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Abstract. In this paper, we compare several distance indices between partitions
on the same set. First, we build a set Pk(P ) of partitions close to each others
by applying to an initial partition P , k transfers of one element from its class to
another. Then we compare the distributions of several indices of distance between
partitions of Pk(P ).
Keywords: distance index, partition.

1 Introduction

The comparison of partitions is a central topic in clustering, as well for com-
paring partitioning algorithms as for classifying nominal variables. The litera-
ture abounds in indices defined by multiple authors to compare two partitions
P and Q on the same set X . The most used are: the Rand index [Rand,
1971], the Jaccard index and the Rand index corrected for chance by Hubert
and Arabie [Hubert and Arabie, 1985]. We also wanted to study the Wallace
index [Wallace, 1983] and the normalized index of Lerman [Lerman, 1981].
The comparison of these indices is only interesting (in a practical point of
view) if we consider close partitions, which differ randomly one from each
others as it is mentioned by Youness and Saporta [Youness and Saporta,
2004]. They generate such partitions according to the latent class model
[Bartholomew and Knott, 1999] adapted to an euclidian representation of
the elements of X . We develop here a more general approach, independent
of the representation space of X .

In 1964, Régnier proposed a distance between partitions which fits this
type of study [Régnier, 1964]. It is the minimum number of transfers of one
element from its class to another (eventually empty) to turn P into Q. We
have recently studied this measure [Charon et al., 2005] and called it the
transfer distance. We compare the distributions of the distance indices above
on partitions at k transfers from P . If k is small enough, these partitions are
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close to P since they represent only a small percentage α of all the partitions
of X . This permits to define the value kα of the maximum number of transfers
allowed, and to build the set Pkα

(P ) of random partitions obtained by at most
kα transfers from P .

2 The transfer distance

Let P and Q be two partitions on the set X of n elements with respectively
p and q classes ; we will admit that p ≤ q.

P = {C1, .., Cp} and Q = {C′
1, .., C

′
q}.

The minimum number of transfers to turn P into Q, denoted θ(P, Q), is
obtained by establishing a bijection between the classes of P and those of
Q keeping a maximum number of elements in matching classes, those that
don’t need to be moved. Consequently, we begin to add q − p empty classes
to P , so that P is considered as a partition with q classes.

Let Υ be the mapping from P × Q −→ N which associates to one pair
of classes the cardinal of their intersection. Classically, ni,j = |Ci ∩ C′

j | and
ni = |Ci| and n′

j = |C′
j | denote the cardinals of the classes. Let ∆ be the

mapping which associates to each pair of classes (Ci, C
′
j) the cardinal of their

symmetrical difference, noted δi,j . We have δ(i, j) = ni + n′
j − 2 × ni,j . So

we consider the complete bipartite graph Kq,q whose vertices are the classes
of P and Q, with edges weighted either by Υ or by ∆.

Proposition 1 ([Day, 1981]) The bijection minimizing the number of

transfers between two partitions with q classes P and Q corresponds to a
matching of maximum weight w1 in Kq,q weighted by Υ or, equivalently,

to a matching of minimum weight w2 in Kq,q weighted by ∆; moreover,

θ(P, Q) = n − w1 = w2

2 .

Establishing the bipartite graph is in O(n2). The weighted matching prob-
lem in a complete bipartite graph can be solved by an assignment method well
known in operational research [Kuhn, 1955], [Kuhn, 1956]. The algorithm has
a polynomial complexity in O(q3). We won’t go into further details, given for
instance in [Faure et al., 2000]. A computer program (in C) can be requested
to the authors. We just develop an example of computation of the transfer
distance.

Example 1 We consider the two partitions P = (1, 2, 3|4, 5, 6|7, 8) and Q =
(1, 3, 5, 6|2, 7|4|8). The two following tables correspond to the intersections
and to the symmetrical differences of the classes of P and Q. Two extreme

matchings are edited in bold. Each one gives θ(P, Q) = 4.
To the maximum weighted matching in the table Υ corresponds the series of

4 transfers: (1, 2, 3|4, 5, 6|7, 8) → (1, 3|4, 5, 6|2, 7, 8) → (1, 3, 5|4, 6|2, 7, 8) →
(1, 3, 5, 6|4|2, 7, 8) → (1, 3, 5, 6|4|2, 7|8).
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Υ 1,3,5,6 2,7 4 8 ∆ 1,3,5,6 2,7 4 8

1,2,3 2 1 0 0 3 3 4 4

4,5,6 2 0 1 0 3 5 2 4

7,8 0 1 0 1 6 2 3 1

∅ 0 0 0 0 4 2 1 1

To the minimum weighted matching in the table Delta corresponds another

optimal series: (1, 2, 3|4, 5, 6|7, 8) → (1, 2, 3, 7|4, 5, 6|8) → (2, 3, 7|1, 4, 5, 6|8)
→ (2, 7|1, 3, 4, 5, 6|8) → (2, 7|1, 3, 5, 6|8|4).

3 Close partitions in terms of transfers

We note Pn the set of partitions on a set of n elements and Pk(P ) the set of
partitions at k transfers from P and P≤k(P ) the set of partitions at at most
k transfers from P .

Pk(P ) = {Q ∈ Pn such that θ(P, Q) = k}

P≤k(P ) = {Q ∈ Pn such that θ(P, Q) ≤ k} =
⋃

0≤i≤k

Pi(P )

Statistically, we consider that a partition Q is close to P at threshold α if the
probability of observing a partition closer to P than θ(P, Q) is lower than or
equal to α. The matter is then to know how many partitions are within a k
radius from P . For k = 0, there is just one partition, P itself, otherwise θ
would’nt be a distance. We can easily enumerate P1(P ), but for larger k it
becomes difficult. We call critical value of the partition P , at threshold α,
the greatest number of transfers kα such as

|P≤kα
(P )|

|Pn|
≤ α.

While n ≤ 12, we can enumerate all the partitions in Pn and we com-
pute |Pk(P )|. For that, we use the procedure NexEqu in [Nijenhuis and
Wilf, 1978]. Each partition is coded by the vector of the class number to
which each element belongs. The algorithm builds the next partition for the
lexicographic order on this code, starting from the partition with a single
class.

For n > 12, there are too many partitions to realize an exhaustive enu-
meration. Then we select at random a large number of partitions, to be
compared to P to estimate |P≤k(P )|/|Pn|. To obtain a correct result, the
partitions must be equiprobable; the book of Nijenhuis and Wilf provides
also such a procedure (RandEqu).

Thus we measure a frequency f in order to estimate a proportion p. We
want to approximate p = 0.1 for a risk ρ fixed (ρ = 5%) and a gap δ between
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f and p judged as acceptable (δ = 0.01). For these values, we can establish
the size of the sample E by the classical formula:

t(ρ)

√

f(1 − f)

|E|
≤ δ

in which t(ρ) is given by the normal distribution of Gauss [Brown et al., 2002].
We obtain that 3600 trials should be carried out, which are quite feasible.
We can notice that this number decreases with p (when p < 0.5) and it is
independent of n.

Example 2 For n = 12, there are |P12| = 4213597 partitions that can be

compared to P in order to establish the distribution of |Pk(P )| according
to k. For P = {1, 2, 3, 4|5, 6, 7|8, 9|10, 11|12}, as for all the partitions with

classes having the same cardinality, the number of partitions at 0, . . . , 8 trans-

fers from P are respectively 1, 57, 1429, 20275, 171736, 825558, 1871661,
1262358, 60522 and 0 beyond. The cumulated proportions in % are re-

spectively 0.0, 0.0, 0.0, 0.5, 4.6, 24.2, 68.6, 99.6,and 100. For α = .1 the
critical value is 4; indeed there are just 4.6% of the partitions that are at

most at 4 transfers from P , while for 5 transfers, there are 24.2%. The

cumulated frequencies computed from P and 5000 random partitions are:
0.0, 0.0, 0.1, 0.5, 4.4, 23.9, 68.7, 98.3 and 100. Thus the critical value computed

by sampling is also equal to 4.

4 Indices of proximity between partitions

The comparison of partitions is based on the pairs of elements of X . Two
elements x and y can be joined together or separated in P and Q. The
two partitions agree on (x, y) if these elements are simultaneously joined or
separated in P and Q. On the other hand there is a disagreement if x and y
are joined in one of them and separated in the other. Let r be the number of
pairs simultaneously joined together, s the number of pairs simultaneously
separated, an u (resp. v) the number of pairs joined (resp. separated) in P
and separated (resp. joined) in Q.

According to the previous notations, we have r =
∑

i,j
ni,j(ni,j−1)

2 . Equiv-
alent formulas for s, u and v appear in several papers. We will note π(P ) the

set of joined pairs in P , that is to say |π(P )| =
∑

i=1,p
ni(ni−1)

2 .

4.1 The Rand index

The Rand index [Rand, 1971], noted R, is simply the percentage of pairs
for which there is an agreement. It belongs to [0, 1] and 1 − R(P, Q) is the
symmetrical difference distance between π(P ) and π(Q).

R(P, Q) =
r + s

n(n − 1)/2
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4.2 The Jaccard index

In the Rand index, the pairs simultaneously joined or separated are counted
in the same way. However, partitions are often interpreted as classes of joined
elements, the separations being the consequences of this clustering. We use
then the Jaccard index (1908), noted J , which does not take into account the
s simultaneous separations:

J(P, Q) =
r

r + u + v

4.3 The corrected Rand index

In their paper of 1985 [Hubert and Arabie, 1985], they noticed that the
Rand index is not corrected for chance that is equal to zero for random
partitions having the same number of objects in each class. They introduced
the corrected Rand index, whose expectation is equal to zero, noted here HA,
in homage to the authors.

The corrected Rand index is based on three values: the number r of com-
mon joined pairs in P and Q, the expected value Exp(r) and the maximum
value Max(r) of this index, among the partitions of the same type as P and
Q. It leads to the formula

HA(P, Q) =
r − Exp(r)

Max(r) − Exp(r)

with Exp(r) = |π(P )|×|π(Q)|
n(n−1)/2 and Max(r) = 1

2 (|π(P )| + |π(Q)|). This maxi-

mum value is questionable since the number of common joined pairs is neces-
sarily bounded by inf{|π(P )|, |π(Q)|}, but Max(r) insures that the maximum
value of HA is 1 when the two partitions are identical. On the other hand
this index can take negative values.

4.4 The Wallace index

This index is very natural, it’s the number of joined pairs common to P and
Q divided by the number of possible pairs [Wallace, 1983]. This last quantity
depends on the partition of reference and, if we don’t want to favour neither
P nor Q, the geometrical average is used.

W (P, Q) =
r

sqrt(|π(P )| × |π(Q)|)

.
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4.5 The normalized Lerman index

The Lerman index(denoted ICL) is the difference between the number of
simultaneously joined pairs and its expectation, divided by its standard de-
viation [Lerman, 1988].

ICL(P, Q) =
r − Exp(r)
√

V ar(r)

These two values are computed on the set of pairs of partitions having the
same types as P and Q; they are defined according to the cardinals of the
classes. The expected value of r already appears in the formula given by
Hubert and Arabie and its variance V ar(r) is given by:

V1(P )V1(Q)

2n(n − 1)
+

V2(P )V2(Q)

n(n − 1)(n − 2)
+

V3(P )V3(Q)

4n(n − 1)(n − 2)(n − 3)
− [

V1(P )V1(Q)

2n(n− 1)
]2

where V1(P ) =
∑

i=1,p ni(ni − 1), V2(P ) =
∑

i=1,p ni(ni − 1)(ni − 2) and

V3(P ) = [
∑

i=1,p

ni(ni − 1)]2 − 2
∑

i=1,p

ni(ni − 1)(2ni − 3)],

with similar expressions for V1(Q), V2(Q) and V3(Q), in which the sums are
computed on q classes and the ni are replaced by n′

i.
The index value is not defined when V ar(r) = 0, that is when one of

the partitions has a single class or n singletons. As for the HA index, it
can be negative, but it is not upper bounded. Finally, Lerman proposes a
normalized index defined as a correlation coefficient given by the formula:

ILN(P, Q) =
ICL(P, Q)

√

ICL(P, P ) × ICL(Q, Q)

5 Comparison of indices

Let P be a partition on X with p classes, defined by its type, that is to say
by the cardinal of its classes. When n = |X | ≤ 12, we enumerate the sets
Pk(P ), then we evaluate the minimum and maximum values of each index
above between P and any Q belonging to Pk(P ). The table 1 contains the
results for P = (1, 2, 3, 4, 5|6, 7, 8, 9, 10). The partitions being at at most 3
transfers represent 1.7% of the 115975 partitions on 10 elements.

One can observe that, for each index, the maximum value obtained for
partitions at 5 transfers are greater than the minimum value obtained for
2 transfers. Moreover the minimum values at 3 transfers are very small
and don’t reflect the closeness of these partitions and P . Finally, for the
normalized Lerman index, the maximum values do not decrease with k and
the closest partition from P is at 4 transfers.
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Nb. of transfers 1 2 3 4 5 6 7 8

Nb. of partitions 20 225 1720 9112 31361 54490 17500 1546

J min .64 .43 .32 .22 .15 .08 .04 0.0

J max .80 .70 .60 .50 .44 .21 .10 0.0

R min .80 .64 .53 .47 .44 .44 .44 .44

R max .91 .87 .82 .78 .69 .64 .60 .56

HA min .60 .28 .06 -.08 -.12 -.17 -.19 -.22

HA max .82 .72 .63 .53 .32 .22 .11 0.0

W min .78 .60 .49 .37 .28 .16 .09 0.0

W max .89 .84 .77 .71 .67 .45 .32 0.0

ILN min .61 .28 .06 -.08 -.20 -.20 -.23 -.32

ILN max .86 .84 .95 1.15 .67 .39 .25 -.14

Table 1. Distribution of the number of partitions at k transfers from P and extreme
values of the distance indices

.

In the case n > 12, we cannot enumerate Pn anymore. Then, in order to
compare very close partitions in the neighborhood of a given partition P ,

• we compute by sampling the critical number of transfers k5%;
• we build a set Qk(P ) of 100 partitions Q randomly selected such as

θ(P, Q) ≤ k, with k ≤ k5%;
• we compare all the partitions of Qk(P ) two by two and measure the

average value and the standard deviation of each studied index.

The partitions close to P are obtained by selecting recursively at random
one element; if this element is not alone in its class, its new class number is
selected between 1 and p+1, and the number of classes is updated. Here, we
restrict our study at the single partition of 100 elements spread in 5 balanced
classes of 20 elements each. The critical value at 5% is 83, that is to say that
only 5% of the partitions with 100 elements are at less at 83 transfers from
the balanced partition with 5 classes.

The figure 1 represents the computed averages and standard deviations
of each index for k ∈ [5; kα], with a step of 5.

We can see that the indices decrease when k increases since the partitions
are less close to each other. The indices of Jaccard, corrected Rand , Wallace,
and Lerman have approximately the same behavior: they are high when k is
small and decrease near to 0 when k = kα. But they reflect the closeness of
partitions only when k is very small. Among these indices the Jaccard index
seems to be the most accurate since it has the lowest standard deviation.
The Rand index has a different behavior: its values stays above 0,8 whatever
is k. Two pairs of partitions at 40 and 90 transfers from each others can have
the same value.
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Fig. 1. Average and standard deviation of the distance indices between partitions
of Q

We have obtained the same kind of results for other initial partitions,
balanced or not. Our conclusion is that the Rand index isn’t very satisfying
for the comparison of close partitions. Among the others, the Jaccard index
seems the best, followed by the Wallace index, because they have the lowest
standard deviation. The corrected Rand index and the normalized Lerman
index share similar average values but the extreme values of the normalized
Lerman index make it less satisfying.
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la comparaison des partitions. Revue de Statistique Appliquée, pages 97–120,
2004.


