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Abstract. In supervised learning, the prediction of the class is the ultimate goal.
On a broader basis, a good learning methodology is expected to (1) enable a rep-
resentation of the data in order to facilitate user’s navigation within the data set
and (2) contribute to the choice of examples and attributes, while ensuring a struc-
tured, understandable prediction. Various studies have shown how the so-called
neighbourhood graph, from the predictors, gives ground to such a methodology
(e.g.: the relative neighbourhood graph of Toussaint). However, the construction
of such a graph (O(n?)) remains complex. Moreover, when the number of dimen-
sions increases, distance becomes hard to compute and lose their selectivity.

In the case of large high dimensional dataset, we propose to substitute a self-
organized map built on the predictors to the neighbourhood graph. After a short
reminder on the principles of the SOM for unsupervised learning, we analyse how
it can found an optimized strategy of learning. Then we propose to use original
statistics (narrowly correlated with the error in generalization) in order to assess
the level of quality of this strategy. Diverse experiments highlight the feasibility
of this approach, therefore reliable criterion are available for us to select relevant
examples and attributes.
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1 Motivation

Supervised learning methods of a categorical variable aim at predicting the
class of a new instance from a sample of labelled examples. Indeed, pre-
diction is only a step in the learning process, which is enriched through the
exploratory analysis of the data. This allows to clean and transform the
data, to select features and subsets of records, and to detect outliers, while
integrating possible contextual information.

In such a perspective, resorting to neighbourhood graphs brings an effec-
tive solution. One builds the neighbourhood graph based on the predictors,
for example the Relative neighbourhood Graph of Toussaint [1980] (RNG).
The vertices of the graph are then colored according to the class they belong
to. To find the class of a new instance, it is first inserted in the neighbourhood



Quality measure based on Kohonen maps for supervised learning 247

graph and then it is attributed the majority class among its neighbours on
the graph. Various studies proposed a statistic: the cut edge weight statistic.
This statistic evaluates the predictive capacity of a neighbourhood graph. It
also allows for the selection of relevant variables or for the detection of out-
liers by spotting the impact of an example or of a variable on the predictive
capacity of the graph ([Sebban, 1996], [Zighed et al., 2001], [Lallich, 2002],
[Muhlenbach et al., 2003], [Zighed et al., 2004]).

In comparison with the k-Nearest Neighbour method (kNN), neighbour-
hood graphs adapt the number of nearest neighbours to the local topology.
On those graphs, the cut edge weight statistic that evaluates their predictive
capacity is strongly correlated to their error rate in generalization. Their
results in generalization are at least as good and they have the advantage of
establishing an effective procedure of navigation within the basis of examples.
Furthermore, the neighbourhood graph allows to navigate efficiently in the
database, making the exploratory analysis of the data easier.

Neighbourhood graphs present a double difficulty when confronted to
large high-dimensional datasets. Firstly, their great complexity - O(n?) for
Relative Neighbourhood Graphs of Toussaint - makes them poorly adapted to
very large datasets. The second issue is linked to the curse of dimensionality
which triggers a loss of selectiveness of euclidean distance.

Faced with this double difficulty, we propose to replace the RNG issued
from the predictors with a Self Organized Map (SOM). We thus get a rep-
resentation of the information given by the predictors. That method has the
advantage of preserving the local topology in case of high dimensional data
while using a complexity which varies linearly with the number of examples.
The advantages of neighbourhood graphs are also maintained in the SOMs:
especially the spatialisation of the information obtained from the predictors
and the efficient navigation in the database.

In this article, we show that it is possible to construct a cross-product
statistic which is closely linked to the predictive ability of the map in gener-
alization. This statistic has the advantage of helping us in data preparation,
especially to select relevant variables or detect outliers. After presenting the
notations we used (see section below), we introduce the SOM algorithm and
its use in supervised learning (section 3). Then we present our cross-product
statistics estimates in SOM (section 4). Their validation on different datasets
is presented in section 5.

2 Notations

e m: number of examples, d: number of predictors, p: number of classes,
n: number of neurons.

e X: (m,d) matrix of data; line i corresponds to example ¢ and column j
to predictor j.

e y: vector with m components indicating the class of each example.
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W: (n,d) matrix of general term w;;, designating the weight of neuron ¢

for predictor j.

e ¢: vector with n components indicating the class of each neuron; ¢; = 0
if neuron ¢ is ambiguous, ¢; = —1 if neuron 7 is empty.

e bmu; = argmin, ||w, — x;||, index of best matching unit, the nearest
neuron to example i.

e dist.(r,q): distance between neurons r and ¢, according to the map.

e disty(r,q): Euclidean distance between the weights of neurons r and g¢.

e PPV: (n,n) symmetrical matrix of general term ppv;;, worth 1 if

diste(i,7) < max (distc(i, k), dist.(j, k), Yk, k # i,k # j;¢i,c5,c0 # —1

(4,4 connected), 0 otherwise; ppu,4 represents the number of neurons

connected to neuron 7.

3 SOM and supervised learning

The Self Organized Map allows i) a fast unsupervised learning of input exam-
ples and ii) their representation. The map is built on a uniform distribution
of neurons in 2 or 3 dimensions. Each neuron is associated to a vector in
the space of the example. Originally, that association was called a model.
During the learning, the input examples are successively presented to the
map. Assuming a general distance measure between inputs and models (usu-
ally euclidian distance), the neuron the nearest to the input (called the Best
Matching Unit) is modified with its neighbourhood so that all of them get
closer to the input example.

The iterative algorithm for the input example ¢ at time ¢ is summarized
by the following formula updating the weights W of the neuron r:

1 _ ¢ t . t
Wy _wr+hrx($1_wr)

where hl = ol xvL, with o' the learning-rate factor and v} the neighbourhood
function which represents the size of the modified neighbourhood. Both «f
and v} are monotonically decreasing as a function of time.

This algorithm ensures a local preservation of the topology through a non
linear projection. Thus, after learning, two close input examples will have
close models on the SOM. Nevertheless this non linear projection is particular
in the sense that it does not preserve the distances from the input space.

Because of those properties (fast algorithm and topology preservation)
some authors have adapted them to a supervised learning. The most popular
of those algorithms is the LVQ proposed by Kohonen [1988]. Here, the classes
of the input examples are used to control the modification of the models.
Another idea is used by Midenet [1994] in the LASSO model. In that case,
the classes are used during the learning phase in the same way as other input
variables. Two phenomena result in the use of classes during learning. First,
the prediction is more robust: more information is used. But at the same
time the local topology preservation is changed. It is not simply a function
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of the input variables (as in the original SOM algorithm) but also a function
of the classes.

To avoid that problem some authors have proposed a different approach.
On that account, the class of the input example is only used after a classical
learning of the SOM on the input variables. During that second step, the
neurons take the class of the inputs they represent. The reverse happens
during prediction: the class of a new input example is determined by the
class of the best matching unit of that example. Three methods use that
principle: Kohonen-KNN [Zupan et al., 1994], Kohonen-WI [Song and Hopke,
1996] and Kohonen-Opt [Prudhomme and Lallich, 2005]. There are at least
two cases which show the difference between those three approaches. First
empty neurons: after the learning phase some neurons do not match any
input example. Secondly ambiguous neurons: after the learning phase some
neurons match the same proportion of examples from different classes. So
each method proposes a way of predicting a new example which matches one
of those two type of neurons. Prudhomme and Lallich [2005] have shown that
Kohonen-Opt generally gives better results in generalisation than the others.
Moreover, the results obtained with Kohonen-Opt on different datasets are
almost equivalent to those obtained by the ID3 method of classification.

Consequently, SOMs could be used in supervised learning. In that case
there is a double advantage. First the non linear projection is particulary
adapted to high dimensional spaces. It allows a dimension reduction based
on the most significant feature. Secondly the examples are synthetically
represented by the models. Thus the SOM representation is well adapted
to large datasets. In the rest of the document we propose a statistic which
takes advantage of those two points in order to assess the predictive capacity
of the SOM. Because this statistic is based on the neighbourhood, distance
preservation is not mandatory.

4 Quality measures for SOM under supervised learning

We therefore suggest a learning strategy that relies on the construction of
the SOM. The reliability of the SOM, reagrdless of any consideration of class,
can be assessed through various statistical tools proposed notably by [Bodt
et al., 2002]. We suggest here an assessment of the predictive ability of the
SOM through different statistics. We will experimentally show the strong
correlation of those statistics with the precision in generalization. Similarly
to the cut edge weight statistic worked out for neighbourhood graphs [Lal-
lich, 2002], those different statistics are based on the notion of cross-product
statistic [Mantel, 1967]. Thus they are constructed as the scalar product of
two proximity measures, the first one depending on the predictors and the
other one depending from the class.



250 Prudhomme and Lallich

4.1 Definition of J type statistics

To assess the strength of the link between proximity in the sense of the map
and proximity in the sense of the classes, one can reason about examples
or neurons. Reasoning about neurons helps to deal with a large amount of
examples.

When reasoning on examples, the proximity between examples based on
the map is assessed by the matrix T” of general term tgj, which is worth 1 if
the examples i and j are represented by the same neuron, and 0 otherwise. In
order to take into account the topological properties of the map, one also can
resort to the matrix 7" of general term ¢}, which is worth 1 if the examples
i and j are represented by the same neuron, norm(dist,(Wemu,; , Wemu;)) if
and j are represented by adjacent neurones (i.e. dist.(bmu;,bmu;) = 1), and
0 otherwise. The proximity between examples based on the class is assessed
by the matrix U of general term U,j, which is worth 1 if the examples ¢ and

j do not have the same class (i.e ¢; # ¢;), and 0 otherwise.

When reasoning on neurons, the proximity between neurons based on
the map is assessed by the matrix 7", of general term ¢;], which is worth
norm(dist,(w;,w;)) if ppv;; = 1, and 0 otherwise. The proximity between
neurons based on the class is assessed by the matrix R, of general term r;;,
which is worth 1 if the neurons ¢ and j do not have the same class, 0 otherwise.

As a result, one will obtain three different statistics, J’, J” and J"” which

are defined below.

J° | J”» | J”
1 [ [ 17T n [ T |1 m m "
2 Zi:l Zj:l Tilej 5 Zi:1 Z]’:l sz UZ] 5 Zi:1 Zj:l sz le

The following simplifying notations are used, where 7' can take the value
of T'.,T" or T"" and the sums finishing respectively in m for the two former
cases and in n for the latter one:

So | Sh | Sa
Zi:1 Z]’:1 Lij % 21:1 Zj:l(tij + tji)z|zi:1(ti+ + t+i)z

J Type statistics vary between 0 and %SO. They are the weakest when
the link between proximity according to the class and proximity according to
the map is strongly positive. They may be standardized by forming 2.J/S
which varies between 0 and 1.
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Dataset Variables|Classes|Example|Dimensions|Times
(1) Abalone 8 29 4177 25 x 25 | 90000
(2) Balance Scale 4 3 625 15 x 15 60000
(3) Breast Cancer 9 2 699 20 x 20 90000
(4) Glass Indent 9 6 214 10 x 10 10000
(5) Haberman 3 2 306 10 x 10 20000
(6) Tonosphere 34 2 351 10 x 10 20000
(7) Iris 4 3 150 10 x 10 2000

(8) Italian Olive Oil 9 9 572 15 x 15 45000
(9) Liver 6 2 345 10 x 10 35000
(10) Yeast 8 10 1484 25 x 25 90000

Table 1. dataset and associate parameters

4.2 Meaning of J type statistics

In order to know to which extent the evaluation given by J is not due to
chance, a random multinomial outline was defined. The null hypothesis (Hp)
was that the examples (the neurons) are labelled independently from each
other, with the same probability distribution (7). where m, denotes the
frequency of the class y,., 7 =1,2,...,p.

The significance of the observed value of J is appraised with its left uni-
lateral p-value. This is the probability of getting a value of J as extreme as
or more extreme than the observed one if Hy is true. That calculation can
be done either by simulation or more quickly by normal approximation [Cliff
and Ord, 1981]. In the last case, we have to calculate pn = E(J/Hy) and
0% = Var(J/Hp). Tt is casy to calculate = Sp S-P_; r 41 ™rs. One can
find in Lallich [2002], following Cliff and Ord [1981], the calculation of the
variance o2, which depends on Sy, S; and S.

5 Experiment

Those different statistics were tested on 10 datasets, coming from the reposi-
tory of the University of Irvine [Blake and Merz, 1998] (except for one Italian
Olive Oil which is from [Hopke and Massart, 1993]). Table 1 details those
datasets in terms of the number of input variables for each example, the num-
ber of classes and the number of input examples in each dataset. This table
also summarizes some parameters of the SOM used for learning: the total
number of input examples presented (called time) and the size of the SOM.
The algorithm used for learning is the classical one presented in section 3.
Table 2 shows the value of each statistic, their associated p-value and the
error rate in generalization with the Kohonen-Opt method.

The p-values are significant (p < 0,05) for J”, and for J' (except for
Haberman where p = 0.08). Thus they are sufficiently robust to assess the
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Base |2J'/So|p-value|2J” /Sy |p-value|2J"" /Sy|p-value| Error
1) [7996] 0 |7988] 0 |8Lo7 | 1 7386
(2) 21,66 0 23,68 0 22,28 0 17,3
(3) 0,40 0 1,10 0 8,30 0 3,21
(1) 4329 0 | 4464 | 0 | 61,65 | 0,02 |3421
(5) | 34,57 | 0,078 | 32,51 | 0,005 | 28,20 | 0,022 | 24,06
(6)
(7
(8)
(

10,92 0 14,76 0 36,11 | 0,022 | 11,6
3,60 0 4,70 0 8,50 0 1,67
41,0 | 0 8,05 0 20,06 0 7,69
9) 60,58 | 0,0031 | 0,3750 | 0 58,28 | 0,9989 | 37,53
(10) | 50,00 | 0 52,40 0 64,52 0 |47,53
Means| 31,64 | 0,0081 | 29,92 | 0,0005 | 27,99 | 0,2045

Table 2. Statistic, their associated p-value and error rate in test with Kohonen-Opt

quality of the representation built by the SOM. In the case of J"”, two p-values
are almost equal to 1. For this statistic, the link between two ambiguous
neurons is a cut edge one. In the two cases, the graph extracted from the
SOM has a many ambiguous neurons. So, in the statistic sense, the class of
the neuron is independent from the topology of the map. For that reason,
the p-value is high. In fact, this happened only when the error rate was high
too.

A more interesting property is the correlation between that statistic and
the error rate in generalization. 72 of this correlation is respectively 0.78, 0.98
and 0.88 for J’, J” and J"'. J’ just takes into account the input example of
different classes matching the same neurons. So this statistic does not use the
information contained in the local topology of the SOM. That information is
used by J”. For that reason that statistic has a better correlation with the
error rate. The correlation between J" and the error rate is intermediate.
That statistic takes into account the local topology of the SOM thanks to
the the neighbourhood graph which was built on the map. On the other
hand, the input examples are not used. Therefore some information is lost
during the projection of the input space on the map. However the estimation
of that statistic has a low complexity as only the neurons are used. In the
case of datasets composed by a high number of examples, it is an interesting
property. On the contrary, J” needs the examples.

Moreover, we have tested the capacity of that approach to be applied
on large datasets. Therefore, we used Wave [Blake and Merz, 1998], which
allows to randomly generate a user fixed number of input examples. For each
generated dataset, the error rate in generalization is know and constant. We
applied Kohonen-Opt and our statistics on different datasets containing 5
000 to 1 280 000 examples. The learning time was reported on table 3. The
SOM used for each dataset is the same and the test was made on the same
dataset of 100 000 examples, never used in learning.
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The table 3 shows the results. First, the error rate in generalization is
stable regardless of the number of input examples (approximatively 15%).
Secondly the time needed for learning increases linearly from a factor 2 (like
the number of examples). Finally, the statistics (2.J/50) are stable too with
a little decrease when the number of examples increases. Their p-values are
always equal to 0.

This experiment shows that the quality of the learning by the SOM does
not decrease when the number of examples increases. Thus they could be
used in the case of large datasets. This is also the case for the proposed
statistics which are relatively stable.

Size|2J’/So|2J" /So|2J"" /Sy |Error|Time (s)
1250 26,67 | 26,27 | 17,80 | 16,03 2
2500 26,08 | 26,09 13,39 | 15,70 5
5000| 24,57 | 24,92 | 9,87 |1546| 10
10000| 24,45 | 24,36 9,44 15,57 20
20000 23,25 | 23,68 7,42 14,92 41
40000| 22,65 | 23,04 | 7,78 |14,84| 78
80000| 22,64 | 23,22 7,40 15,25 127
160000| 22,53 | 23,03 7,45 14,93 245
320000 22,94 | 23,37 7,92 15,04 500
640000| 22,54 | 23,09 7,18 15,17 1073
1280000| 22,32 | 22,94 7,98 15,22 2014

Table 3. Statistic, their associate p-value and error rate in test with Kohonen-Opt
on different Waves dataset

Finally, we have tested the capacity of that approach on high dimensional
datasets. Here we use the Forest CoverType dataset [Blake and Merz, 1998].
That dataset presents 54 input variables for 8 classes. Moreover the classifi-
cation performance on that dataset is known. It was obtained by Blackard
[1998] for neural networks and linear discriminant analysis.

Table 4 shows those results and those obtained with Kohonen-Opt. A
direct application of Kohonen-Opt on this dataset gives poor results. To avoid
that problem, a normalization of the attributes was carried out i) with the
Milligan and Cooper (MC') procedure [1988] and ii) with a standardization
by removing the mean and dividing by the standard deviation (s). Since
attributes are both boolean and continuous, the MC procedure gives better
results. In that case, the error rate is in the same order as the one obtained
by the neural network. That result tends to show that the learning based on
the SOM is robust when the number of input variables increases.
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Kohonen-Opt Other
Method None| s |MC ANN|linear discriminant
Error Rate| 45,7 [43,4]32,2] 30 | 42

Table 4. Result in classification task on Forest CoverType dataset

6 Conclusion

SOMs are popular algorithm in unsupervised learning. Their complexity is
linear with the number of example and they allow for a data exploration
[Lechevallier, 2002]. In that paper we suggested that they can be used in
supervised learning. In that case SOMs synthesize the information of the
predictors through a non linear projection and enable a navigation through
the dataset. Even if that non linear projection does not maintain the distance,
it is nevertheless a way to assess our statistic (2.J/Sp) which is correlated to
the error rate.

In further work we want to use that statistic for outliers detection and
feature selection from large high dimensional datasets. In addition, we want
to test the effect of the choice of the distance on the learning process. We
hope to show that fractional distance metrics are more useful than euclidian
distance to learn high dimensional datasets with SOMs, as it is the case for
k-means [Aggarwal et al., 2001].
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