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Abstract. Let X be a random variable taking values in L2

`

[0, 1]
´

and let Y be a
random label with values in {0, 1}. Given a class of classifiers and n independent
copies (Xi, Yi) of the pair (X, Y ), we show how to select optimally a particular
classifier in the class and derive its consistency properties. To build our classi-
fier, we first reduce the dimension of the functional observations using a particular
thresholding on the coefficients of the curves Xi expressed in a wavelet basis. Then
a classification rule working in finite dimension is performed on the selected coeffi-
cients. The dimension is automatically selected by data-splitting and empirical risk
minimization. An application of this technique to a signal discrimination problem
involving speech recognition is presented.
Keywords: Functional Data Analysis, Classification, Wavelets.

1 Introduction

The problem of pattern recognition (or classification or discrimination) is
about guessing or predicting the unknown class of an observation. An ob-
servation is usually a collection of numerical measurements represented by a
d-dimensional vector. In many real-life problems however, input data are in
fact sampled functions rather than standard high dimensional vectors, and
this casts the classification problem into the class of Functional Data Analy-
sis.

Although standard pattern recognition techniques appear to be feasible, the
intrinsic infinite dimensional structure of the observations makes learning suf-
fer from the curse of dimensionality (see [Abraham et al., 2003] for a detailed
discussion, examples and counterexamples). In practice, before applying any
learning technique to model real data, a preliminary dimension reduction
or model selection step reveals crucial for appropriate smoothing and cir-
cumscription of the dimensionality effect. As a matter of fact, filtering is
a popular dimension reduction method in signal processing, and this is the
central approach we take in this paper.

Roughly, filtering reduces the infinite dimension of the observations by con-
sidering only the first d coefficients of the data on an appropriate basis. This
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approach was followed by [Kirby and Sirovich, 1990], [Comon, 1994], [Bel-
humeur et al., 1997], [Hall et al., 2001], or [Amato et al., 2005]. Given a
collection of functions we wish to classify, [Biau et al., 2005] propose to use
first Fourier filtering on each function and then perform k-nearest neigh-
bor classification in R

d. These authors study finite sample and asymptotic
properties of a data-driven procedure that selects simultaneously both the
dimension d and the optimal number of neighbors k.

The aim of the present paper is to extend the data-based filtering approach
of [Biau et al., 2005] to wavelet bases and general discrimination rules. Our
motivation is twofold.

• First, as pointed out for example in [Amato et al., 2005], wavelet bases
offer some significant advantages over other bases. Indeed, wavelets can
be used successfully for compression of a stochastic process, in the sense
that the sample paths can be accurately reconstructed from a fraction
of the full set of wavelet coefficients. Further, the wavelet decomposition
of the sample paths is a local one, so that if the information relevant to
the classification problem is contained in a particular part of the sample
functions, as typically it is, this information will be carried by a very
small number of wavelet coefficients. Moreover, the ability of wavelets to
model the signal at different levels of resolution means that we have the
option of selecting from the paths at a range of bandwidths.

• Second, we seek for general performance bounds and consistency results
when using (finite dimensional approximations of) the sample data in
the selection of a discrimination rule and/or its parameters. This article
offers both a practical methodology and general performance results for
all those who are willing to use wavelet filtering as a dimension reduction
step before effective classification.

Throughout the manuscript, we will adopt the point of view of automatic
pattern recognition described, to a large extend, in [Devroye, 1988]. In this
setup, one uses a test sequence to select the best rule from a rich class of
discrimination rules defined in terms of a training sequence. For the clarity
of the paper, all important concepts regarding this classification paradigm
are summarized in the next section. In Section 3, we outline the method and
state consistency of our classification rule. Section 4 offers some experimental
results on real-life data.

2 Automatic pattern recognition

This section gives a brief exposition and set up terminology of automatic
pattern recognition. For a detailed introduction, the reader is referee to
[Devroye, 1988].
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To model the automatic learning problem, we introduce a probabilistic
setting. Denote by F = L2([0, 1]) the space of all square integrable func-
tions on [0, 1]. The data consist of a sequence of n + m i.i.d. F × {0, 1}-
valued random variables (X1, Y1), . . . , (Xn+m, Yn+m). The Xi’s are the ob-
servations, and the Y ′

i s are the labels1. Note that the data are artifi-
cially split by us into two independent sequences, one of length n, and
one of length m: we call the n sequence the training sequence, and the
m sequence the testing sequence. A discrimination rule is a function g :
F × (F × {0, 1})n+m → {0, 1}. It classifies a new observation x ∈ F as
coming from class g (x, (X1, Y1), . . . , (Xn+m, Yn+m)). We will write g(x) for
the sake of convenience.

The probability of error of a given rule g is

Ln+m(g) = P {g(X) 6= Y |(X1, Y1), . . . , (Xn+m, Yn+m)} ,

where (X,Y ) is independent of the data sequence and is distributed as
(X1, Y1). Although we would like Ln+m(g) to be small, we know that it
cannot be smaller than the Bayes probability of error

L∗ = inf
s:F→{0,1}

P{s(X) 6= Y } ,

(see [Devroye et al., 1996], Theorem 2.1, page 10). In the learning process, we
aim at constructing rules with small probability of error. To do this, we em-
ploy the learning sequence to design a class of data-dependent discrimination
rules, and we use the testing sequence as an impartial judge in the selection
process. More precisely, we denote by Dn a (possibly infinite) collection of
functions g : F × (F × {0, 1})n → {0, 1}, from which a particular function ĝ
is selected by minimizing the empirical risk based upon the testing sequence:

L̂n,m(ĝ) =
1

m

n+m
∑

i=n+1

1[ĝ(Xi) 6=Yi] = min
g∈Dn

1

m

n+m
∑

i=n+1

1[g(Xi) 6=Yi].

At this point, observe that

g(Xi) = g (Xi, (X1, Y1), . . . , (Xn, Yn))

and
ĝ(Xi) = ĝ (Xi, (X1, Y1), . . . , (Xn, Yn)) ,

i.e., the discriminators themselves are based upon the training sequence only.
Observe however that ĝ depends on the entire data set, as the rest of the data
is used for selecting the classifiers.

1 In this study we restrict our attention to binary classification. The reason is sim-
plicity and that the binary problem already captures many of the main features
of more general problems. Even though there is much to say about multiclass
classification, we will not approach this increasing field of research.
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3 Dimension reduction for classification

3.1 Wavelet-based expansion of the observations

The theory of wavelets has recently undergone a period of rapid development
with exciting implications for nonparametric function estimation. Wavelets
are orthonormal basis functions that cut up signals into different frequency
components, and then study each component with a resolution matched to
its scale. The books of [Daubechies, 1992], [Meyer, 1992] and [Mallat, 1999]
give detailed expositions of the mathematical aspects of wavelets.

To summarize in our context, we recall that L2([0, 1]) is approximated by a
multiresolution analysis, i.e., a ladder of closed subspaces

V0 ⊂ V1 ⊂ . . . ⊂ L2([0, 1])

whose union is dense in L2([0, 1]), and where each Vj is spanned by 2j or-
thonormal scaling functions φj,k, k = 0, . . . , 2j − 1, such that supp(φj,k) ⊂
[k2−j, (k + 1)2−j]. At each resolution level j ≥ 0, the orthonormal com-
plement Wj between Vj and Vj+1 is generated by 2j orthonormal wavelets
ψj,k, k = 0, . . . , 2j − 1. Thus, the family

⋃

j≥0

{ψj,k}k=0,...,2j−1

completed by {φ0,0} forms an orthonormal basis of L2([0, 1]). As a conse-
quence, any observation X in L2([0, 1]) reads

X(t) =

∞
∑

j=0

2j−1
∑

k=0

ζj,kψj,k(t) + ηφ0,0(t), t ∈ [0, 1],

where

ζj,k =

∫ 1

0

X(t)ψj,k(t)dt and η =

∫ 1

0

X(t)φ0,0(t)dt.

3.2 Consistent functional classification

In this paragraph, we present the construction of our classifier and discuss
its consistency properties. Using the notation of Section 2, the data consist
of a sequence of n +m i.i.d. L2([0, 1]) × {0, 1}-valued random observations
(X1, Y1), . . . , (Xn+m, Yn+m). Given a multiresolution analysis of L2([0, 1]) as
explicited above, each observation Xi is expressed as a series expansion

Xi(t) =

∞
∑

j=0

2j−1
∑

k=0

ζi
j,kψj,k(t) + ηiφ0,0(t), t ∈ [0, 1]. (1)
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For the sake of coherence, it will be convenient to reindex the sequence
{φ0,0, ψ0,0, ψ1,0, ψ1,1, ψ2,0, ψ2,1, ψ2,2, ψ3,0, ...} into {ψ1, ψ2, ψ3, ...}. With this
scheme, expression (1) may be rewritten as

Xi(t) =
∞
∑

j=1

Xijψj(t), t ∈ [0, 1], (2)

hence the random coefficients

Xij =

∫ 1

0

Xi(t)ψj(t)dt.

Let Xi = (Xi1, Xi2, . . .) be the coefficients associated with Xi. Recall that
the Hilbert space L2([0, 1]) is isomorphic with `2 =

{

x = (x1, x2, . . .) :
∑∞

j=1 x
2
j < ∞

}

. Consequently, knowing Xi is the same as knowing Xi =
(Xi1, Xi2, . . .). In our quest of dimension reduction, we first fix in (1) a
maximum resolution level J (J ≥ 0, possibly function of n) so that

Xi(t) ≈

J−1
∑

j=0

2j−1
∑

k=0

ζi
j,kψj,k(t) + ηiφ0,0(t), t ∈ [0, 1]

or equivalently, using (2),

Xi(t) ≈
2J

∑

j=1

Xijψj(t), t ∈ [0, 1].

At this point, we could try to use these finite-dimensional approximations of

the observations, and let the data select optimally one of the 22J

−1 subbases
of {ψ1, . . . , ψ2J}. By doing so, we would face with an unreasonable overall
algorithmic complexity, and therefore catastrophic subsequent performance
bounds. Thus, in order to reduce the overall complexity of the problem, we
suggest the following procedure.

First, for each d = 1, . . . , 2J , we assume to be given beforehand a (pos-

sibly infinite) collection D
(d)
n of rules g(d) : R

d × (Rd × {0, 1})n → {0, 1}
working in R

d and using n d-dimensional learning data as input. For fixed

training sequence (x1, y1), . . . , (xn, yn), denote by C
(d)
n the collection of all

sets
{

{x ∈ R
d : φ(x) = 1} : φ ∈ D(d)

n

}

,

and define the shatter coefficient as

S
C

(d)
n

(m) = max
z1,...,zm∈Rd

Card
{

{z1, . . . , zm} ∩ C : C ∈ C(d)
n

}

.
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With a slight abuse of notation, we will denote by S
(J)
Cn

(m) the shatter co-

efficient corresponding to the collection of all rules {g(d) : d = 1, . . . , 2J}

embedded in R
2J

. Observe that

S
(J)
Cn

(m) ≤
2J

∑

d=1

S
C

(d)
n

(m). (3)

Second, we let the n training data reorder the first 2J basis functions
{ψ1, . . . , ψ2J } into

{

ψj1 , . . . , ψj
2J

}

via the scheme

n
∑

i=1

X2
ij1

≥

n
∑

i=1

X2
ij2

≥ . . . ≥

n
∑

i=1

X2
ij

2J
. (4)

In other words, we just let the training sample decide by itself which basis
functions carry the most significant information.

We finish the procedure by a third selection step: pick the effective di-

mension d ≤ 2J and a classification rule g(d) in D
(d)
n by approximating each

Xi by X
(d)
i = (Xij1 , . . . , Xijd

) (without loose of generality, we assume implic-
itly that the sequence (jk) is ordered – if not, just reorder it).

We select the dimension d and the rule simultaneously, using the data-
splitting device described in Section 2. Precisely, we select both d and g(d)

optimally by minimizing the empirical probability of error based on the in-
dependent validation set, that is

(

d̂, ĝ(d̂)
)

= argmin
d=1,...,2J ,g(d)∈D

(d)
n

[

1

m

n+m
∑

i=n+1

1
[g(d)(X

(d)
i

) 6=Yi]

]

. (5)

Apart from being conceptually simple, this method leads to the classifier

ĝ(x) = ĝ(d̂)(x(d̂)) with a probability of misclassification

Ln+m(ĝ) = P
{

ĝ(X) 6= Y | (X1, Y1), . . . , (Xn+m, Yn+m)
}

.

The selected rule ĝ satisfies the following optimal inequality.

Theorem 1

E
{

Ln+m(ĝ)
}

− L∗ ≤ L∗
2J − L∗ + E

{

inf
d=1,...,2J

g(d)∈D
(d)
n

Ln(g(d))
}

− L∗
2J

+ 2E







√

8 log
(

4S
(J)
Cn

(2m)
)

m
+

1
√

(m/2) log
(

4S
(J)
Cn

(2m)
)







.
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Here

L∗
2J = inf

s:R2J →{0,1}
P{s(X(2J )) 6= Y }

stands for the Bayes probability of error when the feature space is R
2J

.

We may view the first term, L∗
2J − L∗, on the right of the inequality as

an approximation term – the price to be paid for using a finite dimensional
approximation – and it converges to zero. The second term,

E
{

inf
d=1,...,2J

g(d)∈D
(d)
n

Ln(g(d))
}

− L∗
2J

can be handled by standard results on classifications. Let us first recall the
definition of a consistent rule: a rule g is consistent if E

{

Ln(g)
}

→ L∗ as
n→ ∞.

Corollary 1 Let J ≥ 0 be a fixed integer. Assume that from each D
(2J )
n ,

n ≥ 1, we can pick one g
(2J)
n such that the sequence (g

(2J )
n )n≥1 is consistent

for a certain class of distributions. Then the automatic rule ĝ defined in (5)
is consistent for the same class of distributions, i.e.,

E
{

Ln+m(ĝ)
}

→ L∗ as n→ ∞

if

lim
n→∞

J = ∞, lim
n→∞

m = ∞, and lim
n→∞

E

{

log S
(J)
Cn

(2m)

m

}

= 0.

This consistency result is new and is especially valuable since few theo-
retical results have been established for functional classification. Corollary 1
shows that a consistent rule is selected if, for each fixed J ≥ 0, the sequence

of D
(2J )
n ’s contains a consistent rule, even if we do not know which functions

from D
(2J )
n lead to consistency. If we are just worried about consistency,

Corollary 1 reassures us that nothing is lost as long as we take m much

larger than log E
{

S
C

(J)
n

(2m)
}

. Often, this reduces to a very weak condition

on the size m of the testing set and the maximum resolution J . Note also that
it is usually possible to find upper bounds on the random variable S

C
(J)
n

(2m)

that depend on n,m and J , but not on the actual values of the random vari-
ables (X1, Y1), . . . , (Xn, Yn). In this case, the bound is distribution-free, and

the problem is purely combinatorial: count S
(J)
Cn

(2m). For example, if D
(d)
n

contains all nearest-neighbor rules, a trivial bound is

S
C

(d)
n

(2m) ≤ n
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because there are only n members in D
(d)
n . Consequently

S
(J)
Cn

(2m) ≤ 2Jn .

[Stone, 1977] proved the striking result that k-nearest neighbor classifiers are
consistent if X ∈ R

d, provided k → ∞ and k/n→ ∞. Thus we see that our
strategy leads to a consistent rule whenever J/m → 0 and logn/m → 0 as
n→ ∞. For other examples, we refer to [Devroye, 1988].

4 Application to a speech recognition problem

In this section, we illustrate performance of our method. To this aim, we
study a part of TIMIT database which was investigated in [Hastie et al.,
1995]. The data are log-periodograms corresponding to recording phonemes
of 32 ms duration. We are concerned with the discrimination of five speech
frames corresponding to five phonemes transcribed as follows : “aa” as the
vowel in “dark” (695 items), “a0” as the first vowel in “water” (1022 items),
“dcl” as in “dark” (757 items), “iy” as the vowel in “she” (1163 items) and
“sh” as in “she” (872 items). The database is a multispeaker database. Each
speaker is recorded at a 16k-Hz sampling rate and we retain only the first
256 frequencies (see Figure 1). Thus, the data consist of 4509 series of length
256 with known class membership.

0 1
0

30
aa

0 1
0

30
ao

0 1
0

20
dcl

0 1
0

30
iy

0 1
0

20
sh

Fig. 1. A sample of 5 log-periodograms per class.
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We first compute the wavelet filtering approach described in Section 3 using

three collections of rules D
(d)
n working in R

d. Precisely:

• W-LDA denotes the wavelet filtering followed by the class D
(d)
n of all

linear discrimination rules.
• W-NN denotes the wavelet filtering followed by the class D

(d)
n of all

nearest-neighbor rules.

• W-T denotes the wavelet filtering followed by the class D
(d)
n of all binary

trees in which each internal node corresponds to a split perpendicular to
one of the axes [Devroye et al., 1996].

In addition, we propose to compare our algorithm with two existing alterna-
tive approaches:

• F-NN refers to the Fourier filtering approach combined with the k nearest-
neighbor rule described in [Biau et al., 2005].

• MPLSR refers to the multivariate partial least square regression. This
approach is studied in detail in [Preda and Saporta, 2002] and is used as
a benchmark in our context. The number of PLS components is selected
by minimizing the empirical probability of error based on the testing
sequence.

We use the split sample approach presented in Section 2 to select the free
parameters. The training sequence and the testing sequence both contain
250 observations. The error rate (e.r.) for classifying new observations is
unknown, but it can be estimated using the rest of the data:

e.r. =
1

3509

4509
∑

i=501

1[ĝ(Xi) 6=Yi] ,

where ĝ denotes the selected rule. Table 1 displays the estimated error rates
for the different methods together with the dimensions selected (number of
PLS components for MPLSR). Results are averaged over 50 random parti-
tions of the data.

Method e.r. d̂

W-LDA 0.0854 18.70

W-NN 0.1096 19.52

W-T 0.1253 9.10

F-NN 0.1277 48.76

MPLSR 0.0904 5.96

Table 1. Estimated error rates.

We see that method W-LDA achieves the best estimated error rates, and
that its results are slightly inferior to method MPLSR. The results of the
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Fourier-based algorithm are still acceptable, because of a good localisation of
the signal.
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