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Abstract. Statistical units described by interval-valued variables represent a spe-
cial case of Symbolic Objects, where all descriptors are quantitative variables. In
this context, the paper presents two different metrics in R

p for interval-valued data
that are based on the definition of the Hausdorff distance in R. Hausdorff distance
in R

p (for any p ≥ 1) is a L∞ norm between pairs of closed sets. However, when
p > 1 the problem complexity leads towards the definition of L2 norms approxi-
mating as well as possible the Hausdorff distance. Given a set of n units described
by p interval-valued variables, we compute and represent the distances over facto-
rial planes that are defined by factorial analyses that are consistent with the two
distance measure definitions.
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1 Introduction

Let Ω = {ω1, ω2, . . . , ωn} be a set of individuals with description in the space
IR

p, where IR
p indicates the p-dimensional space of the closed subsets in

R. The individuals can be modeled as Symbolic Objects (SO) described
by interval descriptors. Interval data represent a special case of set-valued
data, where the sets are compact and identified by ordered couples of values:
[a] = [a, a] ⊂ R, which correspond to the interval bound values [Hickey et
al., 2001]. The generic n × p interval data matrix [A] has general term
[a]i,j , where i = 1, . . . , n and j = 1, . . . , p indicate the generic statistical unit
and the generic descriptor, respectively. The general term [a]i,j can also be
represented as the midpoint ac

i,j and range (or radius) ar
i,j notation: [a]i,j =
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[ai,j , ai,j ] = [ac
i,j − ar

i,j , a
c
i,j + ar

i,j ]. Midpoints and ranges are respectively
defined by:

ac = 1

2
(a + a), ar = 1

2
(a − a).

In the midpoints/ranges notation, the matrix [A] is split in the matrices
Ac and Ar that are called center and range matrix, respectively.

The interval (data) arithmetic has a wide specialized literature, see
[Alefeld and Mayer, 2000] for an exhaustive survey. However, the direct treat-
ment of interval-variables in statistics is limited to very few cases, this occurs
because the computation of the variance-bounds is an NP-hard problem and
does not have approximate solutions [Xiang et al., 2004]. It is worth noticing
that this aspect involves also the Principal Component Analysis (PCA) and
factorial analysis, more generally.

Facing the problem from a geometric point of view and starting from dif-
ferent definitions of distance between intervals, many authors have proposed
different approaches to the factorial analysis for interval data (see [Cazes et
al., 1997], [Lauro and Palumbo, 2000], [Lauro and Palumbo, 2005], [Giordani
and Kiers, 2004]). Generally, a distance between intervals takes into account
only some representative points. Cazes et al. and Giordani and Kiers based
their analysis on the distance between the interval bounds (vertices); Lauro
and Palumbo proposed a distance measure based on the interval centers and
radii (or ranges). However, there exist many distance definitions for interval
data and more generally for set-valued data; given any general function of
distance or proximity, it is possible to arrange a n × n matrix on which to
perform a MultiDimensional Scaling (MDS) analysis and to represent the SO
as points in the reduced space.

Dealing with punctual data, a statistical unit is represented by a dimen-
sionless point in R

p ∀p; whereas, the geometric nature of a closed subset
ωi in R

p varies according to p; it is a segment if p = 1, a parallelogram if
p = 2 a parallelepiped when p = 3 and, more generally, a parallelotope when
p > 3, where ωi = ([a]i,1, [a]i,2, . . . , [a]i,p) indicates the generic subsets in R

p,
∀p ≥ 1.

Differently from the MDS, our aim is to represent the distances but also
the size and shape of the SO [Lauro and Palumbo, 2005].

In section 2 we shall introduce the Hausdorff metric and in section 3 we
shall present two distances for interval valued data in IR

p, both of them
are derived from the Hausdorff notion of distance. Section 4 presents an
application of the two distances on the Italian peppers data set. Distances
and SO sizes and shapes are represented over factorial planes by means of
two factorial analyses; section 5 closes the paper.

2 Distance measures in IR
p

In this section we present the Hausdorff metric for interval data and we
introduce two different generalizations in the IR

p space. We shall show that



Multidimensional Interval-Data: Metrics and Factorial Analysis 691

these distances are good approximations of the Hausdorff distance in R
p and

can be easily decomposed in suitable factorial models.
The Hausdorff metric was proposed by Felix Hausdorff in the early of 20th

century as a measure of distance between compact subsets in R
p.

Given a metric d(·), the distance from a generic point x ∈ R
p to a closed

subset A ⊂ R
p is defined as:

d(x, A) = min
ã∈A

d(x, ã).

Let H(X) be the space of all non-empty compact subsets of X , the Haus-
dorff metric on H(X) is defined on the basis of the following quantities:

h(A, B) = max
ã∈A

d(ã, B), h(B, A) = max
b̃∈B

d(b̃, A),

where {A, B} ∈ H(X) and {ã ∈ A, b̃ ∈ B}.
The Hausdorff distance H(A, B) is defined by:

H(A, B) = max{max{d(ã, B)}, max{d(b̃, A)} =
= max (h(A, B), h(B, A)) . (1)

In the special case of R, the Hausdorff distance between two generic intervals
is given by: H(A, B) = max{| a − b |, | a − b |} =| ac − bc | + | ar − br | .

It is easy to show that H(A, B) ≥ 0 and H(A, B) = H(B, A). Moreover,
let C be a generic compact subset in R, the triangular inequality H(A, C) ≤
H(A, B) + H(B, C) can be easily proved taking into account the definition
of distance in (1) [Neumaier, 1990].

3 Generalization of H(A, B) in R
p

The generalization of the Hausdorff distance in IR
p tends to be very complex

as p tends to be large. Readers interested in the properties of the Hausdorff
metric in R

p space may refer to [Braun et al., 2003]. However, when the
compact subsets in IR

p are restricted to some special cases, the Hausdorff
metric can be easily generalized. This paper will focus the attention on two
special cases: boxes and hyperspheres.

3.1 Distance between boxes

In order to have a distance measure easy to handle in IR
p, we introduce a

measure of distance that generalizes the Minkowski metric.
In the p−dimensional space R

p, H(X1, X2, . . . , Xp) indicates the set of all
possible bounded boxes (or parallelotopes) in the space IR

p.
Given two boxes {A, B} ∈ H(X1, X2, . . . , Xp), the quantity:

H(A, B) =
{

∑p
j=1

| H(Aj , Bj) |
α
}

1

α

≥ 0, (2)
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for any α ≥ 1, is a metric. It is obvious that H(A, A) = 0 ⇔ A = A,
∀A ∈ H(X1, X2, . . . , Xp), being H(Aj , Aj) = 0, ∀j = 1, . . . , p. The two
following properties of (2) can be easily demonstrated:

i ) H(A, B) = H(B, A) (Symmetry):
For any (A, B) ∈ H(X1, X2, . . . , Xp) is:

H(A, B) =
{

∑p

j=1
[H(Aj , Bj)]

α
}

1

α

=

=
{

∑p
j=1

[H(Bj , Aj)]
α
}

1

α

= H(B, A) (3)

given the symmetry of H(Aj , Bj) for any j = 1, . . . , p.
For any A ∈ H(X1, X2, . . . , Xp) is:

H(A, A) =
{

∑p

j=1
[H(Aj , Aj)]

α
}

1

α

= 0 (4)

ii ) H(A, B) + H(A, C) ≥ H(B, C) (Triangular inequality): For any
(A, B, C) ∈ H(X1, X2, . . . , Xp) under the hypothesis that the distance
H(Aj , Bj) satisfies the triangular inequality for any j = 1, . . . , p, this
follows from equation (1) (see [Neumaier, 1990] for a complete specifica-
tion of the metric properties in the IR space). The following proves the
inequality H(A, B) + H(A, C) ≥ H(B, C):

H(A, B) + H(A, C) =
{

∑p

j=1
[H(Aj , Bj)]

α
}

1

α

+
{

∑p

j=1
[H(Aj , Cj)]

α
}

1

α

≥

≥
{

∑p

j=1
[H(Aj , Bj) + H(Aj , Cj)]

α
}

1

α

≥

≥
{

∑p
j=1

[H(Bj , Cj)]
α
}

1

α

= H(B, C), (5)

being H(Aj , Bj) + H(Aj , Cj) ≥ H(Bj , Cj) satisfied for any j, according
to the Hausdorff metric definition in R.

The distance in IR
p introduced in (2), for α = 2 can also be expressed in

terms of centers and radii:

H(A, B) =

√

√

√

√

p
∑

j=1

[

(ac
j − bc

j)
2 + (ar

j − br
j)

2 + 2 | ac
j − bc

j | | ar
j − br

j |
]

. (6)

This notation will be useful when we shall present the factorial model.

3.2 Hausdorff distance between two spheres in R
p

Another distance in R
p, which derives from the Hausdorff metric in R, is given

by the distance defined between the spheres inscribing the parallelotopes. This
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distances coincides with the Hausdorff metric when the SO are hypercubes
(equal edges).

Before illustrating the distance we prove the following theorem that de-
fines the Hausdorff distance between spheres in the R

p space.
In this section capital letters {A, B, . . .} indicate spheres in the R

p space;
the general sphere A has center in Ac = [ac

j ] (j = 1, . . . , p) and radius Ar ≥ 0.

Theorem 1 Given two spheres {A, B} in the R
p space, the Hausdorff dis-

tance between A and B is given by:

H(A, B) =
√

∑p

j=1

(

ac
j − bc

j

)2

+ | Ar − Br | (7)

Proof. We remind that the equation of the sphere A is:
∑p

j=1

(

xj − ac
j

)2

=

(Ar)
2
. The minimum and the maximum Euclidean distance from a point

O = [xj ] with (j = 1, . . . , p) to the sphere A are the radii of the spheres,
having centers in O, external to A and containing A, respectively. So that,
the Euclidean Hausdorff distance between O and A is the minimum one.

Two spheres A and B are tangent if:

∑p

j=1

(

ac
j − bc

j

)2

= (Ar ± Br)
2
. (8)

If A does not intersect B, we have the sign +; if A is inside B, we have
the sign −. Let us suppose that O represents the center of the sphere B. If
O belongs to A, the minimum distance between O and A is 0, obviously. If
O is external to A, we need to solve the following equation for r�:

∑p
j=1

(

ac
j − xj

)2

= (Ar + r�)2. (9)

Solving with respect to r� we have:

r� =
√

∑p
j=1

(

ac
j − xj

)2

− Ar = min
ã∈A

d(O, A). (10)

Let us assume that O belongs to B. The maxmin{d(B, A)} is given by:

max
b̃∈B

min
ã∈A

(

d(ã, b̃)
)

= max
b̃∈B

(

√

∑p

j=1

(

ac
j − b̃j

)2

)

− Ar. (11)

Equivalently, the minimum radius sphere with the same center as A that
both contains and is tangent to B.

According to (8) we have to solve the following equation in r∗:

p
∑

i=1

(

ac
j − bc

j

)2

= (r∗ − Br)
2

r∗ =
√

∑p

j=1

(

ac
j − bc

j

)2

+ Br. (12)
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Then the Hausdorff distance based on the Euclidean distance from a
sphere B to a sphere A is:

h(B, A) = max
b̃∈B

min
ã∈A

d(b̃, ã) =
√

∑p

j=1

(

ac
j − bc

j

)2

+ (Br − Ar) (13)

then H(A, B) = max(h(A, B), h(B, A)) =
√

∑p

j=1

(

ac
j − bc

j

)2

+ |Ar − Br|

and the proof is complete. 2

Given two spheres {A, B} in the R
p space, H(A, B) is a metric. Reflexive

and symmetric properties are intuitive. We need to prove that H(A, B) +
H(B, C) ≥ H(A, C) is true (triangular inequality).
For the triangular property of Euclidean (for centers) and Manhattan (for
radii) distance we may assert that:

√

∑p

j=1

(

ac
j − bc

j

)2

+
√

∑p

j=1

(

bc
j − cc

j

)2

≥
√

∑p

j=1

(

ac
j − cc

j

)2

|Ar − Br| + |Br − Cr| ≥ |Ar − Cr| .

Then it follows that:
√

∑p

j=1

(

ac
j − bc

j

)2

+ |Ar − Br| +
√

∑p

j=1

(

bc
j − cc

j

)2

+ |Br − Cr| ≥

≥
√

∑p

j=1

(

ac
j − cc

j

)2

+ |Ar − Cr|

4 A comparison between two metrics

This section presents a comparison between the factorial analysis based on
the two proposed measures of distance for interval valued variables. The
example shows the results obtained on the “Italian Peppers” dataset; these
data are a good example of native interval variables, they describe some
chemio-physical properties (H2O, Glicide, Lipid, Protein) of eight different
species of Italian peppers: (Cuban, Cuban Nano, Corno di Bue, Grosso di
Nocera, Pimento, Quadrato d’Asti, Sunnybrook, Yolo wonder). [Lauro and
Palumbo, 2005]

Each factorial approach has been chosen to ensure the maximum degree of
consistency with respect to the distance measure. We remind that statistical
factorial analysis for interval variables does not limit itself to the study of
proximities among dimensionless points but, it must take into account the
size and shape of the compact subsets in R

p

Let [X] be a generic n × p interval data matrix. In order to simplify the
notation, we define the centers matrix C = 1

2
(X +X) and the ranges matrix

R = 1

2
(X − X) where, X and X are the minimum and the maximum values

matrices, respectively. All these matrices are of n × p order.
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The arithmetic mean of the generic interval-valued variables [x]j , accord-
ing to the the basic principles of the interval arithmetic [Hickey et al., 2001]
is defined as:

¯[x]j =
1

n

n
∑

i=1

[x]i,j =
1

n

[

n
∑

i=1

xi,j ,

n
∑

i=1

xi,j

]

=

{

1

n

n
∑

i=1

xc
i,j ,

1

n

n
∑

i=1

xr
i,j

}

. (14)

Whereas dealing with single valued variables, in R space, difference and
distance measures are equivalent apart the sign; this is not true when variable
is interval-valued. Lauro and Palumbo (2005) defined the following measure
of variability for interval-valued variables based on the Hausdorff distance:

var([x]j) =
1

n

n
∑

i=1

[

| xc
i,j − x̄c

j | + | xr
i,j − x̄r

j |
]2

, (15)

where x̄c
j and x̄r

j represent, respectively, the mean midpoint and the mean
range of the generic interval variable [X ]j. We call centered and reduced the
interval valued variable:

[z]j = {zc
j , z

r
j} =

{

(xc
j − x̄c

j)
√

var[x]j
,
| xr

j − x̄r
j |

√

var[x]j

}

.

The distance presented in equation (6) can be rewritten in matrix notation
as: H2 = CCT + RRT+ | C || RT | + | R || CT |, where we assume that
interval variables have been centered and reduced. The quantity trace(H2)
is the sum of the n squared distances from the mean. However, in the PCA
practice it is preferred to apply the SVD to the p×p correlation (or covariance)
matrix, in this case we will apply the SVD to the matrices CTC and RTR.
The MR-PCA of Lauro and Palumbo performs two separate PCA’s on the
matrices CTC and RTR and permits to recover the intervals on the factorial
plan by adding and subtracting the rotated and translated radii into the
space of the centers coordinates in their own space. The rotation matrix T

is defined maximizing the quantity CTR. Notice that the square matrix Σ:

Σ = CTC + RTR+ | CT || R | + | RT || C |

is symmetric; the extra-diagonal terms vary in [−1, 1] and the diagonal terms
are equal to 1. It represents a sort of correlation matrix for interval valued
variables, where the total correlation is the sum of three different compo-
nents: midpoints association, ranges association and the midpoints/ranges
congruence.

The output of the method of Palumbo and Lauro consists in a represen-
tation of the centers and of the radii taken into account singly, and of a joint
representation where interval objects are represented by rectangles having
sides parallel to the axes. However, here we propose only the midpoints and
radii joint representation.
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In order to present the second factorial approach based on the definition
of the distance in (7), differently from the previous approach, we consider
that both center and radii variables, respectively in the matrices C and R,
are reduced with respect to standard deviations of the centers (see [Giordani
and Kiers, 2004]). Notice that the matrix B in (7) has a constant value over
the main diagonal, it corresponds to the norm of the average units radius.
The matrix notation of the distance in (7) is equal to:

∑n

i=1
H(Ai, Ā)2 =

tr CTC + tr RTR. The symbol Ā indicates the mean SO that is obtained by
applying the formula (14). The problem consists in finding the orthogonal
subspace the maximizes tr CTC + tr RTR simultaneously. We introduce the
super matrix Y:

Y =

[

C

R

]

.

The projection of Y on a common orthogonal subspace can be obtained by
means of the extraction of the principal components of CTC denoted as DCC.
Considering the projection of Y on the space spanned by the centers using
the projector PC and on the orthogonal projection using P⊥

C
we have:

Y = PCY + P⊥
CY = (PCC,PCR) + (P⊥

CC,P⊥
CR) =

= (C,P⊥
C
R) + (0,P⊥

C
R) (16)

that leads to the following decomposition:

DYY =

[

DCC DCR

DRC DRR

]

=

[

DCC DCR

DRC DRRC

]

+

[

0 0
0 DRR.⊥

C

]

(17)

where DRR.⊥
C

can be obtained computing the first principal components of C
and then obtaining the structure matrix of DCC on the base of the set of the
principal components of DCC. For further details see [Takeuchi et al., 1982].
Taking into account these results, there are several possible approaches to
the analysis [Lebart et al., 1995]; for sake of space, here we do not discuss
the choices and their motivations. Figure 1 shows the results based on the
distance between boxes: ranges are rotated and projected into the space
of the midpoints as supplementary points. The total variability associated
to the first factorial plan is 65.76%. Figure 2 shows the results obtained
representing the SO with respect to the distance between hyperspheres. Here
the variability associated to the first factorial plan is equal to 76.48%.

Looking at the outputs we notice that the SO can be distinguished accord-
ing to their position, size and shape. It is worth noticing that, with respect
to the positions, results of the two analyses are consistent. SO have the same
order on the first factor in both analyses. The size interpretation is quite
intuitive. Few words are necessary to correctly interpret the shapes: it is
necessary to take into account the shape itself and also the range orientation.
Looking at figure 1, we notice that Sunnybrook and Quadrato d’Asti have
similar shapes but they have opposite range orientation. This is confirmed
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Fig. 1. Distance between boxes: first factorial plan (65.76%)

Fig. 2. Distance between hyperspheres: first factorial plane (76.48%)

also in the other analysis: in figure 2 we see that Sunnybrook and Quadrato
d’Asti appear orthogonal.

To understand which variables have mainly characterized the positioning
and the size and shape of the SO it is necessary to look at the variables
representations on the same factorial plans.

5 Conclusion and future work

Since Edwin Diday introduced Symbolic Data Analysis [Diday, 1989] we have
noticed a growing interest for the analysis of complex data structures. The
first book entirely dedicated to Symbolic Data Analysis appeared five years
ago [Bock and Diday, 2000]. These new statistical data need new concepts
not having a counterpart in the “classical” data analysis, necessarily. At the
beginning, many have proposed special data-codings to make data tractable
by the traditional methods; so that, most of the big effort done up to now
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allowed us to treat complex data with suitably adapted methods for single-
valued data. We believe that the next challenge is to setup numerical and
statistical methods that are specifically designed for the complex-data struc-
tures. We see two main research directions: i) definition of new statistical
indexes (measures of central tendency, variability, etc.) that take into account
the innovative nature of the data; ii) development of analytical and numeri-
cal methods allowing to treat intervals as mathematical structures. Interval
arithmetic has been mainly developed to treat data imprecision caused by
the “old” fix-point CPU (the round-off error) and its generalization to the
statistical interval-valued data requires a big effort.

Nevertheless, the treatment of set-valued variables is a field with very
high potential for further developments.
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