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Abstract. One important topic in unsupervised classification is the objective as-
sessment of the validity of the clusters found by a clustering algorithm. The deter-
mination of the ”best” number of ”natural” clusters has often been presented as
the central problem of cluster validation. In this paper we investigate the problem
of the determination of the number of clusters for symbolic objects described by
interval, multi-valued and modal variables. We consider five classical methods for
the determination of the number of clusters and two hypothesis tests based on the
Poisson point process, and we show how these methods can be extended to symbolic
data. We present applications of these symbolic methods to real data sets.
Keywords: Validation, Number of clusters, Poisson process, Symbolic data.

1 Introduction

The aim of cluster analysis is to identify a structure within a data set. When
hierarchical algorithms are used, an important problem is then to choose one
solution in the nested sequence of partitions of the hierarchy. On the other
hand, optimization methods for cluster analysis usually require the a priori
specification of the number of classes. So most clustering procedures demand
the user to fix the number of clusters, or to determine it in the final solution.

Some studies have been proposed to compare procedures for the determi-
nation of the number of clusters. For example, Milligan and Cooper [Milligan
and Cooper, 1985] conducted a Monte Carlo evaluation of thirty indices for
determining the number of clusters. [Hardy, 1996] compared three meth-
ods based on the Hypervolumes clustering criterion with four other methods
available in the Clustan software. [Gordon, 1996] modified the five stopping
rules whose performance was best in the Milligan and Cooper study in order
to detect when several different, widely-separated values of c, the number
of clusters, would be appropriate, that is, when a structure is detectable at
several different scales.

In this paper we consider two hypothesis tests for the number of clusters
based on the Hypervolumes clustering criterion: the Hypervolumes test and
the Gap test. These statistical methods are based on the assumption that
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the points we observe are generated by a homogeneous Poisson process [Karr,
1991] in k disjoint convex sets. We consider also the five best stopping rules
for the number of clusters analysed by [Milligan and Cooper, 1985]. We
show how these methods can be extended in order to be applied to symbolic
objects described by interval, multi-valued and modal variables [Bock and
Diday, 2000].

2 The clustering problem

The clustering problem we are interested in is the following.
E = {x1, x2, ..., xn} is a set of objects. On each of the n objects we measure
the value of p variables Y1, Y2, ..., Yp. The objective is to find a ”natural”
partition P = {C1, C2, ..., Ck} of the set E into k clusters.

3 Statistical models based on the Poisson process

3.1 The Hypervolumes clustering method

The Hypervolumes clustering method [Hardy and Rasson, 1982] assumes that
the n p-dimensional observation points x1, x2, ..., xn are generated by a
homogeneous Poisson process in a set D included in the Euclidean space
Rp. The set D is supposed to be the union of k disjoint convex domains
D1, D2, ..., Dk. We denote by Ci ⊂ {x1, x2, .., xn} the subset of the
points belonging to Di (1 ≤ i ≤ k). The Hypervolumes clustering criterion
is deduced from that statistical model, using maximum likelihood estimation.
It is defined by

W (P, k) :=

k
∑

i = 1

m(H(Ci))

where H(Ci) is the convex hull of the points belonging to Ci and m(H(Ci)) is
the multidimensional Lebesgue measure of that convex hull. That clustering
criterion has to be minimised over the set of all the partitions of the observed
sample into k clusters.

3.2 The generalised Hypervolumes clustering method

The generalised Hypervolumes clustering method [Rasson and Granville,
1996] assumes that the n p-dimensional points x1, x2, ..., xn are gener-
ated by a nonhomogeneous Poisson process in a set D. D is the union of
k disjoint convex domains D1, D2, ..., Dk. The generalised Hypervolumes
clustering criterion is deduced from that statistical model, using maximum
likelihood estimation. It is defined by
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W (P, k) :=

k
∑

i = 1

∫

H(Ci)

q(x)m(dx)

where q(x) is the intensity of the nonhomogeneous Poisson process.

4 Statistical tests for the number of clusters based on

the Poisson point process

4.1 The Hypervolumes test

The statistical model based on the Poisson process allows us to define a
likelihood ratio test for the number of clusters [Hardy, 1996]. Let us denote
by C = {C1, C2, ..., C`} the optimal partition of the sample into ` clusters
and B = {B1, B2, ..., B`−1} the optimal partition into `− 1 clusters. We test
the hypothesis H0: t = ` against the alternative HA: t = ` − 1, where t

represents the number of ”natural” clusters (` ≥ 2). The test statistics is
defined by

S(x) :=
W (P, `)

W (P, ` − 1)
.

Unfortunately the sampling distribution of the statistics S is not known.
But S(x) belongs to [0, 1[. Consequently, for practical purposes, we can use
the following decision rule: reject H0 if S is close to 1. We apply the test in
a sequential way: if `0 is the smallest value of ` ≥ 2 for which we reject H0,

we choose `0 − 1 as the best number of ”natural” clusters.

4.2 The Gap test

The Gap test [Kubushishi, 1996] [Rasson and Kubushishi, 1994] is based on
the same statistical model (homogeneous Poisson process). We test H0 :
the n = n1 + n2 observed points are a realisation of a Poisson process in D

against HA: n1 points are a realisation of a homogeneous Poisson process in
D1 and n2 points in D2 where D1∩D2 = ∅. The sets D, D1, D2 are unknown.
Let us denote by C (respectively C1 , C2) the set of points belonging to D

(respectively D1, D2). The test statistics is given by

Q(x) =

(

1 −
m(4)

m(H(C))

)n

where 4 = H(C)\ (H(C1)∪H(C2)) is the ”gap space” between the clusters.
The test statistics is the Lebesgue measure of the gap space between the
clusters.

The decision rule is the following [Kubushishi, 1996]. We reject H0, at
level α, if (asymptotic distribution)
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nm(4)

m(H(C))
− log n − (p − 1) log log n ≥ − log(− log(1 − α)).

5 Other methods for the determination of the number

of clusters

We consider the best methods from the [Milligan and Cooper, 1985] study:
the Calinski and Harabasz index [Calinski and Harabasz, 1974], the Duda
and Hart rule [Duda and Hart, 1973], the C index [Hubert and Levin, 1976],
the γ index [Baker and Hubert, 1975] and the Beale test [Beale, 1969]. The
Calinski and Harabasz, Duda and Hart, and Beale indices use various forms
of sum of squares within and between clusters. The Duda and Hart rule and
the Beale test are statistical hypothesis tests on the number of clusters.

6 Symbolic data analysis

Symbolic data analysis [Bock and Diday, 2000] is concerned with the ex-
tension of classical data analysis and statistical methods to complex data
called symbolic data. We will consider sets of objects described by interval,
multi-valued and modal variables.

6.1 Interval, multi-valued and modal variables

This paper is based on the following definitions [Bock and Diday, 2000].
A variable Y is termed set-valued with the domain Y, if for all xk ∈ E,

Y : E → B
xk 7−→ Y (xk)

where B = P(Y) = {U 6= ∅ | U ⊆ Y}.
A set-valued variable is called multi-valued if its values Y (xk) are all finite

subsets of the underlying domain Y; so |Y (xk)| < ∞, for all elements xk ∈ E.
A set-valued variable Y is called categorical multi-valued if it has a

finite range Y of categories and quantitative multi-valued if the values
Y (xk) are finite sets of real numbers.

A modal variable Y on a set E = {x1, ..., xn} with domain Y is a mapping

Y (xk) = (U(xk), πk), for all xk ∈ E

where πk is, for example, a frequency distribution on the domain Y of possible
observation values and U(xk) ⊆ Y is the support of πk in the domain Y.

Y is an interval variable if for all xk ∈ E,

Y : E → B : xk 7→ Y (xk) = [αk, βk] ⊂ R

where B is the set of all closed bounded interval of R.
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7 Symbolic clustering procedures

In order to generate partitions, we consider several symbolic clustering meth-
ods. SHICLUST [Hardy, 2004] is a module containing the symbolic extensions
of four well-known hierarchical clustering methods: the single link, complete
link, centroid and Ward methods. SCLUST [Verde et al., 2000] is a partition-
ing clustering method; it is a symbolic extension of the well-known Dynamic
clouds clustering method [Celeux et al., 1989]. DIV [Chavent, 1997] is a sym-
bolic hierarchic monothetic divisive clustering procedure based on the exten-
sion of the within class sum-of-squares criterion. SCLASS [Pirçon, 2004] is
a symbolic hierarchic monothetic divisive method based on the generalised
Hypervolumes clustering criterion. The first part of HIPYR [Brito, 2000] is
also a module including four hierarchical symbolic clustering methods.

8 Determination of the number of clusters

8.1 Methods based on a dissimilarity matrix

In order to apply the five best methods for the determination of the number
of clusters from the Milligan and Cooper [Milligan and Cooper, 1985] study,
it is necessary to define a dissimilarity matrix for symbolic objects described
by interval, multi-valued and modal variables.

Let us consider the case of n objects described by p interval variables

Yj : E → Bj : xi 7→ Yj(xi) = xij = [αij , βij ].

We first define p dissimilarity indices δ1, ..., δp on the sets Bj . Let
xuj = [αuj , βuj ] and xvj = [αvj , βvj ]. We consider three distances for in-
terval variables

The Haussdorff distance:

δj (xuj , xvj) = max{ | αuj − αvj |, | βuj − βvj | }

The L1 distance:

δj (xuj , xvj) = | αuj − αvj | + | βuj − βvj |

The L2 distance:

δj (xuj , xvj) = (αuj − αvj)
2 + (βuj − βvj)

2.

We combine the p dissimilarity indices δ1, ..., δp in order to obtain a global
dissimilarity measure on E.

d : E × E −→ R+ : (xu, xv) 7−→ d(xu, xv) =

( p
∑

j=1

δ2
j (xuj , xvj)

)1/2

.
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For multi-valued and modal variables, we define suitable L1 and L2 dis-
tances and we use also the de Carvalho distance [Hardy, 2004].

Concerning the four hierarchical procedures included in SHICLUST, the
five indices for the determination of the number of clusters are computed
at each level of the hierarchies. For SCLUST, we select the best partition
into ` clusters, for each value of ` (` = 1, · · · , K) (K is a reasonably large
integer fixed by the user) and we compute the indices available for nonhierar-
chical classification. The analysis of theses indices should provide the ”best”
number of clusters.

8.2 Tests based on the Poisson point processes

The Hypervolumes test and the Gap test are now available only for classical
quantitative and for interval data. These tests are not based on the existence
of a dissimilarity matrix, but only on the positions of the points. For interval
data, we use the following modelisation. We represent an interval by two
numbers: its middle and its lenght. So each interval can be represented
by a point in a two-dimensional space, and an object by a point in a 2p-
dimensional space. We first determine the best number of clusters for each
interval variable. A synthesis is then made in order to precise the actual
structure of the set of symbolic data.

9 Examples

9.1 Merovingian buckles - VI-VIII a.c. Century

The set of symbolic data is constituted by 58 buckles described by six sym-
bolic multi-valued variables. These variables and the corresponding cat-
egories are presented in Table 1. The complete data set is available at
http://www-rocq.inria.fr/sodas/WP6/data/data.html.

Variables Categories

Fixation iron nail; bronze bump; none

Damascening bichromate; predominant veneer; dominant inlaid; silver monochrome

Contours undulations; repeating motives; geometric frieze

Background silver plate, hatching; geometric frame

Inlaying filiform; hatching banner; dotted banner; wide ribbon

Plate arabesque; large size; squared back; animal pictures; plait; circular

Table 1. Merovingian buckles: six categorical multi-valued variables

The 58 buckles have been examined by archeologists. They identified
two natural clusters. SCLUST and the four hierarchical clustering methods
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included in SHICLUST have been applied to that data set in order to generate
partitions. The true structure has been detected by most of the stopping
rules.

9.2 e-Fashion stores

That data set describes the sales in a group of stores (items of clothing and
accessories), belonging to six different countries. These sales concern the
years 1999, 2000 and 2001. The 13 objects are the stores (Paris 6th, Lyon,
Rome, Barcelona, Toulouse, Aix-Marseille, Madrid, Berlin, Milan, Brussels,
Paris 15th, Paris 8th, London). Eight modal variables are recorded on each
of the 13 objects, describing the items sold in these stores. For example,
the variable ”family product” has 13 categories (dress, sweater, T-shirt, ...).
The proportion of sales in each store is associated with all these categories.
The variable ”month” describes the proportion of sales for each month of the
year.

9.3 Fats and oils

The data set contains eight fats and oils described by four quantitative fea-
tures of interval type: specific gravity, freezing point, iodine value and saponi-
fication [Ichino and Yaguchi, 1994] [Gowda and Diday, 1994].
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