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Abstract. In this paper we argue that the choice of the SVM cost parameter can be
critical. We then derive an algorithm that can fit the entire path of SVM solutions
for every value of the cost parameter, with essentially the same computational cost
as fitting one SVM model.
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1 Introduction

We have a set of n training pairs xi, yi, where xi ∈ R
p is a p-vector of real

valued predictors (attributes) for the ith observation, yi ∈ {−1, +1} codes its
binary response. The standard criterion for fitting the linear SVM )[Boser et
al., 1992, Cortes and Vapnik, 1995, Schölkopf and Smola, 2001] is

min
β0,β

1

2
||β||2 + C

n
∑

i=1

ξi, (1)

subject to, for each i: yi(β0 + xT
i β) ≥ 1 − ξi.

Here the ξi are non-negative slack variables that allow points to be on the
wrong side of their “soft margin” (f(x) = ±1), as well as the decision bound-
ary, and C is a cost parameter that controls the amount of overlap. If the data
are separable, then for sufficiently large C the solution achieves the maximal
margin separator; if not, the solution achieves the minimum overlap solution
with largest margin.
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Alternatively, we can formulate the problem using a (hinge) Loss +
Penalty criterion [Wahba et al., 2000, Hastie et al., 2001]:

min
β0,β

n
∑

i=1

[1 − yi(β0 + βT xi)]+ +
λ

2
||β||2. (2)

The regularization parameter λ in (2) corresponds to 1/C, with C in (1).
This latter formulation emphasizes the role of regularization. In many

situations we have sufficient variables (e.g. gene expression arrays) to guar-
antee separation. We may nevertheless avoid the maximum margin separator
(λ ↓ 0), which is governed by observations on the boundary, in favor of a more
regularized solution involving more observations.

The nonlinear kernel SVMs can be represented in this form as well. With
kernel K and f(x) = β0 +

∑n
i=1 θiK(x, xi), we solve [Hastie et al., 2001]

min
β0,θ

n
∑

i=1

[1 − yi(β0 +

n
∑

j=1

θiK(xi, xj))] +
λ

2

n
∑

j=1

n
∑

j′=1

θjθj′K(xj , x
′
j). (3)

Often the regularization parameter C (or λ) is regarded as a genuine “nui-
sance”. Software packages, such as the widely used SVMlight [Joachims, 1999],
provide default settings for C.

To illustrate the effect of regularization, we generated data from a pair
of mixture densities, described in detail in [Hastie et al., 2001]. We used an
SVM with a radial kernel K(x, x′) = exp(−γ||x − x′||2). Figure 1 shows the
test error as a function of C for these data, using four different values for
γ. Here we see a dramatic range in the correct choice for C (or λ = 1/C).
When γ = 5, the most regularized model is called for; when γ = 0.1, the
least regularized.
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Fig. 1. Test error curves for the mixture example, using four different values for
the radial kernel parameter γ.

One of the reasons that investigators avoid extensive exploration of C
is the computational cost involved. In this paper we develop an algorithm
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which fits the entire path of SVM solutions [β0(C), β(C)], for all possible
values of C, with essentially the computational cost of fitting a single model
for a particular value of C. Our algorithm exploits the fact that the Lagrange
multipliers implicit in (1) are piecewise-linear in C. This also means that the

coefficients β̂(C) are also piecewise-linear in C. This is true for all SVM
models, both linear and nonlinear kernel-based SVMs.

2 Problem Setup

We use a criterion equivalent to (1), implementing the formulation in (2):

min
β,β0

n
∑

i=1

ξi+
λ

2
βT β subject to 1−yif(xi) ≤ ξi; ξi ≥ 0; f(x) = β0+βT x. (4)

Initially we consider only linear SVMs to get the intuitive flavor of our pro-
cedure; we then generalize to kernel SVMs.

We construct the Lagrange primal function

LP :
n

∑

i=1

ξi +
λ

2
βT β +

n
∑

i=1

αi(1 − yif(xi) − ξi) −
n

∑

i=1

γiξi (5)

and set the derivatives to zero. This gives

∂

∂β
: β =

1

λ

n
∑

i=1

αiyixi (6)

∂

∂β0

:

n
∑

i=1

yiαi = 0, (7)

along with the KKT conditions

αi(1 − yif(xi) − ξi) = 0 (8)

γiξi = 0 (9)

1 − αi − γi = 0 (10)

We see that 0 ≤ αi ≤ 1, with αi = 1 when ξi > 0 (which is when yif(xi) < 1).
Also when yif(xi) > 1, ξi = 0 since no cost is incurred, and αi = 0. When
yif(xi) = 1, αi can lie between 0 and 1.

The usual Lagrange multipliers associated with the solution to (1) are
α′

i = αi/λ = Cαi. We prefer our formulation here since our αi ∈ [0, 1], and
this simplifies the definition of the paths we define.

We wish to find the entire solution path for all values of λ ≥ 0. Our
basic idea is as follows. We start with λ large and decrease it toward zero,
keeping track of all the events that occur along the way. As λ decreases,
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||β|| increases, and hence the width of the margin decreases. As this width
decreases, points move from being inside to outside their margins. Their
corresponding αi change from αi = 1 when they are inside their margin
(yif(xi) < 1) to αi = 0 when they are outside their margin (yif(xi) > 1).
By continuity, points must linger on the margin (yif(xi) = 1) while their αi

decrease from 1 to 0. We will see that the αi(λ) trajectories are piecewise-
linear in λ, which affords a great computational savings: as long as we can
establish the break points, all values in between can be found by simple linear
interpolation. Note that points can return to the margin, after having passed
through it.

It is easy to show that if the αi(λ) are piecewise linear in λ, then both
α′

i(C) = Cαi(C) and β(C) are piecewise linear in C. It turns out that β0(C)
is also piecewise linear in C.

Our algorithm keeps track of the following sets:

• M = {i : yif(xi) = 1, 0 ≤ αi ≤ 1}, M for Margin

• I = {i : yif(xi) < 1, αi = 1}, I for Inside the margin

• O = {i : yif(xi) > 1, αi = 0}, O for Outside the margin

3 The Algorithm

Due to space restrictions, we show some details here; the rest can be found
in [Hastie et al., 2004].

Initialization

The initial conditions depend on whether the classes are balanced or not
(n+ = n−). The balanced case is easier. For very large λ, ||β|| is small, and
the the margin is very wide, all points are in O, and hence αi = 1∀i. From
(6) this means the orientation of β is fixed until the αi change. The margin
narrows as λ decreases, but the orientation remains fixed. Because of (7),
the narrowing margin must connect with an outermost member of each class
simultaneously. These points are easily identified, and this establishes the
first event, the first tenants of M, and β0.

When n− 6= n+, the setup is more complex. In order to satisfy the
constraint (7), a quadratic programming algorithm is needed to obtain the
initial configuration. See [Hastie et al., 2004] for details.

Kernels

The development so far has been in the original feature space. It is easy to
see that the entire development carries through with “kernels” as well. In
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this case f(x) = β0 + g(x), and the only change that occurs is that (6) is
changed to

g(xi) =
1

λ

n
∑

j=1

αjyjK(xi, xj), i = 1, . . . , n, (11)

or θj(λ) = αjyj/λ using the notation in (3). Hereafter we will develop our
algorithm for this more general kernel case.

The Path

The algorithm hinges on the set of points M sitting on the margin. We
consider M at the point that an event has occurred:

1. The initial event, which means 2 or more points start in M, with their
initial values of α ∈ [0, 1].

2. A point from I has just entered M, with its value of αi initially 1.
3. A point from O has reentered M, with its value of αi initially 0.
4. One or more points in M has left the set, to join either O or I.

Whichever the case, for continuity reasons this set will stay stable until
the next event occurs, since to pass through M, a point’s αi must change
from 0 to 1 or vice versa. Since all points in M have yif(xi) = 1, we can
establish a path for their αi.

We use the subscript ` to index the sets above immediately after the `th
event has occurred. Suppose |M`| = m, and let α`

i , β`
0 and λ` be the values

of these parameters at the point of entry. Likewise f ` is the function at this
point. For convenience we define α0 = λβ0, and hence α`

0 = λ`β
`
0.

Since

f(x) =
1

λ





n
∑

j=1

yjαjK(x, xj) + α0



 , (12)

for λ` > λ > λ`+1 we can write

f(x) =

[

f(x) −
λ`

λ
f `(x)

]

+
λ`

λ
f `(x)

=
1

λ





∑

j∈M`

(αj − α`
j)yjK(x, xj) + (α0 − α`

0) + λ`f
`(x)



 . (13)

The second line follows because all the observations in I` have their αi = 1,
and those in O` have their αi = 0, for this range of λ. Since each of the m
points xi ∈ M` are to stay on the margin, we have that

1

λ





∑

j∈M`

(αj − α`
j)yiyjK(xi, xj) + yi(α0 − α`

0) + λ`



 = 1, ∀i ∈ M`. (14)
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Writing δj = α`
j − αj , from (14) we have

∑

j∈M`

δjyiyjK(xi, xj) + yiδ0 = λ` − λ, ∀i ∈ M`. (15)

Furthermore, since at all times
∑n

i=1 yiαi = 0, we have that

∑

j∈M`

yjδj = 0. (16)

Equations (15) and (16) constitute m+1 linear equations in m+1 unknowns
δj , and can be solved. The δj and hence αj will change linearly in λ, until
the next event occurs:

αj = α`
j − (λ` − λ)bj , j ∈ {0} ∪M`. (17)

See [Hastie et al., 2004] for more precise details on solving these equations.
¿From (13) we have

f(x) =
λ`

λ

[

f `(x) − h`(x)
]

+ h`(x), (18)

where
h`(x) =

∑

j∈M`

yjbjK(x, xj) + b0 (19)

Thus the function itself changes in a piecewise-inverse manner in λ.

Finding λ`+1

The paths continue until one of the following events occur:

1. One of the αi for i ∈ M` reaches a boundary (0 or 1). For each i the
value of λ for which this occurs is easily established.

2. One of the points in I` or O` attains yif(xi) = 1.

By examining these conditions, we can establish the largest λ < λ` for which
an event occurs, and hence establish λ`+1 and update the sets.

Termination

In the separable case, we terminate when I becomes empty. At this point,
all the ξi in (4) are zero, and further movement increases the norm of β
unnecessarily.

In the non-separable case, λ runs all the way down to zero. For this to
happen without f “blowing up” in (18), we must have f `−h` = 0, and hence
the boundary and margins remain fixed at a point where

∑

i ξi is as small as
possible, and the margin is as wide as possible subject to this constraint.
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3.1 Computational Complexity

At any update event ` along the path of our algorithm, the main computa-
tional burden is solving the system of equations of size m` = |M`|. While
this normally involves O(m3

` ) computations, since M`+1 differs from M` by
typically one observation, inverse updating can reduce the computations to
O(m2

` ). The computation of h`(xi) in (19) requires O(nm`) computations.
Beyond that, several checks of cost O(n) are needed to evaluate the next
move.
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Fig. 2. [Left] The margin sizes |M`| as a function of λ, for different values of the
radial-kernel parameter γ. The vertical lines show the positions used to compare
the times with libsvm. [Right] The eigenvalues (on the log scale) for the kernel
matrices Kγ corresponding to the four values of γ.The larger eigenvalues correspond
in this case to smoother eigenfunctions, the small ones to rougher. The rougher
eigenfunctions get penalized exponentially more than the smoother ones. For smaller
values of γ, the effective dimension of the space is truncated.

Although we have no hard results, our experience so far suggests that
the total number Λ of moves is O(k min(n+, n−)), for k around 4 − 6; hence
typically some small multiple c of n. If the average size of M` is m, this
suggests the total computational burden is O(cn2m + nm2), which is similar
to that of a single SVM fit.

Our R function SvmPath computes all 632 steps in the mixture example
(n+ = n− = 100, radial kernel, γ = 1) in 1.44(0.02) secs on a Pentium 4,
2Ghz Linux machine; the svm function (using the optimized code libsvm,
from the R library e1071) takes 9.28(0.06) seconds to compute the solution
at 10 points along the path. Hence it takes our procedure about 50% more
time to compute the entire path, than it costs libsvm to compute a typical
single solution.
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4 Mixture simulation continued

The λ` in Figure 1 are the entire collection of change points as described in
Section 3. We were at first surprised to discover that not all these sequences
achieved zero training errors on the 200 training data points, at their least
regularized fit. In fact the minimal training errors, and the corresponding
values for γ are summarized in Table 1. It is sometimes argued that the

γ 5 1 0.5 0.1

Training Errors 0 12 21 33
Effective Rank 200 177 143 76

Table 1. The number of minimal training errors for different values of the radial
kernel scale parameter γ, for the mixture simulation example. Also shown is the
effective rank of the 200 × 200 Gram matrix Kγ .

implicit feature space is “infinite dimensional” for this kernel, which suggests
that perfect separation is always possible. The last row of the table shows
the effective rank of the 200× 200 kernel Gram matrix K (which we defined
to be the number of singular values greater than 10−12). In general a full
rank K is required to achieve perfect separation. This rank-deficiency of the
Gram matrix has been noted by a number of other authors.

This emphasizes the fact that not all features in the feature map implied
by K are of equal stature; many of them are shrunk way down to zero.
Rephrasing, the regularization in (3) penalizes unit-norm features by the
inverse of their eigenvalues, which effectively annihilates some, depending on
γ. Small γ implies wide, flat kernels, and a suppression of wiggly, “rough”
functions.

Writing (3) in matrix form,

min
β0,θ

L[y,Kθ] +
λ

2
θ

TKθ, (20)

we reparametrize using the eigen-decomposition of K = UDUT . Let Kθ =
Uθ

∗ where θ
∗ = DUT θ. Then (20) becomes

min
β0,θ∗

L[y,Uθ
∗] +

λ

2
θ
∗T

D−1
θ
∗. (21)

Now the columns of U are unit-norm basis functions (in R
2) spanning the

column space of K; from (21) we see that those members corresponding to
near-zero eigenvalues (the elements of the diagonal matrix D) get heavily
penalized and hence ignored. Figure 2 shows the elements of D for the four
values of γ.
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5 Discussion

Our work on the SVM path algorithm was inspired by early work on exact
path algorithms in other settings. “Least Angle Regression” [Efron et al.,
2002] show that the coefficient path for the sequence of “lasso” coefficients
is piecewise linear. The lasso uses a quadratic criterion, with an L1 con-
straint. In fact, any model with an L1 constraint and a quadratic, piecewise
quadratic, piecewise linear, or mixed quadratic and linear loss function, will
have piecewise linear coefficient paths, which can be calculated exactly and
efficiently for all values of λ [Rosset and Zhu, 2003]. This includes the L1

SVM [Zhu et al., 2003].

The SVM model has a quadratic constraint and a piecewise linear (“hinge”)
loss function. This leads to a piecewise linear path in the dual space, hence
the Lagrange coefficients αi are piecewise linear.

Of course, quadratic criterion + quadratic constraints also lead to exact
path solutions, as in the classic ridge regression case, since a closed form
solution is obtained via the SVD.

The general techniques employed in this paper are known as paramet-
ric programming in convex optimization. After completing this work, it
was brought to our attention that [Pontil and Verri, 1998] reported on the
picewise-linear nature of the lagrange multipliers, although they did not de-
velop the path algorithm. [Fine and Scheinberg, 2002, Cauwenberghs and
Poggio, 2001] employ techniques similar to ours in incremental learning for
SVMs. These authors do not construct exact paths as we do, but rather fo-
cus on updating and downdating the solutions as more (or less) data arises.
[Diehl and Cauwenberghs, 2003] allow for updating the parameters as well,
but again do not construct entire solution paths.

The SvmPath has been implemented in the R computing environment, and
is available from the R website.
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