
The Entire Regularization Path for the

Support Vector Machine

Trevor Hastie1, Saharon Rosset2, Robert Tibshirani1, and Ji Zhu3

1 Department of Statistics
Stanford University
Stanford, CA 94305, USA
email: {hastie,tibs}@stanford.edu

2 IBM Watson Research Center
P.O. Box 218
Yorktown Heights, N.Y. 10598
email: srosset@us.ibm.com

3 Ji Zhu
Department of Statistics
University of Michigan
Ann Arbor, MI 48109-1092
email: jizhu@umich.edu

Abstract. In this paper we argue that the choice of the SVM cost parameter can be
critical. We then derive an algorithm that can fit the entire path of SVM solutions
for every value of the cost parameter, with essentially the same computational cost
as fitting one SVM model.
Keywords: Support Vector Machine, Regularization, Coefficient Path.

1 Introduction

We have a set of n training pairs xi, yi, where xi ∈ R
p is a p-vector of real

valued predictors (attributes) for the ith observation, yi ∈ {−1, +1} codes its
binary response. The standard criterion for fitting the linear SVM)[Boser et
al., 1992, Cortes and Vapnik, 1995, Schölkopf and Smola, 2001] is

min
β0,β

1

2
||β||2 + C

n
∑

i=1

ξi, (1)

subject to, for each i: yi(β0 + xT
i β) ≥ 1 − ξi.

Here the ξi are non-negative slack variables that allow points to be on the
wrong side of their “soft margin” (f(x) = ±1), as well as the decision bound-
ary, and C is a cost parameter that controls the amount of overlap. If the data
are separable, then for sufficiently large C the solution achieves the maximal
margin separator; if not, the solution achieves the minimum overlap solution
with largest margin.

34 Hastie et al.

Alternatively, we can formulate the problem using a (hinge) Loss +
Penalty criterion [Wahba et al., 2000, Hastie et al., 2001]:

min
β0,β

n
∑

i=1

[1 − yi(β0 + βT xi)]+ +
λ

2
||β||2. (2)

The regularization parameter λ in (2) corresponds to 1/C, with C in (1).
This latter formulation emphasizes the role of regularization. In many

situations we have sufficient variables (e.g. gene expression arrays) to guar-
antee separation. We may nevertheless avoid the maximum margin separator
(λ ↓ 0), which is governed by observations on the boundary, in favor of a more
regularized solution involving more observations.

The nonlinear kernel SVMs can be represented in this form as well. With
kernel K and f(x) = β0 +

∑n
i=1 θiK(x, xi), we solve [Hastie et al., 2001]

min
β0,θ

n
∑

i=1

[1 − yi(β0 +

n
∑

j=1

θiK(xi, xj))] +
λ

2

n
∑

j=1

n
∑

j′=1

θjθj′K(xj , x
′
j). (3)

Often the regularization parameter C (or λ) is regarded as a genuine “nui-
sance”. Software packages, such as the widely used SVMlight [Joachims, 1999],
provide default settings for C.

To illustrate the effect of regularization, we generated data from a pair
of mixture densities, described in detail in [Hastie et al., 2001]. We used an
SVM with a radial kernel K(x, x′) = exp(−γ||x − x′||2). Figure 1 shows the
test error as a function of C for these data, using four different values for
γ. Here we see a dramatic range in the correct choice for C (or λ = 1/C).
When γ = 5, the most regularized model is called for; when γ = 0.1, the
least regularized.

1e−01 1e+01 1e+03

0.
20

0.
25

0.
30

0.
35

1e−01 1e+01 1e+03 1e−01 1e+01 1e+03 1e−01 1e+01 1e+03

T
es

t E
rr

or

Test Error Curves − SVM with Radial Kernel

γ = 5 γ = 1 γ = 0.5 γ = 0.1

C = 1/λ

Fig. 1. Test error curves for the mixture example, using four different values for
the radial kernel parameter γ.

One of the reasons that investigators avoid extensive exploration of C
is the computational cost involved. In this paper we develop an algorithm

The SVM Path 35

which fits the entire path of SVM solutions [β0(C), β(C)], for all possible
values of C, with essentially the computational cost of fitting a single model
for a particular value of C. Our algorithm exploits the fact that the Lagrange
multipliers implicit in (1) are piecewise-linear in C. This also means that the

coefficients β̂(C) are also piecewise-linear in C. This is true for all SVM
models, both linear and nonlinear kernel-based SVMs.

2 Problem Setup

We use a criterion equivalent to (1), implementing the formulation in (2):

min
β,β0

n
∑

i=1

ξi+
λ

2
βT β subject to 1−yif(xi) ≤ ξi; ξi ≥ 0; f(x) = β0+βT x. (4)

Initially we consider only linear SVMs to get the intuitive flavor of our pro-
cedure; we then generalize to kernel SVMs.

We construct the Lagrange primal function

LP :
n

∑

i=1

ξi +
λ

2
βT β +

n
∑

i=1

αi(1 − yif(xi) − ξi) −
n

∑

i=1

γiξi (5)

and set the derivatives to zero. This gives

∂

∂β
: β =

1

λ

n
∑

i=1

αiyixi (6)

∂

∂β0

:

n
∑

i=1

yiαi = 0, (7)

along with the KKT conditions

αi(1 − yif(xi) − ξi) = 0 (8)

γiξi = 0 (9)

1 − αi − γi = 0 (10)

We see that 0 ≤ αi ≤ 1, with αi = 1 when ξi > 0 (which is when yif(xi) < 1).
Also when yif(xi) > 1, ξi = 0 since no cost is incurred, and αi = 0. When
yif(xi) = 1, αi can lie between 0 and 1.

The usual Lagrange multipliers associated with the solution to (1) are
α′

i = αi/λ = Cαi. We prefer our formulation here since our αi ∈ [0, 1], and
this simplifies the definition of the paths we define.

We wish to find the entire solution path for all values of λ ≥ 0. Our
basic idea is as follows. We start with λ large and decrease it toward zero,
keeping track of all the events that occur along the way. As λ decreases,

36 Hastie et al.

||β|| increases, and hence the width of the margin decreases. As this width
decreases, points move from being inside to outside their margins. Their
corresponding αi change from αi = 1 when they are inside their margin
(yif(xi) < 1) to αi = 0 when they are outside their margin (yif(xi) > 1).
By continuity, points must linger on the margin (yif(xi) = 1) while their αi

decrease from 1 to 0. We will see that the αi(λ) trajectories are piecewise-
linear in λ, which affords a great computational savings: as long as we can
establish the break points, all values in between can be found by simple linear
interpolation. Note that points can return to the margin, after having passed
through it.

It is easy to show that if the αi(λ) are piecewise linear in λ, then both
α′

i(C) = Cαi(C) and β(C) are piecewise linear in C. It turns out that β0(C)
is also piecewise linear in C.

Our algorithm keeps track of the following sets:

• M = {i : yif(xi) = 1, 0 ≤ αi ≤ 1}, M for Margin

• I = {i : yif(xi) < 1, αi = 1}, I for Inside the margin

• O = {i : yif(xi) > 1, αi = 0}, O for Outside the margin

3 The Algorithm

Due to space restrictions, we show some details here; the rest can be found
in [Hastie et al., 2004].

Initialization

The initial conditions depend on whether the classes are balanced or not
(n+ = n−). The balanced case is easier. For very large λ, ||β|| is small, and
the the margin is very wide, all points are in O, and hence αi = 1∀i. From
(6) this means the orientation of β is fixed until the αi change. The margin
narrows as λ decreases, but the orientation remains fixed. Because of (7),
the narrowing margin must connect with an outermost member of each class
simultaneously. These points are easily identified, and this establishes the
first event, the first tenants of M, and β0.

When n− 6= n+, the setup is more complex. In order to satisfy the
constraint (7), a quadratic programming algorithm is needed to obtain the
initial configuration. See [Hastie et al., 2004] for details.

Kernels

The development so far has been in the original feature space. It is easy to
see that the entire development carries through with “kernels” as well. In

The SVM Path 37

this case f(x) = β0 + g(x), and the only change that occurs is that (6) is
changed to

g(xi) =
1

λ

n
∑

j=1

αjyjK(xi, xj), i = 1, . . . , n, (11)

or θj(λ) = αjyj/λ using the notation in (3). Hereafter we will develop our
algorithm for this more general kernel case.

The Path

The algorithm hinges on the set of points M sitting on the margin. We
consider M at the point that an event has occurred:

1. The initial event, which means 2 or more points start in M, with their
initial values of α ∈ [0, 1].

2. A point from I has just entered M, with its value of αi initially 1.
3. A point from O has reentered M, with its value of αi initially 0.
4. One or more points in M has left the set, to join either O or I.

Whichever the case, for continuity reasons this set will stay stable until
the next event occurs, since to pass through M, a point’s αi must change
from 0 to 1 or vice versa. Since all points in M have yif(xi) = 1, we can
establish a path for their αi.

We use the subscript ` to index the sets above immediately after the `th
event has occurred. Suppose |M`| = m, and let α`

i , β`
0 and λ` be the values

of these parameters at the point of entry. Likewise f ` is the function at this
point. For convenience we define α0 = λβ0, and hence α`

0 = λ`β
`
0.

Since

f(x) =
1

λ

n
∑

j=1

yjαjK(x, xj) + α0

 , (12)

for λ` > λ > λ`+1 we can write

f(x) =

[

f(x) −
λ`

λ
f `(x)

]

+
λ`

λ
f `(x)

=
1

λ

∑

j∈M`

(αj − α`
j)yjK(x, xj) + (α0 − α`

0) + λ`f
`(x)

 . (13)

The second line follows because all the observations in I` have their αi = 1,
and those in O` have their αi = 0, for this range of λ. Since each of the m
points xi ∈ M` are to stay on the margin, we have that

1

λ

∑

j∈M`

(αj − α`
j)yiyjK(xi, xj) + yi(α0 − α`

0) + λ`

 = 1, ∀i ∈ M`. (14)

38 Hastie et al.

Writing δj = α`
j − αj , from (14) we have

∑

j∈M`

δjyiyjK(xi, xj) + yiδ0 = λ` − λ, ∀i ∈ M`. (15)

Furthermore, since at all times
∑n

i=1 yiαi = 0, we have that

∑

j∈M`

yjδj = 0. (16)

Equations (15) and (16) constitute m+1 linear equations in m+1 unknowns
δj , and can be solved. The δj and hence αj will change linearly in λ, until
the next event occurs:

αj = α`
j − (λ` − λ)bj , j ∈ {0} ∪M`. (17)

See [Hastie et al., 2004] for more precise details on solving these equations.
¿From (13) we have

f(x) =
λ`

λ

[

f `(x) − h`(x)
]

+ h`(x), (18)

where
h`(x) =

∑

j∈M`

yjbjK(x, xj) + b0 (19)

Thus the function itself changes in a piecewise-inverse manner in λ.

Finding λ`+1

The paths continue until one of the following events occur:

1. One of the αi for i ∈ M` reaches a boundary (0 or 1). For each i the
value of λ for which this occurs is easily established.

2. One of the points in I` or O` attains yif(xi) = 1.

By examining these conditions, we can establish the largest λ < λ` for which
an event occurs, and hence establish λ`+1 and update the sets.

Termination

In the separable case, we terminate when I becomes empty. At this point,
all the ξi in (4) are zero, and further movement increases the norm of β
unnecessarily.

In the non-separable case, λ runs all the way down to zero. For this to
happen without f “blowing up” in (18), we must have f `−h` = 0, and hence
the boundary and margins remain fixed at a point where

∑

i ξi is as small as
possible, and the margin is as wide as possible subject to this constraint.

The SVM Path 39

3.1 Computational Complexity

At any update event ` along the path of our algorithm, the main computa-
tional burden is solving the system of equations of size m` = |M`|. While
this normally involves O(m3

`) computations, since M`+1 differs from M` by
typically one observation, inverse updating can reduce the computations to
O(m2

`). The computation of h`(xi) in (19) requires O(nm`) computations.
Beyond that, several checks of cost O(n) are needed to evaluate the next
move.

1e−04 1e−02 1e+00

0
20

40
60

80
10

0

11
111

1
11

1111
11
1111111111

111111
1111
11
11
1111111111

111111111
11
111111
111
11
11
11
1111
111
11

11
11
1111
1111111

111
1111
11
11111111111111111

11
1111
1111
111
111111
1111111

11111111
1111111
11
11
11
111111111

1111
111
1111
111
11
1111111

1111
11
1111
11
1111

11111
111
1111111111

11
11
11
11
111

111
111111

111
1111111111111

111111
11
11
11111

11
1111

111111111
111111

1111
11
111111

11111111111111111111111111
11
111111

11
11111111111

111111111
11111111111111111111

1111
11111111111

11
11111

11
111

111111
111

111111
11111

111111
11111111111

1111111
11111111

1111111

22
22222

2222222222
2222222222222

22
222
222
22222222

22222
22222222

22
2222222

2222222222
22
22
2222222222

22222
22
22
2222222

222222222222222
2222
2222222

222
22222
22222222

22222222
22
222222

22
222222

222
2222222222222

222222
2222
2222
2222
222222

22
222222

22222222222
222
22222

222222
222
22

222
222222

22222222
222222
222222

22
222222222

2222222
22
2222

22
2222222222222222222

2222
222222222

2222
22
222
222222

222222
22

222222222
22222222222

22
22222
2222222222222

2222222222222
2222

222
222

22
222

22
2222222222222222

222222
2222

222222222
22222222

22222
222222222

222222
22222

222222222
222222

22
22222

2222
22
22
2222

222222222222
222

22222222222
22
2222222222

22222222
2222

22222
222222222

22
22

222222
22

22222222
2

333
333333
3333
33
33333333

33
33333333333

33333
33
3333

3333333
33333

333333
33333333333333333

33
333
3333

33333
3333333333

333333
3333
333
333333

333333
33
33333

33
3333

33333333
3333

333333
3333

333
33333333

33333
33
333333333

3333
33333

33333333
33
333333333333

33333
33
333333333333

3333
33

333
33333

33333333
333
33333333

333333
33333333333

33333
333333

33333
33
333333

333333333333333
33

333333
3333333

3333
33

3333
3333

333
33333333

3333333333
333

333333
3333

3333
333333

33
333

333333333333
3333333

333333
33333

33333
33333333

33333333
33

3333333333
333

333333
33

33333333
33

3333
333

33333333
33

3333
3333333

33333333333333
3333

333333333
33

33
333

444444
4444

44444
4
44
444

4
44
444444

4444
4444

4444
4444

44444444
444444444444

4444
444444

444444
444444

444
444

4444444
44444444444444

44444444444
444

4444
44444444444444

444444444
444

44444
444444

4444
4444444

44444
44444444444444

444
444444444444444444444

44
44444444

4444444
4444444444

44
4444444

4444444444
444444

44444
4444

4444
4444444

4444
44444444

444444
444444444

44444
444
44444

44444
444

444444444
444

444
444444444444444444444

44444
4444

44444444

γ = 0.1

γ = 0.5

γ = 1

γ = 5

λ

M
a
rg

in
S
iz

e

11
11111111

11111111
111

1
11

0 50 100 150 200

1e
−

15
1e

−
11

1e
−

07
1e

−
03

1e
+

01 22
22222222222222222222222222

22222
222222222222222222

222
222

222
222222222

22
22222222222222

2

3
333333333333333333333333333333

333
333

33333
3333

333

3

4

4
4
4
4
44

4
4
44

4
4
444

4
44

4444
4
44

444
44

44444
44

44444
4444

44
4444

4
444444

444
4444444444

444
4
44444444

444
4
4

γ = 0.1

γ = 0.5

γ = 1

γ = 5

Sequence Number

E
ig

e
n
v
a
lu

e

Fig. 2. [Left] The margin sizes |M`| as a function of λ, for different values of the
radial-kernel parameter γ. The vertical lines show the positions used to compare
the times with libsvm. [Right] The eigenvalues (on the log scale) for the kernel
matrices Kγ corresponding to the four values of γ.The larger eigenvalues correspond
in this case to smoother eigenfunctions, the small ones to rougher. The rougher
eigenfunctions get penalized exponentially more than the smoother ones. For smaller
values of γ, the effective dimension of the space is truncated.

Although we have no hard results, our experience so far suggests that
the total number Λ of moves is O(k min(n+, n−)), for k around 4 − 6; hence
typically some small multiple c of n. If the average size of M` is m, this
suggests the total computational burden is O(cn2m + nm2), which is similar
to that of a single SVM fit.

Our R function SvmPath computes all 632 steps in the mixture example
(n+ = n− = 100, radial kernel, γ = 1) in 1.44(0.02) secs on a Pentium 4,
2Ghz Linux machine; the svm function (using the optimized code libsvm,
from the R library e1071) takes 9.28(0.06) seconds to compute the solution
at 10 points along the path. Hence it takes our procedure about 50% more
time to compute the entire path, than it costs libsvm to compute a typical
single solution.

40 Hastie et al.

4 Mixture simulation continued

The λ` in Figure 1 are the entire collection of change points as described in
Section 3. We were at first surprised to discover that not all these sequences
achieved zero training errors on the 200 training data points, at their least
regularized fit. In fact the minimal training errors, and the corresponding
values for γ are summarized in Table 1. It is sometimes argued that the

γ 5 1 0.5 0.1

Training Errors 0 12 21 33
Effective Rank 200 177 143 76

Table 1. The number of minimal training errors for different values of the radial
kernel scale parameter γ, for the mixture simulation example. Also shown is the
effective rank of the 200 × 200 Gram matrix Kγ .

implicit feature space is “infinite dimensional” for this kernel, which suggests
that perfect separation is always possible. The last row of the table shows
the effective rank of the 200× 200 kernel Gram matrix K (which we defined
to be the number of singular values greater than 10−12). In general a full
rank K is required to achieve perfect separation. This rank-deficiency of the
Gram matrix has been noted by a number of other authors.

This emphasizes the fact that not all features in the feature map implied
by K are of equal stature; many of them are shrunk way down to zero.
Rephrasing, the regularization in (3) penalizes unit-norm features by the
inverse of their eigenvalues, which effectively annihilates some, depending on
γ. Small γ implies wide, flat kernels, and a suppression of wiggly, “rough”
functions.

Writing (3) in matrix form,

min
β0,θ

L[y,Kθ] +
λ

2
θ

TKθ, (20)

we reparametrize using the eigen-decomposition of K = UDUT . Let Kθ =
Uθ

∗ where θ
∗ = DUT θ. Then (20) becomes

min
β0,θ∗

L[y,Uθ
∗] +

λ

2
θ
∗T

D−1
θ
∗. (21)

Now the columns of U are unit-norm basis functions (in R
2) spanning the

column space of K; from (21) we see that those members corresponding to
near-zero eigenvalues (the elements of the diagonal matrix D) get heavily
penalized and hence ignored. Figure 2 shows the elements of D for the four
values of γ.

The SVM Path 41

5 Discussion

Our work on the SVM path algorithm was inspired by early work on exact
path algorithms in other settings. “Least Angle Regression” [Efron et al.,
2002] show that the coefficient path for the sequence of “lasso” coefficients
is piecewise linear. The lasso uses a quadratic criterion, with an L1 con-
straint. In fact, any model with an L1 constraint and a quadratic, piecewise
quadratic, piecewise linear, or mixed quadratic and linear loss function, will
have piecewise linear coefficient paths, which can be calculated exactly and
efficiently for all values of λ [Rosset and Zhu, 2003]. This includes the L1

SVM [Zhu et al., 2003].

The SVM model has a quadratic constraint and a piecewise linear (“hinge”)
loss function. This leads to a piecewise linear path in the dual space, hence
the Lagrange coefficients αi are piecewise linear.

Of course, quadratic criterion + quadratic constraints also lead to exact
path solutions, as in the classic ridge regression case, since a closed form
solution is obtained via the SVD.

The general techniques employed in this paper are known as paramet-
ric programming in convex optimization. After completing this work, it
was brought to our attention that [Pontil and Verri, 1998] reported on the
picewise-linear nature of the lagrange multipliers, although they did not de-
velop the path algorithm. [Fine and Scheinberg, 2002, Cauwenberghs and
Poggio, 2001] employ techniques similar to ours in incremental learning for
SVMs. These authors do not construct exact paths as we do, but rather fo-
cus on updating and downdating the solutions as more (or less) data arises.
[Diehl and Cauwenberghs, 2003] allow for updating the parameters as well,
but again do not construct entire solution paths.

The SvmPath has been implemented in the R computing environment, and
is available from the R website.

Acknowledgements

The authors thank Jerome Friedman for helpful discussions, and Mee-Young
Park for assisting with some of the computations. Trevor Hastie was partially
supported by grant DMS-0204162 from the National Science Foundation, and
grant RO1-EB0011988-08 from the National Institutes of Health.

References

[Boser et al., 1992]B. Boser, I. Guyon, and V. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of COLT II, Philadelphia, PA, 1992.

[Cortes and Vapnik, 1995]C. Cortes and V. Vapnik. Support vector networks. Ma-
chine Learning, 20:1–25, 1995.

42 Hastie et al.

[Schölkopf and Smola, 2001]Bernard Schölkopf and Alex Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization, and Beyond
(Adaptive Computation and Machine Learning). MIT Press, 2001.

[Wahba et al., 2000]G. Wahba, Y. Lin, and H. Zhang. Gacv for support vector
machines. In A.J. Smola, P.L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 297–311, Cambridge, MA,
2000. MIT Press.

[Hastie et al., 2001]T. Hastie, R. Tibshirani, and J. Friedman. The Elements of
Statistical Learning; Data mining, Inference and Prediction. Springer Verlag,
New York, 2001.

[Joachims, 1999]Thorsten Joachims. Practical Advances in Kernel Methods — Sup-
port Vector Learning, chapter Making large scale SVM learning practical. MIT
Press, 1999. see http://svmlight.joachims.org.

[Hastie et al., 2004]Trevor Hastie, Saharon Rosset, Robert Tibshirani, and Ji Zhu.
The entire regularization path for the support vector machine. Journal of
Machine Learning Research, (5):1391–1415, 2004.

[Efron et al., 2002]B. Efron, T. Hastie, I. Johnstone, and R.. Tibshirani. Least
angle regression. Technical report, Stanford University, 2002.

[Rosset and Zhu, 2003]Saharon Rosset and Ji Zhu. Piecewise linear regu-
larized solution paths. Technical report, Stanford University, 2003.
http://www-stat.stanford.edu/∼saharon/papers/piecewise.ps.

[Zhu et al., 2003]Ji Zhu, Saharon Rosset, Trevor Hastie, and Robert Tibshirani. L1
norm support vector machines. Technical report, Stanford University, 2003.

[Pontil and Verri, 1998]Massimiliano Pontil and Alessandro Verri. Properties of
support vector machines. Neural Comput., 10(4):955–974, 1998.

[Fine and Scheinberg, 2002]Shai Fine and Katya Scheinberg. Incas: An incremental
active set method for svm. Technical report, IBM Research Labs, Haifa, 2002.

[Cauwenberghs and Poggio, 2001]G. Cauwenberghs and T. Poggio. Incremental and
decremental support vector machine learning. In Advances in Neural Informa-
tion Processing Systems (NIPS*2000), volume 13. MIT Press, Cambridge, MA,
2001.

[Diehl and Cauwenberghs, 2003]Christopher Diehl and Gert Cauwenberghs. Svm
incremental learning, adaptation and optimization. In Proceedings of the 2003
International Joint Conference on Neural Networks, pages 2685–2690, 2003.
Special series on Incremental Learning.

