
Model Selection in Classification:

the Swapping Method

Jean-Jacques Daudin and Tristan Mary-Huard
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Abstract. In this article, the bias of the empirical error rate in supervised classi-
fication is studied. The exact formula and a robust estimator of the bias are given.
From these results, we propose a new penalized criterion to perform model selection
in classification. Applications to simulated and real data are presented.
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1 Introduction

The aim of supervised classification is to predict the unknown label Y of an
observation (here Y = 0 or 1), according to some collected information X . A
classifier φ∗

n : x 7→ φ∗
n(x) = ŷ is constructed on the basis of a collection of i.i.d.

examples (Xi, Yi), i = 1, ..., n for which both the label and the information
are known. An important problem is to estimate the conditional error rate
(CER)

Lx(φ∗
n) =

1

n

n∑

i=1

P (φ∗
n(xi) 6= Y )

of the constructed classifier, where the xi were observed on the training set.
A natural estimator of Lx(Φ∗

n) is the empirical error rate (EER)

Ln(φ∗
n) =

1

n

n∑

i=1

I{φ∗
n
(Xi) 6=Yi} ,

but this estimator is known to be optimistically biased, and we would like to
gain insight into the bias of the EER estimator.
In this paper, we study the behavior of the random variable B(Φ∗

n) =
Lx(Φ∗

n) − Ln(Φ∗
n), where Φ∗

n is constructed on the basis of an independent
copy of the Yi’s, and with the same xi’s as in the initial dataset. We give an
exact formula for the bias

EY (B(Φ∗
n)) = EY (Lx(Φ∗

n) − Ln(Φ∗
n)) , (1)

along with an estimator Sn of EY (B(Φ∗
n)).

An important motivation for estimating (1) is to perform complexity regu-
larization in pattern recognition. When the CER is close to the true error
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rate P (φ∗
n(X) 6= Y ) (TER), it should be relevant to minimize the criterion

C(Φ∗
n) = Ln(Φ∗

n) + Sn (2)

to find a classifier with good generalization performance. We call the mini-
mization of criterion (2) the swapping method (designated by (S)). We anal-
yse the empirical behavior of (S) on a theoretical example, and we compare
(S) with cross-validation (CV). We then present the adaption of (S) to the
popular k-nearest neighbors algorithm (kNN), where (S) is used to select k.
Applications to experimental data are presented to assess the performance of
(S).

2 Bias estimation in classification

Let (Xi, Yi), i = 1, ..., n be n i.i.d. random vectors with distribution P . We
note px = P (Y = 1|X = x). We define φ∗

n as a fixed classification function
obtained from a given sample. The ”*” indicates that the function was found
by optimization of some criterion. We also define Φ∗

n as the corresponding
random classification rule obtained for any sample with the same xis and
random Yis. In practice we would like to obtain some mathematical proper-
ties about φ∗

n which is the classification function we will use for prediction.
However, these properties are difficult to obtain, and we must use Φ∗

n as an
intermediate trick.
The following theorem gives the exact form for the bias of the EER in the
general classification case:

Theorem 1 For any classification rule Φ∗
n we have:

EY (B(Φ∗
n)) =

2

n

n∑

i=1

pxi
(1 − pxi

)EY [Φ∗
n(xi|Yi = 1) − Φ∗

n(xi|Yi = 0)] , (3)

where Φ∗
n(. |Yi = 1) is the decision rule computed from the learning dataset

with Yi set to 1.

The proof is not given here. It is worthwhile to interpret this result. The
label of each observation is swapped alternatively and the consequence on
the decision rule is observed. If the swap does not change the decision for
the observation under concern, its contribution to the bias estimate is null.
Conversely, if the decision is changed, the contribution is equal to 2px(1−px)
with a sign - or +, usually +. Thus if a decision rule is ”too versatile” the
bias of the EER is high.
From Theorem 1 we can derive an unbiased estimator for the bias of any
classification method:
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Corollary 1 With the notations of Theorem 1, an unbiased estimator of

EY (B(Φ∗
n)) is

Sn =
2

n

n∑

i=1

pxi
(1 − pxi

)[φ∗
n(xi|Yi = 1) − φ∗

n(xi|Yi = 0)] .

Of course this estimator is theoretical, since px is unknown. Many classifica-
tion methods provide estimations of the posterior probabilities p̂x that could
be used in place of px in Lemma 1. But this method leads to an inconsistent
estimation of the bias. We propose a robust version of the plug-in estimator:

p̂x,B =
nxp̂x + n0 × (1/2)

nx + n0
, (4)

where p̂x is the plug-in estimator, nx is the number of points used to compute
p̂x and n0 is a fixed integer. The ”B” index stands for ”Bayesian”. If n0 = 0,
then p̂B = p̂x and we find the plug-in estimator. Inversely, if n0 = ∞, then
p̂B = 1/2 which corresponds to the worst case in classification
The behavior of the swapping estimate may be closely related to the value
of n0. For high levels of noise in the data and rich classes of classification
functions, n0 should be large. Conversely for low level of noise and poor
classes of functions, n0 should be small. In the following, n0 is fixed to 10,
that seems to be an omnibus compromise (see section 3).

3 Model selection by swapping

3.1 Model selection

Classification aims at finding a classifier φ∗
n in a class of functions C on the

basis of data ((X1, Y1), ..., (Xn, Yn)). Of course, we want the TER of φ∗
n to

be close to the Bayes error rate, i.e. the error rate L∗ of the Bayes classifier

Φ∗(x) = {
1 if P {Y = 1|X = x} >1/2
0 otherwise .

In practice, φ∗
n is selected by empirical risk minimization on C. Since we

do not know how to choose C, we consider many classes Ck with different
complexities. In the classical complexity regularization framework, the EER
minimizer φ∗

n,k is computed for each class. Then among all the candidate
classifiers we choose the one that minimizes a given penalized criterion, which
usually is an upper bound of the TER.
We propose to use the swapping method (S) to perform model selection. The
selection among all the candidate classifiers is performed by minimizing:

C(φ∗
n,k) = Ln(φ∗

n,k) + Sn

= Ln(φ∗
n,k) +

2

n

n∑

i=1

p̂xi
(1 − p̂xi

)[φ∗
n(xi|Yi = 1) − φ∗

n(xi|Yi = 0)].(5)
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While this strategy is also based on the minimization of a penalized criterion,
the difference with the preceding strategy is the meaning of the criterion. In
(5), the criterion is an estimator of the conditional error risk, while in the
regularization framework the criterion is an upper bound for the true error
rate. The (S) strategy can be justified with the following break-down:

L(φ∗
n) = Ln(φ∗

n) + [Lx(φ∗
n) − Ln(φ∗

n)] + [L(φ∗
n) − Lx(φ∗

n)]

= Ln(φ∗
n) + B(φ∗

n) + A(φ∗
n) ,

where A(φ∗
n) = L(φ∗

n)−Lx(φ∗
n). In this paper we make the assumption that

A(φ∗
n) does not strongly depend on the complexity of φ∗

n, and therefore can
be neglected for model selection.

3.2 The Kearn’s example

[Kearns et al., 1997] proposed the following model for comparison of model
selection methods. The interval [0, 1] is divided into d equal subintervals,
alternatively labelled 0 and 1. Let ((X1, Y1), ...(Xn, Yn)) be an i.i.d. sample,
where Xi and Yi are the position and label of observation i, respectively. The
Xi’s are drawn from the uniform distribution on [0, 1]. Yi equals the label of
the interval to which Xi belongs with probability 1 − η, and the alternative
label with probability η. η denotes the noise level of the problem.
We performed simulations according to this model with d = 10, η = 0.1, 0.2,
0.3 and 0.4 and n = 20, 100, 500. Simulations performed with d = 100 lead
to similar findings (not shown).
Figure 1 (left) shows the EER, CER and TER averaged on 100 trials, for
η = 0.2 and n = 100, displayed along the number of intervals k. One can
see that the curves of the conditional and true error rates are nearly parallel
for k ≥ d. This behavior is observed for any value of η, d and n (data not
shown). Therefore the basic condition on A(φ∗

n) assumed in this paper is
satisfied for the Kearns example.
Figure 1 (right) shows the behavior of the estimate of the conditional bias
given by the swapping method (S). In this example with η = 0.2 the bias is
overestimated. This overestimation is higher for η = 0.1, vanishes for η = 0.3
and becomes an underestimation for η = 0.4 (not shown).
Figure 2 (left) gives the behavior of the empirical and (S) error rates (y-axis)
according to the number of intervals k (x-axis), for 3 trials with η = 0.2
and n = 100. One can see that the empirical error rate decreases to zero.
Conversely (S) estimate of the error rate decreases till k ' 10 and then grows
for k > 10. Figure 2 (right) shows the mean values of 100 trials of the two
error rate estimates with the same parameters as above.

3.3 Comparison between cross validation and swapping

We compared the swapping method selection with n0 = 10 (S) to its natural
competitors, the (n−1, 1) cross validation (CV) and the best possible classifi-
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Fig. 1. Left: EER (bold line), CER (dotted line) and TER (solid line) along the
number of intervals k. Average on 100 trials, with η = 0.2 and n = 100. Right:

Estimated bias (dotted line), conditional bias (solid line) and true bias (bold line)
along the number of intervals k.

Fig. 2. Left: Empirical and (S) error rates along the number of intervals k for
3 trials. Right: Empirical and (S) error rates along the number of intervals k,
averaged on 100 trials.

cation function ”oracle” (O). (O) is the classification function that minimizes
the true error rate for each sample. Figure 3 shows the results for η = 0.2.
Considering Figure 3 and the results obtained for other values of η (not shown
here), we draw the following conclusions:
• (S) outperforms (CV) for η ≤ 0.3. The relative gain (100(LCV −
LS)/(LCV − LO) of (S) on (CV) for η ≤ 0.3 lies between 20% and 80%
(not shown here). When η = 0.4 the gain exists but is tiny.
• The (S) 95% quantile of LS −LO is always lower than the (CV) 95% quan-
tile of LCV − LO.
• The empirical error rate penalized by the (S) method gives a better estimate
of the true error rate of the selected classification function. This estimate is
optimistic for η ≥ 0.2 and pessimistic for η ≤ 0.1. (CV) systematically gives
an optimistic view of the true error rate of the selected classification function.
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Fig. 3. Results of the (S) model selection for η = 0.2. Top left: Mean number of
intervals kO, kCV and kS obtained by (O), (CV) and (S), respectively. Top right:

Mean of the true error rate of the classifiers obtained by (O) selection (solid line),
(CV) selection (dashed line) and (S) selection (dotted line), respectively. Dashed
lines correspond to (CV) TER estimated by (CV), and (S) TER estimated by (S).
Bottom left: Mean of |kO − kCV | and |kO − kS |. Bottom right: 95% quantile
of LCV − LO and LS − LO.

4 Application to k-nearest-neighbors

We present a simple computational trick to efficiently apply the (S) method to
kNN. We then compare the performance of (CV) and (S) on a benchmarking
microarray dataset.

4.1 Computation of (S) for kNN

To avoid any concern about the parity of k, in the following we consider only
odd values for k, as proposed in [Fort and Lambert-Lacroix, 2004]. For a
given k, we need to compute for each observation xi the quantity pxi

(1 −
pxi

)[φ∗
n(xi, 1) − φ∗

n(xi, 0)]. The posterior probability pxi
can be estimated

according to the Bayes method presented in section 2. In this case, the
Bayes estimator of pxi

for the kNN is:

p̂xi,B =
k × (m/k) + n0 × 1/2

k + n0
=

m + n0/2

k + n0
, (6)

where m is the number of 1 among the k neighbors of point xi. Clearly,
this posterior probability can be obtained from the kNN classifier without
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additional computational time.
The difference φ∗

n(xi, 1)−φ∗
n(xi, 0) can also be easily obtained from the kNN

classifier considering the following argument: when the label of point xi is
swapped, its classification is not changed except in the case where xi belongs
to the majority and the majority is ”short”, i.e. m = (k − 1)/2 or m =
(k+1)/2 (remember that k is odd). Hence, the difference φ∗

n(xi, 1)−φ∗
n(xi, 0)

will be 1 if m = (k−1)/2 or m = (k+1)/2, and 0 otherwise. So this difference
is easily obtained from the kNN algorithm.
This shows that (S) is a competing method from a computational point of
view. In practice, for samples of size n ∼ 100 and a number of variables as
big as 2000, the minimization of the penalized empirical risk to select k is
performed within a few seconds.

4.2 Microarray data

We consider the Colon microarray dataset, described in [Alon et al., 1999]. It
contains 62 tissue samples for which 2,000 genes were observed. Among the 62
observations, 40 of them are tumor tissues and 22 are normal. For comparison
with other published studies, the data normalization, the preliminary gene
selection, and the re-randomization study to assess the performance of (S)
and (CV) were performed according to the procedures described in [Fort and
Lambert-Lacroix, 2004]. It should be noticed that the high level of noise in
the data along with the high number of variables considered (with possibly
many of them irrelevant) should be in favor of (CV). We display the average
performance of the classification rules obtained with (S) and (CV) selection
methods.

Table 1 shows that (S) outperforms (CV) for three gene selections: g =

Oracle Swapping Cross-Valid.
Nb. Genes N R N R N R

2000 6.0 19.0 9.11 28.6 6.7 28.8

1000 7.6 13.8 12.8 21.4 11.2 21.1

500 6.4 13.1 12.1 18.1 15.7 18.7

100 4.8 12.0 12.0 15.6 20.7 16.0

Table 1. Results for the Colon dataset, over 500 resamplings. First column indi-
cates the number of selected genes. For each selection method (Oracle, Swapping
and Cross-Valid.) the mean number of neighbors (N) and the mean test error (R)
are computed.

100, 500, 2000. As for simulations, both methods are far from the oracle
results, even for the simpler case where the number of genes is 100 (which
corresponds to the low level of noise case). We conclude that the (S) method
for kNN is competing on simulated and real data.
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5 Discussion

The methods proposed in this paper to estimate the conditional error rate
are connected to some recent papers. A review of the field of prediction
error estimation in a quite general context has been made by [Efron, 2004]
who divides the methods into two classes: covariance penalties, assuming a
parametric model, and nonparametric methods such as cross validation and
bootstrap. The swapping method is clearly a covariance penalty method,
but it may be applied to non parametric statistical methods. Its only
requirement is that a conditional probability P (Y = 1/X = x) may be
estimated for each observed value x. This is true because the field is reduced
to the error rate in classification, where the p.d.f. of the response variable Y
reduces to only one parameter.

The swapping expression in Theorem 1 was present in an earlier paper of
[Efron, 1986], but the idea of estimating EY (B(Φ∗

n)) by its sample estimate
(Corollary 1), and the application to model selection in classification are new.
Moreover we propose a robust estimate of px, which attempts to correct the
over-learning bias. In this study n0 was fixed to 10, but simulations performed
with values ranging from 5 to 20 give similar results. However the choice of
n0 is an open problem.
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