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Abstract. This paper presents a validation methodology in ascending hierarchical
clustering. The objects in validation are clustering hierarchies, and simulation is
used. Under certain conditions, this methodology allows us to evaluate the quality
of hierarchical structures, its robustness and fiability, according to the data struc-
ture. The effect of the application of a given criterion on some kind of structures
is also analyzed.
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1 Introduction

The use of clustering methods has progressively increased. On one hand,
there are several computer programs which include these methodologies; on
the other, there are big data sets which need to be studied (and summarised).
Since nowadays it is quite easy and not very expensive to have big databases,
it is essential to find tools in order to extract relevant information.

Generally speaking, the main goal of clustering is to define partitions or
hierarchies of partitions, over a set of two-by-two comparable elements, that
respect the resemblence between them in a predefined optimal manner. The
elements to classify may be objects or variables of a data set.

This work belongs to the ascending hierarchical clustering (A.H.C.) field,
whose usual output is a succession of partitions whose classes are partially or-
dered by inclusion. This methodology begins with the most refined partition
(with singleton classes); in each stage the most resembled classes are gathered
together according to a predefined criterion. The most common graphical re-
sult drawn out is named a classification tree or dendrogram. Choosing an
element of the succession of partitions we get a division of the elements in
clusters, as well as the history of the formation of each class.

Although clustering is a powerful tool in analysing data, we need to assure
that the division into several clusters suggested by the algorithm does not
distort the structure of the initial data. In other words, the relations between
the elements to classify cannot lead to artificial clusters without real meaning.
The need and importance of a next stage for the attainment of results in a
clustering method is unquestionable. This stage, here named as validation,
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consists of questioning over the (preliminary) results obtained, in order to
the achieve final results or conclusions.

Section two of this paper is dedicated to clustering validation. In section
three we present a methodology based on Monte Carlo simulation which al-
lows us to evaluate the quality and robustness of a hierarchic structure, and
to give us information on the quality of adjustment to data structure. This
methodology also allows us to analyse the effect that the use of a given clus-
tering criterion can have when applied to a specific kind of structure. Section
four presents an application of the proposed methodology. Finally, in section
five we lay out conclusions, as well as some perspectives of developments.

2 Validation in clustering

The application of a clustering algorithm to a data set leads to a partition or
a hierarchy of partitions over the set of elements in classification. After an
accurate interpretation, this result will give us information on the relations
between the elements in classification.

A clustering method requires choices, and it is well known that these
choices affect the result of the process of clustering. In other words, different
choices may lead to different classifications. This fact creates a new problem:
whether to decide which choice is to result into the best clustering. We
admit that each method has its own underlying structure model, which can
be optimized in each situation. Also, a clustering method always produces
a partition or a hierarchy of partitions, inducing a structure on the data. It
seems reasonable to question the existence of structure on the initial data
and, if that is the case, if there’s a close relation between the initial and
final structures. These and other questions really do justify the existence of
a stage of validation in clustering results before its interpretation.

Several authors have studied different approaches to clustering validation.
We can mention (among others) Bock’s investigations [Bock, 1985], [Bock,
1996], which insert clustering models into a probabilistic context, assuming
that the observed data is a sample of a structured multivariate population.
[Gordon, 1994], [Gordon, 1996] and [Milligan, 1996] (and other references
indicated in these works) appeal to empirical, descriptive or exploratory tools
in analysing the quality of the clusters obtained.

It is usual to apply several clustering methods to a data set with the goal
of choosing one of them or a new one determined from the data set. This issue
includes the comparison of clustering trees or dendrograms
([Lapointe and Legendre, 1990], [Lapointe and Legendre, 1995]) and
the consensus theory [Barthélemy et al., 1986] and other references in [Gor-
don, 1999]. Another kind of issue is trying to understand the quality and
stability of the results obtained from a clustering process. Here validation
may also be considered under different perspectives: we may wish to validate
a single cluster, a partition, or a hierarchy. The validation of a single cluster
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was studied (among others) by [Gordon, 1994] and [Bel Mufti, 1998]. For
references about research on validation of partitions see [Hubert, 1987] and
[Gordon, 1999]. Due to its complexity, hierarchies validation research has
less references. Note that validation of hierarchies often appears connected
to validation of partitions, since hierarchies are successions of partitions.

3 Validation methodology in A.H.C.

An A.H.C. algorithm has underlying two important choices: an index, com-
parison function between pairs of elements of the set to classify, and the
comparison function between clusters associated to the aggregation crite-
rion. It is assumed that the result of an A.H.C. depends on the data set as
well as on these choices. Each method tends to adjust its structure model in
each situation; effectiveness depends on the type and structure intensity of
the data. When analysing a structure obtained by a clustering method, it is
important to evaluate which part of it is due to the criterion used.

In this section we present a validation proceeding in A.H.C., whose main
purpose is to help to understand some of the following questions:

• Does the data really have a clustering structure? In the affirmative case,
does the hierarchy obtained reveal that structure?

• How can we choose the level of a hierarchy which gives the best partition?
• After applying several aggregation criteria or indexes to a data set, how

can we decide which one is the best? Does it even exist?

The methodology here presented allows us to provide information about the
problems in comparing indexes, hierarchies, indexes and hierarchies, and the
effects that random perturbations have on them. This procedure intents to
evaluate the quality of the final result using effectiveness and stability of a
given A.H.C. method, supporting the results interpretation and helping the
choices to be made. The methodology developed uses two main tools: the
comparison of clustering structures and random generation of dendrograms.

3.1 Comparison of clustering structures

Let E be a set of m elements to classify, and F the set of the subsets of E

with two distinct elements (card(F ) =
(

m

2

)

:= M):

F =
{

{x, y} : x, y ∈ E, x 6= y
}

.

Consider γ : E × E −→ R
+
0 , the comparison function between pairs of ele-

ments of E, and the function h : E × E −→ R
+
0 which associates to each

element (x, y) ∈ E × E the index of aggregation of the smaller cluster that
contains simultaneously x and y. A function γ can be associated to a vector
of dimension M that contains information about the structure of the data,
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and a hierarchy H can also be associated to a vector of dimension M that
contains information about the clustering structure. Our goal is to compare
those kind of structures. In this work we adopted an ordinal approach to
do this comparison, associating preordenations to the various structures. We
can define a (total) preordenation over E defining a (total) preorder over F .

The choice of a comparison function of the elements of E, γ, defines a
total preorder over F ; in fact, if γ is a dissimilarity we just consider

∀ ({x, y}, {z, t}) ∈ F × F : {x, y} 6 {z, t} ⇐⇒
def.

γ(x, y) 6 γ(z, t). (1)

This total preorder over F is the total preordenation over E associated to γ.
If γ is injective (which happens often in practice), this preorder is, in fact,
an order.

A hierarchy H over the elements of E always defines a total preordenation
over F ; in fact, we have the following relation:

∀ ({x, y}, {z, t}) ∈ F × F : {x, y} 6 {z, t} ⇐⇒
def.

h(x, y) 6 h(z, t). (2)

This total preorder over F is the total preordenation over E associated to H .
Given a partition π of E consisting of k classes E1, E2, . . . , Ek, we can

define a partition ξ of F in two classes:

• R(π) =
{

{x, y} ∈ F : x, y ∈ Ei for some i = 1, 2, . . . , k
}

;

• S(π) =
{

{x, y} ∈ F : x ∈ Ei, y ∈ Ej , i 6= j
}

.

It is easy to verify that [Lerman, 1981] ξ defines a (non total) preordenation
over E. Alternatively, we can specify a total preorder over F associated to ξ

as follows:

∀ ({x, y}, {z, t}) ∈ F × F : {x, y} 6 {z, t} ⇐⇒
def.























{x, y}, {z, t} ∈ R(π)
or

{x, y}, {z, t} ∈ S(π)
or

({x, y}, {z, t}) ∈ R(π) × S(π)

(3)

So, due to the relations (1), (2) and (3) we conclude that instead of
comparing comparison functions, partitions or hierarchies of partitions we
can compare the corresponding preordenations (with the same length).

There are several coefficients which allow us to compare two preordena-
tions. The results included in this paper were obtained using the Goodman-
Kruskal coefficient:

TGK =
C − D

C + D
, (4)

where C and D are, respectively, the number of positive and negative agree-
ments between both preordenations. All the methodology that is going to be
described can easily be applied to another coefficient.
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Assintotic results on the distributions of these coefficients are not ade-
quate in this context. The main problem is that the deduction of such distri-
butions is based on independence between preordenations, which cannot be
verified here in practice. In fact, preordenations that result from relations (1),
(2) and (3) may not be independent if, for example, they come out of the
application of different clustering processes over a common data set. In these
situations, independence is many times what the researcher does not want,
because the goal is to prove that there is information shared by the outcoming
of several results. Moreover, preordenations related to clustering processes
have restrictions imposed by the ultrametric property: property that verify
ultrametric matrices associated to clustering structures. By this we mean
that not all preordenations can be the outcome of a clustering process.

For the described reasons, it becomes necessary to deduce proper dis-
tributions for the comparison coefficients. It is not feasible to deduce the
exact distribution, because the number of distinct dendrograms of order m

increases very rapidly (d(m) = m!(m−1)!
2m−1 ).

Simulation is the alternative solution, since assintotic distributions do not
fit our purposes. To generate empirical distributions we need to be able to
generate random clustering structures. At this stage, methods of random
generation of dendrograms are extremely useful.

3.2 Random generation of dendrograms or ultrametric matrices

There are some algorithms that allow the random generation of dendro-
grams (or equivalent structures). Note that the point here is to generate
random topologies, labels and aggregation levels; few methods attend at
these three features simultaneously. We mention four methods: Double
Permutation method [Lapointe and Legendre, 1990]; Uniform generation
method [Sousa, 2000]; RA method [Podani, 2000]; Shape Parameter method
[Sousa, 2000]. The first three methods are random sensu Furnas [Furnas,
1984], in other words, they can generate (for a given order) each possible
dendrogram in an equiprobable manner (with probability 1

d(m)). The Shape

Parameter method introduces a coefficient (shape parameter) that, once set-
tled, allows to predict (with some probability) the final shape of the generated
dendrogram. This method is a very useful tool for validation in A.H.C., for
it is well known that some clustering methods tend to generate particular
kinds of trees.

Using one of the methods of random generation of dendrograms we can
randomly generate a pair of dendrograms for a given order. By this way, it
is simple to deduce empirical distributions for a chosen ordinal comparison
coefficient of structures, allowing to give statistical significance to its values.

There is an alternative way in approaching the problem of random gene-
ration of clustering structures that is based on the notion of combinatorial
structure ([Flajolet et al., 1994] and [Van Cutsem, 1996]).
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3.3 Algorithm

We now present a methodologic sequence using Monte Carlo simulation. Our
goal is to supply a method that can help us answer some of the questions
previously stated.

For a given topologic type of structure of data and for a fixed number of
elements to classify, consider the following steps given:

1. Generate a random dendrogram; the associated ultrametric matrix, M0,
will be taken as the (initial) dissimilarity matrix.

2. For each A.H.C. criterion to study: obtain a hierarchy H0, and com-
pare M0 with H0 (comparison C1).

3. Disturb matrix M0 by settling a disturbance coefficient; this creates the
dissimilarity matrix Mi. Compare M0 with Mi (comparison C2).

4. For each A.H.C. criterion to study: obtain a hierarchy Hi, compare Mi

with Hi (comparison C3) and compare H0 with Hi (comparison C4).
5. Repeat the steps 3. and 4. a great number of times for the same distur-

bance coefficient.
6. Repeat the steps 3. to 5. for different values of the disturbance coefficient.

The several comparisons, considered according to section 3.1, try to:

• C1: Analyse a criterion behaviour when applied to ultrametric data.
• C2: Control the impact of the disturbance over the associated preorde-

nations.
• C3: Analyse the ability of a criterion to recover a structure after distur-

bance.
• C4: Evaluate if the hierarchical structure maintained, and try to under-

stand what disturbance value is implied in the damaging of the structure.

4 An application

The presented methodology comprehends a diversity of choices to be made
in each simulation. We now refer the several options we made in this spe-
cific application. The number of elements to classify equal 10. There were
considered three types of data structures to generate: predominantly chain
type trees, predominantly balanced trees (obtained with the Shape Parame-
ter method), and also trees obtained with Uniform method. Note that both
chain and balanced types are very important in classification, either for their
association with well known classical methods as for their extreme characte-
ristics. Concerning the A.H.C. methods, we tried to evaluate the performance
of a set of methods belonging to classical and probabilistic approaches (the
latter is known as VL approach– Validity of the Link due to I.C. Lerman)
in which the aggregation criterion of clusters is based on a statistic of cen-
tral tendency [Sousa, 2000]. The criteria here considered are: Single Linkage
(SL), Complete Linkage (CL), Mean Linkage (HMEAN) and Median Linkage
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(HMED) (classical approach), Validity of the Mean (AVM [Nicolau, 1980]),
Validity of the Median (HVMED) and a method of the VL parametric fami-
ly AVB proposed by [Bacelar-Nicolau, 1985] (VL approach). The disturbance
was carried out adding to each element of M0 a quantity δ(2x − 1), where x

comes from a uniform random variable over ]0, 1[ and δ is the disturbance fac-
tor. Values for δ were considered between 0.05 and 0.5. For the comparison
of structures it was used the TGK coefficient given by (4).

We now present some conclusions that illustrate how this methodology
can give us information.

From C1 comparison we can say that classical methods recover completely
the structure of an ultrametric matrix, while VL methods produce hierarchies
that can be slightly different. When the dissimilarity matrix differs from the
ultrametric structure (C3 comparison), the methods that give higher values
for TGK are HMEAN and HMED, followed by SL. The CL behaviour is
similar to SL’s for δ 6 0.25, but is different for greater values of δ. In
general, HVMED is the VL criterion that works better, but when the data
structure approaches chain type we see that AVM and HVMED are equally
effective. For balanced structures, AVB seems to be the best method. C4

comparison allows us to conclude that the stability of the structures produced
by some methods strongly depends on the type of data structure. Usually
the most stable methods are HMEAN, SL and HMED, and the less stable
is CL, followed by AVM. AVM is very stable when trees of chain type are
considered, and for balanced trees AVB method has better TGK values. The
VL method less influenced by structure is HVMED.

The results obtained let us quantify some known characteristics related
to the application of these criteria to real data. In fact, AVM and HVMED
methods tend to produce trees of chain type, while AVB tends to produce
trees with clusters of similar number of elements (balanced).

5 Conclusion and perspectives

The methodology here presented claims out to be a contribution for the
A.H.C. validation subject, and it can be quite general. What was done for
hierarchic clustering can easily be adjusted for partitions, too. During expe-
riences, it was necessary to make some choices in specifing some parameters’
values. This feature is considered very important. The number of possible
combinations of choices is enormous, and the timing of simulation and anal-
yse of results increases dramatically. However, a few new wise options should
be tried out, particularly the application to real data.

The validity methodology here presented allows us to say that the beha-
viour of a clustering method strongly depends on the kind and intensity of
the data structure.

The methods of central tendency of classical approach seem to have some
common properties that lead to good results. The VL methods, on account
of its own approach, can lead to a good performance in particular cases.
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