
Invariances in Classification:

an efficient SVM implementation

Gaëlle Loosli1, Stéphane Canu1, S.V.N. Vishwanathan2, and Alex J. Smola2

1 Laboratoire Perception, Systèmes, Information - FRE CNRS 2645
B.P. 08 - Place Emile Blondel
76131 - Mont Saint Aignan Cedex - France
(e-mail: gloosli@insa-rouen.fr, scanu@insa-rouen.fr)

2 National ICT for Australia.
Canberra, ACT 0200 - Australia
(e-mail: vishy@axiom.anu.edu.au, alex.smola@anu.edu.au)

Abstract. Often, in pattern recognition, complementary knowledge is available.
This could be useful to improve the performance of the recognition system. Part
of this knowledge regards invariances, in particular when treating images or voice
data. Many approaches have been proposed to incorporate invariances in pattern
recognition systems. Some of these approaches require a pre-processing phase, oth-
ers integrate the invariances in the algorithms. We present a unifying formulation
of the problem of incorporating invariances into a pattern recognition classifier and
we extend the SimpleSVM algorithm [Vishwanathan et al., 2003] to handle invari-
ances efficiently.
Keywords: SVM, Invariances, Classification, Active Constraints.

1 Introduction

The problem of invariances has been widely studied from a signal processing
point of view for pattern recognition (see [Wood, 1996] for a review). Pro-
posed methods in this area mainly consists in invariant features extraction
before feature classification. To do so, Fourier transforms and similar trans-
forms are used, as well as moment methods like Zernike moments [Wood,
1996]. In 1993 the invariances where taken into account in neural networks
[Simard et al., 1993] with the idea to modify the metric distance and use one
that allows the variations of a pattern to be close the one from the others.
In 1996 the invariances appeared for SVMs. In [Schölkopf et al., 1996] the
authors propose to generate some virtual examples to enlarge the dataset and
thus make the algorithm learn invariances. Our approach is to provide a uni-
fying framework for invariances in Support Vector Machines. First we define
a general view of invariances in pattern recognition and show how to incorpo-
rate it in SVMs. The next part shows the connexion between our method and
the existing ones. Finally we give details on Invariant SimpleSVM algorithm
and some results obtained on the USPS database.



544 Loosli et al.

2 Invariant SimpleSVM

In this section we will propose a general formalisation of invariances in pattern
recognition.

Definition. We need to define what a transformation is and how to apply
it to any kind of patterns. A pattern x belongs to a level space L (for instance
the contrast) and relies on its support space S (for instance the background).
A pattern transformation is an application that maps a pattern and some
parameters to a transformed pattern:

T : L× Θ → L
x, θ 7→ T (x, θ)

Moreover we require T (x, 0) = x.

If we now consider the binary classification purpose, we define the decision
function D(x) as a mapping from X d to {0, 1} that maps x to D(x). If we
want the decision function to be invariant with respect to the rotation, we
will require that it gives the same decision for an image and its rotations:

D({I(`i, Li), i = [1, d]}) = D({I(Rθ(`i, Li)), i = [1, d], ∀θ})
D(x0) = D(xθ)

2.1 Formulation

Integrating invariances into SVMs requires us to distinguish between separa-
ble (with no error) and non separable (with errors) cases. The first case is
quite easily solvable while the second requires some non trivial constraints to
be satisfied.

A kernel k(x, y) is a positive and symmetric function of two variables (for
more details see [Atteia and Gaches, 1999]) lying in a Reproducing Kernel
Hilbert Space with the scalar product:

〈f, g〉H =

k
∑

i=1

l
∑

j=1

figjk(xi,x
′
j).

Hard-margins. In the separable case we can formulate the SVM problem
with invariances as follows:







min
f,b

1

2
‖f‖2

H

s.t. yi(f(T (xi, θ)) + b) ≥ 1 i ∈ [1, m], θ ∈ Θ
(1)

where b is a scalar called bias. From this we can deduce the dual formulation
(Wolfe’s dual):



Invariant Simple SVM 545































max
α

−
1

2

m
∑

i,j=1

∫ ∫

Θ

αi(θ1)αj(θ2)yiyjk(T (xi, θ1), T (xj , θ2))dθ +

m
∑

i=1

∫

Θ

αi(θ)dθ

s.t.

m
∑

i=1

∫

Θ

αi(θ)yidθ = 0

and αi(θ) ≥ 0 i ∈ [1, m], θ ∈ Θ

(2)
The Lagrange multipliers will be 0 for all points except the support vectors.
Because of the nature of the hypothesis space, it is reasonable to assume that
αi(θ) will have non-zero values only for a few finite number of parameters θ,
thus we can simplify the writing:























max
α

−
1

2

∑

i,j,θ1,θ2

αi(θ1)αj(θ2)yiyjk(T (xi, θ1), T (xj , θ2)) +
∑

i,θ

αi(θ)

s.t.
∑

i,θ

αi(θ)yi = 0

and αi(θ) ≥ 0 i ∈ [1, m], θ ∈ Θ

(3)











max
γ∈Rm×p

− 1

2
γ
>Gγ + e>γ

s.t. γ
>y = 0

and γi ≥ 0 i ∈ [1, mp]

(4)

where γ = [α1(θ); α2(θ); . . . ; αm(θ)], G is the block matrix defined as
GIJ = yiyjK

ij with K
ij
kl = k(T (xi, θk), T (xj , θl)) and p is the size of Θ.

Soft-margin. Considering the case of soft-margin, i.e. the non separable
case, we face another problem. Adding a slack variable to allow errors in
the solution makes the last condition of system 2 αi(θ) ≥ 0 become 0 ≤
∫

Θ
αi(θ)dθ ≤ C where C is a trade-off acting on the regularity of the decision

function. This is quite similar to the hard-margin case. However we cannot
make the assumption that we will end up with a finite number of non-zero
valued Lagrange multipliers. Indeed if the trajectory of a transformation goes
through the margin, then we have an infinite number of Lagrange multipliers
bounded so that

∫

Θ
αi(θ)dθ = C.

3 A Unifying Formulation

We can roughly identify three main streams in the algorithms dealing with
invariances and support vector methods. Some are based on an artificial en-
largement of the dataset, others rely on the modification of the cost function
to incorporate the invariances (and thus using a different metric) and there
are also methods using polynomial approximations to represent trajectories.



546 Loosli et al.

3.1 Enlarging artificially the dataset

A very intuitive way to learn invariances is to incorporate them in the training
set. This operation can be processed before the use of the learning algorithm
by artificially generating transformations of the sample data. The enlarged
dataset (actual samples and virtual samples) contains thus the prior knowl-
edge. Despite its simplicity, one major drawback of this method is the size
of the resulting problem.

Virtual-SV. This idea was applied in SVM in [Schölkopf et al., 1996] with
the V-SV. The authors propose a way to reduce the size problem. Knowing
that all the information needed for the classification task in SVM is contained
in the support vectors, the authors make the assumption that one do not
need to take into account the non-support vector’s variations, since they are
supposed to be far from the frontier between the classes. So basically the idea
is to run a first time a classical SVM to retrieve the support vectors. Then
the virtual vectors are generated from these support vectors and another
SVM is run on the enlarged database. Experiments show that applying
transformations on support vectors only gives at least as good results as
enlarging the complete dataset.

Invariant SimpleSVM can achieve the same task if the transformation
T (x, θ) is approximated by a finite number of point by fixing a finite number
of values for θ.

3.2 Adapting the distance metric to invariances

Introduced in 1993 in [Simard et al., 1993] and referred as the tangent dis-
tance, the motivation was to find a better distance measure than the Eu-
clidean distance for the purpose of invariances treatment. In the field of
support vector algorithm this idea has been used in various methods and we
briefly describe some of them in the following parts.

Invariant SVM Let’s now introduce the tangent vectors. The idea is
to associate each training vector with one or several tangent vectors and
to incorporate the invariances in the cost function [Chapelle and Schölkopf,
2002]. Optimising this cost function turns out to be equivalent to run a
classic SVM with pre-processed data with a particular linear mapping. In
the non-linear case, the results are similar except one would train a linear
SVM on pre-processed data with a non-linear mapping.

Tangent Distance and Tangent Vector Kernels. Following the idea of tak-
ing a tangent measure (TD-measure), kernels embedding the invariances has
been proposed. In [Pozdnoukhov and Bengio, 2003] the authors propose ker-
nel functions between trajectories rather than between points. They define a
function that measures the proximity between a point and the transformation
trajectory of another point.

Invariant SimpleSVM is similar to these methods if the transformation is
approximated by a first order polynomial (T (x, θ) ' x + ∇θT (x, 0)θ).



Invariant Simple SVM 547

3.3 Polynomial Approximation

Semi-Definite Programming Machines.

Presenting the SDPM [Graepel and Herbrich, 2004], the authors are trying
to learn data that are trajectories instead of the usual points. The aim is then
to separate trajectories that represent the (differentiable) transformations of
the original training points.

They show that this problem is solvable for transformations that can be
represented or approximated by polynomials. Basing their approach on Nes-
terov’s theorem they formulate the problem of learning a maximum margin
classifier with an SDP formulation under polynomial constraints. Using the
SD-representability of non negative polynomials they replace the usual non-
negativity constraints in SVM by positive semi-definite constraints. Doing
so they show that it is possible to learn to classify trajectories. However this
approach is rather intractable since it requires to solve large SDP.

Invariant SimpleSVM also contains this approach if the transformation
is approximated by a second order polynomial (T (x, θ) ' x + ∇θT (x, θ)θ +
1

2
θ>Hθθ).

In the separable case, we can solve directly the problem and our solution
is thus more tractable than the SDPM. Nevertheless we are penalised in the
non separable case since we need to discretise the parameter space. Despite
the complexity of SDPM, it always works in the original space Θ.

4 Algorithm and applications

We present in this section the SimpleSVM algorithm. We extend this method
for invariances because of its structure. Briefly, SimpleSVM adds points to
the solution one by one and this let us incorporate some treatment to each
point separately. This strong property breaks down the computing time
that would occur if one would apply the equivalent treatment to the whole
database. The main idea is to transform points only when adding them to
the solution, which excludes from this treatment all the points that are far
from the frontier between classes.

4.1 SimpleSVM

The SimpleSVM algorithm [Vishwanathan et al., 2003] is based on the de-
composition of the database into three groups (the working set, the inactive

set and the bounded set). Assuming the groups are known, it solves the SVM
optimisation problem on the working set only. Having a solution, it checks
whether the group repartition is relevant. If not the groups are updated (by
adding a violator point in the working set) and it iterates over these two
steps (see algorithm 1). A detailed explanation can be found in [Loosli et al.,
2004].



548 Loosli et al.

Algorithm 3 : simpleSVM

1. (Is, I0,Ic)← initialise
while minimumReached=FALSE

2. (α,λ)← solve the system without constraints(Is)
if ∃αi ≤ 0 or ∃αi ≥ C

3.1 project α inside the admissible set
3.2 transfers the associated point from Is to I0 or Ic

else

4. look for the best candidate xcand in Ic and I0

if xcand is found
5. transfer xcand to Is

else

6. minimumReached ← TRUE
end if

end if

end while

The Matlab implementation of this algorithm as well as the invariant

SimpleSVM are available at:
http://asi.insa-rouen.fr/~gloosli/simpleSVM.html [Loosli, 2004].

4.2 Invariant SimpleSVM

Invariant SimpleSVM integrates invariances like virtual vectors, first order
polynomials and so on. In the implementation we present here we chose to
deal with virtual vectors. The idea is to add virtual vectors that are derived
from potential support vectors only. Doing so we can achieve the same task
as V-SV in only one run of the algorithm. Compared to SimpleSVM, only the
step 4 in algorithm 1 is modified. While in SimpleSVM the best candidate
is the point that violates the most the constraints in the dual space (or
is the worst classified in the primal space), for Invariant SimpleSVM the
best candidate is chosen among the transformations of one vector. Here we
can come up with several heuristics, depending on how the transformations
are represented. Let’s take the case we choose to discretize the space of
parameters Θ:

• complete search: each step considers only one point and all its transfor-
mations and searches whether one violates the constraints,

• incomplete search: each step considers a group of points and searches
whether one violates the constraints. If so, it also considers all the trans-
formations and looks if one is worse than the original point,

• random search: can be applied to both of the previous heuristics. In-
stead of taking all the transformations, pick randomly one or several
transformations. This way is faster but does not necessarily reach the
best solution.



Invariant Simple SVM 549

4.3 Application to character recognition

It is known that incorporating invariances improves the results of a recogni-
tion task. In our experiments we first to get an idea of the efficiency of the
method, in other words to monitor the actual improvements. We present the
results for the complete USPS database in order to compare our method to
the published results.

Experiments settings. All the results here are obtained on the USPS
database. This database contains 7291 training pictures 16 × 16 pixels, val-
ued in [−1, 1] and 2007 test pictures. Pictures represent digits from 0 to 9
collected from handwritten postcodes. This dataset is widely used to bench-
mark recognition methods and is known as a difficult set. Indeed the human
performance is 2.5% of error.

The nature of the data induces the choice of the transformations to ap-
ply. A digit means the same regardless of translations, small rotations, line
thickness for instance. Hence the transformation used for experiments are
vertical and horizontal translation, rotation with angle 10◦ clockwise and
anti-clockwise, line thinning and thickening. These transformations are com-
puted on-the-fly for any point point that is about to reach the working set.
The main advantage of this choice is that we do not need to store all the
transformations of all the points. However it increases the training time.

The experiments on the USPS database were done with several objectives.
The first one was to show our algorithm was efficient and fast. The second
one was to explore different combinations of transformations (for instance
published results with SVM methods are applied with only the translation
of one pixel). The results are shown in table 1. The parameters are obtained
from a cross-validation. In table 2 we give the main published results on
USPS.

Kernel bandwidth C Transformation Error Time (train and test)

Poly 5 0.1 10−5 none 4.09 235 sec
Poly 5 0.1 10−4 tr 3.44 1800 sec
Poly 5 0.1 10−4 tr+rot 3.19 3200 sec
Poly 5 0.1 10−4 tr+er 3.14 -
Poly 5 0.1 10−4 tr+er+dil 3.24 2400 sec
Poly 5 0.1 10−4 tr+rot+er 2.99 2300 sec

Poly 5 0.1 10−4 tr+rot+er+dil 3.24 4800 sec

Table 1. results on USPS: Here we present results obtained with Invariant Sim-

pleSVM. The applied transformations are translation of 1 pixel (tr), rotation (rot),
erosion and dilatation (respectively er et dil). The best result is obtained in less than
40 minutes. Note that the computation time depends on the number of support
vectors, thus adding a transformation may improve computing time if it generates
good support vectors that are eliminating many candidates (for instance this hap-
pens between tr + rot and tr + rot + er, where erosion clearly gives good support
vectors and the algorithm converges faster).



550 Loosli et al.

Method Error

Tangant Vector and Local Rep. [Keysers et al., 2002] 2.0 %
Virtual SVM [Schölkopf et al., 1996] 3.2 %

Invariance Hyperplane + V-SV 3.0 %
Invariant SimpleSVM (this paper) 3.0 %

Human performance 2.5 %

Table 2. Some published results on USPS

4.4 Discussion

We show here that Invariant SimpleSVM is efficient. Let’s note that we have
implemented the transformations with the discrete point of view, which is
equivalent to the V-SV method. However we achieve a better performance
on USPS. This can be explained by the fact we method is more flexible con-
cerning the points which generates virtual vectors. Indeed we consider the
transformations of each point that could be support vector, but not necessar-
ily is support vector in the end. That way we consider more transformations.
Taking into account the invariances considerably increases the training time
(from less than 6 min without transformations up to 1 hour if we consider all
the listed transformations) but it is still very fast compared to other methods.
As for the effect of the different transformations, it is hard to conclude. We
noticed that the translation is the most influential one. The others have small
effects and the differences between different combinations are not significant
enough.

5 Conclusion

Based on the unifying approach for invariances with SVM proposed, an ef-
ficient implementation for the virtual vector case has been developed. This
implementation is an interesting evolution of the SimpleSVM algorithm and
is available on our website [Loosli, 2004]. The efficiency of our method has
been illustrated on the USPS database. Our results outperform the equiv-
alent algorithm Virtual-SVM in a significantly shorter computational time.
We are now carrying on a deeper study of the comparison with the SDPM.

This work was supported in part by the IST Program of the European
Community, under the PASCAL Network of Excellence, IST-2002-506778.
This publication only reflects the authors’ views.

References

[Atteia and Gaches, 1999]Marc Atteia and Jean Gaches. Approxiation Hilbertienne.
Presses Universitaires de Grenoble, 1999.



Invariant Simple SVM 551

[Chapelle and Schölkopf, 2002]O. Chapelle and B. Schölkopf. Incorporating invari-
ances in nonlinear SVMs. In Dietterich T. G.and Becker S. and Ghahramani
Z., editors, Advances in Neural Information Processing Systems, volume 14,
pages 609–616, Cambridge, MA, USA, 2002. MIT Press.

[DeCoste and Schölkopf, 2002]Dennis DeCoste and Bernhard Schölkopf. Training
invariant support vector machines. Machine Learning, 46:161–190, 2002.

[Graepel and Herbrich, 2004]Thore Graepel and Ralf Herbrich. Invariant pattern
recognition by semi-definite programming machines. In Sebastian Thrun,
Lawrence Saul, and Bernhard Schölkopf, editors, Advances in Neural Infor-

mation Processing Systems 16. MIT Press, Cambridge, MA, 2004.
[Keysers et al., 2002]D. Keysers, R. Paredes, H. Ney, and E. Vidal. Combination

of tangent vectors and local representation for handwritten digit recognition.
In Lecture Notes in Computer Science, volume LNCS 2396, pages 538–547.
SPR2002, International Workshop on Statistical Pattern Recognition, Wind-
sor, Ontario, Canada, springer-vertag edition, Aug 2002.

[Loosli et al., 2004]G. Loosli, S. Canu, S.V.N. Vishwanathan, Alexander J. Smola,
and Monojit Chattopadhyay. Une bôıte à outils rapide et simple pour les
SVM. In Michel Liquière and Marc Sebban, editors, CAp 2004 - Conférence

d’Apprentissage, pages 113–128. Presses Universitaires de Grenoble, 2004.
[Loosli, 2004]G. Loosli. Fast SVM toolbox in MATLAB based on SimpleSVM al-

gorithm, 2004. http://asi.insa-rouen.fr/~gloosli/simpleSVM.html.
[Pozdnoukhov and Bengio, 2003]A. Pozdnoukhov and S. Bengio. Tangent vector

kernels for invariant image classification with SVMs. IDIAP-RR 75, IDIAP,
Martigny, Switzerland, 2003. Submitted to International Conference on Pat-
tern Recognition 2004.

[Schölkopf et al., 1996]B. Schölkopf, C. Burges, and V. Vapnik. Incorporating in-
variances in support vector learning machines. In J.C. Vorbrüggen C. von der
Malsburg, W. von Seelen and B. Sendhoff, editors, Artificial Neural Networks

— ICANN’96, volume 1112, pages 47–52, Berlin, 1996. Springer Lecture Notes
in Computer Science.

[Simard et al., 1993]P. Simard, Y. LeCun, and Denker J. Efficient pattern recogni-
tion using a new transformation distance. In S. Hanson, J. Cowan, and L. Giles,
editors, Advances in Neural Information Processing Systems, volume 5. Mor-
gan Kaufmann, 1993.

[Vishwanathan et al., 2003]S. V. N Vishwanathan, A. J. Smola, and M. Narasimha
Murty. SimpleSVM. In Proceedings of the Twentieth International Conference

on Machine Learning, 2003.
[Wood, 1996]Jeffrey Wood. Invariant pattern recognition: A review. Pattern Recog-

nition, 29 Issue 1:1–19, 1996.


