
Speeding up the self organizing map for

dissimilarity data

Aı̈cha El Golli

Projet AxIS
INRIA-Rocquencourt,
Domaine De Voluceau, BP 105,
78153 Le Chesnay Cedex, France
(e-mail: aicha.elgolli@inria.fr)

Abstract. This paper presents an optimization of the self organizing map for
dissimilarity data. In fact, practical clustering algorithms for dissimilarity data are
extremely costly because of the calculation of the dissimilarity table and require
multiple data scans to achieve convergence. Therefore, we propose working on
sample set data to speed up the training process and also to handle large data
set.
Keywords: Self organizing map, dissimilarity, random sampling.

1 Introduction

The self organizing map (SOM) [Kohonen, 1982a], [Kohonen, 1982b] and
[Kohonen, 1997] is considered as a clustering method and also a projection
method. It can be used at the same time both to reduce the amount data by
clustering, and for projecting the data nonlinearly onto a lower dimensional
display. Due to its unsupervised learning and topology preserving proprieties
it has proven to be especially suitable in analysis of complex systems. The
SOM algorithm implements a nonlinear topology preserving mapping from a
high-dimensional input metric vector data space, R

p, into a two-dimensional
network or grid of neurons. To understand what the SOM really shows,
it is important to understand that it actually performs two tasks: vector
quantization and vector projection. Vector quantization creates from the
original data a smaller, but still representative, data set to be worked with.
The set of prototype vectors reflects the properties of the data space. The
projection performed by the SOM is nonlinear and restricted to a regular grid
(the map grid). The SOM tries to preserve the topology of the data space
rather than relative distances.

The Kohonen’s SOM is based on the notion of center of gravity and
unfortunately, this concept is not applicable to many kinds of complex data.
The extension of the self organizing map to dissimilarity data [El Golli et

al., 2004] is an alternative solution for new forms of complex data and so
allows its process on dissimilarity measures rather than on raw data. With
this alternative only the definition of a dissimilarity for each type of data is

710 El Golli

necessary to apply the method and so treat complex data. This extension is
an adaptation of the batch-learning version of the SOM to dissimilarity data.
At each stage, the learning is performed by alternating an assignment step
and a representation step.

We focus on the problem of clustering large data set. In fact, when we
work with this kind of data this extension of the SOM to complex data is
extremely costly because of the calculation of the dissimilarity table. In order
to solve this problem we propose to work on a sample set either on the whole
learning set.

The paper is organized as follows: we first recall our adaptation of the
SOM algorithm in its batch version for the dissimilarity data. Then we
describe the algorithm working with a sample set.

2 Batch self-organizing map for dissimilarity data

The SOM can be considered as carrying out vector quantization and/or clus-
tering while preserving the spatial ordering of the prototype vectors (also
called referent vectors) in one or two dimensional output space. The SOM
consists of neurons organized on a regular low-dimensional map. More for-
mally, the map is described by a graph (C, Γ). C is a set of m interconnected
neurons having a discrete topology defined by Γ .

For each pair of neurons (c, r) on the map, the distance δ(c, r), is defined
as the shortest path between c and r on the graph. This distance imposes a
neighborhood relation between neurons. The batch training algorithm is an
iterative algorithm in which the whole data set (noted Ω) is presented to the
map before any adjustments are made. We note zi an element of Ω and zi the
representation of this element in the space D called representation space of
Ω. In our case, the main difference with the classical batch algorithm is that
the representation space is not R

p but an arbitrary set on which dissimilarity
(denoted d) is defined.

Each neuron c is represented by a set Ac = z1, ..., zq of elements of Ω

with a fixed cardinality q, where zi belongs to Ω. Ac is called an individ-
ual referent. We denote A the set of all individual referents, i.e. the list
A = A1, ..., Am. In our approach each neuron has a finite number of repre-
sentations. We define a new adequacy function dT from Ω × P (Ω) to R

+

by:

dT (zi, Ac) =
∑

r∈C

KT (δ(r, c))
∑

zj∈Ar

d2(zi, zj) (1)

dT is based on the kernel positive function K. KT (δ(c, r)) is the neighborhood
kernel around the neuron r. This function is such that lim

|δ|−→∞
K(δ) = 0 and

allows us to transform the sharp graph distance between two neurons on the
map (δ(c, r)) into a smooth distance. K is used to define a family of functions
KT parameterized by T, with kT (δ) = K(δ

T
). T is used to control the size

Speeding up the self organizing map for dissimilarity data 711

of the neighborhood [Anouar et al., 1997], [Dreyfus et al., 2002]; when the
parameter T is small, there are few neurons in the neighborhood. A simple

example of KT is defined by KT (δ) = e−
δ2

T2 .
During the learning, we minimize a cost function E by alternating an

assignment step and a representation step. During the assignment step, the
assignment function f assigns each individual zi to the nearest neuron, here
in terms of the function dT :

f(zi) = arg min
c∈C

dT (zi, Ac) (2)

If there is equality, we assign the individual zi to the neuron with the
smallest label.

During the representation step, we have to find the new individual refer-
ents A∗ that represent the set of observations in the best way in terms of the
following cost function E:

E(f, A) =
∑

zi∈Ω

dT (zi, Af(zi)) =
∑

zi∈Ω

∑

r∈C

KT (δ(f(zi), r))
∑

zj∈Ar

d2(zi, zj) (3)

This function calculates the adequacy between the induced partition by the
assignment function and the map referents A.

The criterion E is additive so this optimization step can be carried out
independently for each neuron. Indeed, we minimize the m following func-
tions:

Er =
∑

zi∈Ω

KT (δ(f(zi), r))
∑

zj∈Ar

d2(zi, zj) (4)

In the classical batch version, this minimization of E function is immedi-
ate because the positions of the referent vectors are the averages of the data
samples weighted by the kernel function.
Here is the algorithm:

Initialization: iteration k = 0, choose an initial codebook A0. Fix
T = Tmax and the total number of iterations Niter

Iteration: At iteration k, the set of individual referents of the previous
iteration Ak−1 is known. Calculate the new value of T :

T = Tmax ∗ (
Tmin

Tmax

)
k

Niter−1

I affectation step: up date the affectation function fAk associated
to the Ak−1 referent. Affecting each individual zi to the referent as defined
in equation (2).

I representation step: determine the new codebook Ak∗ that min-
imizes the E(fAk , A) function (with respect to A) Ak∗

c is defined from equa-
tion (4).

Repeat Iteration until T = Tmin

712 El Golli

3 Incorporating sampling

The extension of the SOM to dissimilarity data (DisSom) is a solution for
different kind of complex data since we can define a dissimilarity but the
computational complexity constitute a problem when we have a large data
sets. In order to handle large data sets, we need an efficient mechanism
for reducing the size of the learning set of the DisSom. One approach to
achieving this is via random sampling (S ⊂ Ω), the key idea is to apply
DisSom’s clustering algorithm to the new learning set S drawn from the
data set rather than the entire data set. Typically, the random sample S

will fit in main memory and will be much smaller than the original data set.
Consequently, significant improvements in execution times for DisSom can be
realized. When we choose a random samples S of moderate sizes we preserve
information about the geometry of clusters fairly accurately, thus enabling
DisSom to correctly cluster the input. We propose to use the algorithm [?]
for drawing a sample randomly from data using constant space.

Data set Ω -
random
sample
S

-
Partition
sample with
DisSom

- Detection of
small clusters

-
Label the
remainder
data S

′

?
Finding a new rep-
resentations for these
clusters among the
remainder data

6

Fig. 1. Overview of the steps of optimized DisSom

Once clustering of the random sample S is completed, the individual ref-
erent of each cluster is used to label the remainder of the data set (S′), where
Ω = S ∪ S′ and S ∩ S′ = ∅. Each data point zi ∈ S′ will be assigned to
the closest individual referent of the map using the assignment function f

(equation 2). But since we do not consider the entire data set, information
about certain clusters may be missing in the input. As a result, our clus-
tering algorithm may miss out certain clusters or incorrectly identify certain
clusters. To this end, before labelling the remainder of the learning set we
detect small clusters (c) and we have to find new individuals referent from
the remainder data S′ that minimizing the inertia criterion of the clusters c:

arg min
zi∈S′

∑

zj∈c

d2(zi, zj)

To detect outliers we can use the Chernoff bounds. In fact, assuming
that each cluster has a certain minimum size, we can use Chernoff bounds

Speeding up the self organizing map for dissimilarity data 713

[Motwani and Raghavan, 1995] to calculate the minimum sample size for
which the sample contains, with high probability, at least a fraction fr of
every clusters [Guha et al., 1998].

The steps involved in clustering with DisSom are described in Figure 1.
Since the learning set of the DisSom clustering algorithm is a set of randomly
sampled points from original data set, the final k clusters involve only a
subset of the entire set of points. In DisSom, the algorithm for assigning the
appropriate cluster labels to the remaining data points employs a fraction of
randomly selected individuals referent for each of the final k clusters. Each
data point is assigned to the cluster containing the individual referent closest
to it.

4 Conclusion

In this paper, we propose to speed up the self organizing map on dissimilarity
data for large data sets. In fact, we propose to employ random sampling that
allows to handle large data sets efficiently.

References

[Anouar et al., 1997]F. Anouar, F. Badran, and S. Thiria. Self organized map, a
probabilistic approach. 1997.

[Dreyfus et al., 2002]G. Dreyfus, J.M. Martinez, M. Samuelides, M. Gordon,
F. Badran, S. Thiria, and L. Hérault. Réseaux de neurones méthodologie et
applications. Eyrolles, Paris, 2002.

[El Golli et al., 2004]A. El Golli, B. Conan-Guez, and F. Rossi. a self-organizing
map for dissimilarity data. In D. Banks, L. House, F. R. McMorris, P. Arabie,
and W. Gaul, editors, Classification, Clustering and Data Mining Application
(Proceeding of IFCS), pages 61–68, Chicago, Illinois, 2004. Springer.

[Guha et al., 1998]S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering
algorithm for large databases. In In ACM SIGMOD Conf., pages 73–84, 1998.

[Kohonen, 1982a]T. Kohonen. Analysis of a simple self-organizing process. Biol.
cybern., 44:135–140, 1982.

[Kohonen, 1982b]T. Kohonen. Self-organized formation of topologically correct fea-
ture map. Biol. Cybern, 43:59–69, 1982.

[Kohonen, 1997]T. Kohonen. Self-Organizing Maps. Springer Verlag, New York,
1997.

[Motwani and Raghavan, 1995]R. Motwani and P. Raghavan. Randomized algo-
rithms. In Cambridge university press, 1995.

