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Abstract. We are interested in the functional linear regression when the covariates
are subject to errors, for instance measurement errors. The aim of this paper is
to propose a procedure giving a spline estimator of the functional coefficient of
the model with noisy covariates. The functional coefficient is the solution of an
ill-conditioned minimization problem, so a penalization approach is used. Indeed,
we present an extension of the penalized total least squares algorithm to the case
where the covariates are curves. Then, this estimation procedure is evaluated by
the way of simulations.
Keywords: functional linear regression, errors-in-variables, total least squares,
penalization, spline functions.

1 Introduction

In many fields of applications, it is frequent to deal with the problem of
the explanation of a random variable Y (response), usually scalar, using
information from a random variable X (covariate), belonging to some Hilbert
space E. Then, a way to formulate this problem is to consider the linear
regression of Y on X that, in case of existence and unicity, allows us to write

Y = µ + 〈α, X〉 + ε, (1)

where 〈., .〉 stands for the inner product of the Hilbert space E and ε is a
real random variable satisfying E(ε) = 0 and E(εX) = 0. Implicitly, in (1),
the variable X is supposed to be observed without error, and all errors are
into the variable Y by the way of ε. However, in practice, this assumption
seems to be quite unrealistic, for example because of instrument measurement
errors. That is why it should be natural to consider that the variable X is
not directly observed, but we observe instead a variable W such that

W = X + δ. (2)

In the case where E is R or R
p, that is to say when X is an univariate

or a multivariate random variable, this problem of errors-in-variables model
has already been studied. Some theoretical approaches have been proposed,
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using the maximum likelihood method (see [Fuller, 1987]) or deconvolution
techniques (see [Carroll et al., 1995]). A practical point of view is given un-
der the name of Total Least Squares (TLS) in [Van Huffel and Vandewalle,
1991]. However, in many fields of applications (chemistry, climatology, telede-
tection, linguistics, . . . ), the data do not belong to the frame of univariate
or multivariate variables. Indeed, the data can come from the observation of
continuous phenomenons (that is to say continuous functions of time, space,
. . . ), then they are comparable to curves. These data, called functional data

in the literature, are the object of many studies (see [Ramsay and Silverman,
1997] and [Ramsay and Silverman, 2002] for a functional data analy! sis
overview). Our goal is to study the problem of errors-in-variables model in
the framework where X is a functional random variable, in other words when
E is an infinite dimension space.

In the following, we consider n couples of random variables (Xi, Yi)i=1,...,n

independant and identically distributed, with the same distribution as (X, Y ),
where X is a random variable taking values in some functional space E and
Y belongs to R. For sake of simplicity, we consider that E is the space
L2(I) of the functions of square integrable defined on an interval I of R.
We still denote by 〈., .〉 the usual inner product of L2(I) and by ‖.‖ the
associated norm. We rewrite (1) taking the point of view of the functional

linear regression introduced in [Ramsay and Dalzell, 1993], hence we assume
that

Y = µ +

∫

I

α(t)X(t) dt + ε, (3)

where µ ∈ R and α ∈ L2(I) are the unknown parameters of the model and ε is
a real random variable such that E(ε) = 0 and E(εX) = 0. We assume condi-
tions for existence and unicity of α (see [Cardot et al., 2003]). Let us remark
that, if we denote by ΓX the covariance operator of X (defined by ΓXu =
E (〈X − E(X), u〉(X − E(X))) for all u ∈ L2(I)) and by ∆XY the cross co-
variance operator of X and Y (defined by ∆XY u = E (〈X − E(X), u〉Y ) for
all u ∈ L2(I)), then we easily see that 〈ΓXα, u〉 = ∆XY u for all function
u ∈ L2(I). One of the properties of ΓX is that it is a nuclear operator (see
[Loève, 1963] for details). So Γ−1

X is not bounded and estimation of ! α
is an ill-conditioned problem. A possibility to deal with this problem is to
introduce a penalization approach (this is done in [Cardot et al., 2003]), and
to find µ and α as solutions of the minimization problem

min
µ∈R,α∈L2(I)

{
1

n

n∑

i=1

(Yi − µ − 〈α, Xi〉)2 + ρ
∥∥∥α(m)

∥∥∥
2
}

, (4)

where α(m) stands for the derivative of order m of the function α and ρ is
a smoothing parameter allowing to control the regularity of the estimator of
the function α.
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Now coming back to our errors-in-variables setting, we suppose that the
curve X is not directly available. In practice, the curves X1, . . . , Xn are
observed in p discretization points t1, . . . , tp ∈ I such that t1 ≤ . . . ≤ tp. So,
the data are

W (tj) = X(tj) + δ(tj), j = 1, . . . , p, (5)

where (δ(tj))j=1,...,p is a sequence of real random variables independent and
identically distributed, centered and with variance σ2

δ . We also assume that
δ(tj) and ε are independant for all j = 1, . . . , p. These variables represent
the error made on X at each measure point. The random variables W and
δ give us the corresponding samples (Wi)i=1,...,n and (δi)i=1,...,n. The aim of
this paper is to build an estimator of µ and α. In section 2, we generalize
the TLS algorithm to our functional framework. In section 3, this estimator
is evaluated by the way of simulations. Finally in section 4, we make some
concluding remarks.

2 Functional Total Least Squares

The aim of this section is to adapt the Total Least Squares algorithm intro-
duced in [Van Huffel, 2004] when the covariate X is of functional nature.

2.1 Total Least Squares in the multivariate case

When X is a multivariate random variable, the linear regression is written

Y = µ + tXα + ε, (6)

where X = t(X1, . . . , Xp) belongs to R
p. We have to estimate µ ∈ R and

α ∈ R
p, assuming we observe Yi and Wi = Xi + δi for i = 1, . . . , n. We

denote by Y the vector t(Y1, . . . , Yn), ε the vector t(ε1, . . . , εn), X and W

the matrices of respective elements Xij and Wij . Under an hypothesis of
normality for the errors (that is to say if ε ∼ N (0, σ2

ε ) and δ(tj) ∼ N (0, σ2
δ )

for all j = 1, . . . , p), the likelihood function is proportional to

exp

{
−

n∑

i=1

[
1

σ2
ε

(
Yi − µ − tXiα

)2
+

1

σ2
δ

t(Xi − Wi)(Xi − Wi)

]}
. (7)

Without any more condition, the model (6) with Wi = Xi+δi is not iden-
tifiable and another condition needs to be imposed (see [Van Huffel, 2004]).
In the following, we choose to assume that the ratio of the variances σ2

ε /σ2
δ

is known. Indeed, we can suppose that this ratio is equal to 1 (if the ratio is

η = σ2
ε /σ2

δ , we consider the scaled variable X̃ =
√

ηX and then α =
√

ηα̃).
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Then, the maximization of (7) comes back to the resolution of the minimiza-
tion problem

min
µ∈R,α∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[
(Yi − µ − Xiα)

2
+ t(Xi − Wi)(Xi − Wi)

]}
. (8)

The TLS algorithm given in [Van Huffel, 2004] follows the two steps below:

• step 1: we make the singular value decomposition (SVD) of the matrix
[1 | W | Y ], that is to say [1 | W | Y ] = UΣ tV with tUU = In

and tVV = Ip+2, where In and Ip+2 are respectively the n × n and
(p + 2) × (p + 2) identity matrices,

• step 2: if the elements of the matrix V are denoted by vjl, then the TLS
estimator of µ and α is given by

(
µ̂TLS

α̂TLS

)
= − 1

vp+2,p+2

t(v1,p+2, . . . vp+1,p+2). (9)

However, the problem of this algorithm is that it can not be used directly
when the minimization problem (8) is ill-conditioned and needs a regular-
ization. The minimization problem we consider is then (see [Golub et al.,
1999])

min
µ∈R,α∈Rp,Xi∈Rp

{
1

n

n∑

i=1

[
(Yi − µ − Xiα)

2
+ t(Xi − Wi)(Xi − Wi)

]

+ρ t
α

tLLα

}
, (10)

where L is a p× p matrix. Using the properties of the SVD, it can be shown
(see [Golub and Van Loan, 1996]) that

(
µ̂TLS

α̂TLS

)
= ( t[1 | W ] [1 | W ] − σ2

p+2Ip+1)
−1 t[1 | W ]Y, (11)

where σp+2 is the smallest singular value of the matrix [1 | W | Y ] and
Ip+1 is the (p + 1) × (p + 1) identity matrix. From this expression, the TLS
solution to the minimization problem (10) is given by

(
µ̂TLS

α̂TLS

)
= ( t[1 | W ] [1 | W ] − λIp+1 + ρ tMM)−1 t[1 | W ]Y, (12)

where M is the (p + 1) × (p + 1) matrix defined by M =




0 0 . . . 0
0
... L

0


.
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2.2 Total Least Squares in the functional case

All that has been done in the previous paragraph can be adapted to the case
where X is of functional type. The minimisation problem considered is a
combination of (4) and (10), that we write

min
µ∈R,α∈L2(I),Xi∈L2(I)

{
1

n

n∑

i=1

[
(Yi − µ − 〈α, Xi〉)2 + ‖Xi − Wi‖2

]

+ρ
∥∥∥α(m)

∥∥∥
2
}

. (13)

We choose to build a spline estimator of α. We have to fix a degree q ∈ N

and a number k ∈ N
? of knots (taken equispaced) giving a subdivision of

the interval I (see [de Boor, 1978] for details on spline functions). These
spline functions have well-known properties, in particular, this space of spline
functions is a vectorial space of dimension k+q. A usual basis is the set of the
so-called B-spline functions, that we denote by Bk,q = t(B1 . . . Bk+q). Then,
we estimate α as a linear combination of the B-spline functions, that is to
say we have to find a vector θ̂ = t(θ̂1 . . . θ̂k+q) ∈ R

k+q such that α̂ = tBk,qθ̂

with µ̂ and θ̂ solutions of the minimization problem

min
µ∈R,θ∈Rk+q,Xi∈L2(I)

{
1

n

n∑

i=1

[(
Yi − µ − 〈 tBk,qθ̂, Xi〉

)2

+ ‖Xi − Wi‖2

]

+ρ

∥∥∥∥
(

tBk,qθ̂

)(m)
∥∥∥∥

2
}

.(14)

Using the work in [Cardot et al., 2003] for the spline estimator of the func-
tional coefficient and what has been done in the multivariate case (see equa-
tion (12)), it is possible to find an explicit solution to the minimization prob-
lem (14), given by

(
µ̂FTLS

θ̂FTLS

)
=

1

n
(
1

n
tDD − λIk+q+1 + ρK)−1 tDY, (15)

with

D =




1 〈B1, W1〉 . . . 〈Bk+q , W1〉
...

...
...

1 〈B1, Wn〉 . . . 〈Bk+q , Wn〉


 ,

and
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K =




0 0 . . . 0

0 〈B(m)
1 , B

(m)
1 〉 . . . 〈B(m)

1 , B
(m)
k+q〉

...
...

...

0 〈B(m)
k+q, B

(m)
1 〉 . . . 〈B(m)

k+q , B
(m)
k+q〉




.

3 A simulation study

The aim of this simulation is to see the behaviour of this TLS estimator and
to compare it with the spline estimator given in [Cardot et al., 2003] by

(
µ̂FLS

θ̂FLS

)
=

1

n
(
1

n
tDD + ρK)−1 tDY. (16)

We choose to take

• n = 200: the initial sample will be splitted into a learning sample of
length nl = 100 (to estimate µ and α) and a test sample of length nt =
100 (to see the quality of prediction),

• p = 50 discretization points on I = [0, 1],
• X is either a standard brownian motion or an Ornstein-Uhlenbeck process

on I,
• µ = 2,
• α(t) = 10 sin(2πt),
• ε ∼ N (0, σ2

ε ) with σε = 0.1,
• δ(tj) ∼ N (0, σ2

δ ) with either σδ = 0.05, σδ = 0.1, or σδ = 0.2.

Concerning the choice of the different parameters of the model, we have taken
k = 8, q = 3 and m = 2. Moreover, in the functional least squares estimation,
ρ is fixed by generalized cross validation (see [Wahba, 1990]). For the total
least squares estimation, we have made the estimation for different values of
λ and ρ among the values 10−2, 10−3, . . . , 10−10, and we have kept the best
values for these two parameters in terms of prediction.
We have given in table 1 the mean relative errors on 50 simulations for the
different models tested when X is a standard brownian motion on I and in
table 2 the same errors when X is an Ornstein-Uhlenbeck process on I. The
estimation of the curve Xi, noted X̂i, is given by

X̂i = Wi +
Yi − µ̂ − 〈α̂, Wi〉

1 + ‖α̂‖2 α̂, (17)

as the generalization of X̂i in the multivariate case (see [Fuller, 1997]), ob-
tained by differentiation of equation (13) with respect to Xi. An example of
the estimation of α is plotted on figure 1 in the case where X is a standard
brownian motion on I with the variance noise σδ = 0.1. These results show
that the corrected estimator constructed with the TLS approach improves
the estimation of α compared to the uncorrected estimator defined by (16).
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(bµ − µ)2

µ2

‖bα − α‖2

‖α‖2

1

n

nX

i=1

“
〈bα, bXi〉 − 〈α, Xi〉

”
2

σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2

FLS 0.0002 0.0009 0.0017 0.21 0.41 0.78 0.007 0.010 0.018
FTLS 0.0002 0.0009 0.0016 0.12 0.27 0.56 0.006 0.008 0.015

Table 1. Errors on µ, α and prediction - case where X is a standard brownian
motion on I .

(bµ − µ)2

µ2

‖bα − α‖2

‖α‖2

1

n

nX

i=1

“
〈bα, bXi〉 − 〈α, Xi〉

”
2

σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2 σδ = 0.05 σδ = 0.1 σδ = 0.2

FLS 0.0004 0.0007 0.0017 0.07 0.19 0.39 0.006 0.011 0.021
FTLS 0.0004 0.0007 0.0015 0.02 0.11 0.26 0.005 0.010 0.019

Table 2. Errors on µ, α and prediction - case where X is an Ornstein-Uhlenbeck
process on I .

0.0 0.2 0.4 0.6 0.8 1.0

−1
0

−5
0

5
10

estimation of α

true curve α
estimation of α (FLS)
estimation of α (FTLS)

Fig. 1. Example of estimation of α (solid line) with functional least squares (dashed
line) and functional total least squares (dotted line).
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4 Conclusion and openings

This adaptation of the Total Least Squares method to the functional frame-
work seems to give encouraging results on simulations. A theoretical work is
needed to get the statistical properties of the estimator we have built. More-
over, it could also be interesting to compare this method to other ones. In
particular, another idea to deal with noisy functional covariates (which is a
work in progress) is to smooth the noisy curves (for instance by the way of a
kernel method) and to estimate α by a procedure equivalent to a functional
principal component regression used in the work of [Kneip and Utikal, 2001].
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