
S-Class, A Divisive Clustering Method, and

Possible ”Dual” Alternatives

Jean-Paul Rasson, François Roland, Jean-Yves Pirçon, Séverine Adans, and
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Abstract. A new partitioning method based on the non-homogeneous Poisson
processes is presented. The principle of construction is of hierarchical divisive
monothetic type. A variable is selected at each stage to cut a group into two sub-
sets in a recursive way. The criterion consists in maximizing the ’gap’ between the
data. This last-one is deduced from the maximum likelihood criterion. A pruning
phase, that is a simplification of the tree structure, based on the Gap test is then
performed. An application of this algorithm on the well-know Ichino’s oils dataset
(interval data) is described.
Keywords: Clustering trees, Non-homogeneous Poisson processes, Gap test, Sym-
bolic data.

1 Introduction

One of the most common tasks in data analysis is the detection and con-
struction of groups of objects in a population E such that objects from the
same group show a high similarity whereas objects from different groups are
typically more dissimilar. Such groups are usually called ’clusters’ and must
be constructed on the basis of the data which were recorded for the objects.
This problem is know as clustering.

The present method is a divisive monothetic clustering method for a sym-
bolic n × p data array X.

The resulting classification structure is a k-partition.

2 Input Data: Interval Data

This algorithm studies the case where n symbolic objects are described by p
interval variables Y1, . . . , Yp.

The interval-valued variable Yj(j = 1, . . . , p) is measured for each element
of the basic set E = {1, . . . , n}. For each element x ∈ E, we denote the
interval Yj(x) by [y

jx
, ȳjx], thus y

jx
(resp. ȳjx) is the lower (resp. the upper)

bound of the interval Yj(x) ⊆ R.
An example is given by table 1.
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3 The Clustering Tree Method

The proposed algorithm is a recursive one intended to divide a given popula-
tion of symbolic objects into classes. According to the clustering tree method,
nodes are split recursively by choosing the best interval variable.

The original contribution of this method lies in the way of splitting a
node. The cut will be based on the only assumption that the distributions
of points can be modeled by non-homogeneous Poisson process, where the
intensity will be estimated by the kernel method. The cut will be made in
order to maximize the likelihood function.

3.1 General Hypothesis: Non-Homogeneous Poisson Process

The only assumption on which the clustering problem rests is that the ob-
served points are generated by a non-homogeneous Poisson process with in-
tensity q(.) and are observed in E, where E is the union of k disjoint convex
fields.

The likelihood function, for the observations x = (x1, x2, . . . , xn) with
xi ∈ Rd, i = 1, . . . , n is:

fE(x) =
1

(ρ(E))n

n
∏

i=1

l1E(xi).q(xi)

where

• ρ(E) =
∫

E
q(x)dx is the integrated intensity;

• q(.) is the process intensity (q(x) > 0 ∀x).

Consequently, if the intensity of the process is known, the solution of the
maximum likelihood will correspond to k disjoint convex fields containing all
the points and for which the sum of the integrated intensities is minimal. For
an homogenous Poisson process on the line, this gives exactly the N-N rule.
When the intensity is unknown, it will be estimated.

3.2 Kernel Method

To estimate the intensity of a non-homogeneous Poisson process, the non-
parametric kernel method is used. Because this algorithm proceeds in a
monothetic way, formulas dont’t need to be extended beyond one dimension.
The kernel estimator, which is a sum of ’bumps’, each of these centered on
an observation, is defined by:

q̂(x) =
1

n

n
∑

i=1

1

h
K

(x − Xi

h

)

where



664 Rasson et al.

• K is the kernel and is a positive continuous symmetric function satisfying
∫

K(x)dx = 1. The kernel determines the shapes of the bumps.

• h is the window width, also called the smoothing parameter and deter-
mines the width of the bumps.

The choice of the smoothing parameter is important. If it is too small,
the estimator degenerates into a succession of peaks located at each point of
the sample. If it’s too large, the estimation approaches an uniform law and
then we will have a loss of details.

3.3 Bumps and Multi-modalities

Within the clustering context, Silverman ([Silverman, 1981], [Silverman,
1986]) defined a mode in a density f as a local maximum while a bump
is characterized by an interval, in such way that the density is concave on
this interval but not on a larger interval.

In the framework of density estimation by the kernel method, the num-
ber of modes will be determined by the smoothing parameter, following Sil-
verman’s assertion : the number of modes is a decreasing function of the
smoothing parameter h ([Silverman, 1981],[Silverman, 1986]).

This has been proved at least for the normal kernel defined by :

KN (t) =
1√
2π

e−
t2

2 .

Consequently, this one was prefered to perform estimation of the intensity
of the non-homogeneous Poisson process.

Because of this choice, there is a critical value hcrit of the smoothing
parameter for which the estimation changes from unimodality to multi-
modality. The split criterion will seek this value.

3.4 Splitting Criteria

For each variable, a dichotomic process computes the highest value of param-
eter h, giving a number of modes of the associated intensities strictly larger
than 1. Once this h determined, E is split into two convex disjoint fields E1

and E2, such that E = E1 ∪ E2, for which the likelihood function

fE1,E2
(x) =

1

(ρ(E1) + ρ(E2))n

n
∏

i=1

l1E1∪E2
.q̂(xi)

is maximum, i.e. for which the integrated density ρ(E1) + ρ(E2) is smallest.
Since the algorithm proceeds variable by variable, the best variable, i.e.

the one which generates the ”largest gap” (the density integrated on this gap
is the largest), is selected.

This procedure is recursively performed until some stopping rule is ful-
filled: the number of points in a node must be under a cut-off value.
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3.5 Pruning Method

At the end of the splitting process, a large tree is obtained. A pruning method
to select the best subtree was then developped. This pruning method takes
the form of a classical hypothesis test: the Gap test ([Kubushishi, 1996],
[Rasson and Kubushishi, 1994]).

The principle is the following: each cut is examined to determine if it is
a good one (Gap Test satisfied) or a bad one (Gap Test unsatisfied). In the
case of two classes D1 and D2, with D1 ∪ D2 = D, the hypotheses are:

H0: there are n = n1 + n2 points in D1 ∪ D2

VS
H1: there are n1 points in D1 and n2 points in D2, with D1 ∩ D2 = ∅.
This pruning method crosses the tree branch by branch, from its root to

its leaves, in order to index the good cuts and the bad cuts. The ends of the
branches for which there are only bad cuts are pruned.

3.6 Application to Interval Data

The current problem is to apply this new method to symbolic data of interval
type. Let an interval set

I = {[ai, bi], i = 1, . . . , n, ai ≤ bi}.

The usual distance used for interval variables is the Hausdorff distance:

dH([a1, b1], [a2, b2]) = Max(|a1 − a2|, |b1 − b2|)

or ([Chavent and Lechevallier, 2002], [Chavent, 1997])

d([a1, b1], [a2, b2]) = |M1 − M2| + |L1 − L2|

where Mi = ai+bi

2 is the middle point of the interval [ai, bi] and Li = bi−ai

2
is its half-length.

So each interval can be represented by its coordinates (middle,half-length),
on the space (M, L) ⊆ IR × IR+.

It is clear that separations must respect the order of the classes centers
and thus, in the half-plane IR × IR+, only partitions invariant in relation to
M are considered.

In the most general case of a non-homogeneous Poisson process, the inte-
grated intensity has to be minimized:

∫ Mi+1

Mi

ρ1(m)dm +

∫ Max(Li,Li+1)

Min(Li,Li+1)

ρ2(l)dl. (1)

Any bipartition generated by a point being located inside the interval
which maximizes (1) is appropriate.
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3.7 Set of Binary Questions for Interval Data

In the framework of the divisive clustering method, the split of a node C
is performed on the basis of one single variable (suitably chosen) and an-
swers ([Chavent and Lechevallier, 2002], [Chavent, 1997]) to a specific binary
question of type ’Is Yj ≤ c?’, where c is called the cut value.

To the binary question ’Is Yj ≤ c?’, an object x ∈ C answers ’yes’ or
’no’ according to a binary function qc : E → {true, false}. The bipartition
(C1, C2) of C induced by the binary question is as follows :

• C1 = {x ∈ C | qc(x) = true}
• C2 = {x ∈ C | qc(x) = false}

Consider the case of interval variables: Let Yj(x) = [α, β], the middle of

[α, β] is mx = α+β
2 .

1. The binary question is ”Is mx ≤ c?”.
2. The function qc is defined by:

• qc(x) = true if mx ≤ c
• qc(x) = false if mx > c

3. The bipartition (C1, C2) of C induced by the binary question is :
• C1 = {x ∈ C | qc(x) = true}
• C2 = {x ∈ C | qc(x) = false}

3.8 Output Data and Results

After the tree-growing algorithm and the pruning procedure, the final clus-
tering tree is obtained.

The nodes of the tree represent the binary questions selected by the al-
gorithm and the k leaves of the tree define the k-partition. Each cluster is
characterized by a rule, i.e, the path in the tree which provided it. The clus-
ters therefore become new symbolic objects defined according to the binary
questions leading from the root to the corresponding leaves.

4 Example on the Oils and Fats Data

The above clustering method has been examined with the well-known Ichino’s
oils dataset. The data set (Table 1) is composed of 8 oils described in terms
of four interval variables.

This divisive algorithm yields the 3-cluster partition represented in the
tree given in figure 1.

Two binary questions correspond to two binary functions E →
{true, false}, given by q1 = [Spec. Grav.(x) ≤ 0.89075] and q2 =
[Iod. Val.(x) ≤ 148.5].

Each cluster corresponds to a symbolic object, e.g. a query assertion:
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Sample Specific Gravity Freezing point Iodine Value Saponification Value

linseed oil [0.930;0.935] [-27;-18] [170;204] [118;196]
perilla oil [0.930;0.937] [-5;-4] [192;208] [188;197]

cottonseed oil [0.916;0.918] [-6;-1] [99;113] [189;198]
sesam oil [0.920;0.926] [-6;-4] [104;116] [187;193]

camelia oil [0.916;0.917] [-21;-15] [80;82] [189;193]
olive oil [0.914;0.919] [0;6] [79;90] [187;196]

beef tallow [0.860;0.870] [30;38] [40;48] [190;199]
hog fat [0.858;0.864] [22;32] [53;77] [190;202]

Table 1. Table of oils and fats

Fig. 1. Clustering tree obtained on the Ichino’oils dataset.

• C1 = [Spec. Grav.(x) ≤ 0.89075],
• C2 = [Spec. Grav.(x) > 0.89075]∧ [Iod. Val.(x) ≤ 148.5],
• C3 = [Spec. Grav.(x) > 0.89075]∧ [Iod. Val.(x) > 148.5].

Then, the resulting 3-cluster partition is: C1 = {beef, hog}, C2 =
{cottonseed, sesam, camelia, olive}, C3 = {linseed, perilla}.

5 Further Works and Conclusions

Following that work, a new clustering method was conceived. It’s also a
hierarchical clustering method but a multivariate agglomerative one. The
basic idea was to find a merging criterion which would have been dual and
complementary to the splitting one. But the strictly dual criterion, consisting
in measuring the area sustended by the density between 2 points (or groups
of points) and then merging the 2 points (or groups) which are the closest in
that sense, presents a risk: gathering 2 points (or groups) which are obviously
in different groups.

If a model in dimension d is used, the real criterion (the maximum like-
lihood criterion) for the divisive method, e.g. between two convex clusters
consists in finding the two clusters such that the difference of the hypervol-
umes sustended by the density between the global convex hulls of the two
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clusters is the largest. In an agglomerative way, this difference should be the
smallest.

Computing hypervolumes causes computational problems. But, if all the
sustended areas (on each axis) between the respective coordinates of the two
points are small, then the hypervolume in dimension d will be small (This
implication is not reversible).

Therefore for each couple of points xi = (xi1, · · · , xid) and xj =
(xj1, · · · , xjd), the following quantities are computed

diss(xi, xj) = max
1≤k≤d

|
∫ xjk

xik

f̂k(x)dx| (2)

where f̂(·) is an estimation of the density function for the variable k:

f̂k(x) =
1

nhk

n
∑

i=1

1√
2π

e
− (x − xi)

2

2h2
k .

The value of hk, the smooting parameter is chosen following Silverman
([Silverman, 1986]) as hk = 1, 06 ·min(σk, Rk/1, 34) ·n−0,2, where σk (respec-
tively Rk) is the standard deviation (respectively the interquartil range) of
the n values x1k, · · · , xnk.

It can be shown easily that (2) is a dissimilarity measure. For two clusters
Ci and Cj , there exist many ways to define diss(Ci, Cj). For example:

• the single linkage method where diss(Ci, Cj) = min
x∈Ci,y∈Cj

diss(x, y),

• the complete linkage method where diss(Ci, Cj) = max
x∈Ci,y∈Cj

diss(x, y).

Based on these definitions, the merging criterion consists in grouping the
two objects X and Y (either points or clusters) for which diss(X, Y ) is the
smallest.

The method proceeds from the situation where all the points are in sep-
arate clusters until they all form a unique cluster. Consecutive merging can
be represented by a dendrogram (figure 2).

The resulting algorithm based on these concepts was implemented and
seems to be very powerful. The first results obtained are promising. For ex-
ample, the structure of the dendrogram (figure 2) constructed by the method
on the Ichino’s Oils dataset is very good if compared with the tree obtained
with the first method or those presented in ([Chavent, 1997], page 139).

A new hierarchical divisive monothetic method was first developped. The
only hypothese needed was that the observed points are generated by a non-
homogeneous Poisson process. The algorithm performed in two steps : split-
ting and pruning. The splitting rule was deduced from a maximum likelihood
criterion; the pruning method was based on the Gap test. An application
of this algorithm was presented on a well-known interval dataset. The split-
ting criterion also gave the idea to develop a new dissimilarity measure for
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Fig. 2. Dendrogram obtained on the Ichino’oils dataset, complete linkage method.

hierarchical agglomerative clustering. The resulting algorithm was briefly
described. Applied on the same dataset, it produced very interesting results.
All these ways will be thorough in the future.
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