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Abstract. In this paper, a new method is proposed for measuring the distance
between a training data set and a single, new observation. The novel distance
measure reflects the expected squared prediction error, when the prediction is based
on the k nearest neighbours of the training data set. The simulation shows that the
distance measure correlates well with the true expected squared prediction error
in practice. The distance measure can be applied, for example, to assessing the
uncertainty of prediction.
Keywords: Distance measure, Model uncertainty,
Distance weighted k-nearest-neighbour, Novelty detection.

1 Introduction

In some applications, such as in evaluation of the reliability of prediction at a
query point, it is interesting to measure the information given by the training
data set about a new observation via the current prediction model. In this
work, we propose a novel measure for the distance between a single observa-
tion and a data set. The distance measure reflects the expected uncertainty
of the new observation being predicted based on the data set. The distance
measure is a linear function of the approximated expected squared predic-
tion error, when the new observation is predicted with the distance weighted
k-nearest-neighbour method.

There has been much discussion about measuring the distance between
two observations. We refer to a review paper [Wettschereck et al., 1997] that
discusses the different methods. Often, Euclidean distance or Manhattan
distance is used, and the problem lies in the weighting or scaling of the
variables. The input variables that have a large effect on the response should
have large weights in the distance measure. Global distance measures use
constant weights, unlike local distance measures. Some distance measures
take the correlations between the explanatory variables into account.

The measurement of the distance between a set of observations and a sin-
gle observation has also been widely discussed. Different distance measures
have been applied in clustering and in prototype methods. In these applica-
tions, the aim in defining the distance has been to assign the observation to
the nearest cluster or prototype. Examples of the different methods include
the average pairwise distance, the Mahalanobis distance and the Euclidian
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distance to the cluster centroid. We refer to [Kaufman and Rousseeuw, 1990]
for these methods. However, these methods have been planned to measure
the distance between a cluster and a single observation and not the distance
between a data set and a single observation.

Novelty detection aims to find abnormal observations from a data set.
Abnormal observations can indicate that the modelled system is in an abnor-
mal state, which needs to be reported. In classification, detection of novel
observations is needed to identify new classes and observations that cannot
be classified reliably. Novelty detection can be used to differentiate novel in-
formation from existing information when only the novel information needs
to be shown to the learners. For novelty detection methods, we refer to the
review [Markou and Singh, 2003].

The usual approach in novelty detection is to measure somehow the sim-
ilarity with the training data and to use some threshold to interpret the
observations as novel. The most common method is to model the joint den-
sity function of input variables to judge the observations with low density
as novel [Markou and Singh, 2003]. Our approach differs in that we do not
construct any distribution model for the inputs. Our distance measure tries
to measure the uncertainty about the expected response value at a new query
point, which is quite a novel approach to the problem. The standard errors
of predictions measure the uncertainty with variance, but we take also bias
into account.

[Angiulli and Pittuzi, 2005] suggested a method for detecting outliers
in a data set. They calculated the sum of the Euclidean distances to the
k nearest neighbours for measuring the distance, which approach is quite
similar to our proposal. [Mahamud and Hebert, 2003] discussed the optimal
distance measures in k-nearest-neighbour prediction, and we constructed our
distance measure using a similar optimality principle.

2 Distance between two single observations

Let x(j) refer to the jth explanatory variable and xij denote the ith observa-
tion of x(j), yi denote the ith observation of the response and T denote the
training data set consisting of N observations (x1, y1), (x2, y2), . . . , (xN , yN).
Let (x0, y0) be a new test data observation and di = d(x0, xi) measure the
distance between x0 and xi ∈ T . We assume that the response depends on
the inputs via a regression function f(·), and that the additive error term
has a constant variance

yi = f(xi) + εi, E(εi) = 0, Var (εi) = σ2. (1)

[Mahamud and Hebert, 2003] discussed the optimal distance measures in
nearest-neighbour classification. The optimal distance measure in 1-nearest-
neighbour prediction minimises the expected loss function Ey0,x0,T L(y0, y

′),
where y′ is the measured response at x′, which is the nearest neighbour of x0



Measuring Distance from a Training Data Set 579

using the distance measure d. The distance measure d(x0, xi) = EL(y0, yi)
is optimal, because the nearest neighbour x′ = arg minxi

EL(y0, yi) min-
imises the expected loss L(y0, y

′) ∀x0 ∀T [Mahamud and Hebert, 2003]. The
same reasoning holds for k-nearest-neighbour prediction. All order-preserving
transformations of the expected loss function are optimal, because the near-
est neighbours remain the same. We use the expected squared error loss
EL(µ0, yi) = E(µ0 − yi)

2 = E(y0 − yi)
2 − σ2 related to the true expectation

µ0 = E(y|x0) = f(x0) without losing optimality.
The optimal distance measure cannot be used directly because the con-

ditional expectation of the response is not known, and the true expected loss
cannot be solved. The optimal distance measure is not monotonic, which
implies an interpretational disadvantage: The nearest neighbours may lie far
away from the query point on the scale of explanatory variables. To elimi-
nate this problems, we must be content with a coarse approximation of the
expected loss: We use the sum of the expectations of squared differences in
the true regression function, when one input variable at a time is set to the
measured values x0 and xi, and other input variables are drawn randomly,

E(µ0 − yi)
2 = σ2 + [f(x0)− f(xi)]

2 ≈ σ2 +

p∑

j=1

Ex

{
f [w

(j)
i (x)]− f [w

(j)
0 (x)]

}2
.

(2)

In the formula, x is a randomly drawn input observation, w
(j)
0 (x) is otherwise

identical with x but the jth element is altered w
(j)
0j = x0j , and w

(j)
i (x) is

otherwise identical with x but the jth element w
(j)
ij = xij .

In the case of continuous input variables, we further approximate the
squared differences in y with squared differences in the input variable val-

ues Ex

{
f [w

(j)
i (x)] − f [w

(j)
0 (x)]

}2 ≈ αj(x0j − xij)
2. [Mahamud and Hebert,

2003] proposed to estimate the α-coefficients by fitting a regression model
to a data set of pairs of training data instances using the response L(yi, yj).
The advantage of their direct method is that the regression function need
not be estimated. We propose a different method. Let our prediction model
be ŷ = f̂(x) = f̂(x(1), x(2), . . . , x(p)), and let σ̂2 be the corresponding error
variance estimate. Let now xc ∈ T denote a training data observation lying

near x0, and let f̂ ′(xc) =
(

∂ bf(x)
∂x(1)

, ∂ bf(x)
∂x(2)

, . . . , ∂ bf(x)
∂x(p)

)
(x=xc) denote the gradient

of the fitted response surface at point xc. Motivated by the first-order Tay-
lor approximation around xc, we suggest that α1, . . . , αp are defined as the
average squared partial derivative over the training data set

αj =
1

N

N∑

i=1

(∂f̂(x)

∂x(j)
(x=xi)

)2

. (3)

For large N , it is enough to calculate the average over a sample. The regres-
sion function can be fitted using any learning method, for example, neural
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networks or additive models. The partial derivatives of the fitted response

surface can be approximated numerically with ∂ bf(x)
∂x(j)

(x=xi) =
bf(xi)− bf(xi+oj)

|oj |
,

where oj is a vector of zeros elsewhere but a small constant at the jth element.

When x(j) is a categorical variable with class levels γj1, γj2, . . . , γjqj
, we

can estimate the expected squared difference Ex

{
f [w

(j)
i (x)]−f [w

(j)
0 (x)]

}2
be-

tween each two class levels γjl and γjm using the fitted prediction model with

1
|J|

∑
j∈J

(
f̂(xi) − f̂(w

(j)
i )

)2

. The input vectors w
(j)
i are otherwise identical

to xi but the jth element is altered: w
(j)
ij = γjm, if xij = γjl, and w

(j)
ij = γjl,

if xij = γjm. The squared differences in the prediction are averaged over the

index set J =
{
i|f̂(xi), f̂(w

(j)
i ) are reliable and (xij = γjl or xij = γjm)

}
.

For binary variables we can notate

αj =
1

|J |
∑

j∈J

(
f̂(xi) − f̂(w

(j)
i )

)2

. (4)

We propose to use an approximate optimal distance measure that is the
approximated expected squared error loss

d(x0, xi) = α0 +

p∑

j=1

αj(x0j − xij)
2. (5)

The coefficient α0 is the error variance estimate σ̂2. The notation (Eq. 5) is
applicable for continuous and binary variables, but categorical variables can
be taken into account as explained previously.

3 Distance between a single observation and a data set

We suggest that the distance of a single observation from a set of k observa-
tions, Sk, is measured on the basis of the expected squared error when the
single observation is predicted based on Sk. This can be seen as the general-
isation of the pairwise optimal distance measure. The true expected loss at
x0 is not known and has to be approximated. We predict µ0 = E(y0) with a
distance-weighted linear combination of the y values measured in Sk, which
results in measurement of the distance with the harmonic sum of pairwise
distances.

Let Sk = (x1, x2, . . . , xk) with the distances d1, d2, . . . , dk from x0, and
let each distance be known di = E(µ0 − yi)

2. Let us now estimate µ0 with
a weighted linear combination ŷ0 = ω1y1 + ω2y2 + · · · + ωkyk. Under the
symmetry assumption E(µ0 − yi) = 0, the minimum variance unbiased esti-
mator gives weights proportional to the inverses of the variances and sums the
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weights to unity ωj = 1
dj

/ ∑k

i=1
1
di

. We use this distance-weighted estimator

ŷ0 =
( k∑

i=1

1

di

yj

)/ k∑

i=1

1

di

(6)

to predict y0 based on Sk. We keep the estimator (Eq. 6) as a natural
basis for the interpretation of our distance measure because the approach
does not make any assumption about the form of the regression function.
The expected squared loss of our estimator is the harmonic sum of pairwise
distances di plus a bias term

E(ŷ0 − µ0)
2 = E

( k∑

i=1

(ωiyi) − µ0

)2

= E
( k∑

i=1

ωi(yi − µ0)
)2

=
k∑

i=1

ω2
i E(yi − µ0)

2 + 2
k∑

j=1

∑

i6=j

E(yi − µ0)E(yj − µ0)ωiωj

=
( 1

∑k
i=1

1
di

)2[ k∑

i=1

di/d2
i + 2

∑∑

i6=j

E(yi − µ0)E(yj − µ0)

didj

]

=
1

∑k

i=1
1
di

+
( 1

∑k

i=1
1
di

)2

2
∑∑

i6=j

E(yi − µ0)E(yj − µ0)

didj

. (7)

We take the expectations (Eq. 7, 8, 9 and 10) over xi, also, which means that
xi are assumed to be random points satisfying the condition d(x0, xi) = di.
If the assumption EY,xi|di

(µ0 − yi) = 0∀i holds, the bias term would be zero,
and the expected squared error would be the harmonic sum of the pairwise
distances. However, that is not a realistic assumption. Some query points
x0 may lie in a ’symmetric’ position where the assumption holds. But some
query points may lie at the bottom of a valley or on the top of a hill, where
the expectation E(yi − µ0) is negative for all possible neighbours xi.

Let us now us examine the bottom of a valley scenario in more detail.
Because E (yi − µ0)

2 = di and Var yi = σ2, it holds that E (yi − µ0) =√
di − σ2. Let d̄ denote the average inverse distance 1

k

∑k

i=1 1/di. We can
derive an upper bound for the bias term

2
∑∑

i6=j

E (yi − µ0)E (yj − µ0)

didj

= 2
∑∑

i6=j

√
di − σ2

√
dj − σ2

didj

=

k∑

i=1

[√di − σ2

di

∑

j 6=i

√
dj − σ2

dj

]
<=

k∑

i=1

d̄

√
1

d̄
− σ2

∑

j 6=i

d̄

√
1

d̄
− σ2

= k(k − 1)d̄2(
1

d̄
− σ2) = (k − 1)

k∑

i=1

1

di

− σ2 k − 1

k

[ k∑

i=1

1

di

]2

(8)

The result follows from the Jensen inequality and concavity of the function
q(x) = x

√
1/x − σ2. Equality is achieved if the distances to all the neigh-
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bours are constant 1/di = d̄ ∀i. When all the k neighbours are roughly
equally distant, and x0 lies at the bottom of a valley or on the top of a hill,
the bias term can be approximated as a linear function of the harmonic sum
1/

∑k

i=1
1
di

and k

( 1
∑k

i=1
1
di

)2

2
k∑

j=1

∑

i6=j

E(yi − µ0)E(yj − µ0)

didj

≈ k − 1
∑k

i=1
1
di

− σ2 k − 1

k
. (9)

Simulation studies showed that this approximation holds well in practice: In
all of the simulated data sets, the correlation between the harmonic sum and
the bias term was over 0.99 when pairwise distances depending only on x
were used (Eq. 5) and over 0.94 when the true distances di = E(µ0 − yi)

2

were used and k ≤ 50.
At all query points x0, the true bias can be expressed in relation to the

maximum bias with EY,xi|x0,di
(yi − µ0) = c(x0)

√
di − α0. When x0 lies in a

symmetric position, c(x0) = 0, at the bottom of the valley c(x0) = 1, and
on the top of the hill c(x0) = −1. When we assume that c(x0) does not
depend on the distance di and denote Ex0c(x0)

2 = δ2, the expected squared
prediction error can be approximated with

EY,x|d1...dk
(µ0 − ŷ0)

2 = Ex0

( 1
∑k

i=1
1
di

)2

2
∑∑

i6=j

c(x0)
2
√

di − σ2
√

dj − σ2

didj

+
1

∑k

i=1
1
di

≈ 1
∑k

i=1
1
di

+ δ2(k − 1)
1

∑k

i=1
1
di

− σ2δ2 k − 1

k
. (10)

This is a linear transformation of the harmonic sum when k is kept fixed.
Thus, the harmonic sum 1/

∑k

i=1
1
di

can be used as a measure of the uncer-
tainty about µ0 when y1, . . . , yk and d1, . . . , dk are given. On the basis of
simulated data, the approximation seems to work well in practice: The cor-
relations between the approximation and the true expected loss were about
0.9.

We propose that the distance between a single observation x0 and a set
of observations Sk = (x1, x2, . . . , xk) is measured with the harmonic sum of
pairwise distances di = d(xi, x0). When the pairwise distances correspond to
the expected squared error di ≈ E(µ0 − yi)

2, our distance measure d(x0, Sk)
approximates an increasing linear function of the expected squared prediction
error E(µ0 − ŷ0(Sk))2. We suggest that the distance between x0 and Sk is
measured with

d(x0, Sk) =
1

∑k

i=1
1
di

di =

p∑

j=1

α0 + αj(x0j − xij)
2. (11)
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4 Measuring the distance to a training data set

Our method could be used directly to measure the distance between a single
observation and the training data set by letting Sk = T . However, when the
training data set is large, it makes more sense to use only the k nearest obser-
vations. In the k-nearest-neighbour method, typically 5 to 100 neighbours are
used to obtain the most accurate prediction. Thus, the observations lying far
away from x0 should not have an effect on the distance measure, because they
do not affect the prediction. Let d(k) be the kth smallest distance d(x0, xi).
Our suggestion for the distance between the training data set and a single
observation is

d(x0, T ) = d(x0, Sk), Sk =
{
xi ∈ T | d(x0, xi) ≤ d(k)

}
, (12)

Our distance measure is problem-dependent. If we have the same inputs
and several responses, the distance measure has to be defined separately for
each response. The distance measure adapts itself to the regression func-
tion. The variables that do not affect the response do not affect the distance,
either. The distance measure is invariant for linear transformations and ap-
proximately invariant for order-preserving transformations of the inputs. The
distance measure also has a reasonable interpretation as the approximate
measure of the expected loss function, which is an informative and novel way
to measure the uncertainty about a new observation. The distance measure
uses the squared error loss function, but can also be used for non-gaussian
responses. If µ0 were estimated with the unweighted k-nearest-neighbour
method, the result would be the sum of single distances, just as proposed in
[Angiulli and Pittuzi, 2005].

After the distance measure has been initialised by defining the α-
coefficients, the major computational task is to find the k nearest training
data observations. The computation of a single distance to the training data
set requires about N(p + 2)+ k2 operations. Initialision of the distance mea-
sure consists of fitting a prediction model and defining the α-coefficient for
each explanatory variable, which is not a computational problem even in
large data sets.

When prediction using some novel input values is needed, there rises the
question of whether the model gives a reliable prediction or not. If the query
point has enough training data instances nearby, the prediction can be kept
reliable. If the query point is far away from the training data instances, the
model will give a poor prediction with a high probability. The distance be-
tween the query point and the training data set gives information about the
uncertainty of the prediction, see the example in Figure 1. The prediction ac-
curacy of the model for validation data observations distant from the training
data gives some information about the interpolation ability of model. In the
example shown in Figure 1, the smoothed prediction accuracies of a linear
regression model, a quadratic regression model and an additive spline model
are plotted as functions of distance from the training data set.
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Fig. 1. Average prediction error (rMSE) in a simulated data set.

5 Performance in simulated data sets

The proposed distance measure reflects the expected squared error loss func-
tion d(x0, Sk) ≈ c1+c2E(µ0−ŷ0(Sk))2. We evaluated the correlation between
the distance measure and the true expected loss using simulated data sets.
The simulated data sets tried to represent a range of data sets which could
arise from an industrial process of production. The observations occurred
in clusters of different sizes, and the input variables were correlated. The
true expected response was defined as a sum of 24 random effects of the form
ν|b0+β1x(1)+β2x(2)+· · ·+β16x(16)|bs, where b = e0.5zb , zb ∼ N(0, 1), making
the typical effect rather linear, and the signum s turns the effect monotone
with a probability of 0.7. Only 1, 2, 3 or 4 of βi differs from 0, which means
that interactions are restricted to the 4th order. The observed response was
normally distributed around the true expected response. One simulated data
set consisted of 10 000 observations and 16 input variables.

We simulated 20 data sets. We split all simulated data sets randomly into
a learning data set and a validation data set. Out of the 2000 observations
in the validation data, we calculated the distances to the learning data set
using the proposed method. For each data set, we fitted an additive model
with univariate thin plate regression splines as basis functions to define the
α- coefficients of our distance measure. We defined the true pairwise distance
as the true expectation E(µ0−yi)

2 and the true distance to the training data
as the true expected squared prediction error

E
(
µ0 −

∑k

i=1 yi/d(xi, x0)∑k
i=1 1/d(xi, x0)

)2

. (13)

We examined the accuracy of our pairwise distance measure in approxi-
mating the expected loss E(µ0 − yi)

2 ≈ α0 +
∑p

j=1 αj(x0j −xij)
2 = d(x0, xi)

based on the correlations between the pairwise distance measure d(xi, xj)
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and its theoretical reciprocal (µi − µj)
2 + σ2. In the simulated data sets,

the correlation varied between 0.19 and 0.81, the average correlation being
0.47. When neighbourhood size k = 30 was used, the correlation between the
distance measure (Eq. 11) and the true expected squared error EY (µ0 − ŷ0)

2

(ŷ0 is defined in Eq. 6) varied between 0.41 and 0.66, the average correlation
being 0.52. Thus, our distance measure d(x0, T ) reflects relatively well its
theoretical reciprocal, the expected squared error loss when x0 is predicted
based on T using distance-weighted k-nearest-neighbour. The deviation be-
tween the true expected squared error and our distance measure is mainly the
consequence of the difficulty in approximating pairwise expected loss based
only on x. If the true pairwise expected losses were known, the approxima-
tion would work much better: The correlation between the true expected loss
E(y0 − ŷ0)

2, ŷ0 =
∑k

i=1 yi/E(yi − µ0)
2 and the harmonic sum of the true

pairwise distances 1/
∑k

i=1 1/E(yi − µ0)
2 was typically about 0.93 and over

0.83 in all simulated data sets for k ≤ 200. The size of the neighbourhood had
a relatively small effect on the results, and all alternatives between k = 5 and
k = 500 gave satisfactory correlations, and the best size of the neighbourhood
varied greatly between the simulation runs. We suggest the use of k = 30,
because that seemed to work best, and no larger neighbourhood was needed
for k-nearest-neighbour prediction. Also, it seems intuitively reasonable that
the distance to the training data can be defined based on the distances to
the 30 nearest neighbours.

We compared our distance measure to the sum of pairwise distances of
[Angiulli and Pittuzi, 2005]. Using k = 30, our distance measure was slightly
better in 90 % of the simulation runs, and the average difference in corre-
lation was 0.035. We also examined the effect of the method on defining
α-coefficients for the distance measure. The average correlation between the
pairwise distances based on a fitted additive model and on the true response
surface was 0.92. The correlations between distances calculated based on two
different learning methods were around 0.95, which means that the model fit-
ting had only a small effect on the results. The method of [Mahamud and
Hebert, 2003] for specifying α-coefficients gave poor results: The average
pairwise correlation was only 0.30.

In the simulated data sets, the distance measure reflected the uncertainty
about a new observation pretty well. We applied the distance measure to real
industrial process data. We used a training data set having 90 000 obser-
vations, 26 continuous input variables and 6 binary input variables without
any computational problems. In the test data set containing 60 000 obser-
vations, the average prediction error increased along with the distance from
the training data (Figure 2). The correlations between the measured loss and
the distance measure were between 0.25 and 0.5, depending on the response
variable and the prediction model.
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Fig. 2. Prediction error plotted against distance from the training data set in the
real data set. The lines are the smoothed medians for four different prediction
models.

6 Conclusion

We proposed a novel distance measure for the distance between a data set
and a single observation. The distance measure can be interpreted to reflect
the expected squared error loss when the single observation is predicted based
on the data set using distance-weighted k-nearest-neighbour. Measurement
of the distance from a data set has many potential applications, such as
evaluation of the uncertainty of prediction and discovery of outliers.
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