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Abstract. When the data consists of a set of objects described by a set of vari-
ables, we have recently proposed a new mixture model which takes into account
the block clustering problem on the both sets. In considering this problem under
the maximum likelihood and classification maximum likelihood approaches, one
can wonder about the performances of the algorithm obtained by block EM, block
CEM or by simple uses of the EM and CEM algorithms applied on the both sets
separately. The main objective of this paper is to compare these algorithms.
Keywords: Block clustering, Mixture model, EM and CEM algorithms.

1 Introduction

Cluster analysis is an important tool in a variety of scientific areas such as
pattern recognition, information retrieval, microarray, data mining, and so
forth. Although many clustering procedures such as hierarchical clustering,
k-means or self-organizing maps, aim to construct an optimal partition of
objects or, sometimes, of variables, there are other methods, called block
clustering methods, which consider simultaneously the two sets and organize
the data into homogeneous blocks. If x denotes a n×r data matrix defined by
x = {(xj

i ); i ∈ I and j ∈ J}, where I is a set of n objects (rows, observations,
cases) and J is a set of r variables (columns, attributes), the basic idea of
these methods consists in making permutations of objects and variables in
order to draw a correspondence structure on I × J . These last years, block
clustering (also called biclustering) has become an important challenge in
data mining context. In the text mining field, [Dhillon, 2001] has proposed
a spectral block clustering method by exploiting the clear duality between
rows (documents) and columns (words). In the analysis of microarray data
where data are often presented as matrices of expression levels of genes under
different conditions, block clustering of genes and conditions has permitted
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to overcome the problem of the choice of similarity on the both sets found in
conventional clustering methods [Cheng and Church, 2000].

The mixture model is undoubtedly one of the greatest contributions to
clustering. It offers a great flexibility and solutions to the problem of the
number of clusters. To take into account the block clustering situation, we
have defined in [Govaert and Nadif, 2003] a block mixture model and, set-
ting the clustering problem in the classification maximum likelihood (CML)
approach [Symons, 1981], we have developed an algorithm called block CEM
which is based on the alternated application of classical CEM on interme-
diate data matrices. More recently, setting the clustering problem in the
maximum likelihood (ML) approach, we have proposed [Govaert and Nadif,
2005] a generalized EM algorithm (GEM) [Dempster et al., 1977] which max-
imizes a variational approximation of the likelihood using an iterative algo-
rithm whose steps are carried out by the application of the EM algorithm
on intermediate mixture models. In estimation context, we have shown that
this approach gives good results on simulated data.

This paper focuses on the clustering context. It deals to compare five
algorithms: block CEM, block EM with two variants, two-way EM and two-
way CEM, i.e. EM and CEM applied separately on I and J . Results on
simulated data are given, confirming that block EM gives much better per-
formance than the other algorithms.

In the following, for convenience, we represent a partition z into g clus-
ters of the sample I by the vector (z1, . . . , zn), where zi ∈ {1, . . . , g} in-
dicates the component of the observation i or by the classification matrix
(zik, i = 1, . . . , n, k = 1, . . . , g) where zik = 1 if i belongs to cluster k and
0 otherwise. We will use similar notation for a partition w into m clusters
of the set J . Moreover, to simplify the notation, the sums and the products
relating to categories, row clusters will be subscripted respectively by letters
i, j and k without indicating the limits of variation which will be thus im-
plicit. Thus, for example, the sum

∑
i stands for

∑n

i=1 or
∑

i,j,k,` stands for∑n

i=1

∑r

j=1

∑g

k=1

∑m

`=1.

2 Block Mixture Model

For the classical mixture model, the probability density function of a mixture
sample x is defined by f(x; θ) =

∏
i

∑
k pkϕ(xi; αk) where the pk’s are the

mixing proportions, the ϕ(xi; αk)’s are the densities of each component k,
and θ = (p1, . . . , pg,α1, . . . ,αg). We have shown [Govaert and Nadif, 2003]
that f(x; θ) can be written as

f(x; θ) =
∑

z∈Z

p(z; θ)f(x|z; θ), (1)

where Z denotes the set of all possible partitions of I in g clusters, p(z; θ) =∏
i pzi

and f(x|z; θ) =
∏

i ϕ(xi; αzi
). With this formulation, the data matrix

x is assumed to be a sample of size 1 from a random (n, r) matrix.
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To study the block clustering problem, we have extended the formulation
(1) to propose a block mixture model defined by the following probability
density function f(x; θ) =

∑
u∈U p(u; θ)f(x|u; θ) where U denotes the set of

all possible partitions of I × J and θ is the parameter of this mixture model.
In restricting this model to a set of partitions of I×J defined by a product of
partitions of I and J , which will be supposed to be independent, we obtain
the following decomposition

f(x; θ) =
∑

(z,w)∈Z×W

p(z; θ)p(w; θ)f(x|z,w; θ)

where Z and W denote the sets of all possible partitions z of I and w of J .
Now, extending the latent class principle of local independence to our

block model, the xj
i will be supposed to be independent once zi and wj

are fixed; then, we have f(x|z,w; θ) =
∏

i,j ϕ(xj
i ; αziwj

) where ϕ(x,αk`)
is a probability density function defined on the real set R. Denoting θ =
(p,q,α11, . . . ,αgm) where p = (p1, . . . , pg) and q = (q1, . . . , qm) are the
vectors of probabilities pk and q` that a row and a column belong to the kth
component and to the `th component respectively, we obtain a block mixture
model with the following probability density function

f(x; θ) =
∑

(z,w)∈Z×W

∏

i

pzi

∏

j

qwj

∏

i,j

ϕ(xj
i ; αziwj

).

3 Various approaches

To tackle the block clustering problem, we have used the block mixture model
and have considered the ML and CML approaches.

3.1 ML approach and block EM algorithm

For the ML approach, to estimate the parameters of the block mixture
model, we proposed to maximize the log-likelihood L(θ;x) = log(f(x; θ))
by using the EM algorithm. To describe this algorithm, we must define the
complete log-likelihood, also called classification log-likelihood LC(z,w; θ) =
L(θ;x, z,w) = log f(x, z,w; θ) which can be written

LC(z,w; θ) =
∑

i,k

zik log pk +
∑

j,`

wj` log q` +
∑

i,j,k,`

zikwj` logϕ(xj
i ; αk`).

The EM algorithm maximizes L(θ;x) iteratively by maximizing the condi-
tional expectation of the complete log-likelihood given a previous current
estimate θ

(c) and x:

Q(θ,θ(c)) =
∑

i,k

P (zik = 1|x,θ(c)) log pk +
∑

j,`

P (wj` = 1|x,θ(c)) log q`

+
∑

i,j,k,`

P (zikwj` = 1|x,θ(c)) logϕ(xj
i ; αk`).
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Unfortunately, difficulties arise due to the dependence structure in the model,
and more precisely, to the determination of P (zikwj` = 1|x,θ(c)) and approx-
imations are required to make the algorithm tractable. Using a variational
approximation

P (zikwj` = 1|x,θ(c)) ≈ P (zik = 1|x,θ(c))P (wj` = 1|x,θ(c)),

we proposed [Govaert and Nadif, 2005] to maximize alternatively two con-

ditional expectations of the complete-data log-likelihood Q′(θ,θ(c)|d) and

Q′(θ,θ(c)|c) where c and d are the matrices defined by the cik’s and the
dj`’s. We shown that these conditional expectations are associated respec-
tively to classical mixture models

∑

k

pkψk(ui; θ,d) and
∑

`

q`ψ`(v
j ; θ, c)

where ui = (u1
i , . . . , u

m
i ) and vj = (vj

1, . . . , v
j
g) are vectors of sufficient statis-

tics and ψk and ψ` are the probability density functions of the sufficient statis-
tics. So, these maximizations can be carried out by the EM algorithm and
we obtain the two following versions, called block EM(1) and block EM(2).
The different steps of the first one are

1. Start from c(0), d(0) and θ
(0).

2. Compute (c(c+1),d(c+1),θ(c+1)) starting from (c(c),d(c),θ(c)):
(a) Compute c(c+1),p(c+1), α(c+ 1

2
) by using on the data (u1, . . . ,un) the

EM algorithm starting from c(c),p(c), α(c).
(b) Compute d(c+1),q(c+1), α(c+1) by using on the data (v1, . . . ,vr) the

EM algorithm starting from d(c),q(c), α(c+ 1

2
).

3. Iterate the steps 2 until convergence.

The different steps of the second version are

1. Start from c(0), d(0) and θ
(0), initial values of c, d and θ.

2. Compute (c(c+1),d(c+1)) starting from θ
(c) by iterating the following two

steps (a) and (b) until convergence:
(a) Compute c(c+1) by using on the data (u1, . . . ,un) the E-step starting

from d(c),p(c), α(c).
(b) Compute d(c+1) by using on the data (v1, . . . ,vr) the E-step starting

from c(c),q(c), α(c).
3. Compute θ

(c+1) = (p(c+1),q(c+1), α(c+1))
4. Repeat the steps (2) and (3) until convergence.

After we fit the mixture model to estimate θ, we can give an outright or
hard clustering of this data by assigning each observation to the component of
the mixture to which it has the highest posterior of probability of belonging.
As the calculus of posterior probabilities starting form the parameter is not
tractable, a simple solution is to use the probabilities cik and dj` obtained at
the end of the block EM algorithm. This procedure, which assigns a partition
to a value of the parameter θ, will be named “ C-step ” in the following.
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3.2 CML approach and block CEM algorithm

With the CML approach, the partition is added to the parameters to be
estimated. In [Govaert and Nadif, 2003], we have proposed the block CEM
algorithm that is a variant of block EM. In each of the phases 2(a) and 2(b),
it is sufficient to add a C-step which converts the cik’s and dj`’s to a discrete
classification before performing the M-step by assigning each object and each
variable to cluster which has the highest posterior probability of belonging.

3.3 2EM and 2CEM algorithms

Obviously, we can also use the both classical versions EM and CEM on I and
J separately (noted 2EM and 2CEM) but unfortunately it is unaware of the
correspondence between I and J . It will be seen later that this process is
ineffective to detect homogeneous blocs. In addition, the use of two models
on the both sets is not parsimonious. Indeed, our proposed block mixture
model has fewer parameters than a standard ”one-dimensional” clustering:
for example, with n = 1000 and r = 500 and equal proportions of mixture
components, if we need to cluster binary data matrix into 4 clusters of rows
and 3 clusters of columns, this leads to estimate 12 parameters with Bernoulli
block mixture model instead of 5000 = 4 × 500 + 3 × 1000 parameters with
two Bernoulli mixture models, i.e., applied on I and J separately.

4 Numerical experiments

In this section, to illustrate the behaviors of our algorithms (2EM, 2CEM,
block EM(1), block EM(2), block CEM) and to compare them, we studied
their performances for the Bernoulli block mixture model where

ϕ(x;αk`) = (αk`)
x(1 − αk`)

1−x with αk` ∈]0, 1[.

With block EM(1) and block EM(2), we have two levels of convergence.
The first is local; see the phases 2a) and 2b) for block EM(1) and the phase
2) for block EM(2) and the second convergence is global; see the phase (3)
for block EM(1) and the phase (4) for block EM(2). In order to accelerate
both algorithms, we decided to carry out less iterations locally and more at
the global level. After intensive simulations, we chose to carry out only one
iteration locally and considered that the global convergence is reached when
|1 − L(c)/L(c−1)| < ε where L(c) denotes the observed log-likelihood at c-th
iteration and ε represents a threshold value which chosen on a pragmatic
ground, here we took ε = 10−7. This strategy, kept in the following, is fast
and gives better results that when one chooses to carry out less iterations
globally (ε = 10−6) and more locally (This comparison is not reported here).

In our experiments, we selected twelve kinds of data arising from 3 × 2-
component mixture model corresponding to three degrees of overlap (well
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separated (+), moderately separated (++) or ill-separated (+++)) of the
clusters and four sizes of the data (n× r = 50× 30, 100× 60, 200×120, 300×
180). The concept of cluster separation is difficult to visualize for Bernoulli-
mixture models, but the degree of overlap can be measured by the Bayes
error corresponding to the block mixture model. As its computation is being
theoretically difficult, we used Monte Carlo simulations and evaluated the
error rate by comparing the partitions simulated and those we obtained by
applying a C-step. But, this step is not direct as in classical situation of
mixture model and, in these simulations, we used a modified version of the
block Classification EM algorithm in which the parameter θ is fixed to the
true value θ

∗. Parameters have been chosen to obtain error rates respectively
in [0.01, 0.05] for the well-separated, in [0.12, 0.17] for the moderately and in
[0.20, 0.24] for the ill-separated situations. For each of these twelve data
structures, we generated 30 samples and for each sample, we have run five
algorithms 20 times starting from the same random situations and selected
the best solution for each method. We compared 2EM, 2CEM, block CEM,
block EM(1) and block EM(2) with (g,m) = (3, 2).

Firstly, we focused on the comparison between block EM(1) and block
EM(2). To summarize the behavior of these algorithms, we computed the
mean error rate and the mean running time for each simulation. From our
results of experiments (Table 1), incontestably the both versions of block EM
almost always give the same results and their performance increases with the
size of data and especially for block EM(1) (with 300×180 and the situation
+++ the error rate is equal to 0.22 for block EM(1) versus 0.28 for block
EM(2)). We can also note that block EM(1) is faster and therefore a regular
update of θ is more advantageous. For the continuation, we kept only block
EM(1).

The comparisons between 2EM, 2CEM, block CEM and block EM(1) are
summarized in Table 2. The first one displays the mean error rate for each
situation and in Table 3, the mean running time. From these experiments,
the main point arising are the following.

• The versions 2EM and 2CEM working on the two sets separately are
suitably effective only when the clusters are well separated. This shows
the risk of the use of such methods to obtain homogeneous blocks.

• The block CEM algorithm, even if it is faster and better than 2CEM
and 2EM does not give encouraging results when the clusters are not
well separated. Moreover, when the size of data increases, it has some
difficulties to detect the pattern into 3 × 2 blocks.

• Not surprisingly, the versions 2CEM and 2EM are slower than block CEM
and block EM(1).

In our comparisons we chose to use the percentage of misclassified like an ap-
proximation of the Bayes error. This choice is justified because the number
of obtained clusters and simulated ones were the same ones. Furthermore, we
have extended these comparisons to the cases where the numbers of clusters
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Size Degree of Error rates Times
overlap

block EM(1) block EM(2) block EM(1) block EM(2)

+ .02(.02) .02(.02) 0.11(0.07) 0.33(0.15)
(50,30) ++ .24(.08) .23(.09) 0.53(0.36) 1.71(1.26)

+++ .31(.14) .31(.13) 0.48(0.32) 2.04(1.53)

+ .02(.02) .02(.02) 0.23(0.16) 0.77(0.70)
(100,60) ++ .14(.03) .14(.03) 0.28(0.13) 0.93(0.24)

+++ .28(.11) .28(.10) 0.69(0.51) 2.13(0.95)

+ .02(.01) .02(.01) 0.42(0.08) 1.26(0.17)
(200,120) ++ .14(.02) .14(.02) 1.03(0.36) 3.72(0.89)

+++ .28(.09) .28(.09) 2.54(1.56) 9.86(4.09)

+ .03(.01) .03(.01) 0.98(0.15) 3.43(0.30)
(300,180) ++ .15(.02) .15(.02) 3.11(2.66) 10.38(2.98)

+++ .22(.06) .28(.06) 3.90(1.72) 14.77(4.41)

Table 1. Means and standard errors (in parentheses) of error rates and times
recorded from the 20 same random situations by block EM(1) and EM(2).

are different from (3, 2) and used the Rand index in comparing the agree-
ment between the both partitions (simulated and obtained). Note that this
measure is not restricted to comparing partitions with the same number of
clusters. The results of experiments have confirmed the performance of block
EM(1).

Size Degree of Error rates
overlap

2CEM(1) 2EM(2) block CEM block EM(1)

+ .09(.09) .04(.06) .02(.02) .02(.02)
(50,30) ++ .38(.08) .31(.11) .29(.11) .24(.08)

+++ .51(.13) .46(.13) .35(.12) .31(.14)

+ .08(.06) .07(.04) .03(.02) .02(.02)
(100,60) ++ .31(.08) .24(.09) .16(.08) .14(.03)

+++ .53(.07) .49(.10) .35(.11) .28(.11)

+ .03(.02) .02(.01) .02(.01) .02(.01)
(200,120) ++ .41(.10) .29(.09) .16(.08) .14(.02)

+++ .61(.07) .50(.08) .46(.10) .28(.09)

+ .06(.02) .05(.01) .03(.01) .03(.01)
(300,180) ++ .50(.06) .31(.06) .15(.03) .15(.02)

+++ .58(.07) .39(.08) .37(.09) .22(.06)

Table 2. Comparison between 2CEM, 2EM, block CEM, block EM(1): means and
standard errors (in parentheses) of error rates.
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Size Degree of Times
overlap

2CEM 2EM block CEM block EM(1)

+ 2.29(2.61) 0.53(0.12) 0.03(0.01) 0.11(0.07)
(50,30) ++ 0.23(0.02) 0.87(0.12) 0.10(0.21) 0.53(0.36)

+++ 0.37(0.83) 0.91(0.12) 0.07(0.12) 0.48(0.32)

+ 2.19(0.48) 5.29(1.38) 0.39(0.25) 0.23(0.16)
(100,60) ++ 1.60(0.45) 6.97(0.99) 0.15(0.24) 0.28(0.13)

+++ 1.16(0.09) 7.71(1.09) 0.07(0.03) 0.69(0.51)

+ 10.21(1.08) 26.49(9.14) 0.08(0.05) 0.42(0.08)
(200,120) ++ 10.12(0.73) 73.03(8.40) 0.19(0.10) 1.03(0.36)

+++ 8.97(0.80) 89.79(12.12) 0.21(0.12) 2.54(1.56)

+ 37.31(2.77) 111.64(30.26) 0.27(0.27) 0.98(0.15)
(300,180) ++ 33.76(2.21) 291.01(31.84) 0.13(0.09) 3.11(2.66)

+++ 35.90(6.78) 449.28(407.16) 0.23(0.17) 3.90(1.72)

Table 3. Comparison between 2CEM, 2EM, block CEM, block EM(1): means
and standard errors (in parentheses) of times recorded from the 20 same random
situations.

5 Conclusion

Setting the problem of block clustering under the ML and CML approaches,
we have compared three block clustering algorithms (block EM(1), block
EM(2), block CEM) and two classical methods applied separately on the
sets of rows and columns (2EM and 2CEM). Even if the both versions of
block EM do not maximize exactly the likelihood, as in the classical mixture
model situation but only an approximation of the likelihood of the block
mixture model, they give encouraging results on simulated binary data and
are better than the other methods. Furthermore, we note, that the first
version block EM(1) appears slightly better than EM(2) when the clusters
are ill-separated and it is faster. It would be now necessary to apply this
algorithm to real situations and to extend this approach to other types of
data, such as continuous data by using Gaussian densities for example.
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