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Abstract. We propose to use kernel methods and visualization tool for mining
interval data. When large datasets are aggregated into smaller data sizes we need
more complex data tables e.g interval type instead of standard ones. Our investiga-
tion aims at extending kernel methods to interval data analysis and using graphical
tools to explain the obtained results. The user deeply understands the models’ be-
haviour towards data. The numerical test results are obtained on real and artificial
datasets.
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1 Introduction

In recent years, real-world databases have increased rapidly, so that the need
to extract knowledge from very large databases is increasing. Data mining
can be defined as the particular pattern recognition task in the knowledge
discovery in databases process. It uses different algorithms for classification,
regression, clustering or association. The SVM algorithms proposed by [Vap-
nik, 1995] are a well-known class of algorithms using the idea of kernel sub-
stitution. They have shown practical relevance for classification, regression
and novelty detection tasks. The successful applications of SVM and other
kernel-based methods [Cristianini and Shawe-Taylor, 2000], [Shawe-Taylor
and Cristianini, 2004] have been reported for various fields.

While SVM and kernel-based methods are a powerful paradigm, they are
not favourable to deal with the challenge of large datasets. The learning task
is accomplished through the quadratic program possessing a global solution.
Therefore, the computational cost of an kernel approach is at least square
of the number of training data points and the memory requirement makes
them intractable. We propose to scale up their training tasks based on the
interval data concept [Bock and Diday, 1999]. We summarize the massive
datasets into the interval data. We adapt the kernel algorithms to deal with
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this data. We construct a new RBF kernel of interval data used for classifi-
cation, regression and novelty detection tasks. The numerical test results are
obtained on real and artificial datasets.

Although SVM gives good results, the interpretation of these results is
not so easy. The support vectors found by the algorithms provide limited
information. Most of the time, the user only obtains information regarding
support vectors and accuracy. He can not explain or understand why a
model constructed by SVM makes a good prediction. Understanding the
model obtained by the algorithm is as important as the accuracy because
the user has a good comprehension of the knowledge discovered and more
confidence in this knowledge. Our investigation aims at using visualization
methods to try to explain the SVM results. We use interactive graphical
decision tree algorithms and visualization techniques to give an insight into
classification, regression and novelty detection tasks with SVM. We illustrate
how to combine some strengths of different visualization methods to help the
user to improve the comprehensibility of SVM results.

This paper is organized as follows. In section 2, we present a new Gaus-
sian kernel construction to deal with interval data. In section 3, we briefly
introduce classification, regression and novelty detection of interval data with
SVM algorithms and other kernel-based methods. Section 4 presents a way
to explain SVM results by using interactive decision tree algorithms. We
propose to use an approach based on different visualization methods to try
to interpret SVM results in section 5 before the conclusion and future works
in section 6.

2 Non linear kernel function for interval data

Assume we have two data points x and y ∈ Rn. Here, we are interested
in RBF kernel function because it is general and efficient. The RBF kernel
formula in (1) of two data vectors x and y of continuous type is based on the
Euclidean distance between these vectors, dE(x, y) =‖ x − y ‖.

K〈x, y〉 = exp (−
‖ x − y ‖

2

γ
) (1)

For dealing with interval data, we only need to measure the distance between
two vectors of interval type, then we substitute this distance measure for the
Euclidean distance into RBF kernel formula. Thus the new RBF kernel can
deal with interval data. The dissimilarity measure between two data vectors
of interval type is the Hausdorff distance.
Suppose that we have two intervals represented by low and high values: I1 =
[low1, high1] and I2 = [low2, high2], the Hausdorff distance between two
intervals I1 and I2 is defined by (2):

dH(I1, I2) = max (|low1 − low2|, |high1 − high2|) (2)



Interval Data Mining with Kernel Methods and Visualization 347

Let us consider two data vectors u, v ∈ Ω having n dimensions of interval
type:

u = ([u1,low, u1,high], [u2,low, u2,high],. . ., [un,low, un,high])
v = ([v1,low, v1,high], [v2,low, v2,high],. . ., [vn,low, vn,high])

The Hausdorff distance between two vectors u and v is defined by (3):

dH(u, v) =

√

√

√

√

n
∑

i=1

max (|ui,low − vi,low |2, |ui,high − vi,high|2) (3)

By substituting the Hausdorff distance measure dH into RBF kernel formula,
we obtain a new RBF kernel for dealing with interval data. This modifica-
tion tremendously changes kernel algorithms for mining interval data. No
algorithmic changes are required from the habitual case of continuous data
other than the modification of the RBF kernel evaluation. All the benefits
of the original kernel methods are kept. The kernel-based learning algo-
rithms like Support Vector Machines (SVM [Vapnik, 1995]), Kernel Fisher’s
Discriminant Analysis (KFDA [Mika et al., 1999]), Kernel Principal Compo-
nent Analysis (KPCA [Schölkopf et al., 1998]), Kernel Partial Least Squares
(KPLS [Rosipal and Trejo, 2001]) can use the RBF function to build interval
data models in classification, regression and novelty detection.

3 Interval data analysis with kernel methods

3.1 Support vector machines

min (1/2)

m
∑

i=1

m
∑

j=1

yiyjαiαjK〈xi, xj〉 −

m
∑

i=1

αi

s.t.

m
∑

i=1

yiαi = 0 (4)

C ≥ αi ≥ 0

where C is a positive constant used to tune the margin and the error.

Let us consider a binary linear classification task with m data points in a n-
dimensional input x1, x2, . . . , xm having corresponding labels yi = ±1. SVM
classification algorithm aims to find the best separating surface as being
furthest from both classes. It is simultaneously to maximize the margin
between the support planes for each class and minimize the error. This can
be accomplished through the quadratic program (4).

From the αi obtained by the solution of (4), we can recover the separating
surface and the scalar b determined by the support vectors (for which αi > 0).
By changing the kernel function K as a linear inner product, a polynomial,
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a radial basis function or a sigmoid neural network, we can get different
classification model. The classification of a new data point x is based on:

sign(

]SV
∑

i=1

yiαiK〈x, xi〉 − b)

For one-class (novelty detection), the SVM algorithm is to find a hyper-
sphere with a minimal radius R and center c which contains most of the data.
And then novel test points lie outside the boundary of the hypersphere.

SVM can also be applied to regression problem by the introduction of an
alternative loss function. By using an ε-insensitive loss function proposed by
Vapnik, Support vector regression (SVR) aims to find a predictive function
f(x) that has at most ε deviation from the actual value yi.

These tasks can be also accomplished through the quadratic program.
[Bennett and Campbell, 2000] and [Cristianini and Shawe-Taylor, 2000] pro-
vide more details about SVM and others kernel-based learning methods.

We have added a new construction kernel code to the publicly available
toolkit, LibSVM (ref. http://www.csie.ntu.edu.tw/∼cjlin/libsvm). Thus,
the software program is able to deal with interval data in classification, re-
gression and novelty detection tasks. To apply the SVM algorithms to the
multi-class classification problem (more than 2 classes), LibSVM uses one-
against-one strategy. Assume that we have k classes, LibSVM construct
k*(k-1)/2 models. A model separates ith class against jth class. Then to
predict the class for a new data point, LibSVM just predicts with each
model and finds out which one separates the furthest into the positive re-
gion. We have used datasets from Statlog, the UCI Machine Learning Reposi-
tory (ref. http://www.ics.uci.edu/∼mlearn/MLRepository.html), Regression
Datasets (ref. http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html)
and Delve (ref. http://www.cs.toronto.edu/∼delve). By using K-means al-
gorithm [MacQueen, 1967], the large datasets are aggregated into smaller
ones. A data point in interval datasets corresponds to a cluster, the low and
high values of an interval are computed by the cluster data points. Some
other methods for creating interval data can be found in [Bock and Diday,
1999]. The interval version of datasets is shown in table 1 and 2. We report
the cross validation accuracy on classification results and mean squared error
on regression results presented in table 1.

The results on novelty detection task are presented in table 2 with the
number of outliers and significant outliers (furthest from other data points in
the dataset). To the best of our knowledge, there is no other available algo-
rithm being able to deal with interval data in both non linear classification,
regression and novelty detection tasks. There is not experimental results on
interval data mining provided by the others algorithms. Therefore, we only
report results obtained by our approach. It is difficult to compare with the
others ones.
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Datasets Points Dims Protocol Accuracy Mean squared error

Wave(3 classes) 30 21 leave-1-out 80.00% 0.462389

Iris(3 classes) 30 4 leave-1-out 100.00% 0.078389

Wine(3 classes) 36 13 leave-1-out 97.22% 0.075182

Pima(2 classes) 77 8 leave-1-out 79.22% 0.212736

Segment(7 classes) 319 19 10-fold 91.22% 1.696050

Shuttle(7 classes) 594 9 10-fold 94.78% 1.096640

Table 1. SVM classification and regression results

Datasets Points Dims Nb. oulliers Significant outliers

Shuttle 594 9 31 9

Bank8FM 450 8 12 6

Table 2. One-class SVM results

3.2 Other kernel-based methods

Many multivariate statics algorithms based on generalized eigenproblems
can be also kernelized [Shawe-Taylor and Cristianini, 2004], e.g Kernel
Fisher’s Discriminant Analysis (KFDA), Kernel Principal Component Anal-
ysis (KPCA), Kernel Partial Least Squares (KPLS), etc. These kernel-based
methods can also use the RBF function to build interval data models. We use
KPCA and KFDA to visualize datasets in the embedding space where the
user can intuitively see the separating boundary between the classes based
on the human pattern recognition capabilities. The eigenvectors of the data

Fig. 1. Visualization of Kernel Principal Component Analysis (left) and Kernel
Fisher’s Discriminant Analysis (right) on the Segment dataset.

can be used to detect directions of maximum variance, and thus, linear PCA
is to project data onto principal components by solving a eigenproblem. By
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using a kernel function instead of the linear inner product in the formula,
we obtain non linear PCA (KPCA). An example of the visualization of the
Segment interval dataset (the class 7 against all) with KPCA using the RBF
kernel function is shown in figure 1 (left).

In linear FDA, we consider projecting all the multi-dimensional data onto
a generic direction w, and then separately observing the mean and the vari-
ance of the projections of the two classes. By substituting the kernel function
for a linear inner product into the linear FDA formula, we have non lin-
ear FDA (KFDA). An example of the visualization of the Segment interval
dataset (the class 7 against all) with KFDA using the RBF kernel function
is shown in figure 1 (right).

And thus, the separating boundary between two classes is clearly repre-
sented in the embedding space.

4 Inductive rules extraction for explaining SVM

results

Although SVM algorithms have shown to build accurate models, their results
are very difficult to understand. Most of the time, the user only obtains in-
formation regarding the support vectors being used as ”black box” to classify
the data with a good accuracy. The user does not know how SVM models
can work. For many data mining applications, understanding the model ob-
tained by the algorithm is as important as the accuracy.
We propose here to use interactive decision tree algorithms [Poulet, 2003]
to try to explain the SVM results. The SVM performance in classification
task is deeply understood in the way of IF-THEN rules extracted intuitively
from the graphical representation of the decision trees that can be easily
interpreted by humans.

Figure 2 is an example of the inductive rule extraction explaining support
vector classification results on the Segment interval dataset. The SVM algo-
rithm using the RBF kernel function classifies the class 7 (considered as +1
class) against all other classes (considered as -1 class) with 100.00 % accuracy.
CIAD uses 2D scatter plot matrices [Carr et al., 1987] for visualizing interval
data [Poulet, 2003]: the data points are displayed in all possible pair-wise
combinations of dimensions in 2D scatter plot matrices. For n-dimensional
data, this method visualizes n(n-1)/2 matrices. A data point in two inter-
val dimensions is represented by a two dimensions primitive cross and color
corresponds to the class. The user interactively chooses the best separating
split (parallel to an axis) to interactively construct the decision tree (based
on the human pattern recognition capabilities) or with the help of automatic
algorithms. The obtained decision tree having 4 leaves (corresponding to 4
rules) can explain the SVM model. One rule is created for each path from
the root to a leaf, each dimension value along a path forms a conjunction and
the leaf node holds the class prediction. And thus, the non linear SVM is
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Input: non label dataset SP et a SVM classification function f

Output: inductive rule set IND-RULE explaining the SVM model

1. Classify non label dataset SP using SVM classification function f, we obtain
label set L assigned to SP :

{SP, L} = SVM classify(SP, f )

2. Interactively constructing decision tree model DT on dataset {SP, L} using
visual data mining decision tree algorithms, e.g CIAD [Poulet, 2003].

3. User extracts inductive rules IND-RULE from graphical representation of de-
cision tree model DT :

IND-RULE = HumanExtract(graphical DT )

Table 3. Inductive rules extraction from SVM models

interpreted in the way of the 4 inductive rules (IF-THEN) that will be easy
to understand.

Fig. 2. Visualization of the decision tree explaining the SVM result on the Segment
dataset.
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5 Visualization tool for explaining SVM results

We have studied some ways to try to explain SVM results by using the
graphical representation of high dimensional data. The information visual-
ization methods guide the user towards the most appropriate visualizations
for viewing mining results (post-processing step). There are many possibil-
ities to visualize data by using different visualization methods, but all of
them have some strengths and some weaknesses. We use the linking tech-
nique to combine different visualization methods to overcome the single one.
The same information is displayed in different views with different visual-
ization techniques providing useful information to the user. The interactive
brushing technique allows the user to focus on a region (brush) in the data
displayed to highlight groups of data points. And thus, the linked multiple
views provide more information than the single one. We use the interactive
brushing and linking techniques and the different visualization methods to
try to explain SVM results. For classification tasks with SVM algorithms,

Fig. 3. Visualization of the classification result on the Segment dataset.

understanding the margin (furthest distance between +1 class and -1 class)
is one of the most important key of the support vector classification. For
this, it is necessary to see the points near the separating boundary between
the two classes.

For achieving this goal, we propose to use the data distribution accord-
ing to the distance to the separating surface. While the classification task is
processed (based on the support vectors), we also compute the data distri-
bution according to the distance to the separating surface. For each class,
the positive distribution is the set of correctly classified data points and the
negative distribution is the set of misclassified data points. The data points
being near the frontier correspond to the bar charts near the origin. When
the bar charts corresponding to the points near the frontier are selected, the
data points are also selected in the other views (visualization methods) by
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using the brushing and linking technique. We use 2D scatter plot matrices
for visualizing interval data. The user can see approximately the boundary
between classes and the margin width. This helps the user to evaluate the ro-
bustness of the model obtained by support vector classification. He can also
know the interesting dimensions (corresponding to the projections providing
a clear boundary between the two classes) in the obtained model. Figure 3 is
an example of visualizing support vector classification results on the Segment
interval dataset (the class 7 against all). From data distribution according
to the distance to the separating surface, the 4 bar charts near the origin are
brushed, and then the corresponding points are linked and displayed in 2D
scatter plot matrices. The dimensions 2 and 16 corresponding to the projec-
tion provides a clear boundary between the two classes and are interesting in
the model obtained.

We have extended this idea for visualizing support vector regression re-
sults. We have also computed the data distribution according to the distance
to the regression function. After that, we combine the histogram with 2D
scatter plot matrices for visualization. When the user selects the data points
far from the regression function, he can know how the function fits data. If
the function well predicts the data points of high density region then the
model obtained is interesting.

For a novelty detection task, we visualize the outliers allowing the user to
valid them. The approach is based on the interactive linking and brushing
of the histogram and 2D scatter plot views. The histogram displays the data
distribution according to the distance to the hypersphere obtained by one
class SVM. The data points far from the hypersphere are brushed in the
histogram view, thus they are automatically selected in 2D scatter plot view.
The user can validate the outliers. And then, the dimensions corresponding to
the projection presents clearly the outliers and are interesting in the obtained
model.

6 Conclusion

We have presented in this paper the interval data mining approach using
kernel-based and visualization methods.

We have proposed to construct a new RBF kernel on interval data. This
modification tremendously changes kernel-based algorithms. No algorithmic
changes are required from the usual case of continuous data other than the
modification of the RBF kernel evaluation. Thus, kernel-based algorithms
can deal with interval data in classification, regression and novelty detection.
It is extremely rare algorithms being able to construct non linear models on
interval data for the three problems: classification, regression and novelty
detection.

We have also proposed two ways to try to explain SVM results that are
a well-known ”black box”. The first one is to use interactive decision tree
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algorithms for explaining the SVM results. The user can interpret the SVM
performance in the way of IF-THEN rules extracted intuitively from the
graphical representation of the decision trees that can be easily interpreted
by the user. The second one is based on a set of different visualization
techniques combined with linking and brushing techniques gives an insight
into classification, regression and novelty detection tasks with SVM. The
graphical representation shows the interesting dimensions in the obtained
model.

A forthcoming improvement will be to extend our approach to data of
taxonomic or mixture types.
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