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Abstract. In many research fields, where valuable information about a random
phenomenon may come from different, possibly heterogeneous sources of knowledge
(“experts”), the combining of the available information is a powerful uncertainty-
reducing process. As efficiency reasons often suggest to perform a sequential proce-
dure, in this paper some informativeness-founded selecting and stopping rules are
proposed; their performance is discussed in a case-study.
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1 Introduction

In many research fields, particularly in decision making and risk analysis,
valuable information about a random phenomenon may come from different,
possibly heterogeneous, sources of knowledge: information systems (such as,
for example, sensor fusion systems), theoretical or empirical models, privi-
leged witnesses. In a single, conventional word: ‘experts’. So, the combining
of the available information — especially once they were modelled in form of
probability distributions — become a powerful uncertainty-reducing process:
for example, to assess the entity of an environmental risk or the probabil-
ity of a space probe malfunctioning, or forecast hurricane track, or classify
biological samples, such as fossils. The output of the process — a final prob-
ability distribution on the investigated random variable — can be viewed
as representing a synthesis of the current state of knowledge regarding the
uncertainty of interest: a ‘sufficient’ synthesis, which must not involve loss of
any relevant information.

Numerous algorithms for simultaneous combining have been proposed
in literature (for a critical review, [Genest and Zidek, 1986] and [Cooke,
1991]). It’s not so about sequential algorithms. And it is a fact that the
investigator often prefers to consult the experts in successive stages rather
than simultaneously. So, s/he avoids wasting time and money by consulting
a too large sample of experts: at each stage, depending on the amount of
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information reached, s/he can choose whether to stop or to continue the
process and, depending on the answers obtained from the experts already
contacted, s/he can select the ‘best’ expert to be consulted on the subsequent
stage.

The aim of this work is to propose some selecting and stopping rules which
can be suitable to be used in a sequential consulting process. The substance
of such rules is almost independent of the procedure chosen for combining
information from the experts; not so their mathematical form. The reference,
in the present work, is the Bayesian aggregation model suggested by Morris
(1977), reviewed in a recursive form.

The paper is organized as follows. Section 2, in writing Morris’ aggre-
gation algorithm in a recursive form, gives the notation for the successive
sections. In Section 3, some stopping and selecting criteria are suggested.
Their performance is discussed in a real data based case-study which, to-
gether with some concluding remarks, is presented in Section 4.

2 A recursive algorithm for the sequential knowledge

updating

In a context of uncertainty about the value of a random quantity θ ∈ Θ ⊂ <,
let’s denote with h0 (θ) the prior probability distribution which reflects the
initial state of information. With the aim to acquire knowledge (so reducing
the uncertainty) about θ, an investigator A performs a sequential consulting
of (at most n) experts Qj: at each stage k (k = 1, 2, . . . , K; K ≤ n), the
selected expert Q∗

j;k (or, more briefly, Qk) answers by giving his/her/its own
density gk (θ). Treating each expert’s density as result of an experiment, the
investigator can revise the initial distribution h0 (θ) via Bayes’ theorem.

Assuming that [Morris, 1977]:

a) each gk (·) is parameterized with a location parameter mk and a shape
parameter vk;

b) for each k, the probability which A assigns to the event v(k) =
⋂

k
i=1vi —

that is, the event “the shape parameter values the experts will give are
[v1, ..., vi, ..., vk]

′

= v” — does not depend on θ: in symbols, `
(

v(k)|θ
)

=

`
(

v(k)
)

;

Morris shows that the posterior density can be written as1,

h
(

θ|m(k), v(k)
)

=
`
(

m(k)|v(k), θ
)

· h0 (θ)
∫

Θ
`
(

m(k)|v(k), θ
)

· h0 (θ) dθ
(1)

where:

1 It can be shown that these assumptions can be relaxed without changing sub-
stantially the results [Morris, 1977].
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– `
(

m(k)|v(k), θ
)

, denoted in the following by `k (θ) for notational conve-
nience, indicates the conditioned likelihood function of θ for the data
m(k) =

⋂k

i=1 mi, given v(k): it represents — for θ varying — A’s prob-
abilities that the location parameter values the experts will provide are
m = [mi]

′

i=1,...,k;

– the posterior h
(

θ|m(k), v(k)
)

or, more briefly, hk (θ), represents the syn-
thesis distribution at stage k.

If the following assumption holds too:

c) for each k, the conditional probability which A assigns to the event “gk (·)
shape parameter will be vk”, given m(k−1), v(k−1) and θ, does not depend
on θ — that is, `

(

vk|m
(k−1), v(k−1), θ

)

= `
(

vk|m
(k−1), v(k−1)

)

—;

then Morris’ (simultaneous) aggregation algorithm (1) can be written in a
recursive form as,

hk (θ) =
`
(

mk|vk, m(k−1), v(k−1), θ
)

· hk−1 (θ)
∫

Θ
`
(

mk|vk, m(k−1), v(k−1), θ
)

· hk−1 (θ) dθ
(2)

where `
(

mk|vk, m(k−1), v(k−1), θ
)

is the conditioned likelihood function of θ
for the only observation mk, given vk and also the location and shape values
provided by the k − 1 previously consulted experts.

As regards the arduous assessment of the function ` (·) in (2), the relation
`
(

mk|vk, m(k−1), v(k−1), θ
)

= `k (θ) /`k−1 (θ) allows to use Morris’ (simulta-
neous) result,

`k (θ) ∝ Ck (θ) ·

k
∏

i=1

gi (θ) (3)

where the calibration function Ck (θ) encapsulates the state of knowledge
about each expert’s performance and the degree of dependence among the k
experts. Briefly [Morris, 1977], let τi denote the i-th performance indicator,
defined as Qi’s cumulative function Gi (·|mi, vi) evaluated at the true value of
θ: Ck (θ) expresses the admissibility degrees which the investigator assigns to
each possible θ value looked at as the realization of the k-dimensional quan-
tile vector τ = [τi]

′

i=1,...,k. Technically, Ck (·) is nothing but a subjectively
assessed density φk (·) of τ , conditioned on v and θ, looked at as a function of
θ (for fixed m): in symbols, the relation between the so-called performance
function φk (·) and the calibration function Ck (θ) is,

φk (τ |v, θ) = φk [G (θ|m,v) |v, θ] = Ck (θ) (4)

where G (θ|m,v) — briefly, G (θ) — denotes the vector [Gi (θ|mi, vi)]
′

i=1,...,k.
Whenever only some pieces of information about the experts are available

— an ‘information block’ which is not adequate to construct an empirically
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founded probability distribution of their performance indicators — the fidu-
cial argument [Fisher, 1956] can be used for inductively modelling the cali-
bration function, enabling it to be specified with a relatively small number
of assessments [Monari and Agati, 2001]. With the following notation:

– G̃ (θ) =
[

G̃i (θ)
]

′

i=1,...,k
, with G̃i (θ) = ln [Gi (θ) / (1 − Gi (θ))];

– t̃ =
[

t̃i
]

′

i=1,...,k
, with t̃i = ln [ti/ (1 − ti)];

– c as normalization constant;

the resulting fiducial calibration function can be written as,

Ck (θ) = Ck (θ; t,S) =

= c·
k

∏

i=1

{Gi (θ) · [1 − Gi (θ)]}−1 ·exp

{

−
1

2

[

G̃ (θ) − t̃
]

′

S−1
[

G̃ (θ) − t̃
]

}

(5)

It’s worth noting that function (5) is univocally defined by the following
two quantities:

– A’s assessment t = [ti]
′

i=1,...,k of the performance indicator τ ;
– the subjective variance-covariance matrix S, reflecting A’s information

about the variability and the reciprocal dependence of the experts’ per-
formance indicators.

3 Selecting and stopping rules

The purpose of expert consulting is reducing the uncertainty about the un-
known quantity θ. So, in designing and performing the sequential process,
it is reasonable to found the selecting and stopping rules on some criterion
of informativeness. In particular, though no single number can convey the
amount of information encapsulated in a density function, a synthetic mea-
sure of the (expected) additional informative value of a not-yet-consulted
expert Qj;k is indispensable for selecting the one to be consulted at stage k,
especially when the investigator’s calibration assessments, together with the
shape parameters provided by the experts, lead to not-coinciding preference
orderings. And, analogously, as likelihood functions and posterior densities
can display a wide variety of form, a synthetic measure of the reached knowl-
edge degree about θ is needed for picking out the ‘optimal’ stage k∗ at which
data acquiring can be stopped.

Let’s suppose the investigator A is performing the process of revising
beliefs in light of new data according to the algorithm described in Section 2.
The prior h0 (θ) has already been specified; each of n contacted experts Qj

has revealed the variance vj — assumed as uninformative about θ: see b) in
Section 2) — of his/her/its own density gj (θ), and A has already consulted
k − 1 of them, so obtaining the locations of k − 1 expert densities: A is
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def ine the prior:  h 0 ( θ ) ;

learn  the  v ariances  v  j ( j = 1, 2, … , n)  f rom  the  experts;

choose the thresholds  δ and λ

assess the calibration parameters  t j , s j , r j i f or the not_y et_consulted experts: 

j = 1, … , n − ( k − 1 )   ;    i = 1, … , k − 1  ;      j ≠ i

calculate  E [ KL ( h j ; k , h k – 1 ) ]   f or  j = 1 , … , n − ( k − 1 )

f ind  Q j * such that   E [ KL ( h j * ; k , h k – 1 ) ]   ≥ E [ KL ( h j ; k , h k – 1 ) ] ,   j ≠ j *

k = 1

E [ KL ( h j * ; k , h k – 1 ) ]   ≥ δ

consult  Q j * : learn the arithmetic mean  m j * ; k ( or just m k ) ;

determine the likelihood  l k ( θ ) ;

determine the posterior  h k ( θ )

YES

k( θ max ) ≥ λ

S T O P

YES

2nd-order analysis

….

E [ KL ( h ( j ,u ) * ; k   , h k− 1 ) ]  ≥ δ ’
….

YES
k  =   k + 1

NO

k  >   n

Consult a NEW SET of EXPERTS
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NO

NO

NO
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YES

NO

NO

NO

Fig. 1. Flow-chart of the sequential procedure.

now at stage k of the process (figure 1), and must select one among the
not-yet-consulted experts Qj;k (j = 1, 2, . . . , n − k + 1).

For each Qj;k, the investigator A assesses — conditionally on vj , on the
basis of the information at his disposal (including all the expert locations mi

revealed up to stage k− 1) — the parameters of the k-stage calibration func-
tion Cj;k (θ): that is, tj , sjj and the covariances sji (or the linear correlations
rji) between Qj;k and each already-consulted expert Qi, i = 1, 2, . . . , k − 1.
At this point of the procedure, no Qj;k has revealed the location value mj of
his own gj (θ): the several ‘answers’ mj which each can virtually give are not
all equally informative, so the (informative) value of each expert at the k-
stage — to be measured with regard to A’s current knowledge2 of θ reflected
in the posterior density hk−1 (θ) of the previous stage — is an expected value,

2 In fact, all the other elements being equal, the more A is uncertain about θ, the
more an answer mj is worthy.



Expert consulting and information combining 291

calculated by averaging a selected measure of relevant information about θ
in Qj;k’s answer over the space Mj of the virtually possible mj values.

By reasoning in a knowledge context — which is an inductive context,
where an expert opinion is more relevant the more it is able to modify the
posterior distribution on the unknown quantity — a suitable measure of
Qj;k’s informative value can be the expected Kullback-Leibler divergence of
the density hj;k (θ) with respect to the previous stage posterior hk−1 (θ),

E [KL (hj;k, hk−1)] :=

∫

Mj

f
(

mj;k|vj;k, m(k−1), v(k−1)
)

·KL (hj;k, hk−1) dmj

(6)
where the KL-divergence [Kullback, 1959],

KL (hj;k, hk−1) :=

∫

Θ

hj;k (θ) · ln [hj;k (θ) /hk−1 (θ)] dθ (7)

measures indirectly the information provided by an answer mj;k in terms of
the changes it yields on the density hk−1 (θ). The conditional density f (·)
in (6) is equal to the denominator of (2) read as a function of mj;k and
normalized; when assumptions a), b) and c) hold, it can be determined as

f
(

mj;k|vj;k, m(k−1), v(k−1)
)

= f
(

m(j;k)|, v(j;k)
)

/f
(

m(k−1)|v(k−1)
)

(8)

where the density f
(

m(j;k)|, v(j;k)
)

— and analogously f
(

m(k−1)|v(k−1)
)

—

is equal, up to the normalization term, to the denominator
∫

Θ
`
(

m(k)|v(k), θ
)

·

h0 (θ) dθ of (1), read as a function of m(k).
The expert Q∗

j;k presenting the greatest expected KL-divergence is, at
stage k, the most informative: but is he/she/it an expert worth consulting?
The answer is yes, if the information he provides is, on average, enough

different from what A already knows about θ, i.e. if the expected divergence
of hj∗;k (θ) with respect to hk−1 (θ) is not less than a predetermined value δ
(0 ≤ δ < ∞). About the choose of the threshold δ, a very useful tool is the
scheme proposed by McCulloch for deciding whether a KL-divergence value
is a large or a small one [McCulloch, 1989].

So the selecting rule can be expressed as follows. Consult the expert Q∗

j;k

such that

E [KL (hj∗;k, hk−1)] ≥ E [KL (hj;k, hk−1)] j 6= j∗ (9)

on condition that

E [KL (hj∗;k, hk−1)] ≥ δ (10)

If Q∗

j;k does not satisfy (10), then proceed to a 2nd order analysis: that is,

consult the pair (Qj;k, Qu;k)
∗

presenting the greatest expected KL-divergence,

provided that it is E
[

KL
(

h(j,u)∗;k, hk−1

)]

≥ δ; otherwise contact a new set
of experts and perform a new process by using the posterior hk−1 (θ) as a

new prior h
′

0 (θ) .
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The expert Q∗

j;k satisfying (10) becomes just Qk, the “k-stage expert”.
By consulting him, A learns the location mk of the density gk (·): now, the
k-stage calibration function Ck (θ) is univocally defined, and consequently,
the likelihood function `k (θ) and the posterior density hk (θ) too.

In theory, the investigator should stop the process only when the knowl-
edge about θ, reflected in the posterior density, is ‘inertially stable’: i.e., only
when additional experts, even if jointly considered, are not able to modify
appreciably the synthesis distribution, on the contrary they contribute to its
inertness. But too many experts could be needed for realizing such a stop-
ping condition. It can be weakened by requiring just the knowledge about
θ deriving from expert answers to be enough for A’s purposes. A measure
encapsulating the strength of the experimental data in determining a pref-
erence ordering among ‘infinitesimally close’ values of θ is Fisher’s notion of
information. The value of the observed information I (·) at the maximum of
the log-likelihood function,

Ik (θmax) := −∂2/∂θ2 ln `k (θmax) (11)

is a second-order estimate of the spherical curvature of the function at its
maximum: within a second-order approximation, it corresponds to the KL-
divergence between two distributions that belong to the same parametric
family and differ infinitesimally over the parameter space.

So, the stopping rule may be defined as follows. Stop the consulting at
stage k* at which a pre-selected observed curvature λ of the log-likelihood

valued at θ := θmax has been reached,

Ik∗ (θmax) ≥ λ (12)

For deciding whether a curvature value I (θmax) = w is a large or a small
one, a device could be the following. Let’s think of a binomial experiment
where a number x = n/2 of successes is observed in n trials and find x

such that I (p̂ML = 0.5) = w, where p̂ML = 0.5 is the maximum likelihood
estimate of the binomial parameter p. Table 1 shows a range of x values with
the corresponding w curvature values. The simple relation x = w/8 holds:
so, for example, if w = 120, the width of the curve ln `k (θ) near θ := θmax is
the same as the curve ln ` (p) at p̂ML = 0.5 when x = 15 and n = 30.

x 1 2 5 10 15 20 25 30 40 50
w 8 16 40 80 120 160 200 240 320 400

Table 1. Large or small curvature values? Relation between x and w values.
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4 Case-study and concluding remarks

The behavior of the algorithms proposed in the previous section — and im-
plemented [Agati and Stracqualursi, 2001] in MATHEMATICA — has been
investigated in simulation and experimental studies. In this section, the re-
sults from medical data are synthetically presented to exemplify how the
selecting and stopping rules work. Particularly, data in table 2 regard a
sequential consulting process of n = 4 orthopaedists, performed by an Ital-
ian research laboratory about the long-term failure log-odds θ of a new hip
prosthesis. A fifth surgeon has assessed the calibration parameters, without
modifying them in proceeding from a stage to the successive one. He has also
(subjectively) chosen the following thresholds:

– δ = 0.02: by reading this value in McCulloch’s scale, at stage k the most
informative expert Q∗

j;k is consulted only if the expected KL-divergence
of hj∗;k (θ) with respect to hk−1 (θ) is not less than the KL-divergence of
a Bernoulli distribution B(p) with p = 0,5 from a Bernoulli distribution
with p = 0.65; or, in other words, only if stopping the process at stage
k−1 instead of proceeding to stage k involves, on average, an information
loss larger than that one yielded by using a B(0,65) instead of a B(0,5);

– λ = 120: by using the scale proposed in Section 3, the consulting process is
stopped at stage k* at which the observed curvature of the log-likelihood
function ln `(θ) valued at θ := θmax is the same as the function ln ` (p) at
p̂ML = 0.5 when, in a binomial experiment, n = 30 and x = 15.

Qj vj tj sjj rj1 rj2 rj3 rj4

Q1 0.150 0.45 1.20 1
Q2 0.145 0.65 1.50 +0.20 1
Q3 0.120 0.75 1.70 −0.05 +0.50 1
Q4 0.110 0.45 1.10 +0.10 +0.10 +0.10 1

Table 2. Input data for the sequential consulting of four orthopaedists about long-
term failure log-odds of a new hip prosthesis.

In this study, the conditions a), b) and c) mentioned in Section 2 can
be held to be satisfied. In fact: a) it rests on empirical evidence — and the
experts confirm it — that the failure log-odds θ can be supposed as Gaussian;
b) it is reasonable to think the probability the fifth orthopaedist assigns to
the event “the experts will give the variances [v1, ..., v4]

′ = v” is the same
for all θ values: so the surgeons’ stated variances alone give no information
able to change the investigator’s beliefs about θ; c) it is reasonable as well
to assume the conditional probability the investigator assigns to the event
“the expert Qj;k will give the variance vk”, given the shape and location
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values provided by the k − 1 previously consulted experts, is the same for all
θ values. So the combining algorithm outlined in Section 2 has been applied,
as well as the selecting and stopping rules suggested in Section 3.

Stage k = 1 Stage k = 2 Stage k = 3
Qj E [KL (hj;1, h0)] E [KL (hj;2, h1)] E [KL (hj;3, h2)]

Q1 1.41487 1.92935 —
Q2 1.35582 1.52293 1.42842
Q3 1.42427 1.72981 1.93624

Q4 1.60348 — —

↓ ↓ ↓

Q∗

j;k Q4 Q1 Q3

mk −1.208 −1.992 −2.752
Ik (θmax) 18.713 53.492 138.984 (> 120 = λ)

Table 3. Output of the proposed sequential procedure in the consulting of four
orthopaedists about long-term failure log-odds of a new hip prosthesis.

Table 3 summarizes the results of the sequential process, while figure 2
shows the posterior distributions hk (θ) at each stage.

For k = 1, the selecting rule proposed in Section 2 chooses the expert
Q4: really he offers the smallest variance (v4 = 0.110), and also the inves-
tigator’s uncertainty about his performance indicator is assessed to be the
smallest (s44 = 1.10). Q4’s answer (m4;1 = −1, 208) leads to a curvature
value I1 (θmax) = 18.713 < 120 = λ: so the process goes on.

At stage 2, the selecting rule shows its usefulness: in fact, the vj , tj and
sjj values 3 don’t lead to a unique preference ordering. The most informative
expert Q1 is selected by the algorithm4 and m1;2 is observed. The curvature
value is I2 (θmax) = 53.492 < 120 = λ: the consulting proceeds.

At stage 3, the preference for Q3 instead of Q2 is also (but not only)
motivated by the correlations with Q1: a negative correlation (r31 = −0.05)
is more informative than a weak positive one (r21 = 0.20). The observed m3,3

leads to I3 (θmax) = 138.984 > 120 = λ. The process is stopped: the expert
Q2 is left out of the consulting and stage-3 posterior h3 (θ) — whose location
and shape values are, respectively, −1.873 (the median, here coinciding with
the arithmetic mean and the mode) and 0.084 (the standard deviation) —
can be regarded as the synthesis expression of the expert knowledge about
the long-term failure log-odds θ of the new hip prostheses.

3 The correlations between Q4 and the other experts are all equals: so they don’t
come into play.

4 It’s worth noting that the value m4;1 observed at stage 1 has modified, at stage 2,
the previous-stage preference ordering: for this reason, the selecting at each stage
one only expert is to be preferred to selecting a set of experts (simultaneously.
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Fig. 2. Posterior distributions at stages 0 (i.e., the prior), 1, 2 and 3 of the sequen-
tial procedure.

By looking at this selecting and stopping output, the behavior of the in-
formativeness criteria appears to be coherent with the intuition, so giving an
empirical support about the soundness of the proposed selecting and stop-
ping algorithms in performing an efficient sequential consulting process. At
present, our research efforts are focused on the combining of information from
hurricane track prediction models: so, with the aim of assessing the calibra-
tion parameters for each model (an ‘expert’, in our framework), simulations
were performed on a training-set of North Atlantic historical hurricane data
regarding the location of specific storms at prefixed time intervals. Succes-
sively, separately for each time interval, each track prediction model with its
own parameters entered in the informativeness-founded sequential algorithm
and, on the basis of the selecting and stopping output, a Bayesian combined
track prediction model for each prefixed time interval was proposed: the
research — still in progress — promises interesting results.
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