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Abstract. We propose a nonparametric discrimination method based on a non-
parametric Nadaray-Watson kernel regression type-estimator of the posterior prob-
ability that an incoming observed vector is a given class. To overcome the curse of
dimensionality of the multivariate kernel density estimate, we introduce a variance
stabilizing approach which constructs independent predictor variables. Then, the
multivariate kernel estimator is replaced by the univariate kernel product estima-
tors. The new procedure is illustrated in simulated data sets and real example,
confirming the usefulness of our approach.
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Principal Analysis.

1 Introduction

The basic problem in classification is to assign an unknown subject to
one of K groups G1, . . . , GK on the basis of a multivariate observation
x = (x1, . . . , xp)

t, where p represents the number of variables and t denotes
the transpose operation. However, in practice, the form of class-conditional
densities is seldom known. To overcome this problem, one can consider a
nonparametric classification method, which uses a nonparametric multivari-
ate kernel density estimates instead of the parametric densities.
Indeed, recently much attention has been given to the application of non-
parametric procedures in the classification problem, which have been shown
to exhibit superior performance over standard parametric methods such as
linear discriminant analysis (LDA) or quadratic discriminant analysis (QDA)
in a wide variety of problems. The recent book of [Hastie et al., 2001] presents
an excellent overview of nonparametric classification methods. A disadvan-
tage of such models may be a lack of parsimony in the final model and a
sensitivity to the “curse of dimensionality” when the dimension p is large
and the sample sizes are moderate.
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Two semiparametric alternative models for classification, which are a gener-
alization of the model assumed by LDA and QDA, are recently proposed by
[Cooley and MacEachern, 1998] and [Amato et al., 2003]. This generaliza-
tion relies upon a transformation of the data based on pseudo-independent
variables. Then, the multivariate kernel density estimates are replaced by
the univariate product kernel estimators. [Cooley and MacEachern, 1998]
used principal component analysis (PCA) to obtain a transformation matrix,
while [Amato et al., 2003] considered independent component analysis (ICA)
(cf. [Comon, 1994]).
In this paper, we propose a nonparametric discrimination method based on a
nonparametric Nadaray-Watson kernel regression type-estimator of the pos-
terior probability that an incoming observed vector is a given class. To over-
come the curse of dimensionality we introduce a Cooley and MacEachern’s
variance stabilizing approach which constructs independent predictor vari-
ables. Then, the multivariate kernel density estimates is replaced by product
of univariate kernel estimators. Some theoretical result on Bayes risk consis-
tence is discussed.
This article is organized as follows. In Section 2, we briefly review the non-
parametric classification rules which product indirect estimation of the con-
ditional group probability (or a posteriori probability). We also recall the
classification approach based on univariate product density estimators which
is an alternative interpretation of LDA and QDA. Section 3 is devoted to
our new variance stabilizing kernel regression classification approach. Some
theoretical asymptotic result on Bayes consistency is discussed in the same
section. In Section 4, we apply our new classification rule to some simula-
tions data sets and a real example, confirming the usefulness of our approach.
Section 5 ends with some conclusions.

2 Nonparametric classification rules

The multiple classification problem is well studied in statistics. Typically,
there is a qualitative random variable Y that takes on a finite number K of
values which we refer to as groups: G1, . . . , GK . To assign an individual to
one of K distinct groups, we must build an allocation rule from the training
sample (x1, y1), . . . , (xn, yn), where xi ∈ IRp is the observation vector and
yi ∈ {1, . . . , K} indicates the a priori group membership of xi.
As is well known, the optimal classification rule d(x) allocates an observed
p-variate vector x via

d(x) = argmaxj=1,...,KIP (Y = yj|x), (1)

where

IP (Y = yj |x) =
πjfj(x)

∑K
i=1 πifi(x)

(2)
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is the a posteriori probability of group j (or the conditional group probabil-
ity), with πj and fj(.) the a priori probability and group-conditional density
of group j, respectively. In practice classification rules are constructed either
by combining (1) with (2) and estimating the group densities fj or by esti-
mating directly the a posteriori probability P (Y = yj |x) from the given data.
The first approach is called generative method, while the latter approach is
called discriminative method.

2.1 Generative nonparametric rules

Most important parametric and nonparametric generative classification rules
based on the direct estimation of group densities are Gaussian discriminant
analysis (GDA) and kernel density classification, respectively. In kernel den-
sity classification the group-conditional densities are estimated with multi-
variate kernel density estimators which have the form

f̂j(x) =
1

nj

nj
∑

`=1

K(x − xj`, Hj),

where nj = #{i : yi = j}, {xj1, . . . ,xjnj
} is the training sample of group

j, K(., Hj) denotes a multivariate kernel function from IRp to IR, and Hj is
a usually a p-dimensional vector of smoothing parameters that governs the
degree of smoothness of the estimate (cf. [Scott, 1992]). The recent book
of [Hastie et al., 2001] presents an excellent overview of new nonparametric
classification methods. A disadvantage of such models may be a lack of
parsimony in the final model and a sensitivity to the “curse of dimensionality”
when the dimension p is large and the sample sizes are moderate.

2.2 Kernel univariate product estimators

In order to avoid the biased tail estimation and the curse of dimensionality
common to multivariate kernel density estimation, [Cooley and MacEachern,
1998] (see also [Amato et al., 2003]) present an alternative view of QDA and
LDA which allows them to extend the nonparametric classification problem.
In this alternative rotations of the coordinate axes are employed to obtain an
assumed mutual independence among the components of the rotated data.
Then, the conditional density of the kth sample group can be written as the
product of univariate Gaussian density on the transformed sample, i. e.

fk(x) = f(Hkx) =

p
∏

j=1

1

σjk
φ

(

(Hkx)j − (Hkµk)j

σjk

)

, (3)

where φ(.) denotes the density of a standard normal variable and Hk is the
transform matrix obtained from the spectral decomposition of the covariance
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matrix Σk. Then, a natural generalization of LDA and QDA is to replace the
univariate Gaussian densities with univariate kernel density, we called kernel
product estimator (KPE) the resulting estimator. From the latter algorithm,
QDA and LDA are therefore just affected by the way the Hk are estimated.
[Cooley and MacEachern, 1998] consider the principal component analysis
(PCA) to estimate Hk, while [Amato et al., 2003] propose to use independent
component analysis (ICA).

3 Classification via kernel regression estimator

There are several compelling reasons for using discriminative rather than
generative classifiers. The first one is that in real world problems the assumed
generative model is rarely exact, and asymptotically a discriminative model
should typically be preferred (cf. [Vapnick, 1998]). Moreover, there are many
problems in which direct classification does not suffice, and where the precise
estimation of the conditional group probabilities is most important. Multiple
logistic regression (polychotomous regression) has been used for a long time
(cf. [Hosmer and Lemeshow, 1989]) to obtain a direct estimate of all the
conditional group probabilities.
On the other hand, little is known about nonparametric kernel discriminative
method. One early direct kernel approach was proposed by [Lauder, 1983],
which is analogue to kernel density estimation. [Hoti and Holmström, 1999]
proposed an analogue Nadaray-Watson type-estimator defined by

r̂(k)
n (x) =

∑n
i=1 T

(k)
i K((x − xi)/hn)

∑n
i=1 K((x− xi)/hn)

(4)

where T
(k)
i = 1 if Yi = k and 0 elsewhere, K() is a multivariate kernel

and k = 1, . . . , K. They further improve the flexibility of the estimator by
replacing the constants Y j

i with locally fitted polynomial functions.

3.1 Regression kernel classification method (RKCM)

We attack the problem of curse of dimensionality of the kernel regression
classification method, defined via the Nadaray-Watson type-estimator (4),
by adapting the Cooley and MacEachern’s variance stabilizing approach to
KRCM. It consists to replace in (4) the multivariate kernel density estimator
by the product of univariate kernel density estimators, which leads to the
new estimator

r̃(k)
n (x) =

∑n
i=1 T

(k)
i

∏p
j=1 f̂∗

kj{(Ĥkx)j − (Ĥkxi)j}
∑n

i=1

∏p
j=1 f̂∗

kj{(Ĥkx)j − (Ĥkxi)j}
, (5)

where f̂∗

kj(z) =
∑n

`:y`=k K{(z − (ĤkXk`)j)/hkj}/hkjnk is the univariate ker-
nel density estimate in the jth dimension of the transformed space for group
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k. We allow the pooling of sample covariance information across K groups
to obtain Ĥ1 = . . . = ĤK = Ĥ . Then the common transformation matrix
Ĥ is estimated via the application of PCA on the pooling sample covariance
matrix.
Since many kernel functions are highly efficient, we adopt the Gaussian ker-
nels which are widely used (cf. [Farhmeir and Tutz, 1994], pp. 156-157). For
simplicity, we can assume that the smoothing parameter in direction j for
group k is constant and equal h. Then, the classical cross-validation of the
average squared error criterion is often used for the selection of the smoothing
parameter h. But, the cross-validation of the misclassification error rate is
more convenient in our context, since it is related to discriminant problem.
However, in our experimental study, we fix hkj = 0.9σkjn

−1/(p+4) as in [Coo-
ley and MacEachern, 1998] (k = 1, . . . , K; j = 1, . . . , p). A robust estimation
of σkj can be taken equal to the smaller of the sample standard deviation
and (1/1.34) x sample interquartile range. This choice is mainly related to
density estimation, but it is simple to compute and seems to work well in our
numerical study.

3.2 Consistence and convergence rate

[Cooley and MacEachern, 1998] showed that the rule based on KPE of the
density of the kth group is consistent on the set IRp −Nk, where Nk is a set
of Lebesgue measure 0 (k = 1, . . . , K). Moreover, they established that the
rate of convergence of the mean integrated squared error to 0 is O(n−4/5),
regardless of the dimensionality p.
For our KRCM, we have established that the rule based on the regres-
sion kernel product estimator gn(.) is Bayes risk universally consistent, i.e.
limn−→∞IP{gn(X|Dn)} − L∗ = 0 for any distribution of the pair (X, Y ),
where L∗ is the optimal Bayes error probability and Dn denote the training
sample of size n. The proof is based on the verification of the three condi-
tions of the general Stone’s theorem (cf. [Devroye et al., 1996], Theorem 6.3
in page 98). For saving space, this proof is not included in this note.

4 Numerical experiments

In this section, we report on some case studies for analyzing the practical
behavior of KRCM relative to LDA, QDA and KPE on the basis of training
and test error rate, respectively. For purposes of comparison, the smoothing
parameter in direction j and group k is fixed equal to hkj = 0.9σkjn

−1/(4+p)

for KRCM and KPE, and a priori probabilities were taken to be equal. As
indicated in Section 3, σkj is estimated by the smaller of the sample standard
deviation and (1/1.34) x sample interquartile range. We first present some
Monte Carlo numerical experiments on simulated data sets, then we present
numerical experiment on real data set.
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4.1 Monte Carlo numerical experiments

The first simulated example was also considered by [Cooley and MacEach-
ern, 1998], and has two groups and two predictors. The final predictors are
combination of two initial predictors, generated from the normal mixture for
the first initial predictor and the standard normal for the second one. The
difference between the groups lies in the means of the normals in the mixture
distribution of the first predictor (cf.[Cooley and MacEachern, 1998]).
Two hundred and fifty sets for the training and test samples consisted of 100
and 900 observations, respectively, were run from an equal mixture of the
two distributions. Table 1 shows the averaged success rates for the training
data set and the test data set over 200 simulations, with the standard error
of the average in the parentheses. It appears that KRCM performs well than
KPE, QDA and LDA, in both training and test sample respectively.
In the second example the optimal boundaries separating the group are non-
additive functions of the predictors. The observations of the two groups are
described by 6 predictors, the last four of which are random N (0, 1) noise
variables for both groups. The first two predictors of group 1 are independent
Uniform[−5, 5] random variables, whereas the first two variables of group 2
form bivariate normal vectors with means 0, variance 1 and correlation coeffi-
cient 1/2. Similar example appears in [Cooley and MacEachern, 1998], where
all relevant discriminatory information is contained in a relatively small di-
mension.
We select a training sample of size 500 and a test sample of size 3000, both
from an equal mixture of the two populations. For both the training data set
and the test data set, the averaged success rates and their standard errors
over 75 replicates are summarized in Table 1. The behavior of KRCM is
similar to that in the first example, where the difference with KPE is more
important (15% on test data).
The third example is a well-known waveform problem composed of three
groups with 21 predictors. The predictors are defined by

xi = uh1(i) + (1 − u)h2(i) + εi Group1

xi = uh1(i) + (1 − u)h3(i) + εi Group2

xi = uh2(i) + (1 − u)h3(i) + εi Group3,

where i = 1, . . . , 21, u is uniform on [0, 1], εi ∼ N (0, 1) and the hi are the
shifted triangular forms defined by: h1(i) = max(6 − [i − 11], 0), h2(i) =
h1(i − 4) and h3(i) = h1(i + 4).
The training and test sets consisted of 500 and 300 observations, respectively,
are selected and their averaged success rates are shown in Table 1 where equal
prior are used. Again, KRCM is better than QDA, LDA and KPE.
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Mixture data Nonadditive boundary Waveform
Method Train Test Train Test Train Test

LDA 62.92(.050) 59.23(.015) 84.32(.018) 50.62(.012) 97.72(.005) 97.44(.008)
QDA 61.73(.046)) 59.22(.013) 85.13(.021) 74.72(.054) 97.95(.007) 96.25(.017)
KPE 78.14(.043) 76.23(.015) 85.39(.023) 84.75(.012) 91.22(.002) 93.89(.003)
KRCM 83.17(.034) 77.31(.015) 99.92(.001) 99.04(.002) 100(.000) 100(.000)

Table 1. Average success rates and standard deviation in parentheses.

4.2 Real data example

The real data set considered is the Diabetes in Pima Indian Women. It is
described for instance in [Ripley, 1996]. It concerns a population of n =
532 women who were at least 21 years old, of Pima Indian heritage and
living near Phoenix, Arizona, was tested for diabetes according to World
Health Organization criteria. This women described by 7 predictors and two
groups. The data were collected by the US National Institute of Diabetes
and Digestive and Kidney Diseases. The training set contains a randomly
selected set of 200 subjects, and the sample test set contains the remaining
332 subjects.
For both the training data set and the test data set, the success rates is
summarized in Table 2. Here again, the behavior of KRCM is better than all
the other methods.

Pima
Method Train Test

LDA 76.000 77.108
QDA 76.500 69.879
KPE 85.000 81.626
KRCM 99.000 99.698

Table 2. Success rates corresponding to Pima data set.

5 Discussion

In this paper, we propose a nonparametric discrimination method based on a
nonparametric Nadaray-Watson kernel regression type-estimator of the pos-
terior probability that an incoming observed vector is a given class. To over-
come the curse of dimensionality we introduce a Cooley and MacEachern’s
variance stabilizing approach which constructs independent predictor vari-
ables. Then, the multivariate kernel density estimates is replaced by product
of univariate kernel estimators.
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Summarizing results experiments, performance of KRCM is very good com-
pared with KPE, LDA and QDA. Consequently, our study confirms that
using discriminative rather than generative classifiers is preferred.
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