ∈ X}

and
g∂ : I 7→ {x ∈ E : I ≥ δ(x)},

for X ⊆ E and I ∈ D. Similarly, this Galois connection induces the closure
operator φ∂

δ := g∂ ◦ f∂ on P(E). Galois closed entity sets relative to φ∂
δ have

been considered in the framework of symbolic data analysis [Bock and Diday,
2000].

Example 7 Consider the meet-closed description context K2 given in Ex-
ample 4. The pair {1, 3} is φδ-closed; but {1, 2, 3} is not φδ-closed because
inf δ2({1, 2, 3}) = (∅, 30, ∅) ≤ δ2(4). On the other hand, the pair {4, 5} is
φ∂

δ -closed; but {1, 2, 3} is not φ∂
δ -closed because

δ2(4) ≤ sup δ2({1, 2, 3}) = ([0, 3] ∪ [21, 24], 40, {AH, BE, CI, NM, RS, SC}).

The following proposition shows that the φδ-closure of any subset X ⊆ E
is contained in a ball centered in a subset of X and relative to some δ-meet
compatible multiway dissimilarity.

Proposition 1 Let d be a δ-meet compatible k-way dissimilarity measure on
E and let X ∈ E∗

≤k. Then for all Y ∈ X∗
≤k−1

and all y ∈ Bd(Y, d(X)),

φδ(Y + y) ⊆ Bd(Y, d(X)). Moreover, φδ(X) ⊆ Bd(Y, d(X)).

The next proposition gives a necessary and sufficient condition for the
φδ-closure of an entity subset X to be a ball (resp. k-ball) relative to some
δ-meet compatible multiway dissimilarity.

Proposition 2 Let d be a δ-meet compatible k-way dissimilarity measure on
E. Then, for all X ∈ E∗

≤k and all Y ∈ X∗
≤k−1:

(i) φδ(X) = Bd(Y, d(X)) if and only if inf δ(Bd(Y, d(X))) = inf δ(X).
(ii) φδ(X) = Bd

X if and only if inf δ(Bd
X) = inf δ(X).

We now go on stating the result showing the coincidence between
nonempty Galois closed entity sets of a meet-closed description context and
k-balls relative to some strictly description-meet compatible multiway dis-
similarity.

Theorem 3 For an integer p ≥ 2, let dp be a strictly δ-meet compatible
p-way dissimilarity on E.
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(i) If δ(E) is of breadth one, the set Fδ
∗ of nonempty φδ-closed subsets of E

coincides with the set of (d2, 2)-balls generated by singletons of E.
(ii) If δ(E) is of breadth k ≥ 2, then Fδ

∗ coincides with the set of (dk, k)-balls.

Finally, as observed above, E being finite, there is an integer k ≥ 1
such that k is the breadth of δ(E). Moreover, as any pairwise ultrametric
dissimilarity is quasi-ultrametric, we derive the following from theorems 1
and 3.

Corollary 2 There is an integer k ≥ 2 such that nonempty Galois closed en-
tity subsets of E coincide with k-balls relative to some k-way quasi-ultrametric
dissimilarity on E.

It may be noticed that, when D is a complete join-semilattice, similar
results hold for Galois closed entity sets relative to φ∂

δ , using δ-join compatible
multiway dissimilarities.
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