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Abstract. We propose a new method to compute option prices based on GARCH
models. In an incomplete market framework, we allow for the volatility of asset
return to differ from the volatility of the pricing process and obtain adequate pricing
results. We investigate the pricing performance of this approach over short and
long time horizons by calibrating theoretical option prices under the Asymmetric
GARCH model on S&P 500 market option prices. A new simplified scheme for
delta hedging is proposed.
Keywords: GARCH models.

Introduction

There is a general consensus that asset returns exhibit variances that change
through time. GARCH models are a popular choice to model these chang-
ing variances. However the success of GARCH in modelling return variance
hardly extends to option pricing. Models by [Duan, 1995], [Heston, 1993]
and [Heston and Nandi, 2000] impose that the conditional volatility of the
risk-neutral and the objective distributions be the same. Total variance, (the
expectation of the integral of return variance up to option maturity), is then
the expected value under the GARCH process. Empirical tests by [Chernov
and Ghysels, 2000], (see also references therein), find that the above mod-
els do not price options well and their hedging performance is worse than
Black-Scholes calibrated at the implied volatility of each option.

A common feature of all the tests to date is the assumption that the
volatility of asset return is equal to the volatility of the pricing process. In
other words, a risk neutral investor prices the option as if the distribution of
its return had a different drift but unchanged volatility. This is certainly a
tribute to the pervasive intellectual influence of the [Black and Scholes, 1973]
model on option pricing. However, Black and Scholes derived the above prop-
erty under very special assumptions, (perfect complete markets, continuous
time and price processes). Changing volatility in real markets makes the
perfect replication argument of Black-Scholes invalid. Markets are then in-
complete in the sense that perfect replication of contingent claims using only
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the underlying asset and a riskless bond is impossible. Of course markets be-
come complete if a sufficient, (possibly infinite), number of contingent claims
are available. In this case a well-defined pricing density exists.

In the markets we consider the volatility of the pricing process is differ-
ent from the volatility of the asset process. This occurs because investors
will set state prices to reflect their aggregate preferences. The pricing dis-
tribution will then be different from the return distribution. It is possible
then to calibrate the pricing process directly on option prices. Although this
may appear to be a purely fitting exercise, involving no constraint beyond
the absence of arbitrage, verification of the stability of the pricing process
over time and across maturities imposes substantial parameter restrictions.
Economic theory may impose further restrictions from investors’ preferences
for aggregate wealth in different states.

[Carr et al., 2003] propose a similar set-up for Lévy processes. They use
a jump process in continuous time. We propose to use discrete time and a
continuous distribution for prices. Moreover we use GARCH models to drive
stochastic volatility.

[Heston and Nandi, 2000] derived a quasi-analytical pricing formula for
European options assuming a parametric linear risk premium, Gaussian in-
novations and the same GARCH parameters for the pricing and the asset
process. In our pricing model we relax their assumptions. We allow for
different volatility processes and time-varying, nonparametric risk premia—
set by aggregate investors’ risk preferences. We use not only Monte Carlo
simulation, but also filtered GARCH innovations.

Our method is different from [Duan, 1996], where a GARCH model is cali-
brated to the FTSE 100 index options assuming Gaussian innovations and the
locally risk neutral valuation relationship, which implies that the conditional
variance returns are equal under the objective and the risk neutral measures.
[Engle and Mustafa, 1992] proposed a similar method to calibrate a GARCH
model to S&P 500 index options in order to investigate the persistence of
volatility shocks.

The final target is the identification of a pricing process for options that
provides an adequate pricing performance. A surprising result concerns hedg-
ing performance. Hedging performance, contrary to what is commonly sought
in the stochastic volatility literature, cannot be significantly better than the
performance of the Black-Scholes model calibrated at the implied volatility
for each option. This result stems from the fact that deltas, (hedge ratios),
for Black-Scholes can be derived applying directly the (first degree) homo-
geneity of option prices with respect to asset and strike prices, without using
the Black-Scholes formulas. Therefore, hedge ratios from Black-Scholes cal-
ibrated at the implied volatility are the “correct” hedge ratios unless a very
strong departure from “local homogeneity” occurs. This is not the case for
the continuous, almost linear volatility smiles commonly found. In practice,
for regular calls and puts, this is the case only for the asset price being equal
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to the strike price one instant before maturity. In summary, although it
may be argued that calibrating Black-Scholes at each implied volatility does
not give a model of option pricing, the hedging performance of this common
procedure is almost unbeatable. [Barone-Adesi and Elliott, 2004] further
investigate the computation of the hedge ratios under similar assumptions.

Our tests use closing prices of European options on the S&P 500 Index
over several months. After estimating a GARCH model from earlier S&P 500
index data we search in a neighborhood of this model for the best pricing
performance. Care is taken to prevent that our results be driven by mi-
crostructure effects in illiquid options.

The structure of the paper is the following. Section 1 presents option and
state prices under GARCH models when the pricing process is driven by sim-
ulated, Gaussian innovations. Section 2 investigates the pricing performance
of the proposed method when the pricing process is driven by filtered, esti-
mated GARCH innovations. Section 3 discusses hedging results and Section 4
concludes.

1 Option and State Prices under the GARCH Model

Consider a discrete-time economy. Let St denote the closing price of the S&P
500 index at day t and yt the daily log-return, yt := ln(St/St−1). Suppose
that under the objective or historical measure P, yt follows an Asymmetric
GARCH(1,1) model; see [Glosten et al., 1993],

yt = µ+ εt,
σ2

t = ω + αε2t−1 + βσ2
t−1 + γIt−1ε

2
t−1,

(1)

where ω, α, β > 0, α + β + γ/2 < 1, µ determines the constant return
(continuously compounded) of St, εt = σt zt, zt ∼ i.i.d.(0, 1) and It−1 = 1,
when εt−1 < 0 and It−1 = 0, otherwise. The parameter γ > 0 accounts for
the “leverage effect”, that is the stronger impact of “bad news” (εt−1 < 0)
rather than “good news” (εt−1 ≥ 0) on the conditional variance σ2

t .
The representative agent in the economy is an expected utility maximizer

and the utility function is time-separable and additive. At time t = 0, the
following Euler equation from the standard expected utility maximization
argument gives the price of a contingent T -claim ψT ,

ψ0 = EP[ψT U
′(CT )/U ′(C0)|F0] = EP[ψT Y0,T |F0]

= EQ[ψT e
−rT |F0],

where EG[·] denotes the expectation under the measure G, r is the risk-free
rate, U ′(Ct) is the marginal utility of consumption at time t and Ft is the
information set available up to and including time t. The state price density
per unit probability process Y is defined by Yt,T := e−r(T−t)Lt and

Lt =
dQt

dPt

=
q dS

p dS
=
q

p
,
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where Q is the risk neutral measure absolutely continuous with respect to
P, the subindex t denotes the restriction to Ft, q and p (time subscripts are
omitted) are the corresponding density functions. When the financial market
is incomplete, Lt is not unique and is determined by the representative agent’s
preferences. Intuitively, if p(ST ) was a discrete probability, the state price
density evaluated at ST , Yt,T (ST ) p(ST ), gives at time t the price of $1 to be
received if state ST occurs. The state price per unit probability, Yt,T (ST ),
is then the market price of a state contingent claim that pays 1/p(ST ) if
state ST , which has probability p(ST ), occurs. The expected rate of return
of such a claim under the physical measure P is 1/Yt,T (ST )− 1. As marginal
utilities of consumptions decrease when the states of the world “improve”,
Yt,T is expected to decrease in ST .

1.1 Monte Carlo Option Prices

Monte Carlo simulation is used to compute the GARCH option prices, be-
cause the distribution of temporally aggregated asset returns cannot be de-
rived analytically. We present the computation of a European call option
price; other European claims can be priced similarly.

At time t = 0 the dollar price of a European call option with strike price
$K and time to maturity T days is computed by simulating log-returns in
model (1) under the risk neutral measure Q. Specifically, we draw T indepen-
dent standard normal random variables (z?

i )i=1,...,T , we simulate (yi, σ
2
i ) in

model (1) under the risk neutral parameters ω∗, α∗, β∗, γ∗, µ = r− d−σ2
i /2,

where r is the risk-free rate and d is the dividend yield on a daily ba-

sis, and we compute S
(n)
T = S0 exp(

∑T

i=1 yi). Then, we compute the dis-

counted call option payoff C(n) = exp(−r T ) max(0, S
(n)
T − K). Iterating

the procedure N times gives the Monte Carlo estimate for the call option
price, Cmc(K,T ) := N−1

∑N

n=1 C
(n). To reduce the variance of the Monte

Carlo estimates we use the method of antithetic variates; cf., for instance,

[Boyle et al., 1997]. Specifically, C(n) = (C
(n)
a + C

(n)
b )/2, where C

(n)
a is

computed using (z?
i )i=1,...,T and C

(n)
b using (−z?

i )i=1,...,T . Each option
price Cmc is computed simulating 2N sample paths for S. In our calibra-
tion exercises we set N = 10,000. To further reduce the variance of the
Monte Carlo estimates we calibrate the mean as in the empirical martin-
gale simulation method proposed by [Duan and Simonato, 1998]. Scaling

the simulated values S
(n)
T , n = 1, . . . , N , by a multiplicative factor, the

method ensures that the risk neutral expectation of the underlying asset

is equal to the forward price, i.e. N−1
∑N

n=1 S̃
(n)
T = S0 exp((r − d)T ), where

S̃
(n)
T := S

(n)
T S0 exp((r − d)T ) (N−1

∑N

n=1 S
(n)
T )−1. Then, option prices are

computed using S̃
(n)
T . In our calibration exercises at least 100 simulated

paths of the underlying asset end at maturity “in the money” for almost all
the deepest out of the money options.
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1.2 Calibration of the GARCH Model

The risk neutral parameters of the GARCH model, θ∗ = (ω∗ α∗ β∗ γ∗), are
determined by calibrating GARCH option prices computed by Monte Carlo
simulation on market option prices taken as averages of bid and ask prices
at the end of one day.

Specifically, let Pmkt(K,T ) denote the market price in dollars at time
t = 0 of a European option with strike price $K and time to maturity T
days. The risk neutral parameters θ∗ are determined by minimizing the
mean squared error (mse) between model option prices and market prices.
The mse is taken over all strikes and maturities,

θ∗ := arg min
θ

m∑

i=1

(
P garch(Ki, Ti; θ) − Pmkt(Ki, Ti)

)2
, (2)

where P garch(K,T ; θ) is the theoretical GARCH option price and m is the
number of European options considered for the calibration at time t = 0.

As an overall measure of the quality of the calibration we compute the
average absolute pricing error (ape) with respect to the mean price,

ape :=

∑m

i=1

∣
∣P garch(Ki, Ti; θ

∗) − Pmkt(Ki, Ti)
∣
∣

∑m

i=1 P
mkt(Ki, Ti)

. (3)

1.3 Empirical Results

We calibrate the GARCH model to European options on the S&P 500 index
observed on a random date t := August 29, 2003 and we set t = 0. Estimates
of σ2

0 and z0 are necessary to simulate the risk neutral GARCH volatility and
are obtained in the next section.

1.3.1 Estimation of the GARCH Model Percentage daily log-returns,
yt × 100, of the S&P 500 index are computed from December 11, 1987 to
August 29, 2003 for a total of 4,100 observations. Model (1) is estimated using
the Pseudo Maximum Likelihood (PML) estimator based on the nominal
assumption of conditional normal innovations. The parameter estimates are
reported in Table 1. The current August 29, 2003 estimates on a daily base of
σ2

0 and z0 are 0.635 and 0.604, respectively, and will be used as starting values
to simulate the risk neutral GARCH volatility in the calibration exercise.

1.3.2 Calibration of the GARCH Model with Gaussian Innova-

tions Initially we calibrate the GARCH model (1) to the closing prices
(bid-ask averages) of out of the money European put and call options on
the S&P 500 index observed on August 29, 2003. Precisely, we only consider
option prices strictly larger than $0.05—discarding 40 option prices to avoid
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that our results be driven by microstructure effects in very illiquid options—
and maturities T = 22, 50, 85, 113 days for a total of m = 118 option prices.
Strike prices range from $550 to $1,250, r = 0.01127/365, d = 0.01634/365
on a daily basis and S0 = $1,008.

To solve the minimization problem (2) we use the Nelder-Mead simplex
direct search method implemented in the Matlab function fminsearch. This
function does not require the computation of gradients. Starting values for
the risk neutral parameters θ∗ are the parameter estimates given in Table 1.
Calibrated parameters, root mean squared error (rmse) and ape measure for
the quality of the calibration are reported in the first row of Table 2. The
“leverage effect” in the volatility process under the risk neutral measure Q

(γ∗ = 0.288) is substantially larger than under the objective measure P (γ =
0.075). The average pricing error is quite low and equals to 2.54%. Figure 1
shows the pricing performance of the GARCH model which seems to be
satisfactory. Figure 2 shows the calibration errors defined as P garch − Pmkt.
Such errors tend to be larger for near at the money options (these options
have the largest prices) and for deep out of the money put options.

1.3.3 State Price Density Estimates with Gaussian Innovations

For the maturities T = 22, 50, 85, 113 days we compute the state price
densities per unit probability of ST , Y0,T , as the discounted ratio of the risk
neutral density over the objective density. Under the objective measure P,
the asset prices S are simulated assuming the drift µ = r+0.08/365−σ2

t /2 in
equation (1) and the parameter estimates in Table 1. Under the risk neutral
measure Q, µ = r − d − σ2

t /2 and the calibrated GARCH parameters are
given in the first row of Table 2. The density functions are estimated by
the Matlab function ksdensity using the Gaussian kernel and the optimal
default bandwidth for estimating Gaussian densities.

Figure 3 shows the estimated risk neutral and objective densities and
the corresponding state price densities per unit probability; see also Table 3.
As expected the state price densities are quite stable across maturities and
monotonic, decreasing in ST . However, the high values on the left imply
very negative expected rate of return for out of the money puts, that appear
intuitively “overpriced”. As an example, a state price per unit probability
of $6 corresponds to an expected rate of return of 1/6 − 1 = −0.833 for
a simple state contingent claim. State price densities outside the reported
values for ST tend to be unstable, as the density estimates are based on very
few observations.

2 GARCH Option Prices with Filtering Historical

Simulations

In this section we investigate the pricing performance of the GARCH model
when the simulated, Gaussian innovations—used to drive the GARCH pro-
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cess under the risk neutral measure—are replaced by historical, estimated
GARCH innovations. We refer to this approach as the Filtering Historical
Simulation (FHS) method. [Barone-Adesi et al., 1998] introduced the FHS
method to estimate portfolio risk measures.

This procedure is in two steps. Suppose we aim at calibrating the GARCH
model on market option prices Pmkt(Ki, Ti), i = 1, . . . ,m observed on day
t := 0. In the first step, the GARCH model is estimated on the historical log-
returns of the underlying asset y−n+1, y−n+2, . . . , y0 up to time t = 0. The
scaled innovations of the GARCH process ẑt = ε̂t σ̂

−1
t , for t = −n+ 1, . . . , 0,

are also estimated.

In the second step, the GARCH model is calibrated to the market option
prices by solving the minimization problem (2). The theoretical GARCH
option prices, P garch(K,T ; θ∗), are computed by Monte Carlo simulations as
in Section 1.1, but the Gaussian innovations are replaced by innovations ẑt’s
estimated in the first step, randomly drawn with uniform probabilities. To
preserve the negative skewness of the estimated innovations the method of
the antithetic variates is not used.

2.1 Calibration of the GARCH model with FHS Innovations

We apply this two steps procedure to the option prices on the S&P 500
observed on a random date July 9, 2003. Specifically, in the first step we es-
timate the GARCH model (1) on n = 3,800 historical returns of the S&P 500
index from December 14, 1988 to July 9, 2003 and we estimate the corre-
sponding innovations ẑ. In the second step, we calibrate the GARCH model
to the out of the money put and call options with maturities T = 10, 38, 73,
164, 255, 346 days for a total of m = 151 option prices; 45 options with bid
price lower than $0.05 are discarded. The PML estimates of model (1) are
reported in Table 4. The last panel in Figure 4 shows the estimated scaled
innovations, ẑt’s, used to drive the GARCH process under the risk neutral
measure. The skewness and the kurtosis of the empirical distribution of ẑ are
−0.6 and 7.4, respectively. Calibration results are reported in the first row
of Table 5 and Figure 5. The average pricing error is 3.5% and the overall
pricing performance is quite satisfactory given the wide range of strikes and
maturities of the options used for the calibration.

We calibrate the GARCH model using the FHS method also on the same
options considered in the calibration for August 29, 2003. The results are
reported in the second row of Table 2. Given the limited number of options
used in this calibration, the GARCH pricing model with Gaussian innovation
has already a very low pricing error. However, using the FHS method both
the rmse and the ape measure are reduced by about 10%. The asymmetry
parameter γ∗ decreases from 0.288 to 0.201 when filtered, estimated inno-
vations rather than Gaussian innovations are used, because of the negative
skewness, −0.61, of the filtered innovations.
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2.2 State Price Density Estimates with FHS Innovations

The state price densities per unit probability on July 9, 2003, computed
similarly as in Section 1.3.3, are shown in Figure 6. Using FHS innovations,
the asymmetry parameter γ∗ is now very close to γ (cf. Tables 4–5) and
state prices per unit probability are still monotone, but much closer to each
other. In particular the state prices per unit probability on the left are
now in line with the remaining ones. This implies that “excess” out of the
money put prices can be explained by the skewness of FHS innovations. The
volatility smile—computed using out of the money European put and call
options—for 38 days to maturity on this date is reported in Figure 7. Notice
that the sample period to estimate the GARCH model (1) starts after the
October 1987 crash. Such a large negative return would inflate the variance
estimates and this tends to produce non monotone state price densities per
unit probability.

The state price densities per unit probability on August 29, 2003 using
the FHS method are quite close to those on July 9, 2003 and are omitted.

2.3 Short Run Stability of the GARCH Pricing Model

To investigate the stability of the pricing performance for the GARCH model
over a “short” time horizon, i.e. one month, we calibrate the model for several
dates from July 9 to August 8, 2003 on out of the money European option
prices with maturities less than a year. The calibration results are reported in
Table 5. The GARCH parameters tend to change over time, but the pricing
performances are quite stable in terms of rmse and ape measures. Moreover,
the estimates of the long run level of the risk neutral variance EQ[σ2] are
quite stable and about 1% on a daily base.

To check for the stability of the GARCH parameters we calibrate one
GARCH model to the option prices on July 9, 10, 11, and 14, 2003. The
initial variances and innovations, σ2

0 ’s and z0’s, for the dates July 10, 11, 14
are computed updating the corresponding estimates for July 9, i.e. 0.793,
−0.667, and using the objective GARCH estimates in Table 4. This proce-
dure ensures that future, not yet available information is not used for the
fitting of earlier option prices. The GARCH parameter of the “pooled” cali-
bration are ω∗

pool = 0.016, α∗

pool = 0.000, β∗

pool = 0.924, γ∗pool = 0.121, which

imply a long run level of the risk neutral variance EQ[σ2
pool] = 0.99. Table 6

compares the pricing errors—the differences between theoretical and observed
option prices—of the pooled calibration with the corresponding errors for the
single day calibration given in Table 5. As expected the rmse’s for the pool
calibration are larger than the corresponding rmse’s for the single day cali-
brations. However, differences are small and the correlation between the two
pricing errors is on average 0.92, meaning that the two pricing performances
are quite close.
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2.4 Long Run Stability of the GARCH Pricing Model and

Comparison with CGMYSA Model

To investigate the pricing performance of the GARCH model over a “long”
time horizon, i.e. one year, we calibrate the model on out of the money
European option prices with maturities between a month and a year for the
dates January 12, March 8, May 10, July 12, September 13 and November 8
for the year 2000. For each calibration we use about the last seven years of
S&P 500 daily log-returns to implement the FHS method. We also compare
the pricing performance of the GARCH model with the CGMYSA model
proposed by [Carr et al., 2003] for the dynamic of the underlying asset, which
is a mean corrected, exponential Lévy process time changed with a Cox,
Ingersoll and Ross process. Average absolute pricing errors are somewhat in
favour of the CGMYSA model as this model has nine parameters while the
GARCH model has four parameters. The results are reported in Table 7.
There is evidence that the GARCH parameters tend to change from month
to month, but the pricing performance is quite stable especially in terms of
the ape measure. Moreover, the mean and the standard deviation of the ape
measures for the GARCH model are 4.07, 1.03 and for the CGMYSA model
are 3.91, 1.17, respectively. Hence, the pricing performance of the GARCH
model is more stable than the pricing performance of the CGMYSA model,
but the last model is superior in terms of average ape measure. [Carr et

al., 2003] proposed also more parsimonious (six parameters) models, namely
the VGSA and NIGSA models, which are, respectively, finite variation and
infinite variation mean corrected, exponential Lévy processes with infinite
activity for the underlying asset. For the previous dates, the GARCH model
outperforms the VGSA and NIGSA models in five and four out of six cases,
respectively.

3 Hedging

Extension to the GARCH setting of the delta hedging, [Engle and Rosenberg,
2002], does not show an improvement on the delta hedging strategy based on
the Black-Scholes model calibrated at the implied volatility. To understand
why this is the case consider the example presented in Table 8. The three
rows in the middle are market option prices from Hull’s book. The first row
is obtained multiplying the middle row times 0.9 and the last row is obtained
multiplying the middle row by 1.1, that is assuming an homogeneous pricing
model.

Incremental ratios, that is change in option price over change in stock
price, can be computed between the first two and then again the last two
rows, i.e. ∆45 := (5.60 − 2.16)/(49 − 44.1) and ∆55 := (2.64 − 1.00)/(53.9−
49). Taking the average of these two ratios, for the strike price K = 50 we
obtain an estimate of delta equals to 0.518, which is almost identical to the
delta from the Black-Scholes model calibrated at the implied volatility for
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the middle row, i.e. 0.522—the implied volatility is equal to 0.2 when r =
0.05 and T = 20/52 years. Hence, the application of first-degree homogeneity
to non-homogeneous prices has led to an essentially correct hedge ratio! To
understand this paradoxical result consider the sources of errors in the above
computations. There is a discretization error and an error due to the volatility
smile. In fact, in the absence of a volatility smile, Black-Scholes option
prices would be homogeneous functions of the stock and the strike price.
The discretization error leads to a discrete delta which is approximately the
average of the Black-Scholes deltas computed at the two extremes of each
interval and approximated by ∆45 and ∆55. Formally, denote by ∆(K) the
delta as a function of the strike price K. For small intervals the delta hedge
is approximated by

∆(50) ≈
∆(50) +

>0
︷ ︸︸ ︷

∆′(50)(45 − 50) + ∆(50) +

<0
︷ ︸︸ ︷

∆′(50)(55 − 50)

2
≈
∆45 +∆55

2
.

Therefore, the two discrete ratios considered, ∆45 and ∆55, are affected by
opposite errors up to the first order. Taking their average eliminates these
errors. The only error left is due to the smile effect. However, this error is
very small if the strike price increment is small relative to the asset price and
its volatility. See [Barone-Adesi and Elliott, 2004] for further discussion. The
reader may verify this simple result on the options of his choice. It appears
therefore that deltas are to a large degree determined by market option prices,
independently of the chosen model. Therefore, models alternative to Black-
Scholes calibrated at the implied volatility will generally lead to very similar
hedge ratios, if they fit well market prices. The only significant deterioration
of hedging occurs in the presence of large volatility shocks, which diminish
the effectiveness of delta hedging. To observe this compare a day with a
modest change in volatility, e.g. t2 := July 10, 2003, with a day in which
a large negative index return led to a large increase in volatility, e.g. t1 :=
January 24, 2003. Specifically, for the day t1 we consider out of the money
put and call options with maturities equal to 30, 58, 86, 149, 240, 331 days for
a total of 160 option prices and for the day t2 we consider the same options
as in Section 2.3. Then, we run the following set of regression for t+ 1 = t1,
t2

1) Pmkt
t+1 = η0 + η1P

bs
t,t+1 + error,

2) Pmkt
t+1 = η0 + η1P

bs
t,t+1 + η2P

garch
t,t+1 + error,

3) Pmkt
t+1 = η0 + η2P

garch
t,t+1 + error,

where Pmkt
t+1 are the option prices observed on time t + 1, P bs

t,t+1 are the
Black-Scholes forecasts of option prices for t + 1 computed by plugging in
the Black-Scholes formula St+1, r, d at time t+ 1 and the implied volatility
observed on time t (i.e. January 23 and July 9, 2003, respectively). P garch

t,t+1 are
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the GARCH forecasts obtained using St+1, the GARCH parameter calibrated
at time t and σt+1 updated according to the objective estimates at time t.

The ordinary least square (OLS) estimates of the previous regressions are
given in Table 9. In terms of the error variance the Black-Scholes forecasts
in regressions 1) are superior to the GARCH forecasts in regressions 3) for
both days t1 and t2. Moreover, in the regressions 2) the weights η1 of the
Black-Scholes forecasts are larger than the weights η2 for the GARCH fore-
casts. This is due to the “initial advantage” of the Black-Scholes forecasts,
i.e. the zero pricing error at time t. However, for the day January 24, 2003,
from regression 1) to regression 2) the variance of the prediction error is re-
duced about 60% adding the GARCH forecast as a regressor. Hence, the
GARCH model carries on large amount of information on option price dy-
namics. Moreover, the GARCH model provides a dynamic model for the risk
neutral volatility, while the Black-Scholes model does not.

Interestingly, the Black-Scholes forecasts tend to underestimate option
prices observed on January 24, 2003 (while the GARCH forecasts tend to
overestimate option prices). An explanation is the following. The daily
log-return of the S&P 500 for January 24, 2003 is −2.97%, which induces
an increase in the volatility of the underlying asset. Such an increase in
the volatility can not be detected by the Black-Scholes model with constant
implied volatility, but it is reflected in the GARCH forecasts of volatilities
and option prices. This effect is stronger in days with large returns. For the
day July 10, 2003 the reduction in the variance of the prediction error is only
11%, as the return of the S&P 500 is −1.36% only.

Unfortunately, our GARCH price forecast is conditioned on the current
index and it cannot be used to improve significantly delta hedging. Its ex-
planatory power simply indicates that delta hedging is less effective in the
presence of large volatility shocks. They are linked to the index return in a
nonlinear fashion in the GARCH model.

4 Conclusion

Casting the option pricing problem in incomplete markets allows for more
flexibility in the calibration of market prices. Investors’ preferences can be
inferred comparing the physical and the pricing distributions. Using filtered
historical simulation the volatility smile appears to be explained by innova-
tion skewness, with no need of much higher state prices for out of the money
puts. Delta hedging does not require a large computational effort under con-
ditions usually found in index option markets, removing a major drawback of
simulation-based option pricing. Further refinements of pricing and stability
issues are left to future research.
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Table 1. PML estimates of the GARCH model (1), yt × 100 = µ + εt, σ2
t = ω +

αε2
t−1+βσ2

t−1+γIt−1ε
2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), (p-values in parenthesis) for the S&P 500 index daily log-returns yt in
percentage from December 11, 1987 to August 29, 2003.

µ ω α β γ

0.033 0.009 0.006 0.946 0.075
(0.008) (0.000) (0.416) (0.000) (0.000)

Table 2. Calibrated parameters of the GARCH model (1), σ2
t = ω∗ + α∗ε2

t−1 +
β∗σ2

t−1 + γ∗It−1ε
2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), using Gaussian innovations (first row) and FHS method (second row)
on August 29, 2003 out of the money European put and call options (m = 118) and
time to maturities T = 22, 50, 85, 113 days. The root mean squared error (rmse) is in
$, the ape measure is defined in equation (3).

ω∗ α∗ β∗ γ∗ rmse ape%

Gauss. z 0.037 0.000 0.833 0.288 0.27 2.54
FHS 0.037 0.000 0.870 0.201 0.24 2.29

Table 3. State price densities estimates per unit of probability, Y0,T , time to maturities
T = 22, 50, 85, 113 days for August 29, 2003. Y0,T := e−rT L0 and L0 = d Q0/d P0,
where Q is the risk neutral measure absolutely continuous with respect to the objective
measure P and the subindex t = 0 denotes the restriction to F0.

ST 900 1,000 1,100 1,200

Y0,22 1.882 1.001 0.437 —
Y0,50 1.284 1.011 0.773 0.254
Y0,85 1.197 1.003 0.844 0.597
Y0,113 1.281 1.028 0.834 0.641

Table 4. PML estimates of the GARCH model (1), yt × 100 = µ + εt, σ2
t = ω +

αε2
t−1+βσ2

t−1+γIt−1ε
2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), (p-values in parenthesis) for the S&P 500 index daily log-returns yt in
percentage from December 14, 1988 to July 9, 2003.

µ ω α β γ

0.033 0.012 0.005 0.936 0.093
(0.008) (0.000) (0.547) (0.000) (0.000)
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Table 5. Calibrated parameters of the GARCH model (1), σ2
t = ω∗ + α∗ε2

t−1 +
β∗σ2

t−1 + γ∗It−1ε
2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), under the risk neutral measure Q, using FHS on several days and m
out of the money European put and call options. T is the time to maturity in days.
The root mean squared error (rmse) is in $, the ape measure is defined in equation (3).

date ω∗ α∗ β∗ γ∗ EQ[σ2] m min(T ) max(T ) rmse ape%

Jul 9 0.019 0.000 0.912 0.138 1.00 151 10 346 0.64 3.50
Jul 10 0.008 0.000 0.953 0.078 1.00 148 9 345 0.49 2.75
Jul 11 0.016 0.000 0.921 0.125 0.98 146 8 344 0.64 3.64
Jul 14 0.009 0.000 0.949 0.083 0.96 146 5 341 0.43 2.33
Jul 16 0.011 0.000 0.946 0.086 1.00 141 3 339 0.67 3.59
Jul 21 0.005 0.000 0.964 0.061 0.86 156 26 334 0.94 3.61
Jul 25 0.054 0.000 0.787 0.319 1.03 165 22 330 0.69 4.24
Jul 30 0.010 0.000 0.943 0.092 0.97 161 17 325 0.40 2.26
Aug 1 0.022 0.000 0.912 0.137 1.12 163 15 323 0.59 3.38
Aug 4 0.016 0.000 0.928 0.117 1.21 163 12 320 1.02 5.64
Aug 8 0.017 0.000 0.925 0.119 1.10 159 8 316 0.65 3.69

Table 6. Comparison between pricing errors, i.e. the differences between theoretical
and observed option prices, of the calibration pool for July 9, 10, 11, 14, and the single
day calibrations. The root mean squared error (rmse) is in $, corr(err single day, err
pool) denotes the correlation between the pricing errors for the single day calibration
and the corresponding pricing errors for the pooled calibration.

Jul 9 Jul 10 Jul 11 Jul 14 average

rmse single day 0.639 0.487 0.636 0.434 0.549
rmse pool 0.725 0.584 0.686 0.481 0.619
corr(err single day, err pool) 0.935 0.877 0.943 0.895 0.915

Table 7. Calibrated parameters of the GARCH model (1), σ2
t = ω∗ + α∗ε2

t−1 +
β∗σ2

t−1 + γ∗It−1ε
2
t−1, It−1 = 1 when εt−1 < 0 and It−1 = 0 otherwise, εt = σt zt,

zt ∼ i.i.d.(0, 1), under the risk neutral measure Q, using FHS on m out of the money
European put and call options for the year 2000 and comparison with the CGMYSA
model. The root mean squared error (rmse) is in $, the ape measure is defined in
equation (3).

date ω∗ α∗ β∗ γ∗ EQ[σ2] m rmse ape% ape% CGMYSA

Jan 0.016 0.000 0.914 0.155 1.80 177 1.62 4.78 3.78
Mar 0.118 0.000 0.635 0.600 1.82 143 1.61 5.13 5.23
May 0.158 0.000 0.526 0.839 2.90 155 1.93 4.74 5.48
Jul 0.006 0.000 0.963 0.065 1.38 159 0.91 2.34 3.26
Sep 0.041 0.000 0.866 0.189 1.04 151 1.08 3.67 2.87
Nov 0.017 0.000 0.903 0.159 0.97 169 1.22 3.74 2.85
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Table 8. “Homogeneous hedging of the smile”. The three rows in the middle are
market option prices form Hull’s book. The first row is obtained multiplying the middle
row times 0.9 and the last row is obtained multiplying the middle row by 1.1.

Strike price Asset price Option price
45 44.1 2.16

45 49 5.60
50 49 2.40
55 49 1.00

55 53.9 2.64

Table 9. OLS regression estimates and variance of forecast errors for time t + 1,
i.e. January 24, 2003 (first panel) and July 10, 2003 (second panel): 1) P mkt

t+1 =
η0 + η1P

bs
t,t+1 + error; 2) P mkt

t+1 = η0 + η1P
bs
t,t+1 + η2P

garch
t,t+1 + error, 3) P mkt

t+1 =

η0 +η2P
garch
t,t+1 +error, where P mkt

t+1 are the option prices observed on time t+1, P bs
t,t+1

are the Black-Scholes forecasts of option prices for t + 1 computed by plugging in the
Black-Scholes formula St+1, r, d at time t + 1 and the implied volatility observed on
time t (i.e. January 23 and July 9, respectively). P garch

t,t+1 are the GARCH forecasts
obtained using St+1, the GARCH parameter calibrated at time t and σt+1 updated
according to the estimates at time t.

η0 η1 η2 V ar[error]
1) 0.823 0.996 — 0.761
2) −0.037 0.558 0.436 0.316
3) −1.073 — 0.988 1.035

1) −0.118 0.997 — 0.188
2) −0.213 0.293 0.704 0.161
3) −0.429 — 0.997 0.315
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Fig. 1. Monte Carlo calibration results of the GARCH model to m = 118 out of the
money European put and call option prices observed on August 29, 2003.
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Fig. 2. Pricing errors of the GARCH model for m = 118 out of the money European
put and call option prices observed on August 29, 2003.

900 950 1000 1050 1100 1150
0

0.5

1

1.5

22
 d

ay
s

r.n. dens.
obj. dens.

900 950 1000 1050 1100 1150
0

5

10
SPD per unit prob

800 900 1000 1100 1200
0

0.2

0.4

0.6

50
 d

ay
s

800 900 1000 1100 1200
0

5

10

800 900 1000 1100 1200 1300
0

0.2

0.4

85
 d

ay
s

800 900 1000 1100 1200 1300
0

5

10

700 800 900 1000 1100 1200 1300
0

0.2

0.4

11
3 

da
ys

S
0+h

700 800 900 1000 1100 1200 1300
0

5

10

S
0+h
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estimates per unit of probability (right plots) for August 29, 2003.
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Fig. 6. Risk neutral and objective density estimates (left plots) and state price density
estimates per unit of probability (right plots) for July 09, 2003.
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