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Abstract. Interval variables can be measured on very different scales. We first
remind a general methodology used for measuring the dispersion of a variable from
an optimal center and we define two measures of dispersions associated to two op-
timal ”centers” for interval variables. Then we study the relations between the
standardization of a data table and the use in clustering of a normalized distance.
Finally we define two normalized distances between hyper-rectangles and their use
in two normalized k-means clustering algorithms.
Keywords: Interval data, Standardization, Normalized Hausdorff distance, Clus-
tering.

1 Introduction

A classical quantitative data table (xj
i )n×p describes n objects {1, ..., i, ..., n}

by p quantitative variables {1, ..., j, ..., p} which may be defined on different
scales. This phenomenon is measured by the dispersion (standard deviation,
range, percentile ranges...) of each variable.

Dealing with variables measured on very different scales is a problem
when comparing two objects globally on all the variables. For instance the
Euclidean distance or more generaly the Lp-distance will give implicitly more
importance to variables of strong dispersion and the comparison between ob-
jects will only reflect their differences on those variables. This phenomenon
has then an incidence on the clustering into classes of homogeneous objects
(i.e. objects highly similar to each other): only variables with strong disper-
sion will have an important contribution in the construction of clusters. A
natural way to avoid this effect is either to normalize the data table or to use
normalized distances.

Recently, several clustering methods have been proposed in the field of
symbolic data analysis [Diday, 1988], [Bock and Diday, 2000]. Several works
on k-means clustering of interval data sets have been published [Bock, 2001],
[Chavent and Lechevallier, 2002], [De Carvalho et al., 2003], [Chavent et al.,
2003], [De Souza and De Carvalho, 2004] and [Chavent, 2004].

The problem of the standardization of this new type of data is now nat-
urally arising. In [Chavent, 1997], the symbolic data set was not directly
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normalized but normalized distances between symbolic objects were used:

d(i, i′) = (

p
∑

j=1

1

(σj)α
d(xj

i , x
j
i′ )

α)1/α (1)

where d was a measure of comparison between two symbolic descriptions (two
intervals for instance) and σj a measure of dispersion of a variable j defined
by:

σj =
1

2n

n∑

i=1

n∑

i′=1

d2(xj
i , x

j
i′) (2)

The use of a double sum in [2] was not really appropiate for computing σj

on voluminous data sets.
This question of the standarization of symbolic data has also been clearly

raised for interval data in [De Carvalho et al., 2003] where the authors pro-
posed measures of dispersion based on the dispersion of the centers, the lower
bounds or the upper bounds of the intervals.

In [Chavent and Lechevallier, 2002] and [Chavent, 2004], two k-means
clustering algorithms of hyper-rectangles with Hausdorff distances where pro-
posed. The idea here is to use the explicit formula of the optimum class
prototype given in those two papers in order to define two ”mean” intervals
optimizing two measures of dispersion (see section 2). Those two measures of
dispersion are called the ”star” and the ”radius” of an interval variable (see
sections 2.1 and 2.2). After a few words on the relation between standard-
izing an interval data table and using a normalized distance between hyper-
rectangles (see section 3), the two k-means algorithms given in [Chavent and
Lechevallier, 2002] and in [Chavent, 2004] are ”normalized” (see section 4).

In the rest of this paper we will consider an interval data table (xj
i )n×p

where each object i is described for each variable j by an interval

x
j
i = [aj

i , b
j
i ] ∈ I = {[a, b] | a, b ∈ < , a ≤ b}

Each object i is then described by an hyper-rectangle of <p:

xi =

p
∏

j=1

[aj
i , b

j
i ]

2 Measure of centrality and dispersion

For a classical quantitative variable j the mean squared deviation measures
the dispersion from the mean x̄j which is the optimal solution ŷ of the fol-
lowing minimization problem:

min
y∈<

n∑

i=1

(xj
i − y)2 = min

y∈<

n∑

i=1

d2(xj
i , y)

︸ ︷︷ ︸

f(y)

(3)
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In the same way the mean absolute deviation measures the dispersion from
the median x

j
M which is the optimal solution ŷ of the following minimization

problem:

min
y∈<

n∑

i=1

|xj
i − y| = min

y∈<

n∑

i=1

d(xj
i , y)

︸ ︷︷ ︸

f(y)

(4)

In both cases, f(ŷ) is a measure of dispersion.

For an interval variable j we have x
j
i = [aj

i , b
j
i ] and the ”measures” of

centrality are not real values like the mean or the median values but an
interval of values noted y = [α, β]. We have seen that the mean and the
median are optimal centers of two different dispersion measures f . Our aim

is then to define optimal centers ŷ = [α̂, β̂] for functions f chosen to measure
the dispersion. Those functions are based on a distance d between intervals.

The distance chosen here to compare two intervals is the Hausdorff dis-
tance. This set-distance dH is simplified in the particular case of two intervals
to:

dH([aj
i , b

j
i ], [a

j
i′ , b

j
i′ ]) = max(|aj

i − a
j
i′ |, |b

j
i − b

j
i′ |) (5)

In the next sections we will define two different optimal ”centers” ŷ = [α̂, β̂]
and two different measures of dispersion f(ŷ).

2.1 The ”star”

We consider the following measure of dispersion from ŷ:

f(ŷ) =

n∑

i=1

dH(xj
i , ŷ) (6)

where dH is the Hausdorff distance between the intervals x
j
i and ŷ and where

ŷ is defined by:

ŷ = arg min
y∈I

n∑

i=1

dH(xj
i , y) (7)

We use a result of [Chavent and Lechevallier, 2002] to define an explicit

formula for the optimal “central” interval ŷ = [α̂, β̂]: by a simple rewriting of
the intervals x

j
i = [aj

i , b
j
i ] according to their middle point m

j
i and their half-

length l
j
i , the authors proved that the middle point µ̂ and the half-length λ̂

of the interval ŷ minimizing
∑n

i=1 dH(xj
i , y) is:

µ̂ = median{mj
i | i = 1, ..., n} (8)

λ̂ = median{lji | i = 1, ..., n} (9)
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The following measure of dispersion σj is defined:

σj =

n∑

i=1

max(|aj
i − µ̂ + λ̂|, |bj

i − µ̂ − λ̂|) (10)

Because the formulation of f given in (6) is close to the measure of homo-
geneity of a cluster C called the ”star”:

min
i∈C

∑

j∈C

dij

we will call σj defined in (10) the ”star” of the interval variable j.

2.2 The ”radius”

We consider the following measure of dispersion from ŷ:

f(ŷ) = max
i=1...n

dH(xj
i , ŷ) (11)

where dH is once again the Hausdorff distance between the intervals x
j
i and

y and where ŷ is defined by:

ŷ = arg min
y∈I

max
i=1...n

dH(xj
i , y) (12)

We use here a result of [Chavent, 2004] to define an explicit formula for

the optimal “central” interval ŷ = [α̂, β̂]: the author proved that the lower
and upper bounds of interval ŷ minimizing maxi=1...n dH(xj

i , y) are:

α̂j =
maxi=1...n a

j
i + mini=1...n a

j
i

2
(13)

β̂j =
maxi=1,...,n b

j
i + mini=1,...,n b

j
i

2
(14)

The following measure of dispersion σj can then be defined:

σj = max
i=1...n

max(|aj
i − α̂j |, |bj

i − β̂j |) (15)

Because the formulation of f given in (11) is close to the measure of homo-
geneity of a cluster C called the ”radius”:

min
i∈C

max
j∈C

dij

we will call σj defined in (15) the ”radius” of the interval variable j.
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3 Standardization, distance and clustering

For a classical quantitative data table (xj
i )n×p, standardizing is a technique

for removing location and scale attributes. The standardized variables zj

have mean equal to 0 and standard deviation equal to 1 when the variables
xj are centered by their mean x̄j and normalized (reduced) by their standard
deviation σj . The Euclidean distance between two objects i and i′ of the
standardized matrix (zj

i )n×p is then:

d(zi, zi′) =

√
√
√
√

p
∑

j=1

(
x

j
i − x̄j

σj
−

x
j
i′ − x̄j

σj
)2 (16)

=

√
√
√
√

p
∑

j=1

1

(σj)2
(xj

i − x
j
i′ )

2 (17)

= dM (xi, xi′) (18)

where dM is the weighed Euclidean distance and M = D1/σ2 . This weighed
distance is also sometimes called the normalized Euclidean distance.

We can then notice that:

• the clustering obtained from the initial data table (xj
i )n×p is similar to the

clustering obtained from the centered data table (xj
i−x̄j)n×p (because the

distances are equal). Indeed we are not directly concerned in this article
with the problem of centering interval data even if we have defined a
“central” interval previously in this article.

• the clustering performed with the initial data table (xj
i )n×p and the nor-

malized Euclidean distance dM is similar to the clustering performed
with the standardized (or simply normalized) data table (zj

i )n×p and the
”simple” Euclidean distance.

We have of course the same kind of results with the Minkowsky distance.

The questions are now: do we have the same kind of results for interval
data ? Is it equivalent to ”normalize” the intervals x

j
i = [aj

i , b
j
i ] and to

use a ”normalized” distance ? What does “normalizing” an interval or
“normalizing” a distance between hyper-rectangles mean ?

Here we will try to answer those questions in the particular case of two
distances between hyper-rectangles of <p used in [Chavent and Lechevallier,
2002] and [Chavent, 2004]. We consider

xi =

p
∏

j=1

[aj
i , b

j
i ]

︸ ︷︷ ︸

xj

i
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and

xi′ =

p
∏

j=1

[aj
i′ , b

j
i′ ]

︸ ︷︷ ︸

xj

i′

The first distance d1 is not a real <p-set Hausdorff distance but a sum of
Hausdorff distances dH between intervals:

d1(xi, xi′ ) =

p
∑

j=1

dH(xj
i , x

j
i′) (19)

The second distance d2 is a real <p-set Hausdorff distance called the
L∞-Hausdorff distance which can be written in the particular case of hyper-
rectangles as a maximum of Hausdorff distances dH between intervals:

d2(xi, xi′ ) = max
j=1...p

dH(xj
i , x

j
i′) (20)

If we consider now that “normalizing” an interval x
j
i = [aj

i , b
j
i ] consists in

dividing its lower and upper bounds by the same measure of dispersion σj ,

the “normalized” interval of x
j
i is z

j
i = [

aj

i

σj ,
bj

i

σj ].

The Hausdorff distance between two “normalized” intervals is then:

dH(zj
i , z

j
i′) = max(|

a
j
i

σj
−

a
j
i′

σj
|, |

b
j
i

σj
−

b
j
i′

σj
|) =

1

σj
dH(xj

i , x
j
i′) (21)

and the distances d1 and d2 between the two “normalized” hyper-rectangles
zi and zi′ can then be written as:

d1(zi, zi′) =

p
∑

j=1

1

σj
dH(xj

i , x
j
i′ ) (22)

and

d2(zi, zi′) = max
j=1...p

1

σj
dH(xj

i , x
j
i′) (23)

The normalized distance is then defined for d1 by:

d1(xi, xi′ ) = ||
(dH(xj

i , x
j
i′)j=1,...,p

σj
||L1

(24)

and for d2 by:

d2(xi, xi′) = ||
(dH(xj

i , x
j
i′)j=1,...,p

σj
||L∞

(25)

Finally, we have once again the result that the clustering performed with
the initial interval data table (xj

i )n×p and the normalized distances d1 or
d2 (given in (24) and 25 )) is similar to the clustering performed with the
“normalized” interval data table (zj

i )n×p and the “simple” distances d1 or d2

(given in (19) and (20)).
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4 Normalized k-means of hyper-rectangles

Dynamical clustering [Diday and Simon, 1976] called here for simplification k-
means clustering, proceeds by iteratively determining K class prototypes and
then reassigning all objects to the closest class prototype. If the prototype ŷ

of a cluster C is properly defined by optimization of an adequacy criterion f

(measuring the “dissimilarity” between the prototype and the cluster), the
algorithm converges and the partitioning criterion decreases at each iteration.

For classical quantitative data, when the prototype ŷ of a cluster C is the
mean-vector, the adequacy criterion minimized is:

f(y) =
∑

i∈C

d2(xi, y) =
∑

i∈C

p
∑

j=1

(xj
i − yj)2 (26)

When a standardization is necessary, the columns xj are usually normalized

by σj =
√

∑n
i=1(x

j
i − x̄j)2 or the normalized Euclidean distance dM with

M = D1/σ2 is used. The adequacy criterion measured on Ω = {1, ..., n} is
then equal to p, the number of variables.

In the same way when the prototype ŷ of a cluster C is the median-vector
xm, the adequacy criterion minimized is:

f(y) =
∑

i∈C

d(xi, y) =
∑

i∈C

p
∑

j=1

|xj
i − yj| (27)

When a standardization is necessary, the columns xj are normalized by
σj =

∑n
i=1 |x

j
i − xj

m| or the normalized Euclidean distance dM with
M = D1/σ is used. The adequacy criterion measured on Ω = {1, ..., n} is
then once again equal to p, the number of variables.

In the particular case of interval data the optimal prototype of a cluster is
an hyper-rectangle. We can repeat the previous reasoning for ”normalizing”
any k-means clustering algorithm of hyper-rectangles when the prototypes
are properly defined by optimization of an adequacy criterion. Here we use:

• the normalized distance (24) with σj the “star” defined in (10) for ”nor-
malizing” the k-means method of [Chavent and Lechevallier, 2002]

• the normalized distance (25) with σj the “radius” defined in (15) for
”normalizing” the k-means method of [Chavent, 2004]

5 Conclusion

In this paper we have proposed a general approach for the “normalization”
of dynamical clustering algorithms. We have seen that if the prototype of a



Normalized k-means for hyper-rectangles 677

cluster is properly defined by optimization of an homogeneity criterion, this
result can also be used to define a measure of dispersion and then to normal-
ize either the data or the distances. We have applied this methodology in
the particular case of two k-means clustering algorithms of hyper-rectangles.
The first one uses a “star” homogeneity criterion and a distance between
hyper-rectangles which is a sum of Hausdorff distances between intervals.
The second one uses a “radius” homogeneity criterion and the L∞ Hausdorff
distance between hyper-rectangles. The two corresponding dispersion mea-
sures of interval variables called here the “star” and the “radius” are then
simply used to “normalize” those two algorithms.
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