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Abstract. A recursive solution is given to the linear one-stage prediction problem
in discrete-time systems involving correlated signal and noise. Using Principal
Component Analysis of stochastic processes, a suboptimum filter is designed. The
main advantage of this solution is that it can be computed through a Kalman-like
filter in those situations in which the signal does not verify a state-space model.
The efficiency of the proposed methodology lies in the possibility of representing
adequately the processes involved by a sample of points not excessively large.
Keywords: Linear Prediction Problem, PCA.

1 Introduction

In this paper we treat the discrete linear one-stage prediction problem in-
volving correlated signal and noise. This estimation problem is useful in
applications to feedback control and feedback communications. Thus, let
{x(ti), t1 ≤ ti ≤ tn} be a signal process which is a real second-order stochastic
process, with zero-mean and correlation function Rx. Let {z(ti), t1 ≤ ti ≤ tn}
be a second-order stochastic process with zero-mean and correlation function
Rz.

We assume that the signal process is observed corrupted by an additive
white noise through the equation

y(ti) = x(ti) + v(ti), t1 ≤ ti ≤ tn

where v(ti) is a zero-mean white noise process with E[v(ti)v(tj)] = riδij and
correlated with both the signal x(ti) and the process z(ti). Let Rx1x2

(ti, tj)
denote the correlation function between any two processes x1(ti) and x2(tj).

Under the above hypotheses, we consider the problem of finding the linear
minimum variance estimator ẑ(tk+1/tk) of the process z(tk+1), based on the
set of observations {y(t1), . . . , y(tk)}, with k < n.
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According to the projection theorem, this element ẑ(tk+1/tk) exists, is
unique and can be expressed as a linear transform of the observations set
{y(t1), . . . , y(tk)} of the form [Poor, 1994]

ẑ(tk+1/tk) = h′

k(tk+1)yk (1)

where yk = [y(t1), . . . , y(tk)]
′

and the vector of optimum coefficients
hk(tk+1) = [h1(tk+1), . . . , hk(tk+1)]

′

satisfies the Wiener-Hopf equation

σk(tk+1) = Σk×k(tk)hk(tk+1) (2)

where σk(tk+1) = [Rzy(tk+1, t1), . . . , Rzy(tk+1, tk)]′, with Rzy(tk+1, ti) =
Rzx(tk+1, ti) + Rzv(tk+1, ti), and Σk×k(tk) is the correlation matrix of the
vector yk whose elements are Ry(ti, tj) = Rx(ti, tj)+Rxv(ti, tj)+Rvx(ti, tj)+
riδij .

Then, the estimation problem is basically that of solving the equation (2)
involving the correlation functions of the signal process and the process to
be estimated. In principle, this equation is easy to solve and its solution is
given by

hk(tk+1) = Σ
−1

k×k(tk)σk(tk+1) (3)

Unfortunately, from the practical point of view, the determination of these
optimum coefficients through the equation (3) can lead to a computational
difficulty since the inversion of the matrix Σk×k(tk) makes that the number
of basic computational operations grows linearly with the number of obser-
vations considered.

Recently, an extensive literature concerning the design of a more effi-
cient computational procedure has been developed. One of the most used
techniques consists in imposing additional structural conditions on the corre-
lations involved such as, stationarity [Poor, 1994], state-space models which
lead to the Kalman filter [Kalman and Bucy, 1961], semi-degenerate kernel
forms [Sugisaka, 1983], among others. Although this approach is widely ap-
plied, there is a great number of physical phenomena that do not satisfy these
assumptions. In these situations, an alternative methodology is possible by
using Principal Component Analysis (PCA) of stochastic processes [Aguilera
et al., 1995, Aguilera et al., 1996].

In this paper, we propose a new recursive one-stage prediction procedure
following this second perspective. In this framework, by considering any
truncated series representation for the involved processes in terms of their
principal components, the vector of optimum coefficients (3), and then the
optimum one-stage predictor (1), can be approximated. Although a sub-
optimum one-stage predictor is provided, the main advantage of this via of
solution is that it can be efficiently computed through a recursive algorithm
without imposing any structural assumption on the processes involved. In
fact, they can be applied under the only hypothesis that the involved corre-
lation functions are known. This occurs frequently in applications to system



A Solution to the Discrete-Time Linear Estimation Problem Using PCA 613

identification problems or in statistical communication theory, where the rel-
evant statistics of the problem are initially known in terms of correlation
functions derived from measurements or mathematical models [Gardner and
Franks, 1971]. In particular, these results can be applied in detection prob-
lems [Kailath, 1970] and in feedback communication systems [Gardner, 1975].

Then, the rest of the paper is structured as follows. In the next subsection,
a brief description about the orthogonal representation of a stochastic process
in terms of its principal components is included. The main characteristic of
these series expansions is that they allow us to represent adequately a process
through a short number of terms. Next, in Section 2, a new methodology
based on these series representations is developed with the aim of designing a
suboptimum one-stage predictor which can be efficiently computed through
a Kalman-like recursive algorithm.

1.1 Approximate Series Expansions Using PCA

Let us consider the random vector z2n = [z(t1), . . . , z(tn), x(t1), . . . , x(tn)]
′

.
Let a2n(i) = [a1(i), . . . , a2n(i)]

′

and λi denote the principal values and
the principal factors, respectively. Let also bi be the principal components
obtained from the principal factors as bi = a′

2n(i)z2n
1.

Then, z2n admits the following orthogonal representation in terms of its
principal components:

z2n =

2n
∑

i=1

a2n(i)bi (4)

Moreover, this representation is optimal in the sense of being the
best 2n-dimensional linear model for z2n in the least squares sense
[Fukunaga and Koontz, 1970].

From (4), we have that the processes z(tj) and x(tj) can be expressed
through finite series expansions in terms of their principal components as
follows:

z(tj) =

2n
∑

i=1

aj(i)bi, x(tj) =

2n
∑

i=1

aj+n(i)bi, j = 1, . . . , n

On the other hand, the correlation functions involved in (2) can be ex-
pressed by the following product of matrices:

Rx(tk, tj) =d′

2n(tk)Λ2n×2nd2n(tj)

Rxv(tk, tj) =d′

2n(tk)f2n(tj)

Rzx(tk, tj) =c′2n(tk)Λ2n×2nd2n(tj)

Rzv(tk, tj) =c′2n(tk)f2n(tj)

(5)

1 Note that, E[bi] = 0 and E[bibj ] = λiδij .
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where d2n(tj) = [aj+n(1), . . . , aj+n(2n)]′, c2n(tj) = [aj(1), . . . , aj(2n)]′,
Λ2n×2n is the 2n-dimensional diagonal matrix whose elements are the prin-
cipal values λi, and f2n(tj) is the 2n-dimensional vector with elements
fi(tj) = E[v(tj)bi], for i = 1, . . . , 2n.

Finally, note that a suitable representation of any stochastic process is
possible without taking all the samples but that it is sufficient to select an
adequate subset of them [Fukunaga and Koontz, 1970]. Then, we can select
m < n instants of times, t1 ≤ ti1 < ti2 <, . . . , < tim

< tn, and consider
the vector [z(ti1), . . . , z(tim

), x(ti1 ), . . . , x(tim
)]′. Next, using the principal

values λ̃i, the principal factors ã2m(i) = [ã1(i), . . . , ã2m(i)]
′

and the principal
components b̃i associated with this vector, z2n can be approximated by the
series expansion

z2n ≈ z̃2n =

2m
∑

i=1

g̃2n(i)b̃i (6)

where g̃2n(i) is a 2n-dimensional vector whose elements are of the form

g̃j(i) =
1

λ̃i

E
[

z(tj)b̃i

]

=
1

λ̃i

m
∑

k=1

(

ãk(i)Rz(tj , tik
) + ãm+k(i)Rzx(tj , tik

)

)

g̃j+n(i) =
1

λ̃i

E
[

x(tj)b̃i

]

=
1

λ̃i

m
∑

k=1

(

ãk(i)Rxz(tj , tik
) + ãm+k(i)Rx(tj , tik

)

)

for j = 1, . . . , n.
The main advantage of the series expansion (6) with respect to (4) is the

reduction of the computational burden. In fact, the amount of computation
required depends on the number of points selected, m, and a criterion for
determining a suitable m can be found in [Fukunaga and Koontz, 1970].

Now, the processes z(tj) and x(tj) can be approximated by finite series
expansions with less number of terms as follows:

z(tj) ≈ zm(tj) =

2m
∑

i=1

g̃j(i)b̃i, x(tj) ≈ xm(tj) =

2m
∑

i=1

g̃j+n(i)b̃i, j = 1, . . . , n

Moreover, the correlation functions given in (5) can be approximated by
the product of matrices of reduced dimension. Specifically,

Rx(tk, tj) ≈ Rxm
(tk, tj) =d̃′

2m(tk)Λ̃2m×2md̃2m(tj)

Rxv(tk, tj) ≈ Rxmv(tk, tj) =d̃′

2m(tk )̃f2m(tj)

Rzx(tk, tj) ≈ Rzmxm
(tk, tj) =c̃′2m(tk)Λ̃2m×2md̃2m(tj)

Rzv(tk, tj) ≈ Rzmv(tk, tj) =c̃′2m(tk )̃f2m(tj)

(7)

where d̃2m(tj) = [g̃j+n(1), . . . , g̃j+n(2m)]
′

, c̃2m(tj) = [g̃j(1), . . . , g̃j(2m)]
′

,

Λ̃2m×2m is the 2m-dimensional diagonal matrix with i-th entry λ̃i, and
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f̃2m(tj) is the 2m-dimensional vector with elements f̃i(tj), for i = 1, . . . , 2m,
of the form

f̃i(tj) = E[v(tj)b̃i] =

m
∑

k=1

(

ãk(i)Rvz(tj , tik
) + ãm+k(i)Rvx(tj , tik

)

)

2 Suboptimum Predictor

In this section, a recursive suboptimum solution to the linear least mean-
square one-stage prediction problem in discrete-time systems involving corre-
lated signal and noise is devised. For that, the following approximate version
of (2) is considered by taking the approximate representations (7) for the
correlation functions involved:

σ̃k(tk+1) = Σ̃k×k(tk)h̃k(tk+1) (8)

where σ̃k(tk+1) = [Rzmym
(tk+1, t1), . . . , Rzmym

(tk+1, tk)]′, and Σ̃k×k(tk) is
the correlation matrix of ỹk = [ym(t1), . . . , ym(tk)]

′

, with ym(ti) = xm(ti) +
v(ti).

From (7), we obtain that

σ̃k(tk+1) = Lk×4m(tk)A4m×4mq4m(tk+1)

and

Σ̃k×k(tk) = Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)

where q4m(tk) = [c̃′2m(tk),0′

2m]
′

, with 02m the 2m-dimensional vector whose
elements are zero, Lk×4m(tk) =

[

D′

2m×k(tk),F′

2m×k(tk)
]

with D2m×k(tk) =
[

d̃2m(t1), . . . , d̃2m(tk)
]

and F2m×k(tk) =
[

f̃2m(t1), . . . , f̃2m(tk)
]

, Rk×k(tk) is

a diagonal matrix with i-th entry ri, and

A4m×4m =

[

Λ̃2m×2m I2m×2m

I2m×2m 02m×2m

]

being I2m×2m the 2m × 2m-dimensional identity matrix and 02m×2m the
2m × 2m-dimensional matrix with zero elements.

Then, the solution of (8) is of the form

h̃k(tk+1) =
[

Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)
]

−1

× Lk×4m(tk)A4m×4mq4m(tk+1) (9)

From (9) we can define the suboptimum one-stage predictor

ẑm(tk+1/tk) = h̃′

k(tk+1)yk (10)
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At a first sight, in comparison with the optimum one-stage predictor
(1), the proposed solution (10) does not show an improvement from the
computational standpoint since both estimates require the computation of the
product of two k-dimentional vectors. However, the suboptimum coefficients
(9) lead to a reduction in the computational burden with respect to solving
directly the Wiener-Hopf equation.

In the following result, a recursive algorithm similar to the Kalman fil-
ter is designed for the computation of the proposed suboptimum one-stage
predictor (10).

Theorem 1

ẑm(tk+1/tk) = q′

4m(tk+1)e4m(tk) (11)

where e4m(tk) is recursively computed through the equation

e4m(tk) = e4m(tk−1) + k4m(tk) [y(tk) − l′4m(tk)e4m(tk−1)]

with the initialization e4m(t0) = 04m, and where l′4m(tk) =
[

d̃′

2m(tk), f̃ ′2m(tk)
]

and the vector k4m(tk) is given by

k4m(tk) = P4m×4m(tk−1)l4m(tk) [l′4m(tk)P4m×4m(tk−1)l4m(tk) + rj ]
−1

(12)
with

P4m×4m(tk) = P4m×4m(tk−1) − k4m(tk)l′4m(tk)P4m×4m(tk−1)

where P4m×4m(t0) = A4m×4m.

Proof. From (9), we have that the suboptimum one-stage predictor (10) is
given by

ẑm(tk+1/tk) = q′

4m(tk+1)A4m×4mL′

k×4m(tk)

×
[

Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)
]

−1
yk

Then, introducing the vector

e4m(tk) = A4m×4mL′

k×4m(tk)

×
[

Lk×4m(tk)A4m×4mL′

k×4m(tk) + Rk×k(tk)
]

−1
yk (13)

the equation (11) for ẑm(tk) is obtained.
Next, applying the matrix inversion lemma [Anderson and Moore, 1979,

p. 138] in (13), we have that

e4m(tk) = P4m×4m(tk)L′

k×4m(tk)R−1

k×k(tk)yk

where

P4m×4m(tk) =
[

A−1

4m×4m + L′

k×4m(tk)R−1

k×k(tk)Lk×4m(tk)
]−1

(14)
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Finally, taking into account the matrix inversion lemma in (14) and defin-
ing the vector k4m(tk) as in (12), the theorem holds.

Remark 1 Note that, from (5), a similar recursive algorithm can be designed
for the optimum one-stage predictor. However, the amount of computation
required with the resulting recursive formulas makes that this algorithm loss
interest in practical applications.

Remark 2 From the PCA, the convergence of the proposed suboptimum pre-
dictor toward the optimum one is guaranteed. Then, the suboptimum one-
stage predictor becomes a better approximation of the optimum one as the
number m increases. On the other hand, a suitable m must be selected in or-
der to reduce the computational burden. In fact, the efficiency of the proposed
suboptimum estimate will be more relevant when the signal can be represented
by a short series expansion. Some examples of such signals can be found in
[Ghanem and Spanos, 1991].
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