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Abstract. Partial least squares regression on functional data is applied in the
context of linear discriminant analysis with binary response. The discriminant co-
efficient function is then used to compute scores which allow to assign a new curve
to one of the two classes. The method is applied to gait data and the results are
compared with those given by linear discriminant analysis and logistic regression
on the principal components of predictors.
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1 Introduction

Functional data analysis extends the classical multivariate methods when
data are functions or curves. Examples of functional data can be found in
different fields of application such as medicine, economics, chemometrics and
many others (see [Ramsay and Silverman, 2002] for an overview). Figure 1
gives an example of such data. A well accepted model for this kind of data
is to consider it as paths of a stochastic process X = {Xt}t∈T taking values
in a Hilbert space of functions on some set T .

In this paper we consider X to be a second order stochastic process X =
{Xt}t∈[0,1], L2–continuous and with sample paths in L2([0, 1]). Let also Y

be a binary random variable, for instance, Y ∈ {0, 1}, defined on the same
probability space as X .

As formulated by Fisher in the classical setting (finite dimensional pre-
dictor), the aim of the linear discriminant analysis (LDA) of (X, Y ) is to

find the linear combination Φ(X) =
∫ 1

0 Xtβ(t)dt, β ∈ L2[0, 1], such that the
between-class variance is maximized relative to the total variance, i.e.

max
β∈L2[0,1]

V(E(Φ(X)|Y ))

V(Φ(X))
. (1)
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Fig. 1. Knee angular rotation over a complete gait cycle for one subject.

The random variable Φ(X) is referred as discriminant variable and the func-
tion β as discriminant coefficient function ([Hastie et al., 2001]).

In the context of functional data, the estimation problem for the discrim-
inant coefficients function, β, is generally an ill–posed one. Indeed, is well
known that the optimization problem (1) is equivalent to find the regres-
sion coefficients of the regression of Y (after a convenient encoding) on the
stochastic process X under the least-squares criterion. [Cardot et al., 1999],
[Preda and Saporta, 2002] point out the inconsistency of such a criterion for
this kind of predictors and propose solutions to overcome this difficulty. From
practical point of view, a large number of predictors (relatively to the size
of the learning sample) as well as the multicollinearity of predictors, lead to
inconsistent estimators. Nonparametric approaches for functional discrimi-
nant analysis are proposed in [Ferraty and Vieu, 2003] and [Biau et al., 2004].
Logistic regression for functional data using the projection method [Aguilera
et al., 1998] is given in [Escabias et al., 2004] and [Araki and Sadanori, 2004].

The aim of this paper is to perform LDA using the Partial Least Squares
(PLS) approach developed in [Preda and Saporta, 2002]. The paper is orga-
nized as follows. In section 2 we introduce some basic results on the linear
regression on functional data and the PLS approach. The relationship be-
tween LDA and linear regression is given in section 3. The section 4 presents
an application of the PLS approach for LDA using gait data provided by the
Center of Neurophysiology of the Regional Hospital of Lille (France). The
goal is to separate young and senior patients from the curve given by the
knee angular rotation over a complete gait cycle. The results are compared
with those given by the LDA and the logistic regression using as predictors
the principal components of data. The comparison of methods is made using
the criterion based on the area under the ROC curve.
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2 Some tools for linear regression on a stochastic

process

As stated above, let X = {Xt}t∈[0,1] be a second order stochastic process L2-
continuous and with sample paths in L2[0, 1] and Y a real random variable.
Without loss of generality we assume also that E(Xt) = 0, ∀t ∈ [0, 1] and
E(Y ) = 0.

It is well known that the approximation of Y obtained by the classical

linear regression on X , Ŷ =
∫ 1

0
β(t)Xtdt is such that β is in general a distri-

bution rather than a function of L2([0, 1]) ([Saporta, 1981]). This difficulty
appears also in practice when one tries to estimate the regression coefficients,
β(t), using a sample of size N . Indeed, if {(Y1, X1, (Y2, X2), . . . (YN , XN )} is
a finite sample of (Y, X), the system

Yi =

∫ 1

0

Xi(t)β(t)dt, ∀i = 1, ..., N,

has an infinite number of solutions ([Ramsay and Silverman, 1997]). Regres-
sion on principal components (PCR) of (Xt)t∈[0,1] ([Aguilera et al., 1998])
and PLS approach ([Preda and Saporta, 2002]) give satisfactory solutions to
this problem.

2.1 Linear regression on principal components

Also known as Karhunen-Loève expansion, the principal component ana-
lysis (PCA) of the stochastic process (Xt)t∈[0,1] consists in representing Xt

as :
Xt =

∑

i≥1

fi(t)ξi, ∀t ∈ [0, 1], (2)

where the set {fi}i≥1 (the principal factors) forms an orthonormal system of
deterministic functions of L2([0, 1]) and {ξi}i≥1 (principal components) are
uncorrelated zero-mean random variables. The principal factors {fi}i≥1 are
solution of the eigenvalue equation :

∫ 1

0

C(t, s)fi(s)ds = λifi(t), (3)

where C(t, s) = cov(Xt, Xs), ∀t, s ∈ [0, 1]. Therefore, the principal compo-

nents {ξi}i≥1 defined as ξi =
∫ 1

0fi(t)Xtdt are eigenvectors of the Escoufier
operator, WX , defined by

WXZ =

∫ 1

0

E(XtZ)Xtdt, Z ∈ L2(Ω). (4)

The process {Xt}t∈[0,1] and the set of its principal components, {ξk}k≥1,
span the same linear space. Thus, the regression of Y on X is equivalent to
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the regression on {ξk}k≥1 and we have Ŷ =
∑

k≥1

E(Y ξk)

λk

ξk.

In practice we need to choose an approximation of order q, q ≥ 1 :

ŶPCR(q) =

q
∑

k=1

E(Y ξk)

λk

ξk =

∫ 1

0

β̂PCR(q)(t)Xtdt. (5)

But the use of principal components for prediction is heuristic because
they are computed independently of the response. One alternative is the PLS
approach which builds directions for regression (PLS components) taking into
account the response variable Y .

2.2 PLS regression on a stochastic process

The PLS (Partial Least Squares) approach offers a good alternative to the
PCR method by replacing the least squares criterion with that of maximal
covariance between (Xt)t∈[0,1] and Y ([Preda and Saporta, 2002]).

The PLS regression is an iterative method. Let X0,t = Xt, ∀t ∈ [0, 1]
and Y0 = Y . At step q, q ≥ 1, of the PLS regression of Y on X , we
define the qth PLS component, tq, by the eigenvector associated to the largest
eigenvalue of the operator WX

q−1W
Y
q−1, where WX

q−1, respectively WY
q−1, are

the Escoufier’s operators associated to X , respectively to Yq−1. The PLS step
is completed by the ordinary linear regression of Xq−1,t and Yq−1 on tq. Let
Xq,t, t ∈ [0, 1] and Yq be the random variables which represent the residual
of these regressions : Xq,t = Xq−1,t − pq(t)tq and Yq = Yq−1 − cqtq.

Then, for each q ≥ 1, {tq}q≥1 forms an orthogonal system in L2(X) and
the following decomposition formulas hold :

Y = c1t1 + c2t2 + . . . + cqtq + Yq,
Xt = p1(t)t1 + p2(t)t2 + . . . + pq(t)tq + Xq,t, t ∈ [0, 1].

The PLS approximation of Y by {Xt}t∈[0,1] at step q, q ≥ 1, is given by :

ŶPLS(q) = c1t1 + . . . + cqtq =

∫ 1

0

β̂PLS(q)(t)Xtdt. (6)

[de Jong, 1993] and [Phatak and De Hoog, 2001] show that for a fixed q, the
PLS regression fits closer than PCR, that is,

R2(Y, ŶPCR(q)) ≤ R2(Y, ŶPLS(q)). (7)

In [Preda and Saporta, 2002] we show the convergence of the PLS approxi-
mation to the approximation given by the classical linear regression :

lim
q→∞

E(|ŶPLS(q) − Ŷ |2) = 0. (8)

In practice, the number of PLS components used for regression is determined
by cross-validation ([Tenenhaus, 1998]).
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3 LDA and linear regression for functional data

Let us denote by

p0 = P(Y = 0), p1 = 1 − p0 = P(Y = 1),
µ0(t) = E(Xt|Y = 0), µ1(t) = E(Xt|Y = 1), t ∈ [0, 1].

Since E(Xt) = 0, it follows that p0µ0(t) + p1µ1(t) = 0, ∀t ∈ [0, 1].
Let also denote by C the covariance operator associated to the process X

defined on L2[0, 1] by

f
C7−→ g, g(t) =

∫ 1

0

E(XtXs)f(s)ds,

and by B the operator on L2[0, 1] defined by

f
B7−→ g, g(t) =

∫ 1

0

B(t, s)f(s)ds,

where B(t, s) = p0µ0(t)µ0(s) + p1µ1(s)µ1(t) = p0p1(µ0(t) − µ1(t))(µ0(s) −
µ1(s)). Denoting by φ =

√
p0p1(µ0 − µ1), it follows that

B = φ ⊗ φ,

where φ ⊗ φ(g) = φ〈φ, g〉L2[0,1], g ∈ L2[0, 1].
As in the classical setting, the discriminant coefficient function, β ∈

L2[0, 1], which satisfies the criterion given in (1), corresponds to the largest
λ, λ ∈ R, such that

Bβ = λCβ, (9)

with 〈β,Cβ〉L2[0,1] = 1.

Without loss of generality, let us recode Y by : 0 
√

p1

p0
and 1 −

√

p0

p1
.

If β is a solution of (9) then λ = 〈φ, β〉2
L2 [0,1] and β is solution of the Wiener-

Hopf equation

E(Y Zt) =

∫ 1

0

E(ZtZs)β(s)ds, (10)

where Zt = 〈φ, β〉L2[0,1]Xt, t ∈ [0, 1]. The function β given by equation
(10) is the regression coefficient function of the linear regression of Y on
Z = {Zt}t∈[0,1]. Equation (10) has an unique solution under conditions of
convergence of series implying the eigenvalues and eigenvectors of the covari-
ance operator of the process X [Saporta, 1981]. These conditions are rarely
satisfied. Thus, in practice, the problem to find β is generally an ill-posed
problem.

However, if the aim is to find the discriminant variable (scores), then one
can use the above relationship between LDA and linear regression. The reg-
ularized linear methods proposed in Section 2 provides good approximations
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by using (5) and (6) with Y recoded as above. Then β̂PCR(q)
and β̂PLS(q)

can
be used to compute the discriminant score for a new observation for which
one has only the observation of X . The prediction for a new observation is
given with respect to a reference score value which is determined on a test
sample such that the classification error rate is minimum.

4 Application to gait data

The application deals with data provided by the Department of Movement
Disorders, Lille University Medical Center (France). This data is described by
a set of curves representing the knee flexion angle evolution over one complete
gait cycle and characterizes patients from two classes of age ([Duhamel et al.,
2004]). We are interested in predicting the class of age from the knee curve.
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a) A sample of 40 cubic spline interpolated curves of the right knee angular
rotation (20 for young subjects – in red, and 20 for senior subjects – in blue).
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b) Mean estimation of angular rotation of the right knee during a complete cycle
for each group.

Fig. 2. Knee flexion angular data

Two groups of 30 subjects were studied : 30 young students (mean age 27
years and standard deviation 4 years) and 30 healthy senior citizens (mean
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age 64 years and standard deviation 6 years). For each subject the observed
data represent the flexion angle for the right knee measured during one com-
plete gait cycle. Each curve represents a gait cycle and is given by a set
{(xti

, ti)}i=1,...,50 of 50 values corresponding to an equidistant discretisation
of the cycle.

We assume that data represent sample paths of a stochastic process
{Xt}t∈T of second order and L2 continuous. Also, it is natural to consider
that the paths are derivable functions of time (percent of gait cycle) and
therefore, cubic spline interpolation is performed for each curve.

Data is randomly divided into two samples, a learning sample of 40 sub-
jects (Figure 2a) and a test sample of 20 patients. Each sample contains the
same number of young and senior subjects.

In order to approximate the discriminant variable Φ(X) =
∫ 1

0 Xtβ(t)dt, we
use the PLS regression ([Preda and Saporta, 2002]) for binary response. The
number of PLS components in the model is given by cross validation [Tenen-
haus, 1998]. A PLS model with q components is quoted by LDA PLS(q). In
our example q = 3 and the proportion of inertia of X explained by {t1, t2, t3}
is 0.825. The PLS approach is compared with linear discriminant analysis
and logistic regression using the principal components of X = {Xt}t∈[0,1] as
predictors (the four first principal components explain 94.64% of the total
inertia of X). Let us quote by LDA PCR(q) and LogPCR(q) these mod-
els using the q first principal components. The logistic regression using q

PLS components is quoted by LogPLS(q). The comparison criterion is the
area under the ROC (Receiver Operating Characteristic) curve (Figure 3)
estimated on the test sample.
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Fig. 3. ROC curves for each discriminant function.
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PLS discriminant coefficient function

Fig. 4. Discriminant coefficient function β̂PLS(3) for LDA PLS(3)

Model LDA PLS(3) LDA PCR(4) Log PCR(4) Log PLS (3)

Area 0.790 0.780 0.790 0.780

Table 1. Area under the ROC curve. Sample test estimation.

5 Conclusion

PLS regression on functional data is used for linear discriminant analysis with
binary response. It is an interesting alternative to classical linear methods
based on principal components of predictors. Our intuition that similar or
better results may be obtained with less PLS components than principal
components is confirmed by an example on medical data.
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