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Abstract. Quality in data mining critically depends on the preparation and on
the quality of processed data sets. Indeed data mining processes and applications
require various forms of data preparation (and repair) with several data format-
ting and cleaning techniques, because the data input to the mining algorithms is
assumed to conform to nice data distributions, containing no missing, inconsistent
or incorrect values. This leaves a large gap between the available dirty data and
the available machinery to process and analyze the data for discovering knowledge.
This paper presents a theoretical probabilistic framework for modeling the cost of
low-quality data on discovered association rules.
Keywords: Data Quality, Quality of Discovered Association Rules, Minimal Cost
Statistical Model.

1 Introduction

In an error-free database or datawarehouse system with perfectly clean data,
knowledge discovery techniques (such as clustering, mining association rules
or visualization) can be relevantly used from a decisional perspective to au-
tomatically derive new knowledge, new concepts, or knowledge patterns from
numerical data. Unfortunately, most of the time, these data are neither rigor-
ously chosen from different heterogeneous sources nor carefully controled for
quality. Under the general acronym ETL, the Extraction-Transformation-
Loading activities cover the most prominent tasks of data preparation be-
fore the warehousing and mining processes. They include [Vassiliadis et al.,
2003]: i) the identification of relevant information at the source side, ii) the
extraction of this information, iii) the transformation and integration of the
information coming from multiple sources into a common format and, iv)
the cleaning and correction of the integrated data set. Data preparation and
cleaning processes are complex, costly and critical despite the specialized
ETL tools mainly dedicated to relational data available in the market [ETI,
2005], [MS, 2005], [DataMirror, 2005], [ArdentSoftware, 2005]. And the area
raised lot of interest with research results [Dasu and Johnson, 2003], [Rahm
and Do, 2000], [Winkler, 2003], [Vassiliadis et al., 2003] and several academic
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tools (Telcordia [Caruso et al., 2000], AJAX [Galhardas et al., 2001], Pot-
ter’s Wheel [Raman and Hellerstein, 2001], Arktos [Vassiliadis et al., 2000],
IntelliClean [Low et al., 2001], Tailor [Elfeky et al., 2002]).

In the presence of inconsistencies, errors or missing values in the data,
it is nevertheless important to estimate the risk of discovering low-quality
knowledge by mining low-quality data.

In this paper, our contribution is to present a probabilistic decision model
that estimates the cost of discovering low-quality association rules by mining
potentially polluted data.

The rest of the paper is organized as follows. Section 2 briefly provides
some background information on association rules, data quality and other
decision models mainly used in record linkage and data cleaning. Section
3 introduces our decision model and the notation that is used throughout
this paper. Section 4 provides concluding remarks and guidelines for future
extensions of this work.

2 Background

Among traditional descriptive data mining techniques, association rules dis-
covery identifies intra-transaction patterns in a database and describes how
much the presence of a set of attributes in a database’s record (or transaction)
implicates the presence of other distinct set of attributes in the same record
(resp. transaction). The quality of association rules is commonly evaluated
by looking at their support and confidence. The support of a rule measures
the occurence frequency of the pattern in the rule while the confidence is the
measure of the strength of implication. Association rule mining is commonly
stated as follows: let I = {i1, . . . , in} be a set of items and T be a set of data
cases. Each data case consists of a subset of items in I. An association rule
is an implication of the form LHS −→ RHS, where LHS ⊂ I, RHS ⊂ I,
and LHS ∩ RHS = ∅.

The support s of the rule LHS −→ RHS is measured by the fraction of
transactions that contain both LHS and RHS. More formally,

s =
number of transactions containing LHS ∪ RHS

number of transactions
(1)

The confidence c of the rule LHS −→ RHS states that c% of transactions
that contain LHS also contain RHS and it’s the conditional probability of
seeing RHS, given that we have seen LHS. More formally,

c =
number of transactions containing LHS ∪ RHS

number of transactions containing LHS
(2)

The problem of mining association rules is to generate all association rules
that have support and confidence greater than the user-specified minimum
support and confidence thresholds. Besides support and confidence, many
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other measures for knowledge evaluation have been proposed in the literature
with the purpose of supplying subsidies to the user in the understanding
and use of the acquired knowledge [Tan et al., 2002], [Lavrac et al., 1999].
Rules may have intrinsic properties (noise tolerance, asymetry, dataset size or
dimensionality sensitivity, etc.) or collective properties when considering a set
of rules (redundancy, transitivity, consistency, etc.). But, the main drawback
of the objective and subjective interestingness measures is to neglect the
initial quality of processed data. Data quality is a multidimensional, complex
and morphing concept [Dasu and Johnson, 2003]. Table 1 presents some of
the dimensions of data quality among more than 200 dimensions that have
been proposed in the literature [Wang et al., 1995], [Huang et al., 1999],
[Redman, 1996].

Dimension Definition

Availability Time the data is accessible based on technical equipment and statistics

Freshness How up-to-date the information is

Accessibility Estimation of waiting time for information retrieval processing

Security Estimation of the number of corrupted data

Coverage Estimation of the number of data for a specific information domain

Accuracy Estimation of the number of data free-of-error

Completeness Estimation of the number of missing data or null values

Credibility User grade based on the reputation of data sources

Table 1. Some Data Quality Dimensions proposed by [Naumann, 2002]

As an illustrative example, one might legitimately wonder whether a so-
called “interesting” rule LHS −→ RHS is meaningful when 30% of the data
describing the items of LHS are not up-to-date, 17% of RHS’s data are
not accurate, 14% of LHS’s data come from sources that have bad credi-
bility. In this paper, we consider that identifying interesting rules should
also take into account the quality of underlying data used by the rule min-
ing process: despite high interestingness measures, there are interesting rules
discovered from dirty data, others from clean data, but they don’t have the
same added-value. This can be seen as a classification problem where the
goal is to correctly assign cases (measurements, observations, etc.) to one
of a finite number of classes. Most of the currently available algorithms for
classification are designed to minimize error rate, i.e., the number of incor-
rect predictions made. This implicity assumes that all errors are equally
costly. In our context, there are many different types of cost involved on the
selection of discovered rules. For instance, discovering interesting rules from
inaccurate data may not have the same cost (or impact) than discovering
rules from out-of-date data. In this study, we consider only the cost of mis-
classification error which is related to assigning different weights to different
misclassification errors. Misclassification costs may be generally described by
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an arbitrary cost matrix C, with elements of the form cij , meaning the cost
of predicting that an example belongs to the class i when in fact it belongs
to j. The Bayesian decision approach is based on the assumption that the
decision problem is posed in probabilistic terms, and that all the relevant
probability values are known. In this paper, we propose a constant error
cost Bayesian model which means that the cost of a certain type of error
may be constant. In some cases, we are uncertain about the actual costs.
To account for this uncertainty, we can use a probability distribution over a
range of possible costs. To keep the presentation simple, we do not consider
probability distributions over costs in this study. Our work is correlated to
several works in data cleaning and Table 2 presents several decision models
proposed in the literature mainly for record linkage. Our model is similar to
the one proposed by Verykios et al. [Verykios et al., 2003] as it minimizes the
cost of making a decision rather than the probability of error in a decision of
record matching. Our contribution is to adapt this model for association rule
mining and for minimizing the cost of the rule selection in presence of low-
quality data and of a misclassification region that can occur when erroneous
data can be classified correct because they’re in the range of correct values
and correct data can be classified erroneous because they’re in the range of
erroneous values or outliers.

Model (Tool) Authors Type of Model

Error-based Model [Fellegi and Sunter, 1969] Probabilistic

EM-based Method [Dempster et al., 1977] Probabilistic

Bayesian Cost-based Model [Verykios et al., 2003] Probabilistic

Induction [Bilenko and Mooney, 2003] Probabilistic

Clustering for Record Linkage (Tailor) [Elfeky et al., 2002] Probabilistic

1-1 matching [Winkler, 2004] Probabilistic

Bridging File [Winkler, 2003] Probabilistic

sorted-NN method [Hernandez and Stolfo, 1995] Empirical

XML Object Matching [Weis and Naumann, 2004] Empirical

Hierarchical Structure (Delphi) [Ananthakrishna et al., 2002] Empirical

Matching Prediction based on clues [Buechi et al., 2003] Knowledge-based

Functional Dependencies Inference [Lim et al., 1993] Knowledge-based

Transformation functions (Active Atlas) [Tejadaa et al., 2001] Knowledge-based

Rules and sorted-NN (Intelliclean) [Low et al., 2001] Knowledge-based

Table 2. Decision Models for Record Linkage and Duplicate Identification

3 Cost-based Probabilistic Model

Let j (j = 1, 2, . . . , k) be the dimensions of data quality (e.g., data freshness,
credibility, accuracy, completeness, etc.). Let xij ∈ [minij, maxij ] be a scor-
ing value for the quality dimension j. The vector, that keeps the values of all
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quality dimensions for each data item (normalized in [0, 1], is called quality
vector q. The set of all possible vectors, is called quality space Q. Despite
good confidence, support or other interestingness measures, selecting an as-
sociation rule is a decision that designates the rule as legitimately interesting
(noted D1), potentially interesting (D2), or not interesting (D3) based on the
information contained in the quality vectors of the data item sets composing
the LHS and RHS parts of the rule.

3.1 Definition and Notations

Consider the item x ∈ LHS ∪ RHS of a given rule, we use PCE(x) to de-
note the probability that the item x will be classified as “erroneous” (or
“polluted”) wrt to one or more quality dimensions relevant to the applica-
tion, and PCC(x) denotes the probability that the item x will be classified as
“correct” (i.e., in the range of acceptable values for each pre-selected qual-
ity dimensions). Also, PAE(x) represents the probability that the item x is
actually erroneous (AE), and PAC(x) represents the probability that it is ac-
tually correct (AC). Intuitively, the item x can be an attribute whose quality
dimensions are measured and aggregated from all the existing values of the
attribute domain.

For an arbitrary average quality vector q̄ ∈ Q on all data items in LHS∪
RHS of the rule, we denote by P (q̄ ∈ Q|CC) or fCC(q̄) the conditional
probability of the pattern q̄ that corresponds to the average of quality vectors
of the items that are classified as correct (CC). Similarly, we denote by P (q̄ ∈
Q|CE) or fCE(q̄) the conditional probability of the pattern q̄ corresponds to
the average of quality vectors of the items that are classified erroneous (CE).
We denote by d the decision of the predicted class of the rule (i.e., legitimately
interesting D1, potentially interesting D2, or not interesting D3), and by s

the actual status of quality of the item sets upon which the rule has been
computed. Let us also denote by P (d = Di, s = j) and P (d = Di|s = j)
correspondingly, the joint and the conditional probability that the decision
Di is taken, when the actual status of data quality (CC, CE, AE, AC) is j.
We also denote by cij the cost of making a decision Di for classifying a rule
with actual data quality status j of the items sets composing the parts of the
rule.

3.2 Cost-based Bayesian Decision Model

Based on the example in Table 3 where we can see how the cost of different
decisions could affect the result of selection among interesting rules, we need
to minimize the mean cost c̄ that results from making such a decision.
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Cost Decision for Rule Selection Actual Data Quality Status

c10 D1 CC

c11 D1 CE

c12 D1 AE

c13 D1 AC

c20 D2 CC

c21 D2 CE

c22 D2 AE

c23 D2 AC

c30 D3 CC

c31 D3 CE

c32 D3 AE

c33 D3 AC

Table 3. Costs of various decisions for classifying interesting rules

The mean cost is written as follows:

c̄ = c10.P (d = D1, s = CC) + c20.P (d = D2, s = CC) + c30.P (d = D3, s = CC)

(3)

+ c11.P (d = D1, s = CE) + c21.P (d = D2, s = CE) + c31.P (d = D3, s = CE)
(4)

+ c12.P (d = D1, s = AE) + c22.P (d = D2, s = AE) + c32.P (d = D3, s = AE)
(5)

+ c13.P (d = D1, s = AC) + c23.P (d = D2, s = AC) + c33.P (d = D3, s = AC)
(6)

From the Bayes theorem, the following is true:

P (d = Di, s = j) = P (d = Di|s = j).P (s = j) (7)

where i = 1, 2, 3 and j = CC, CE, AE, AC. Let us also assume that q̄ is the
average quality vector drawn randomly from the space of all quality vectors
of items sets of the rule. The following equality holds for the conditional
probability P (d = Di|s = j):

P (d = Di|s = j) =
∑

q̄∈Di

fj(q̄) (8)

where i = 1, 2, 3 and j = CC, CE, AE, AC. fj is the probability density of
the quality vectors when the actual quality status is j. We also denote the
a priori probability of CC or else P (s = CC) as π0, the a priori probability
of P (s = AC) = π0

AC , the a priori probability of P (s = AE) = π0

AE and
the a priori probability of P (s = CE) = 1 − π0 + π0

AE − π0

AC . Without
misclassification region P (s = CE) could be simplified as 1 − π0.
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The mean cost c̄ in Eq. 3 based on Eq. 7 is written as follows:

c̄ = c10.P (d = D1|s = CC).P (s = CC)
(9)

+ c20.P (d = D2|s = CC).P (s = CC) + c30.P (d = D3|s = CC).P (s = CC)
(10)

+ c11.P (d = D1|s = CE).P (s = CE)
(11)

+ c21.P (d = D2|s = CE).P (s = CE) + c31.P (d = D3|s = CE).P (s = CE)
(12)

+ c12.P (d = D1|s = AE).P (s = AE)
(13)

+ c22.P (d = D2|s = AE).P (s = AE) + c32.P (d = D3|s = AE).P (s = AE)
(14)

+ c13.P (d = D1|s = AC).P (s = AC)
(15)

+ c23.P (d = D2|s = AC).P (s = AC) + c33.P (d = D3|s = AC).P (s = AC)
(16)

(17)

and by using Eq. 8 and by dropping the dependent vector variable q̄, Eq. 9
becomes:

c̄ =
∑

q̄∈D1

[fCC .c10.π
0 + fCE.c11.(1 − π0 − π0

AC + π0

AE) (18)

+ fAE .c12.π
0

AE + fAC .c13.π
0

AC ] (19)

+
∑

q̄∈D2

[fCC .c20.π
0 + fCE.c21.(1 − π0 − π0

AC + π0

AE) (20)

+ fAE .c22.π
0

AE + fAC .c23.π
0

AC ] (21)

+
∑

q̄∈D3

[fCC .c30.π
0 + fCE.c31.(1 − π0 − π0

AC + π0

AE) (22)

+ fAE .c32.π
0

AE + fAC .c33.π
0

AC ] (23)

(24)

Every point q̄ in the decision space D, belongs either in partition D1, or in
D2 or D3 in such a way that its contribution to the mean cost is minimum.
This will lead to the optimal selection for the three sets of rules which we
denote by D0

1
, D0

2
, and D0

3
. Based on this observation, a point q̄ is assigned

to the three optimal areas as follows:
To D0

1
if:

fCC .c10.π
0 + fCE.c11.(1 − π0 − π0

AC + π0

AE) + fAE .c12.π
0

AE + fAC .c13.π
0

AC

≤ fCC .c30.π
0 + fCE.c31.(1− π0 − π0

AC + π0

AE) + fAE .c32.π
0

AE + fAC .c33.π
0

AC

and,
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fCC .c10.π
0 + fCE.c11.(1 − π0 − π0

AC + π0

AE) + fAE .c12.π
0

AE + fAC .c13.π
0

AC

≤ fCC .c20.π
0 + fCE .c21.(1− π0 − π0

AC + π0

AE)+ fAE .c22.π
0

AE + fAC .c23.π
0

AC .
To D0

2
if:

fCC .c20.π
0 + fCE.c21.(1 − π0 − π0

AC + π0

AE) + fAE .c22.π
0

AE + fAC .c23.π
0

AC

≤ fCC .c30.π
0 + fCE.c31.(1− π0 − π0

AC + π0

AE) + fAE .c32.π
0

AE + fAC .c33.π
0

AC

and,
fCC .c20.π

0 + fCE.c21.(1 − π0 − π0

AC + π0

AE) + fAE .c22.π
0

AE + fAC .c23.π
0

AC

≤ fCC .c10.π
0 + fCE .c11.(1− π0 − π0

AC + π0

AE)+ fAE .c11.π
0

AE + fAC .c13.π
0

AC .
To D0

3
if:

fCC .c30.π
0 + fCE.c31.(1 − π0 − π0

AC + π0

AE) + fAE .c32.π
0

AE + fAC .c33.π
0

AC

≤ fCC .c10.π
0 + fCE.c11.(1− π0 − π0

AC + π0

AE) + fAE .c12.π
0

AE + fAC .c13.π
0

AC

and,
fCC .c30.π

0 + fCE.c31.(1 − π0 − π0

AC + π0

AE) + fAE .c32.π
0

AE + fAC .c33.π
0

AC

≤ fCC .c20.π
0 + fCE .c21.(1− π0 − π0

AC + π0

AE)+ fAE .c22.π
0

AE + fAC .c23.π
0

AC .
For the sake of simplicity, let’s now consider the case of the absence of the
misclassification region (i.e., fAC , fAE are null and π0

AE = π0

AC = 0, we thus
can simplify the inequalities above:

D0

1
=

{

q̄ :
fCE

fCC

≤
π0

1 − π0
.
c30 − c10

c11 − c31

and,
fCE

fCC

≤
π0

1 − π0
.
c20 − c10

c11 − c21

}

(25)

D0

2
=

{

q̄ :
fCE

fCC

≥
π0

1 − π0
.
c20 − c10

c11 − c21

and,
fCE

fCC

≤
π0

1 − π0
.
c30 − c20

c21 − c31

}

(26)

D0

3
=

{

q̄ :
fCE

fCC

≥
π0

1 − π0
.
c30 − c10

c11 − c31

and,
fCE

fCC

≥
π0

1 − π0
.
c30 − c20

c21 − c31

}

(27)

These inequalities give rise to three different threshold values L, P and N

(respectively for legitimately, potentially and not interesting rules) in the de-
cision space that define concretely the decision regions based on the cost of
rule selection decision such as:

L =
π0

1 − π0
.
c30 − c10

c11 − c31

(28)

P =
π0

1 − π0
.
c20 − c10

c11 − c21

(29)

N =
π0

1 − π0
.
c30 − c10

c11 − c31

(30)
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3.3 Minimal and Maximal Quality of Association Rules for

Correctly Classified Data

For categorical quality dimensions, errors or pollutions (non-quality) in the
data sets (e.g., in LHS and RHS parts of the rules) might be measured using
contingency table approach where the item subsets with actual and estimated
quality for a selected sample of items. It is then possible to calculate the
proportion of data items that are correctly classified and estimated the quality
of the entire set based on inferential statistics. Another more sophisticated
approach can utilizes a random-stratified sampling method in which the same
number of samples is chosen from each item subsets. This has the advantage
that minor item subsets are not under-represented in the sample, which makes
it possible to calculate the average quality of individual item sets.

We present now a model in which the quality of a given rule r, PCC [Q̄r] is
defined as the probability of data items in the left and right-hand sides data
sets of the rule that are correctly classified. Given two data sets with average
qualities of PCC [Q̄LHS ] and PCC [Q̄RHS ], the quality of the rule PCC [Q̄r], is
given by:

PCC [Q̄r] = PCC [Q̄LHS ].PCC [Q̄RHS |Q̄LHS ] (31)

The conditional probability PCC [Q̄RHS |Q̄LHS ] is the probability of correctly
classified data items in LHS that are also correclty classified in RHS. The
equation can be expanded for situations involving more than two item sets
composing the rule.

From the preceding equations, the maximum and minimum quality of a
given association rule can be determined based on the average quality of the
several item sets Ii composing the rule.
Maximum quality is given by:

PCC [Q̄max
r ] = min

{

P [Q̄Ii
]} with i = 1, 2, . . . , n (32)

Minimum quality is given by:

PCC [Q̄min
r ] = max

{

0,
(

1 −
n

∑

i=1

PCE [Q̄Ii
]
)}

(33)

where PCE [Q̄Ii
] is the average quality probability of the items in the data

set Ii that are classified erroneous. These formulae lead to several general
conclusions about composite rule quality. Composite rule quality will at
the best be equal to the quality of the least quality data set. At worst
composite rule quality will be equal to one minus the sum of the probability
of misclassified items on each data set (or to zero if this value is negative).

4 Conclusion

This paper presents a prospective work on a theoretical probabilistic frame-
work for estimating the cost of low-quality data on discovered association
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rules. Our future plans regarding this work, are to study the optimality of
our decision model, to propose error estimation and to validate the model
with experiments on large data sets and discovered rules with several multi-
dimensional quality metrics.
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