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Abstract. To understand evolutionary processes better, biologists use aggrega-
tion methods to estimate evolutionary relationships; yet properties of the methods
are sometimes so imprecisely defined, and their interrelationships so poorly under-
stood, that useful formal results may be difficult to obtain. To address this problem
I describe a strategy for modeling aggregation methods and studying their prop-
erties. The approach accommodates impossibility results for aggregating rankings,
nonhierarchical classifications, hierarchies, and phylogenies. It remains to formu-
late other relevant models of biological aggregation and to characterize methods for
solving biological problems of agreement and synthesis.
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The axiomatic method is, strictly speaking, nothing but this art of

drawing up texts whose formalization is straightforward in principle.

As such it is not a new invention; but its systematic use as an in-

strument of discovery is one of the original features of contemporary

mathematics. — Nicolas Bourbaki [Bourbaki, 1968, p. 8]

1 Aggregation problems in biology

Mathematical models of aggregation have long been used in systematic or evo-
lutionary biology [Day and McMorris, 2003]. Given a sequence of trees that
estimate phylogenetic relationships among species, for example, one wants
to develop methods to synthesize these trees into a single large phylogenetic
supertree [Steel et al., 2000, Wilkinson et al., 2004]. If estimating supertrees
is an exemplar of biological aggregation, the following questions pertain.

What is a supertree? Most biologists understand biological supertrees and
their use to estimate evolutionary history, while mathematicians wish to know
no more about supertrees than is necessary to construct appropriate models.
Here I assume that supertrees and other relevant objects are defined so that
their essential features are expressible by sets of elementary structures.

What is a supertree rule? I describe an abstract framework in which
aggregation can be modeled and concepts investigated. Given a profile (se-
quence) of objects: an agreement rule returns an object having only features
in common agreement among the profile’s objects, a consensus rule returns
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an object best representing the profile’s objects, and a synthesis rule returns
a composite of the profile’s objects.

What biologically relevant properties should supertree rules exhibit? Prop-
erties of aggregation constrain the formal model so as to improve its capability
to approximate a biological process [Wilkinson et al., 2004]. Here I ignore
issues of practicality and computational complexity since analyses of time
and space resources are best left to computer scientists. I am particularly in-
terested in axioms that if satisfied by an aggregation rule may increase one’s
confidence in the biological relevance of that rule’s results.

Can supertree rules exhibit particular sets of desirable properties? What

properties do known supertree rules exhibit? Since little has yet been done
to answer such questions, here I simply mention some biologically interesting
impossibility results and some open problems concerning the axiomatics of
biological aggregation rules.

2 Aggregation models

For 30 years researchers have striven to develop consensus rules for biological
applications. Although inappropriate for investigating agreement or synthe-
sis, consensus rules are a useful point of reference. There is a set of voters.
Each voter votes by specifying an object. A consensus rule C accepts a
profile of objects and returns a unique consensus object that in some sense
best represents the profile. A simple model requires that C be a function
C : X k −→ X , where X is a set of objects such as those in table 1 and X k is

X is the set of all . . .

E Nonhierarchical classifications or partitions of S, each being a set of
nonempty classes or subsets of S that are pairwise disjoint and that
include every element of S.

O Rankings of S, each being a partition of S the classes of which are linearly
ordered from most to least preferred.

H Rooted trees, each with n leaves, such that the root vertex has degree at
least 2, every other interior vertex has degree at least 3, and every leaf
is labeled with a distinct element of S.

P Unrooted trees, each with n leaves, such that no vertex has degree 2 and
every leaf is labeled with a distinct element of S.

Table 1. Objects defined in terms of S, n = |S| > 0

the set of all profiles (k-tuples) of X . C is further specified by a set K of k

indices to name the voters, a set S of n labels or species names with which to
describe objects, encoding functions to represent objects in meaningful ways,
and reduction functions to reveal the structure of objects. Since the concepts
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of object, index, label, encoding, and reduction appear naturally in models
of agreement, consensus, or synthesis, the incremental strategy in table 2 can
be used to study them.

1. Begin with the basic concepts of object, index, and label.
2. Design an aggregation model. Specify axioms and use them to prove things.
3. Add a concept of encoding. Specify axioms and use them to prove things.
4. Add a concept of reduction. Specify axioms and use them to prove things.
5. Add other relevant concepts. Specify axioms and use them to prove things.
6. Repeat steps 2–5 for related aggregation models.

Table 2. Strategy to investigate aggregation

To specify models let K = {1, . . . , k}, S = {s1, . . . , sn}, and for every
X ⊆ S let XX be a set of objects defined in terms of each and every label of
X . For every X ⊆ S let X[X] =

⋃
Y ⊆X XY where XX ⊆ X[X]. An object of

XX has the label set X , but an object of X[X] may have as its label set any
subset of X ; thus HS is the set of hierarchies having exactly n leaf labels and
H[S] is the set of hierarchies having at most n leaf labels. X , K, S then yield

C : X k
S −→ X[S], a model of agreement, (1)

C : X k
S −→ XS , a model of consensus, and (2)

C : X k
[S] −→ XS , a model of synthesis. (3)

The essence of consensus is that profile objects and consensus result have the
same label set S. Agreement (1) is more general than consensus (2) since,
although the domains are identical, an agreement result’s label set may be a
proper subset of S. Synthesis (3) is more general than consensus (2) since,
although the codomains are identical, the label set of any synthesis profile
object may be a proper subset of S.

Models (1)–(3) can be modified into rules that accept profiles of varying
lengths or return more than one aggregated object. Let X ∗ =

⋃
k≥1 X

k be the
set of all profiles of finite positive length and call any aggregation rule with
domain X ∗ a complete rule. Let 2X \ {Ø} be the set of all nonempty subsets
of X and call any aggregation rule with codomain 2X \{Ø} a multiaggregation

rule. Thus a complete multisynthesis rule is modeled by a function

C : X ∗
[S] −→ 2XS \ {Ø}. (4)

3 Aggregation axioms

The axioms in table 3 address issues of impartiality (whether rules favor one
label or index more than another), delegation of authority (whether determin-
ing outcomes resides with proper subsets of indices), optimality (how rules
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Line Axiom Concept Reference

(5) S-Ntr: Neutrality of Labels Label [Steel et al., 2000]
(6) Sym: Symmetry of Indices Index [Steel et al., 2000]
(7) Prj: Projection ” [Barthélemy et al., 1991]
(8) Dct: Weak Dictatorship Encoding [Arrow, 1963]
(9) Olg: Oligarchy ” [Mirkin, 1975]
(10) PO: Pareto Optimality ” [Arrow, 1963]
(11) SO: Strong Optimality ” [Steel et al., 2000]
(12) RC: Reduction Consistency Reduction [Wilkinson et al., 2004]
(13) Ind: Independence ” [Arrow, 1963]
(14) Dsp: Display ” [Steel et al., 2000]
(15) Agr: Agreement ” [Day and McMorris, 2003]

Table 3. Axioms and their related concepts

behave in the presence of object agreement), contexture (how rules respond
to changes in structure or composition), and resolvability (how rules preserve
relationships between objects).

To motivate axioms I give informal prose descriptions, but to specify
axioms I define them using the logical symbols for negation (¬), conjunction
(∧), disjunction (∨), implication (=⇒), equivalence (⇐⇒), and universal (∀)
and existential (∃) quantification. Since axioms may apply to more than one
model, in their definitions I assume as little as possible about the model’s
form: unless stated otherwise let it be a function C : X k −→ Y for X ,Y ⊆
X[S] where X ⊆ Y and/or Y ⊆ X . Such an axiom might be relevant to any
of the models (1)–(3).

Let f and g be functions, let x be an element in g’s domain, and let g(x)
be in f ’s domain; then I reduce notational clutter by writing fgx instead of
f(g(x)). Thus CσP = C(σ(P )) as in (6). To specify objects of P ∈ X k let
P = (T1, . . . , Tk) as in (7).

3.1 Basic axioms

Three axioms treat objects as atomic and indivisible.
S-Ntr: Neutrality of Labels. Let φ : S −→ S be a function that

permutes the labels in S. Let φ : X −→ X permute the labels of an object:
for every T ∈ X , φT is the object obtained by using φ to permute the labels
of T . Let φ : X k −→ X k permute the labels in every object of a profile:
(∀P ∈ X k)(φP = (φT1, . . . , φTk)). Although three functions are named φ,
context shows which φ pertains. Motivation: If a profile P is described by
a data matrix in which each row represents a label then the aggregation
of P should be insensitive to the relative order of P ’s rows (labels). Put
another way, for every P and every S-permutation φ, the relabeling by φ of
the aggregation of P should equal the aggregation of the profile in which P ’s
objects are relabeled by φ. Axiom:
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(∀P ∈ X k)(∀S-permutations φ)(CφP = φCP ) (5)

Sym: Symmetry of Indices. Let σ : K −→ K be a function that per-
mutes the indices in K = {1, . . . , k}. Now σ can permute objects in a profile
by permuting the indices of the objects in that profile, i.e., let σ : X k −→ X k

be a function such that (∀P ∈ X k)(σP = (Tσ1, . . . , Tσk)). Although two func-
tions are named σ, context shows which σ pertains. Motivation: If a profile
P is described by a data matrix in which each column represents an object
then the aggregation of P should be insensitive to the relative order of P ’s
columns (objects). Put another way, for every P and every K-permutation
σ, the aggregation of P should equal the aggregation of the profile in which
the positions of P ’s objects are permuted by σ. Axiom:

(∀P ∈ X k)(∀K-permutations σ)(CP = CσP ) (6)

Prj: Projection (Strong Dictatorship). Motivation: In nontrivial
oligarchies and dictatorships the power to control aggregation is shared un-
equally by voters. In a strong dictatorship, for some index j and every profile
P , the aggregation of P is the jth object of P . Axiom:

(∃j ∈ K)(∀P ∈ X k)(CP = Tj) (7)

Thus if P is a point in a k-dimensional space then C projects P onto a single
dimension.

3.2 Axioms using object encodings

Whereas in section 3.1 objects were atomic and indivisible, now let every
object T ∈ X be a set of elementary structures that are defined using the
labels of S. Specifically let ES be a complete set of elementary structures
defined using the labels of S, and let r denote an encoding by which every
T ∈ X is a well-defined subset of ES . The encodings in table 4 may be
familiar to biologists; the axioms in sections 3.2 and 3.3 assume that such an
encoding has been applied.

X r Using r, T ∈ X is a Reference

O w weak order [Arrow, 1963]
E e equivalence relation [Mirkin, 1975]
H c set of clusters [Margush and McMorris, 1981]
H t set of triads [Colonius and Schulze, 1981]
H n set of nestings [Adams III, 1986]
P s set of splits [Buneman, 1971]
P q set of quartets [Colonius and Schulze, 1981]

Table 4. Encodings (r) to represent objects as sets of elementary structures
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Dct: Weak Dictatorship. Motivation: In a weak dictatorship, for some
index j and every profile P , the aggregation of P contains as a subset the
jth object of P . Axiom:

(∃j ∈ K)(∀P ∈ X k)(Tj ⊆ CP ) (8)

Olg: Oligarchy. Motivation: Oligarchy extends the strong dictatorial
concept to forms of aggregation in which ruling power is shared by a set of
individuals: for some index set V and every profile P , the aggregation of P

is the set intersection of the objects of P that are specified by V . Axiom:

(∃V ⊆ K)(∀P ∈ X k)(∩j∈V Tj = CP ) (9)

An oligarchy of one individual is a strong dictator; an oligarchy of k individ-
uals is a form of rule by unanimity.

PO: Pareto Optimality. Motivation: Proposals may require for adop-
tion the unanimous support of a society’s members. For every profile P the
aggregation of P should include those elementary structures (i.e., proposals)
that are in every object of P (i.e., are supported by every member). Axiom:

(∀P ∈ X k)(∩i∈KTi ⊆ CP ) (10)

SO: Strong Optimality. Motivation: Instead of requiring unanimous
support, proposals may be adopted if they are unopposed by conflicting pro-
posals. With hierarchies represented by sets of triads (see figure 1), for every

xy |z yz |x xyzxz |y

x y z y z x x y zx z y

Fig. 1. Triads for representing hierarchies.

profile P and every three labels x, y, z, if xy|z is in some object of P but nei-
ther xz|y nor yz|x are in P ’s objects, then xy|z should be in the aggregation
of P . Axiom:

(∀P ∈ Hk)(∀x, y, z ∈ S)(

[(∃j ∈ K)(xy|z ∈ Tj) ∧ (∀i ∈ K)(xz|y 6∈ Ti ∧ yz|x 6∈ Ti)]

=⇒ xy|z ∈ CP ) (11)

With phylogenies represented by sets of quartets the axiom becomes

(∀P ∈ Pk)(∀w, x, y, z ∈ S)(

[(∃j ∈ K)(wx|yz ∈ Tj) ∧ (∀i ∈ K)(wy|xz 6∈ Ti ∧ wz|xy 6∈ Ti)]

=⇒ wx|yz ∈ CP )

In such cases SO is stronger than PO in the sense that SO =⇒ PO .
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3.3 Axioms using object encodings and reductions

Let an encoding (as in table 4) be applied so that every object in X is repre-
sented by a set of elementary structures. Like an X-ray machine, reduction
penetrates the surfaces of such objects to reveal hidden structure. For every
X ⊆ S, let the function ξX : X[S] −→ X[X] reduce objects on subsets of S to
objects on subsets of X : for every T ∈ X[S], ξXT is the object obtained by
suppressing in T the structure associated with S \X . Thus if T were a graph
G with vertex set S then ξXT might be the subgraph of G that is induced
by X . Also let ξX : X k

[S] −→ X k
[X] reduce profiles rather than single objects:

for every X ⊆ S then (∀P ∈ X k
[S])(ξXP = (ξXT1, . . . , ξXTk)). Although two

functions are named ξX , context shows which ξX pertains.
RC: Reduction Consistency. Motivation: The order in which reduc-

tion and aggregation functions are applied ought not to matter: for every
profile P and subset X of labels, the aggregation of the reduction of P to X

by ξ should equal the reduction to X by ξ of the aggregation of P . Axiom:

(∀P ∈ X k
[S])(∀X ⊆ S)(CξXP = ξXCP ) (12)

Ind: Independence. Profiles P, P ′ ∈ X k
[S] are called equal, i.e., P = P ′,

if and only if (∀i ∈ K)(Ti = T ′
i ). Motivation: For all profiles P and P ′ and

every subset X , if P and P ′ are equal when reduced to X by ξ then the
aggregations of P and P ′ must be equal when reduced to X by ξ. Axiom:

(∀P, P ′ ∈ X k
[S])(∀X ⊆ S)(ξXP = ξXP ′ =⇒ ξXCP = ξXCP ′) (13)

Ind, which Arrow [Arrow, 1963] called independence of irrelevant alternatives,
imposes on aggregation rules a form of context insensitivity. Ind is weaker
than reduction consistency in the sense that RC =⇒ Ind. Some researchers
have confounded Ind with RC, a result perhaps unsurprising since [Arrow,
1963, pp. 26–27] motivated his definition of Ind with examples of both RC

and Ind ([McLean, 1995, p. 108]).

Dsp: Display. An object T is said to resolve an object T ′ if T ′ can be
obtained from T by a sequence of simplifying elementary transformations.
For partitions an elementary transformation forms the union of two classes
of the previous partition; for rankings those two classes must be adjacent
in the previous linear order. For hierarchies or phylogenies an elementary
transformation contracts an interior edge by identifying its endpoints and
deleting the resulting loop. For every T, T ′ ∈ X[S], T is said to display T ′ if,
for some X ⊆ S, ξXT = T ′ or ξXT resolves T ′. An object also can display a
profile: for every object T and profile P , T is said to display P if T displays
Ti for every i ∈ K. Motivation: For every profile P if some object displays
P then the aggregation of P should display P . Axiom:

(∀P ∈ X k
[S])[(∃T ∈ X[S])(T displays P ) =⇒ (CP displays P )] (14)
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Agr: Agreement. For every P ∈ X k
[S] let D(P ) be the set of all non-

trivial objects (i.e., those having nontrivial elementary structures) that are
displayed by every Ti ∈ P . Motivation: For every profile P if some nontrivial
object is displayed by P then the aggregation of P should be nontrivial and
should be displayed by P . Axiom:

(∀P ∈ X k
[S])(D(P ) 6= Ø =⇒ CP ∈ D(P )) (15)

4 Problems at the interface

Researchers have used the axiomatic approach to prove impossibility results
(table 5) for models (1)–(3) of aggregation, a result being called impossible
if an undesirable property, e.g., Dct or Olg, follows from desirable properties,
e.g., Ind and PO. Consequently the following questions may be relevant when
assessing the efficacy of such models for biological aggregation.

Model X r Impossibility Result Reference

consensus O w Ind ∧ PO =⇒ Dct [Arrow, 1963, p. 97]
consensus E e Ind ∧ PO ⇐⇒ Olg [Mirkin, 1975, p. 446]
consensus H c Ind ∧ PO ⇐⇒ Prj [Barthélemy et al., 1992, p. 63]

agr,con,syn H t SO ⇐⇒ ¬SO [Steel et al., 2000, p. 367]
consensus P q Ind ∧ PO ⇐⇒ Prj [McMorris and Powers, 1993, p. 54]
consensus P q S -Ntr ∧ PO =⇒ ¬Sym [Steel et al., 2000, p. 366]
synthesis P q S -Ntr ∧ Dsp =⇒ ¬Sym [Steel et al., 2000, p. 364]
agreement P q S -Ntr =⇒ ¬Agr [Day and McMorris, 2003, p. 108]

Table 5. Impossibility results for aggregation models (1)–(3), the representation
of objects in X being determined by the encoding r. For many other such results
see [Day and McMorris, 2003] and references therein.

Are we using the right axioms? [Wilkinson et al., 2004] argue that elusive
properties of input trees involving tree size, tree shape, or the location or size
of conflicting structures may adversely bias methods to build supertrees. How
should such properties be included in formal studies of aggregation models?
Even devising adequate definitions of such properties may be problematic.
Would some particular encoding provide a natural setting in which such prop-
erties could be investigated? Since the strategy in table 2 is simplistic, using
it to guide the analysis of such models may be ineffective or infeasible.

Engaging but specific problems exist. How strong is S-neutrality? For
agreement, consensus, or synthesis rules on phylogenies, characterize those
rules that satisfy S-Ntr. Since independence (Ind) imposes a strong concept
of context insensitivity, could it be replaced by biologically useful concepts
of context sensitivity?
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Are we solving the right problems? Impossibility results encourage math-
ematicians to explore the boundary areas between feasible and infeasible
aggregation rules. Biologists might be more excited by axiomatic character-
izations of actual or ideal aggregation rules for biologically relevant objects.

Are we using the right models? Since much is known about complete
multiconsensus median rules [McMorris et al., 2000, McMorris et al., 2003],
do such axiomatic results generalize to the complete multisynthesis model
(4)? Do the concepts of agreement, consensus, synthesis, multiaggregation,
and completeness yield useful aggregation models for biological applications?
Although an extensive literature on biologically relevant consensus rules ex-
ists [Day and McMorris, 2003], axiomatic investigations of agreement and
synthesis rules are just beginning [Steel et al., 2000] and show great promise.

Have we the right perspective? If objects are complex structures, one
can exploit that complexity to study the interrelationships among objects;
but if objects are taken to be atomic and indivisible, one must use object
interrelationships to study the basic properties of sets of objects. Would it be
useful to investigate agreement or synthesis models from an order theoretic
perspective, as was done for consensus models by [Monjardet, 1990] and
[Leclerc and Monjardet, 1995]?

For some readers this paper may have little of biological interest since its
biological relevance emerges only by specifying undefined terms, e.g., object,
and open-ended concepts, e.g., encoding or reduction. If then the axioms or
models prove to be inappropriate for analyzing biological problems, perhaps
biologists and mathematicians would collaborate to refine the approach.

Acknowledgements. My views have been influenced by [Steel et al., 2000],
who investigate supertrees axiomatically and whose clarity of exposition is
exemplary, and by [Wilkinson et al., 2004], who examine biologically desirable
properties of synthesis rules for supertrees. I am indebted to Robert C.
Powers for criticizing preliminary drafts of this paper.

References

[Adams III, 1986]E. N. Adams III. n-Trees as nestings: Complexity, similarity, and
consensus. Journal of Classification, 3(2):299–317, 1986.

[Arrow, 1963]K. J. Arrow. Social Choice and Individual Values. Number 12 in
Cowles Foundation for Research in Economics at Yale University: Monographs.
Wiley, New York, second edition, 1963. Reprinted by Yale University Press
(New Haven) in 1978.
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