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Abstract. Some semiparametric models for binary response data are reviewed:
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models single-index models and multiple-index models. All these models can be
seen as extensions of the classical logistic regression. We test and compare these
models using data on bankruptcy of French companies and data from credit busi-
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1 Introduction

Classification techniques are used in many statistical applications. The ob-
jective of any classification model is to classify individuals in two or more
groups based on a predicted outcome associated with each individual. Here,
we are interested in statistical models classifying individuals in two groups:
’good’ (or ’not default’) and ’bad’ (or ’default’) individuals. Such models
can be applied in banking and credit control, marketing, medicine, etc. The
classification rule for an individual must be based on the information about
the individual at the time of the decision. This information is contained
in a vector of explanatory variables (factors, indicators, characteristics, ...)
X = (X1, ..., Xp)

>. Usually, the available information for an individual is
synthesized into a single value usually called the score. The score aims to
reflect the probability that the individual will ’not default’.

Various parametric and nonparametric methods can be used to solve clas-
sification problems (see, e.g., [Hand and Henley, 1997] for a review). Dis-
criminant analysis, linear regression and logistic regression are the standard
parametric techniques, while k−nearest neighbors, classification trees, neu-
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ral networks and, more recently, support vector machine are some common
nonparametric (distribution-free) procedures.

The simple, user friendly and easily interpretable character of the para-
metric regression models make them the most popular classification tech-
niques in many application fields. The nonparametric methods, unlike the
parametric methods, make no (or mild) assumption about the distribution
of the observations and are therefore attractive when data on hand does not
meet strict statistical assumptions. The price of this flexibility can be high,
however. First, estimation precision decreases rapidly as the dimension of
X, the vector of explanatory variables, increases. This is the so-called curse
of dimensionality. A second problem with nonparametric methods is that
the results can be difficult to display, communicate, and interpret when X is
multidimensional. A further problem with nonparametric methods is the dif-
ficulty to extrapolate the prediction to individuals with characteristics that
are very different from the characteristics of the individuals that served for
estimation.

The semiparametric methods represent an appealing compromise for con-
structing statistical models. By making assumptions that are of intermediate
strength between the parametric and nonparametric approaches, the semi-
parametric models reduce the risk of misspecification relative to a parametric
model and avoid at least in part the aforementioned drawbacks of the non-
parametric methods.

In this paper we review some semiparametric regression methods that ap-
ply to scoring, that is to determine how likely an individual will ’not default’.
The starting point of the review is the logistic regression. The power of the
semiparametric methods is investigated using data on bankruptcy of French
companies and publicly available data on credit-scoring from a German bank.

2 Semiparametric models for binary response variables

Let Y be a random variable taking the values 0 (’bad’ or ’default’ individual)
or 1 (’good’ or ’not default’ individual). The problem on hand to estimate
the probability of the event {Y = 1} given a vector of explanatory variables
X. The logistic regression is a particular case of the so-called generalized
linear model (see [McCullagh and Nelder, 1989]) where the conditional mean
of Y given X has the form

E(Y | X) = G(c+ X
>β) (1)

with a known monotone function G (G(x) = {1 + exp(−x)}−1 for the lo-
gistic regression) and an unknown parameters (c, β>)>. This model can be
interpreted as follows: there exists a latent variable Y ∗ that can be related
to X through a linear model Y ∗ = c + X

>β + u with u an error term with
cumulative distribution function (cdf) G. The observation Y is nothing but
1{Y ∗≥0} where 1{·} equals one if the condition inside the curly brackets holds,



596 Berthet and Patilea

and zero otherwise. The model (1) is purely parametric in the sense that one
only has to estimate the vector of coefficients (c, β>)>.

Several semiparametric extensions of model (1) have been proposed. A
natural idea is to relax the hypothesis of a linear regression model for the
latent variable Y ∗. [Härdle et al., 1998] proposed to separate the explanatory
variables into two groups, that is X = (Z>,T>)> with Z ∈ R

p1 , T ∈ R
p2 ,

and to suppose that Y ∗ = Z
>β+m(T)+u, where the error term has a logistic

law (the constant c appearing in model (1) is absorbed by the function m(·)).
The function m is unknown and it must be estimated nonparametrically. In
this settings one has a generalized partially linear model

E(Y | Z, T ) = G(Z>β +m(T)) (2)

with G(x) = {1 + exp(−x)}−1. This model is semiparametric in the
sense that in addition to the finite dimensional vector β, one has to esti-
mate also the function m. If one wants to assume that several explana-
tory variables have a nonlinear effect on the conditional mean of Y ∗, one
has to estimate nonparametrically a multivariate function m. In order to
avoid the course of dimensionality, [Härdle et al., 2004] considered that
m(T) = m(T1, ..., Tp2

) = m1(T1)+...+m(Tp2
). Another approach that avoids

nonparametric estimation of a multivariate function is to suppose that there
exists a vector (α1, ..., αp2

)> (identifiable up to a scaling factor) such that

m(T1, ..., Tp2
) = m(α1T1 + ...+ αp2

Tp2
).

See [Carroll et al., 1997]. In all these models the coefficients β (β and α for
the model of [Carroll et al., 1997]) can be estimated with a precision of order
n−1/2 where n is the sample size, that is the usual precision of a parametric
model.

Another natural extension of the parametric model goes as follows. As-
sume that Y ∗ = c + X

>β + u with u an error term with unknown law
independent of X given X

>β. Then,

E(Y | X) = r(X>β) (3)

with r(·) an unknown function that has to be estimated nonparametrically.
The constant c is absorbed by r(·). Moreover, the vector β can only be
determined up to a scaling factor. The model (3) belongs to a general class
of semiparametric models called single-index models (SIM). In such models
one only assumes that when computing the conditional expectation of Y
given X, all the relevant information carried by X is contained in a linear
combination of the components of X. In the following we shall concentrate
on inference methods for model (3). Note that model (3) can be obtained as
a particular case of the model of [Carroll et al., 1997] by taking β = 0 and
setting r = G ◦m (and relabelling the explanatory variables).

Several semiparametric approaches for consistent estimation of β in SIM
have been proposed including M−estimation, average derivative methods
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and iterative methods. See [Delecroix et al., 2004] for a review. Here, we
focus on M−estimation. Typically, if (Y1,X

>
1 )>, ..., (Yn,X

>
n )> denote the

observations, a semiparametric M -estimator of β is defined as

β̂ = arg minβ

1

n

n∑

i=1

ψ
(
Yi, r̂

(
X

>
i β;β

))
τn(Xi), (4)

where r̂ (t;β) is a nonparametric estimator, for instance the Nadaraya-Watson
estimator, of the regression function r (t;β) = E

(
Y | X>β = t

)
, ψ is a con-

trast function and τn(·) is a so-called trimming function introduced to guard
against small values of the denominators appearing in the nonparametric es-
timator. Finally, the conditional mean of Y is estimated by r̂(x>β̂; β̂). [Klein
and Spady, 1993] considered the case ψ(y, r) = −{y log(r)+(1−y) log(1−r)}
which yields the semiparametric maximum likelihood estimate of β. [Do-
minitz and Sherman, 2003] considered the case ψ(y, r) = (y − r)2 and pro-
posed a nice iterative method that avoids optimization with respect to both
occurrences of β in equation (4). [Delecroix et al., 2004] suggested other

choices for ψ(y, r) that improve the performances of the estimator β̂ in the
presence of outliers.

The large sample properties of the estimates β̂ and r̂(x>β̂; β̂) obtained
from optimization procedures as (4) are now well known in the case of in-
dependent, identically distributed observations of (Y,X>)>. In particular,
this allows to obtain significance tests for the coefficients β and confidence
intervals for the conditional probability of ’not default’ given X. Extensions
to the case of dependent data have been also studied. See [Xia et al., 2002]
for a description of the techniques of proof that apply for dependent data
and for a list of references.

A crucial problem associated with the estimator β̂ is the choice of the
smoothing parameter for the nonparametric estimator of the regression func-
tion r (t;β). One may consider the smoothing parameter as another parame-
ter of interest which can be estimated at the same time as β, that is one can
optimize the objective function in (4) simultaneously with respect to β and
the smoothing parameter. In general, to avoid degenerate problems when
optimizing simultaneously with respect to β and the smoothing parameter,
a leave-one-out version of the nonparametric estimator should replace r̂ in
equation (4). See, e.g., [Delecroix et al., 2004] for the theoretical properties
of the simultaneous optimization approach.

Despite the fact that the regression function is supposed unknown, a SIM
still imposes that all the relevant information carried by X is contained in
one factor that is obtained as a linear combination of the components of X.
A natural idea is to investigate whether more than one factor is necessary to
capture the information contained in X. For instance, one may consider the
model

E(Y | X) = r(X>β1,X>β2) (5)
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with r(·, ·) an unknown bivariate function that has to be estimated nonpara-
metrically and β1, β2 two vectors of unknown coefficients. (Suitable normal-
ization conditions are necessary to make the vectors β1, β2 identifiable.) The
unknown parameters can be estimated by an extension of (4), that is

(β̂1, β̂2) = arg min(β1,β2)

1

n

n∑

i=1

ψ
(
Yi, r̂

(
X

>
i β

1,X>
i β

2; (β1, β2)
))
τn(Xi), (6)

where r̂
(
t, s; (β1, β2)

)
is a nonparametric estimator of the regression function

r(t, s; (β1, β2)) = E
(
Y | (X>β1,X>β2) = (t, s)

)
. The smoothing parameters

of the bivariate estimator of r can be selected by simultaneous optimization
in (6) with respect to (β1, β2) and the smoothing parameters. See [Xia et al.,
2002] and [Delecroix et al., 2004].

An alternative procedure for finding β1, β2 is to search these directions

one by one: first, search β̂1 like in (4); second, search β̂2 orthogonal to β̂1

and solution of the problem

β̂2 = argminβ2

1

n

n∑

i=1

ψ
(
Yi, r̂

(
X

>
i β̂

1,X>
i β

2; (β̂1, β2)
))

τn(Xi).

This procedure simplifies the optimization problem. It can be shown that,
under mild conditions, the linear subspace generated by directions obtained
by sequential search is the same as the linear subspace generated by the
directions obtained from (6). One may search for more than two directions
β, either by joint maximization as in (6) or by sequential search after finding

the first two directions β̂1, β̂2, but the results will become much more difficult
to interpret.

The last theoretical issue we shall discuss here is the problem of testing
in the semiparametric models mentioned above. There are at least two types
of test problems one may consider. First, it is important to be able to test
the traditional parametric binary response regression models, typically the
logistic regression, using semiparametric models. [Härdle et al., 1998] started
from model (2) and tested the logistic regression model by setting the null
hypothesis m(T) = c+ T

>γ for some constant c and some vector γ. [Härdle
and Spokoiny, 1997] considered the SIM framework described by equation
(3) and proposed a test procedure for checking whether the function r has a
given form (typically, whether r is the logistic function or not).

If the parametric model is rejected in favor of a more flexible semipara-
metric specification, the next step is to test the semiparametric model itself
against more general semiparametric or nonparametric alternatives. It is only
recently that promising testing procedures for SIM have been proposed. See
[Xia et al., 2004] and [Stute and Wang, 1994].
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3 The data

The stakes of a reliable, interpretable, easy to implement and easy to update
scoring method are important. The semiparametric methods represent an
alternative stream of dealing with these aspects. Their power was relatively
little investigated in scoring applications. Our aim is to provide additional
empirical evidence on the utility of the semiparametric methods in scoring
problems. The semiparametric techniques mentioned above are tested and
compared with the benchmark parametric models. For this purpose we use
two types of data. First, we work with a sample from a database of Banque de
France. Our dataset contains the accounting balances of French companies
from one economic sector during several years. The task is to asses the risk of
bankruptcy for a company given the information provided by the company.

For our second application we use data on private loans from a German
bank. The data are presented in [Fahrmeir and Tutz, 1994] and are publicly
available. In credit business, banks are interested in information whether
prospective consumers will pay back their credit or not. The aim of credit
scoring is to predict the probability that a consumer with certain character-
istics is to be considered as a potential risk. The dataset we consider consists
of 1000 consumer credits. For each consumer the binary response variable
”creditability” is available, together with a set of covariates that are assumed
to influence creditability.
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