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Abstract. We present a finite time local search (1 + δ)-approximation method
finding the optimal solution with probability almost one with respect to a gen-
eral measure of within group-dissimilarity. The algorithm is based on a finite-time
Markov model of the simulated annealing. A dynamic cooling schedule, allows the
control of the convergence. The algorithm uses as measure of within group dissimi-
larity a new generalized Ward index based on a set of well-scattered representative
points, which deals with the major weaknesses of partitioning algorithms regarding
the hyperspherical shaped clusters and the noise. We compare it with other clus-
tering algorithms, such as CLIQUE and DBSCAN.
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1 Introduction

It is generally acknowledged that there are two main families of clustering
(unsupervised classification) methods: hierarchical and partitioning. The for-
mer ones create a tree structure splitting (reuniting) the initial set of objects
in smaller and smaller subsets, all the way to singletons (and reverse), while
the latter ones construct a partition of the initial set of objects into a certain
number of classes, with the target number usually part of the input, along
with the objects themselves. Most partitioning methods proposed for data
mining [Jain et al., 1999], [Gosh, 2003] can be divided into: discriminative
(or similarity-based) approaches and generative (or model-based) approaches.
In similarity-based approaches, one optimizes an objective function involv-
ing the pairwise data similarities, aiming to maximize the average similarities
within clusters and minimize the average similarities between clusters. A fun-
damentally different approach is the model based approach which attempts to
optimize the fit (global likelihood optimization) between the data and some
mathematical model, and most researchers do not consider them as clustering
methods. Similarity-based partitioning clustering is also closely related to a
number of operations research problems such as facility location problems,
which minimize some empirical loss function (performance measure). There
are no efficient exact solutions known to any of these problems for general
number of clusters m, and some formulations are NP-hard. Given the diffi-
culty of exact solving, it is natural to consider approximation, either through
polynomial-time approximation algorithms, which provide guarantees on the
quality of their results, or heuristics, which make no guarantees. One of
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the most popular heuristics for the similarity-based partitioning problem is
Lloyd’s algorithm, often called the m-means algorithm. Define the neigh-
borhood of a center point to be the set of data points for which this center
is the closest. Thus, one can easily see that any locally minimal solution
must be centroidal (i.e. each center lies at the centroid of its neighborhood).
Unfortunately, m-means algorithm may converges to a local minimum that
is arbitrarily bad compared to the optimal solution. Other heuristics with
no proven approximation bounds are based on branch-and-bound searching,
gradient descent, simulated annealing, nested partitioning, ant colony opti-
mization, and genetic algorithms.

It is desirable to have some bounds on the quality of a heuristic. Given
a constant δ ≥ 0, a (1 + δ)-approximation algorithm (for a minimization
problem) produces a solution that is at most a factor (1 + δ) larger than the
optimal solution. With a tradeoff between approximation factors and run-
ning times, some clustering algorithms are able to produce solutions that are
arbitrarily close to optimal. This includes (1 + δ)-approximation algorithms
for the Euclidean m-median problem by [Kolliopoulos and Rao, 1999] with
a running time of O(21/δs

n log n log m), assuming that the dimension s is
fixed. Another one is the (1 + δ)-approximation algorithm for the Euclidean
m-center problem given by [Agarwal and Procopiuc, 1998], which runs in

O(n log m) + (m/δ)O(m1−1/s).

Another common approach in approximation algorithms is to develop
much more practical, efficient algorithms having weaker, but still constant,
approximation factors. These algorithms are based on local search, that is,
by incrementally improving a feasible solution by swapping a small number
of points in and out of the solution set. This includes the work of [Mettu
and Plaxton, 2002] on the use of successive swapping for the metric m-means
problem.

Unfortunately it is well known that m-means/medians/centers partition-
ing clustering algorithms have a tendency to partition the data into hyper-
spherical shaped clusters and do not adequately deal with outliers and noise.

The algorithm presented here is a local search (1 + δ)-approximation
method finding the optimal solution with probability almost one with re-
spect to any general measure of within group-dissimilarity. It is actually a
cooling schedule, obtained by stopping a simulated annealing algorithm in
finite time, and it belongs to a family of approximation clustering algorithms
of type m-median and m-means,

The algorithm addresses the weaknesses of partitioning algorithms in the
way in which it constructs what we shall define as “critical” clusters, that
are to be further expanded by the cooling schedule. As a measure of within
group dissimilarity we introduce a new generalized Ward index based not on
a single cluster representative i.e. centroid or median, but on a set of well-
scattered representative points, which are shrunk toward the centroid. The
idea of joining together points close to a set of representatives was introduced
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by [Guha et al., 1998] to obtain a measure of inter-group dissimilarity in
hierarchical clustering. Moreover, due to the particular choices of generation
probabilities for the system of neighborhoods, the more dense a cluster is,
the smaller the probability to have its elements reassigned to other clusters
will be while trying to transform the current classification.

The rest of the paper is organized as follows. In Sections 2. and 3. we
present the clustering problem as a combinatorial optimization problem and
the general asymptotic convergence conditions for it Sections 4 and 5 de-
scribe and compare our algorithm with other clustering algorithms. Finally in
Section 6. we present the conclusions and give directions for future research.

2 Setting

The general form of clustering problems considered is ”given a set X =
{1, 2, .., n} of n entities, to classify these entities means to partition the linear
subspace X into a number m ≤ n of clusters such that the m−partitioning is
optimal according to a certain chosen criterion function defined on the set Πm

of all m−partitions of the set X”. Each element i from the set X has an input
information vector Y (i). There exists also a distance d as a dissimilarity
measure for every pairwise combination of entities to be clustered, and a
function τ : P (X) → R+ as a measure of within-group dissimilarities with
the property that τ (A) = 0 ←→ |A| = 1. Let us consider the function

f : Πm → R, f (πm) =
m
∑

i=1

τ (Ai), where πm = (A1, A2, ..., Am) ∈ Πm.

The class of clustering problems considered is (PC) min
πm∈Πm.

f (πm). (PC)

is a combinatorial optimization problem (see [Aarts et al., 1997]) with a very
large state space since the |P (X) | given by the Bell number grows extremely
rapidly with n; e.g., B40 = 1.6× 1035 and B100 = 4.8× 10115.

A first contribution of this work is the development of a stochastic search
algorithm for finding (1 + δ)-optimal partitions with a probability close to
one. The basic idea is to construct a Metropolis-Hastings Markov chain via
the simulated annealing algorithm.

A neighborhood function is a mapping N : Πm → 2Πm , which, for each
classification i ∈ Πm, defines a set N (i) ⊆ Πm of classifications that can
be reached from i by a single perturbation. At the beginning, an initial
classification is given. The simulated annealing algorithm starts with it,
and continuously tries to transform the current classification into one of its
neighbors by applying the generation mechanism and an acceptance criterion.
Better-cost neighbors are always accepted. To avoid being trapped in a local
minimum, worst-cost neighbors are also accepted, but with a probability that
is gradually decreased in the course of the algorithm execution. The lowering
of the acceptance probability is controlled by a set of parameters whose values
are determined by a cooling schedule.
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As we mentioned in the introduction, the algorithm solves the (PC) prob-
lem for a general measure of within-group dissimilarities τ : P (X) → R+

such that τ (A) = 0 ←→ |A| = 1. However to the best of our bibliograph-
ical knowledge, the already existent measures of within group dissimilar-
ity constructed by the extension of a distance do not deal with arbitrarily
shaped clusters, and are very sensitive to outliers. Among those indices, the
most known are: Wilks index: τ (A) = 1

2|A|

∑

x,y∈A

d2(x, y), and Ward index

τ (A) =
∑

x,y∈A

d2(x, xA), where xA is the centroid of A. The first index does

not require X to be a linear space and treats any point of the cluster as
a cluster representative, which gives too much unfiltered information about
the shape of the set to the clustering algorithm. Also, the (PC) optimization
problem with this index leads to long shaped clusters. The second index
treats the centroid as the unique cluster representative. This choice gives
no information about the shape of the cluster and leads to the well known
squared sum of errors criterion with his already discussed problems.

The new index we propose generalizes the Ward one considering multi-
ple representatives for a cluster. We define the representatives index to be
τ (A) =

∑

x∈A

min
xr∈R

d2(x, xr), where R is the set of representatives. The idea of

multiple representatives was introduced in hierarchical clustering by [Guha
et al., 1998]. They must be well spread across the whole cluster, and are thus
obtained through an iterative selection: initially the farthest point from the
centroid is picked, and then, up to |R| (fixed in advance), the farthest point
from the ones already picked is added. The distance from a candidate point
to the set of already picked is the min of the pointwise distances from that
point to each already picked. These representatives capture the geometry of
the cluster, and upon a shrinking towards the centroid by a fixed factor, done
after building R, the outliers get much closer to the centroid (moving more
than average representatives within the bulk of the cluster).

3 The asymptotic convergence for the (PC) problem

Notation 1. S : the set of solutions for the considered combinatorial opti-
mization problem (here S = Πm), and S∗ : the set of optimal solutions.

The simulated annealing can be mathematically modeled as a sequence
of Markov chains. Each Markov chain has transition probabilities defined as

∀ i, j ∈ S : Pij (k) =

{

Gij (ck)Aij (ck)
1−

∑

l∈S, l 6=i

Gil (ck)Ail (ck)
if i 6= j
if i = j

(1)

where Gij (ck) denotes the probability of generating a solution j from a solu-
tion i, and Aij (ck) the probability of accepting a solution j that is generated
from a solution i.
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The matrix P of equation (1) is stochastic and Gij (ck) and Aij (ck) are
conditional probabilities. In the original version of simulated annealing, the
acceptance probability is defined by:

∀ i, j ∈ S : Aij (ck) = exp
(

− (f(j)− f(i))
+

/ck

)

(2)

Theorem 1 ([Aarts et al., 1988]) Let (S, f) be an instance of a combina-
torial optimization problem, N a neighborhood function, and P (k) the tran-
sition matrix defined by (1), with ck = c, ∀ k = 0, 1, .... If we have (G1)
∀c > 0, ∀i, j ∈ S, ∃p ≥ 1, ∃l0, l1, ..., lp ∈ S with l0 = i, lp = j and
Glk lk+1

(c) > 0, k = 0, 1, ..., p−1; (G2) ∀c > 0, ∀i, j ∈ S : Gij (c) = Gji (c) ;
(A1) ∀c > 0, ∀i, j ∈ S : Aij (c) = 1 if f(i) ≥ f(j), and Aij (c) ∈ (0, 1)
if f(i) < f(j); (A2) ∀c > 0, ∀i, j, k ∈ S : Aij (c)Ajk (c)Aki (c) =
Aik (c)Akj (c)Aji (c) ; (A3) ∀i, j ∈ S with f(i) < f(j) limc→0 Aij (c) = 0.
then the Markov chain has a unique stationary distribution q(c), with

qi(c) = 1/
∑

j∈S

(Aij (c) /Aji (c)) , ∀i ∈ S, (3)

Remark 1 For the following choice of the generation probabilities

Gij = χ(N(i)) (j) / |N (i)| , ∀i, j ∈ S, (4)

condition (G2) is no longer needed to guarantee asymptotic convergence, and
the components of the stationary distribution are given by

qi(c) = |N (i)| /
∑

j∈S

[(|N (j)|Aij (c)) /Aji (c)] for all ∀i ∈ S, (5)

We will consider this choice for the generation probability in order to solve
the (PC) problem.

Definition 1 A cluster A from ω ∈ Πm is called critical for ω if

τ (A) = max
Ai cluster of ω

τ (Ai) .

Notation 2. N ′ (π) = {ω = (A′
1, ..., A

′
m) ∈ Πm| A

′
i are obtained from Ai by a

reassignment of up to k elements from a critical cluster A, where k = |A|},
for π ∈ Πm. We say that (N ′ (π))π∈Πm

is the set of critical neighborhoods.

Proposition 1 For the (PC) problem, the set of neighborhoods defined by
N ′ (π) satisfies the (G1) condition.

Proof. It is a fact that ∀i, j ∈ S, ∃ p ≥ 1, and l0, l1, ..., lp ∈ S with l0 = i,
lp = j such that for any k ,lk and lk+1 are neighbors through a n-reassign
system of neighborhoods. We shall prove that there also exists a path from
i ∈ S to j ∈ S through a critical system of neighborhoods. Suppose that
u = 0, ..., p− 1 is the first step at which lu ∈ S and lu+1 /∈ N ′ (lu). Let Au be
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a cluster in lu which has a maximal value for the within-group dissimilarity
function τ . Let Bu be the cluster in lu from which t elements are reassigned
to some other clusters for obtaining lu+1. Since lu+1 /∈ N ′ (lu) then τ (Au) >
τ (Bu). To get a path from i ∈ S to j ∈ S through a critical system of

neighborhoods we will add a finite number of elements l
\
u ∈ N ′ (lu) to the

initial path. The procedure is the following: (1) We assign k − 1 elements

from Au to Bu, where k = |Au|. The new classification l
\
u has only two

modified clusters A
\
u, B

\
u, and τ

(

A
\
u

)

= 0 since
∣

∣

∣
A

\
u

∣

∣

∣
= 1. (2) If τ

(

B
\
u

)

has

not the maximal value then ∃A1u such that τ (A1u) is maximal, and we will

proceed as in the case of Au starting the construction of some l
\\
u ∈ N ′

(

l
\
u

)

.

Since 1...n is a finite set after repeating for a finite number of times the

procedure τ
(

B
\
u

)

will be maximal. Now we construct a new classification

l
\
u+1 ∈ N ′

(

l
\
u

)

in the following way: from B
\
u the t elements to other clusters

as in the construction step from lu to lu+1, and the elements belonging to
the clusters Au, A1u, ... are reassigned back to their clusters. We proceed in
a similar way for all the steps q at which lq ∈ S and lq+1 /∈ N ′ (lq) preserving
the other steps.

4 Finite-time model of simulated annealing

In practical applications, asymptoticity is never attained and thus conver-
gence to an optimal solution is no longer guaranteed. Then we shall use the
simulated annealing as an approximation algorithm, implementing a cooling
schedule. The general idea of a cooling schedule is the following: start with
an initial value c0 for the control parameter and repeatedly generate a finite
Markov chain for a finite number of decreasing values of c until c w 0. The
parameters determining the cooling schedule are: the start value c0 of the
control parameter; the decreasing rule of the control parameter; the length
Lk of the individual Markov chains; the stop criterion of the algorithm. We
will discuss the choice of those parameters for our problem such that the con-
vergence towards near-optimal solutions will be ensured. Our cooling sched-
ule follows the general ideas of the statistical cooling algorithm developed
in [Aarts et al., 1988] and designed for symmetric generation probabilities
which lead to less complicate formulas for the stationary distributions.

4.1 The start value of the control parameter

This value should be large enough to ensure that initially all configurations
occur with rather equal probabilities since limc→∞ qi (c) = |N ′

i | /
∑

j∈S

∣

∣N ′
j

∣

∣.

We distinguish two cases. In the first one, in which the set of system con-
figurations corresponds to values of the cost function distributed over a num-
ber of distinct intervals whose mutual distances are large compared to their
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size, c0 will be computed in the classical way as θ · maxi, j∈S [f (j)− f (i)],
where θ � 1. In the second case, the values for the cost function are suf-
ficiently uniformly distributed. Thus, we can observe the behavior of the
system before the actual optimization process takes place, and adjust the
value of the control parameter such that the ratio χ of the system perturba-
tions accepted over the total number of perturbations generated is kept close
to the one given by limc→∞ qi (c). The initial value c0 will be the final value
of c updated m1 + m2 times according to the relation:

c = Average
∆Ci j >0

∆fij/ ln [m2/ (m2χ− (1− χ)m1)], where ∆fij = f (j) −

f (i), and m2, m1 the numbers of rearrangements with ∆fij ≤ 0, > 0.

4.2 The decreasing rule of the control parameter

In the frame of the homogeneous Markov model for simulated annealing al-
gorithm, the decreasing rule of the control parameter, as well as the lengths
Lk of the Markov chains are constructed in order to satisfy the following
quasi-equilibrium condition: ”a (Lk, ck) is close to q (ck)”, where a (l, ck)
denotes the probability distribution of the classifications after l transitions
of the k-th Markov chain. The time behavior of the cooling schedule usu-
ally depends on the mathematical formulation of this condition. It is clear
from an intuitive point of view that we will have larger differences be-
tween q (ck) and q (ck+1) if the decreasing rule of the control parameter
allows large decrements of ck, where we suppose we have reached the quasi-
equilibrium. In this case it will be necessary to attempt more transitions
at the new value ck+1, for restoring the quasi-equilibrium. Thus, there is
a trade-off between fast decrement of ck and small values for Lk. We will
proceed as in [Aarts et al., 1988] using small decrements in ck in order to
avoid extremely long chains, and imposing for ε, δ small positive numbers:
‖q (ck)− q (ck+1)‖ < ε ≈ ∀i ∈ S 1/ (1 + δ) < qi (ck) /qi (ck+1) < (1 + δ)

Remark 2 For the components of the stationary distribution function
from (5) we get qi (c) = |N ′

i | · q0 (c) · Ai0i (c), where q0 (c) =
[

∑

j∈S

∣

∣N ′
j

∣

∣ ·Ai0j (c)
]−1

, and i0 ∈ S∗.

Proof. Let i0 ∈ S∗ =⇒ f (j) , f (i) ≥ f (i0). For f (j) > f (i) we have
Aji = 1, and Aij (c) = exp (−∆fij/c) = exp (−∆fi0 j/c) · exp (−∆fi i0/c) =
Ai0 j (c) ·exp (−∆fi i0/c). For f(j)< f(i) we have Aij (c) = 1. From the (A2)
property of Theorem 1 we have Ai0 j(c)·Aji(c) = Ai0i (c) = exp (−∆fi0 i/c)⇒
Aji (c)=exp (−∆fi0 i/c) /Ai0 j (c). So we get Aij (c)/Aji (c)=Ai0 j(c)/Ai0 i(c).

Then we have that qi (c)
def
= |N ′

i | /
[

∑

j∈S

∣

∣N ′
j

∣

∣ ·Aij (c) /Aji (c)
]

= |N ′
i | ·

Ai0 i (c) /
[

∑

j∈S

∣

∣N ′
j

∣

∣ ·Ai0 j (c)
]

.
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Proposition 2 If ∀i ∈ S, ∀k ∈ N∗ ck < ck+1, and Ai0 i (ck) /Ai0 i (ck+1) <
1+ δ, where i0 ∈ S∗ then the following inequalities are satisfied: 1/ (1 + δ) <
qi (ck) /qi (ck+1) < (1 + δ).

Proof. Obviously
∑

j∈S

Ai0j (ck+1) <
∑

j∈S

Ai0j (ck) < (1 + δ)
∑

j∈S

Ai0j (ck+1).

Then we derive that q0 (ck+1) / (1 + δ) < q0 (ck) < q0 (ck+1), relation from
which using the form of qi (c)’s given by the previous remark we can obtain
the desired inequality. Thus, using the hypothesis the second part of the
desired inequality follows directly. The first part of the desired inequality is
a result of introducing in the first part of the q0 (c) ’s inequality, the qi (c) ’s
expression, and the obvious relation: Ai0 i (ck) > Ai0 i (ck+1).

Remark 3 The relation given in the hypothesis of the previous proposition
can be reformulated as: ∀i ∈ S, ∀k ∈ N∗ck+1 > ck/ [1 + ck · ln (1 + δ) /∆fi0 i]
which is in fact a decreasing rule of the control parameter.

To simplify the decreasing rule, we shall make an assumption often
made in the literature, and supported by computational evidence (see
[Aarts et al., 1988] and [White, 1984]). What we really do is to restrict the
decreasing rule to a set Sck

of configurations that occur with a greater proba-
bility during the generation of the k-th Markov chain. We will record the cost
values of the classifications X (1) , ..., X (Lk) ∈ S = Πm that occur during the
generation of the k-th Markov chain, and we will assume that they are nor-

mally distributed with mean µk = µ (ck) =

[

Lk
∑

j=1

f (X (j))

]

/Lk, and variance

σ2
k=σ2 (ck)=

[

Lk
∑

j=1

f 2 (X (j))

]

/Lk − µ2
k. Thus, Pr {∆fi0 i ≤ µk − f∗ + 3σk}w

0.99, where f∗ is the optimal value of the problem. Finally, we define
Sck

= {i∈S|∆fi0 i≤µk−f∗+3σk}. Then Pr {i ∈ Sck
} w 0.99, and we can

replace the previous decreasing rule with a simpler one: ∀i ∈ Sck
, ∀k ∈

N∗ ck+1 > ck/ [1 + ck · ln (1 + δ) /µk − f∗ + 3σk]. For us f∗ is not known
but µk − f∗ ≥ 0. Thus, the final decreasing rule of the control parameter is:

∀i ∈ Sck
, ∀k ∈ N∗ck+1 > ck/ [1 + ck · ln (1 + δ) /3σk] (6).

4.3 The length Lkof the individual Markov chains

The length of a Markov chain is usually determined such that at each value ck

a minimum number of transitions is accepted. Since transitions are accepted
with decreasing probability, one would obtain Lk →∞ for ck ↓ 0. Therefore,
Lk is usually bounded by some constant Lmax to avoid extremely long chains
for small values of ck. We take Lmax = |X | −m ≥ maxi∈S |N

′ (i)|.
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4.4 The final value of the control parameter

This choice determines in fact the stopping criterion. We will follow the
general idea of most of the dynamic cooling schedules (see [Aarts et al.,
1997]). Thus, the algorithm will stop at the ck value for which the cost
function of the classification obtained in the last trial of a Markov chain
remains unchanged for a number of ρ consecutive chains. Schematically we
have:

Compute(Lmax, c0) ; c := c0; f [k] = MaxInt ∀k ∈ 0, ..., ρ

repeat

for i := 1 to Lmax do

Generate( j ∈ N ′ (i))

if ∆fi j ≤ 0 then Accept( j) =true

else if exp (−∆fij/c) >randomize[0, 1) then Accept( j) =true;

if Accept( j) =true then i := j;

Compute
(

σ2 (c)
)

; Update
(

f [0, ..., ρ]
)

; c :=
dc/ [1 + c · ln (1 + δ) /3σ (c)]e ;

until f [k1] = f [k2] ∀k1, k2 ∈ 0, ..., ρ

5 Comparison with other algorithms

The study is done comparing the speed and also the quality of the output
classification, and using synthetic data generated in a setting constructed
and acknowledged by several researchers, such as [Agrawal et al., 1998] and
[Zait and Messatfa, 1997]. In generating the data several parameters have
been varied, such as size of the classes, their mutual distances, overlap factor,
and also their local dimension, smaller than the one of the whole space where
points where selected.

Our algorithm was compared to CLIQUE [Agrawal et al., 1998] and DB-
SCAN, the latter being much less performant. For the algorithm presented
here, we have noted a behavior of similar quality to the one of CLIQUE.
However, CLIQUE reports overlapping classes in many cases (it has an ap-
proach based on density, varying the local dimensions in which it performs
the search), and lower density zones in clusters are discarded as being out-
liers. Finally, CLIQUE requests the user to find appropriate values for some
mandatory parameters controlling its behavior, which is a very difficult task
in general. Finally, while both CLIQUE and our algorithm can end up mak-
ing quite a number of passes over the data, the time required by our algorithm
also depends on how fast the within-group dissimilarity τ can be computed,
linear ones leading to faster algorithms. The building of the representative
set R takes O(n|R|2): |R| steps, when each point of the current cluster is
considered, and for each one, the minimum of the pointwise distance to each
member of the increasing R, so another factor of |R|.
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6 Conclusion

We have presented a finite time stochastic approximation clustering algo-
rithm, which finds optimal solutions with probability almost one, and per-
forms as well as good heuristic clustering algorithms, with a mathematical
assessment of its properties, within the framework of the Markov chain analy-
sis of simulated annealing. We have also introduced a new measure of within
cluster dissimilarity improving the recognition of arbitrary shaped clusters
and reducing the outliers effects.

Concerning outliers, CURE random sampling can filter out a majority of
them. Chernoff bounds [Motwani and Raghavan, 1995] provide equations to
analytically derive the random sample size required to have a low probability
of missing clusters. Also for large databases making several passes over the
whole database is undesirable, and clustering the random sample dramati-
cally improves time complexity. Afterwards, the initial non-selected points
are each assigned to the cluster of the closest among a fraction of randomly
selected representatives for each cluster.
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